1
|
Ball B, Sukumaran A, Krieger JR, Geddes-McAlister J. Comparative Cross-Kingdom DDA- and DIA-PASEF Proteomic Profiling Reveals Novel Determinants of Fungal Virulence and a Putative Druggable Target. J Proteome Res 2024; 23:3917-3932. [PMID: 39140824 PMCID: PMC11385706 DOI: 10.1021/acs.jproteome.4c00255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
Abstract
Accurate and reliable detection of fungal pathogens presents an important hurdle to manage infections, especially considering that fungal pathogens, including the globally important human pathogen, Cryptococcus neoformans, have adapted diverse mechanisms to survive the hostile host environment and moderate virulence determinant production during coinfections. These pathogen adaptations present an opportunity for improvements (e.g., technological and computational) to better understand the interplay between a host and a pathogen during disease to uncover new strategies to overcome infection. In this study, we performed comparative proteomic profiling of an in vitro coinfection model across a range of fungal and bacterial burden loads in macrophages. Comparing data-dependent acquisition and data-independent acquisition enabled with parallel accumulation serial fragmentation technology, we quantified changes in dual-perspective proteome remodeling. We report enhanced and novel detection of pathogen proteins with data-independent acquisition-parallel accumulation serial fragmentation (DIA-PASEF), especially for fungal proteins during single and dual infection of macrophages. Further characterization of a fungal protein detected only with DIA-PASEF uncovered a novel determinant of fungal virulence, including altered capsule and melanin production, thermotolerance, and macrophage infectivity, supporting proteomics advances for the discovery of a novel putative druggable target to suppress C. neoformans pathogenicity.
Collapse
Affiliation(s)
- Brianna Ball
- Department of Molecular and Cellular Biology, University of Guelph, Guelph N1G 2W1, Ontario, Canada
| | - Arjun Sukumaran
- Department of Molecular and Cellular Biology, University of Guelph, Guelph N1G 2W1, Ontario, Canada
| | | | | |
Collapse
|
2
|
Sonnberger J, Kasper L, Lange T, Brunke S, Hube B. "We've got to get out"-Strategies of human pathogenic fungi to escape from phagocytes. Mol Microbiol 2024; 121:341-358. [PMID: 37800630 DOI: 10.1111/mmi.15149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/08/2023] [Accepted: 08/16/2023] [Indexed: 10/07/2023]
Abstract
Human fungal pathogens are a deadly and underappreciated risk to global health that most severely affect immunocompromised individuals. A virulence attribute shared by some of the most clinically relevant fungal species is their ability to survive inside macrophages and escape from these immune cells. In this review, we discuss the mechanisms behind intracellular survival and elaborate how escape is mediated by lytic and non-lytic pathways as well as strategies to induce programmed host cell death. We also discuss persistence as an alternative to rapid host cell exit. In the end, we address the consequences of fungal escape for the host immune response and provide future perspectives for research and development of targeted therapies.
Collapse
Affiliation(s)
- Johannes Sonnberger
- Department of Microbial Pathogenicity Mechanisms, Hans Knoell Institute, Jena, Germany
| | - Lydia Kasper
- Department of Microbial Pathogenicity Mechanisms, Hans Knoell Institute, Jena, Germany
| | - Theresa Lange
- Department of Microbial Pathogenicity Mechanisms, Hans Knoell Institute, Jena, Germany
| | - Sascha Brunke
- Department of Microbial Pathogenicity Mechanisms, Hans Knoell Institute, Jena, Germany
| | - Bernhard Hube
- Department of Microbial Pathogenicity Mechanisms, Hans Knoell Institute, Jena, Germany
- Institute of Microbiology, Friedrich Schiller University, Jena, Germany
| |
Collapse
|
3
|
Hoffman HJ, McClelland EE. Measuring Urease and Phospholipase Secretion in Cryptococcus neoformans. Methods Mol Biol 2024; 2775:269-275. [PMID: 38758324 DOI: 10.1007/978-1-0716-3722-7_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2024]
Abstract
Urease and phospholipase are enzymes that are important virulence factors for Cryptococcus neoformans. These are two of the most studied enzymes involved in how C. neoformans breaches the blood-brain barrier. Additionally, phospholipase secretion also supports dissemination from the lungs. This chapter describes the methods used to measure the secretion of these enzymes, which may be used to characterize strain invasiveness and virulence.
Collapse
Affiliation(s)
- Hunter J Hoffman
- Department of Biomedical Sciences, Marian University College of Osteopathic Medicine, Indianapolis, IN, USA
| | - Erin E McClelland
- Department of Biomedical Sciences, Marian University College of Osteopathic Medicine, Indianapolis, IN, USA.
| |
Collapse
|
4
|
de Castro RJA, Marina CL, Sturny-Leclère A, Hoffmann C, Bürgel PH, Wong SSW, Aimanianda V, Varet H, Agrawal R, Bocca AL, Alanio A. Kicking sleepers out of bed: Macrophages promote reactivation of dormant Cryptococcus neoformans by extracellular vesicle release and non-lytic exocytosis. PLoS Pathog 2023; 19:e1011841. [PMID: 38033163 PMCID: PMC10715671 DOI: 10.1371/journal.ppat.1011841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 12/12/2023] [Accepted: 11/18/2023] [Indexed: 12/02/2023] Open
Abstract
Macrophages play a key role in disseminated cryptococcosis, a deadly fungal disease caused by Cryptococcus neoformans. This opportunistic infection can arise following the reactivation of a poorly characterized latent infection attributed to dormant C. neoformans. Here, we investigated the mechanisms underlying reactivation of dormant C. neoformans using an in vitro co-culture model of viable but non-culturable (VBNC; equivalent of dormant) yeast cells with bone marrow-derived murine macrophages (BMDMs). Comparative transcriptome analysis of BMDMs incubated with log, stationary phase or VBNC cells of C. neoformans showed that VBNC cells elicited a reduced transcriptional modification of the macrophage but retaining the ability to regulate genes important for immune response, such as NLRP3 inflammasome-related genes. We further confirmed the maintenance of the low immunostimulatory capacity of VBNC cells using multiplex cytokine profiling, and analysis of cell wall composition and dectin-1 ligands exposure. In addition, we evaluated the effects of classic (M1) or alternative (M2) macrophage polarization on VBNC cells. We observed that intracellular residence sustained dormancy, regardless of the polarization state of macrophages and despite indirect detection of pantothenic acid (or its derivatives), a known reactivator for VBNC cells, in the C. neoformans-containing phagolysosome. Notably, M0 and M2, but not M1 macrophages, induced extracellular reactivation of VBNC cells by the secretion of extracellular vesicles and non-lytic exocytosis. Our results indicate that VBNC cells retain the low immunostimulatory profile required for persistence of C. neoformans in the host. We also describe a pro-pathogen role of macrophage-derived extracellular vesicles in C. neoformans infection and reinforce the impact of non-lytic exocytosis and the macrophage profile on the pathophysiology of cryptococcosis.
Collapse
Affiliation(s)
- Raffael Júnio Araújo de Castro
- Translational Mycology Research Group, National Reference Center for Invasive Mycoses and Antifungals, Mycology Department, Institut Pasteur, Université Paris Cité, Paris, France
- Laboratory of Applied Immunology, Department of Cell Biology, Institute of Biological Sciences, University of Brasilia, Brasília, Distrito Federal, Brazil
| | - Clara Luna Marina
- Laboratory of Applied Immunology, Department of Cell Biology, Institute of Biological Sciences, University of Brasilia, Brasília, Distrito Federal, Brazil
| | - Aude Sturny-Leclère
- Translational Mycology Research Group, National Reference Center for Invasive Mycoses and Antifungals, Mycology Department, Institut Pasteur, Université Paris Cité, Paris, France
| | - Christian Hoffmann
- Food Research Center, Department of Food Sciences and Experimental Nutrition, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, São Paulo, Brazil
| | - Pedro Henrique Bürgel
- Laboratory of Applied Immunology, Department of Cell Biology, Institute of Biological Sciences, University of Brasilia, Brasília, Distrito Federal, Brazil
| | - Sarah Sze Wah Wong
- Immunobiology of Aspergillus, Institut Pasteur, Université Paris Cité, Paris, France
| | - Vishukumar Aimanianda
- Immunobiology of Aspergillus, Institut Pasteur, Université Paris Cité, Paris, France
| | - Hugo Varet
- Plate-forme Technologique Biomics, Institut Pasteur, Université Paris Cité, Paris, France
| | - Ruchi Agrawal
- Translational Mycology Research Group, National Reference Center for Invasive Mycoses and Antifungals, Mycology Department, Institut Pasteur, Université Paris Cité, Paris, France
| | - Anamélia Lorenzetti Bocca
- Laboratory of Applied Immunology, Department of Cell Biology, Institute of Biological Sciences, University of Brasilia, Brasília, Distrito Federal, Brazil
| | - Alexandre Alanio
- Translational Mycology Research Group, National Reference Center for Invasive Mycoses and Antifungals, Mycology Department, Institut Pasteur, Université Paris Cité, Paris, France
- Laboratoire de parasitologie-mycologie, AP-HP, Hôpital Saint-Louis, Paris, France
| |
Collapse
|
5
|
Stuckey PV, Santiago-Tirado FH. Fungal mechanisms of intracellular survival: what can we learn from bacterial pathogens? Infect Immun 2023; 91:e0043422. [PMID: 37506189 PMCID: PMC10501222 DOI: 10.1128/iai.00434-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 06/23/2023] [Indexed: 07/30/2023] Open
Abstract
Fungal infections represent a major, albeit neglected, public health threat with serious medical and economic burdens globally. With unacceptably high mortality rates, invasive fungal pathogens are responsible for millions of deaths each year, with a steadily increasing incidence primarily in immunocompromised individuals. The poor therapeutic options and rise of antifungal drug resistance pose further challenges in controlling these infections. These fungal pathogens have adapted to survive within mammalian hosts and can establish intracellular niches to promote survival within host immune cells. To do that, they have developed diverse methods to circumvent the innate immune system attack. This includes strategies such as altering their morphology, counteracting macrophage antimicrobial action, and metabolic adaptation. This is reminiscent of how bacterial pathogens have adapted to survive within host cells and cause disease. However, relative to the great deal of information available concerning intracellular bacterial pathogenesis, less is known about the mechanisms fungal pathogens employ. Therefore, here we review our current knowledge and recent advances in our understanding of how fungi can evade and persist within host immune cells. This review will focus on the major fungal pathogens, including Cryptococcus neoformans, Candida albicans, and Aspergillus fumigatus, among others. As we discover and understand the strategies used by these fungi, similarities with their bacterial counterparts are becoming apparent, hence we can use the abundant information from bacteria to guide our studies in fungi. By understanding these strategies, new lines of research will open that can improve the treatments of these devastating fungal diseases.
Collapse
Affiliation(s)
- Peter V. Stuckey
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, USA
| | - Felipe H. Santiago-Tirado
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, USA
- Eck Institute for Global Health, University of Notre Dame, Notre Dame, Indiana, USA
- Warren Center for Drug Discovery, University of Notre Dame, Notre Dame, Indiana, USA
| |
Collapse
|
6
|
Kietrungruang K, Sookkree S, Sangboonruang S, Semakul N, Poomanee W, Kitidee K, Tragoolpua Y, Tragoolpua K. Ethanolic Extract Propolis-Loaded Niosomes Diminish Phospholipase B1, Biofilm Formation, and Intracellular Replication of Cryptococcus neoformans in Macrophages. Molecules 2023; 28:6224. [PMID: 37687052 PMCID: PMC10488685 DOI: 10.3390/molecules28176224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 08/21/2023] [Accepted: 08/22/2023] [Indexed: 09/10/2023] Open
Abstract
Secretory phospholipase B1 (PLB1) and biofilms act as microbial virulence factors and play an important role in pulmonary cryptococcosis. This study aims to formulate the ethanolic extract of propolis-loaded niosomes (Nio-EEP) and evaluate the biological activities occurring during PLB1 production and biofilm formation of Cryptococcus neoformans. Some physicochemical characterizations of niosomes include a mean diameter of 270 nm in a spherical shape, a zeta-potential of -10.54 ± 1.37 mV, and 88.13 ± 0.01% entrapment efficiency. Nio-EEP can release EEP in a sustained manner and retains consistent physicochemical properties for a month. Nio-EEP has the capability to permeate the cellular membranes of C. neoformans, causing a significant decrease in the mRNA expression level of PLB1. Interestingly, biofilm formation, biofilm thickness, and the expression level of biofilm-related genes (UGD1 and UXS1) were also significantly reduced. Pre-treating with Nio-EEP prior to yeast infection reduced the intracellular replication of C. neoformans in alveolar macrophages by 47%. In conclusion, Nio-EEP mediates as an anti-virulence agent to inhibit PLB1 and biofilm production for preventing fungal colonization on lung epithelial cells and also decreases the intracellular replication of phagocytosed cryptococci. This nano-based EEP delivery might be a potential therapeutic strategy in the prophylaxis and treatment of pulmonary cryptococcosis in the future.
Collapse
Affiliation(s)
- Kritapat Kietrungruang
- Division of Clinical Microbiology, Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand; (K.K.); (S.S.); (S.S.)
| | - Sanonthinee Sookkree
- Division of Clinical Microbiology, Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand; (K.K.); (S.S.); (S.S.)
| | - Sirikwan Sangboonruang
- Division of Clinical Microbiology, Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand; (K.K.); (S.S.); (S.S.)
| | - Natthawat Semakul
- Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand;
| | - Worrapan Poomanee
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand;
| | - Kuntida Kitidee
- Center for Research Innovation and Biomedical Informatics, Faculty of Medical Technology, Mahidol University, Salaya, Nakhon Pathom 73170, Thailand;
| | - Yingmanee Tragoolpua
- Natural Extracts and Innovative Products for Alternative Healthcare Research Group, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand;
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Khajornsak Tragoolpua
- Division of Clinical Microbiology, Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand; (K.K.); (S.S.); (S.S.)
- Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand;
| |
Collapse
|
7
|
Conn BN, Wozniak KL. Innate Pulmonary Phagocytes and Their Interactions with Pathogenic Cryptococcus Species. J Fungi (Basel) 2023; 9:617. [PMID: 37367553 PMCID: PMC10299524 DOI: 10.3390/jof9060617] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 05/23/2023] [Accepted: 05/25/2023] [Indexed: 06/28/2023] Open
Abstract
Cryptococcus neoformans is an opportunistic fungal pathogen that causes over 180,000 annual deaths in HIV/AIDS patients. Innate phagocytes in the lungs, such as dendritic cells (DCs) and macrophages, are the first cells to interact with the pathogen. Neutrophils, another innate phagocyte, are recruited to the lungs during cryptococcal infection. These innate cells are involved in early detection of C. neoformans, as well as the removal and clearance of cryptococcal infections. However, C. neoformans has developed ways to interfere with these processes, allowing for the evasion of the host's innate immune system. Additionally, the innate immune cells have the ability to aid in cryptococcal pathogenesis. This review discusses recent literature on the interactions of innate pulmonary phagocytes with C. neoformans.
Collapse
Affiliation(s)
| | - Karen L. Wozniak
- Department of Microbiology and Molecular Genetics, Oklahoma State University, 307 Life Science East, Stillwater, OK 74078, USA;
| |
Collapse
|
8
|
Liu N, Tu J, Huang Y, Yang W, Wang Q, Li Z, Sheng C. Target- and prodrug-based design for fungal diseases and cancer-associated fungal infections. Adv Drug Deliv Rev 2023; 197:114819. [PMID: 37024014 DOI: 10.1016/j.addr.2023.114819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/28/2023] [Accepted: 03/31/2023] [Indexed: 04/07/2023]
Abstract
Invasive fungal infections (IFIs) are emerging as a serious threat to public health and are associated with high incidence and mortality. IFIs also represent a frequent complication in patients with cancer who are undergoing chemotherapy. However, effective and safe antifungal agents remain limited, and the development of severe drug resistance further undermines the efficacy of antifungal therapy. Therefore, there is an urgent need for novel antifungal agents to treat life-threatening fungal diseases, especially those with new mode of action, favorable pharmacokinetic profiles, and anti-resistance activity. In this review, we summarize new antifungal targets and target-based inhibitor design, with a focus on their antifungal activity, selectivity, and mechanism. We also illustrate the prodrug design strategy used to improve the physicochemical and pharmacokinetic profiles of antifungal agents. Dual-targeting antifungal agents offer a new strategy for the treatment of resistant infections and cancer-associated fungal infections.
Collapse
|
9
|
Chen XR, Poudel L, Hong Z, Johnen P, Katti S, Tripathi A, Nile AH, Green SM, Khan D, Schaaf G, Bono F, Bankaitis VA, Igumenova TI. Mechanisms by which small molecules of diverse chemotypes arrest Sec14 lipid transfer activity. J Biol Chem 2023; 299:102861. [PMID: 36603766 PMCID: PMC9898755 DOI: 10.1016/j.jbc.2022.102861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 12/27/2022] [Accepted: 12/28/2022] [Indexed: 01/04/2023] Open
Abstract
Phosphatidylinositol (PtdIns) transfer proteins (PITPs) enhance the activities of PtdIns 4-OH kinases that generate signaling pools of PtdIns-4-phosphate. In that capacity, PITPs serve as key regulators of lipid signaling in eukaryotic cells. Although the PITP phospholipid exchange cycle is the engine that stimulates PtdIns 4-OH kinase activities, the underlying mechanism is not understood. Herein, we apply an integrative structural biology approach to investigate interactions of the yeast PITP Sec14 with small-molecule inhibitors (SMIs) of its phospholipid exchange cycle. Using a combination of X-ray crystallography, solution NMR spectroscopy, and atomistic MD simulations, we dissect how SMIs compete with native Sec14 phospholipid ligands and arrest phospholipid exchange. Moreover, as Sec14 PITPs represent new targets for the development of next-generation antifungal drugs, the structures of Sec14 bound to SMIs of diverse chemotypes reported in this study will provide critical information required for future structure-based design of next-generation lead compounds directed against Sec14 PITPs of virulent fungi.
Collapse
Affiliation(s)
- Xiao-Ru Chen
- Department of Biochemistry & Biophysics, Texas A&M University, College Station, Texas USA
| | - Lokendra Poudel
- Department of Biochemistry & Biophysics, Texas A&M University, College Station, Texas USA
| | - Zebin Hong
- Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Philipp Johnen
- Institute for Crop Science and Resource Conservation, Universität Bonn, Bonn, Germany
| | - Sachin Katti
- Department of Biochemistry & Biophysics, Texas A&M University, College Station, Texas USA
| | - Ashutosh Tripathi
- Department of Cell Biology & Genetics, Texas A&M University, College Station, Texas, USA
| | - Aaron H Nile
- Department of Cell Biology & Genetics, Texas A&M University, College Station, Texas, USA
| | - Savana M Green
- Department of Biochemistry & Biophysics, Texas A&M University, College Station, Texas USA; Department of Cell Biology & Genetics, Texas A&M University, College Station, Texas, USA
| | - Danish Khan
- Department of Biochemistry & Biophysics, Texas A&M University, College Station, Texas USA
| | - Gabriel Schaaf
- Institute for Crop Science and Resource Conservation, Universität Bonn, Bonn, Germany
| | - Fulvia Bono
- Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Vytas A Bankaitis
- Department of Biochemistry & Biophysics, Texas A&M University, College Station, Texas USA; Department of Cell Biology & Genetics, Texas A&M University, College Station, Texas, USA.
| | - Tatyana I Igumenova
- Department of Biochemistry & Biophysics, Texas A&M University, College Station, Texas USA.
| |
Collapse
|
10
|
RTA1 Is Involved in Resistance to 7-Aminocholesterol and Secretion of Fungal Proteins in Cryptococcus neoformans. Pathogens 2022; 11:pathogens11111239. [PMID: 36364991 PMCID: PMC9697666 DOI: 10.3390/pathogens11111239] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 10/21/2022] [Accepted: 10/24/2022] [Indexed: 11/30/2022] Open
Abstract
Cryptococcus neoformans (Cn) is a pathogenic yeast that is the leading cause of fungal meningitis in immunocompromised patients. Various Cn virulence factors, such as the enzyme laccase and its product melanin, phospholipase, and capsular polysaccharide have been identified. During a screen of knockout mutants, the gene resistance to aminocholesterol 1 (RTA1) was identified, the function of which is currently unknown in Cn. Rta1 homologs in S. cerevisiae belong to a lipid-translocating exporter family of fungal proteins with transmembrane regions and confer resistance to the antimicrobial agent 7-aminocholesterol when overexpressed. To determine the role of RTA1 in Cn, the knock-out (rta1Δ) and reconstituted (rta1Δ+RTA1) strains were created and phenotypically tested. RTA1 was involved in resistance to 7-aminocholesterol, and also in exocyst complex component 3 (Sec6)-mediated secretion of urease, laccase, and the major capsule component, glucuronoxylomannan (GXM), which coincided with significantly smaller capsules in the rta1Δ and rta1Δ+RTA1 strains compared to the wild-type H99 strain. Furthermore, RTA1 expression was reduced in a secretory 14 mutant (sec14Δ) and increased in an RNAi Sec6 mutant. Transmission electron microscopy demonstrated vesicle accumulation inside the rta1Δ strain, predominantly near the cell membrane. Given that Rta1 is likely to be a transmembrane protein located at the plasma membrane, these data suggest that Rta1 may be involved in both secretion of various fungal virulence factors and resistance to 7-aminocholesterol in Cn.
Collapse
|
11
|
Cryptococcus neoformans Infection in the Central Nervous System: The Battle between Host and Pathogen. J Fungi (Basel) 2022; 8:jof8101069. [PMID: 36294634 PMCID: PMC9605252 DOI: 10.3390/jof8101069] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 09/28/2022] [Accepted: 10/07/2022] [Indexed: 11/17/2022] Open
Abstract
Cryptococcus neoformans (C. neoformans) is a pathogenic fungus with a global distribution. Humans become infected by inhaling the fungus from the environment, and the fungus initially colonizes the lungs. If the immune system fails to contain C. neoformans in the lungs, the fungus can disseminate to the blood and invade the central nervous system, resulting in fatal meningoencephalitis particularly in immunocompromised individuals including HIV/AIDS patients. Following brain invasion, C. neoformans will encounter host defenses involving resident as well as recruited immune cells in the brain. To overcome host defenses, C. neoformans possesses multiple virulence factors capable of modulating immune responses. The outcome of the interactions between the host and C. neoformans will determine the disease progression. In this review, we describe the current understanding of how C. neoformans migrates to the brain across the blood–brain barrier, and how the host immune system responds to the invading organism in the brain. We will also discuss the virulence factors that C. neoformans uses to modulate host immune responses.
Collapse
|
12
|
Bankaitis VA, Tripathi A, Chen XR, Igumenova TI. New strategies for combating fungal infections: Inhibiting inositol lipid signaling by targeting Sec14 phosphatidylinositol transfer proteins. Adv Biol Regul 2022; 84:100891. [PMID: 35240534 PMCID: PMC9149032 DOI: 10.1016/j.jbior.2022.100891] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 02/22/2022] [Indexed: 12/13/2022]
Abstract
Virulent fungi represent a particularly difficult problem in the infectious disease arena as these organisms are eukaryotes that share many orthologous activities with their human hosts. The fact that these activities are often catalyzed by conserved proteins places additional demands on development of pharmacological strategies for specifically inhibiting target fungal activities without imposing undesirable secondary effects on the host. While deployment of a limited set of anti-mycotics has to date satisfied the clinical needs for treatment of fungal infections, the recent emergence of multi-drug resistant fungal 'superbugs' now poses a serious global health threat with rapidly diminishing options for treatment. This escalating infectious disease problem emphasizes the urgent need for development of new classes of anti-mycotics. In that regard, Sec14 phosphatidylinositol transfer proteins offer interesting possibilities for interfering with fungal phosphoinositide signaling with exquisite specificity and without targeting the highly conserved lipid kinases responsible for phosphoinositide production. Herein, we review the establishment of proof-of-principle that demonstrates the feasibility of such an approach. We also describe the lead compounds of four chemotypes that directly target fungal Sec14 proteins. The rules that pertain to the mechanism(s) of Sec14 inhibition by validated small molecule inhibitors, and the open questions that remain, are discussed - as are the challenges that face development of next generation Sec14-directed inhibitors.
Collapse
Affiliation(s)
- Vytas A Bankaitis
- Department of Molecular & Cellular Medicine, Texas A&M University, College Station, TX, 77843-0014, USA; Department of Biochemistry & Biophysics, Texas A&M University, College Station, TX, 77843-0014, USA.
| | - Ashutosh Tripathi
- Department of Molecular & Cellular Medicine, Texas A&M University, College Station, TX, 77843-0014, USA
| | - Xiao-Ru Chen
- Department of Biochemistry & Biophysics, Texas A&M University, College Station, TX, 77843-0014, USA
| | - Tatyana I Igumenova
- Department of Biochemistry & Biophysics, Texas A&M University, College Station, TX, 77843-0014, USA
| |
Collapse
|
13
|
Gibson JF, Bojarczuk A, Evans RJ, Kamuyango AA, Hotham R, Lagendijk AK, Hogan BM, Ingham PW, Renshaw SA, Johnston SA. Blood vessel occlusion by Cryptococcus neoformans is a mechanism for haemorrhagic dissemination of infection. PLoS Pathog 2022; 18:e1010389. [PMID: 35446924 PMCID: PMC9022829 DOI: 10.1371/journal.ppat.1010389] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 02/21/2022] [Indexed: 11/18/2022] Open
Abstract
Meningitis caused by infectious pathogens is associated with vessel damage and infarct formation, however the physiological cause is often unknown. Cryptococcus neoformans is a human fungal pathogen and causative agent of cryptococcal meningitis, where vascular events are observed in up to 30% of patients, predominantly in severe infection. Therefore, we aimed to investigate how infection may lead to vessel damage and associated pathogen dissemination using a zebrafish model that permitted noninvasive in vivo imaging. We find that cryptococcal cells become trapped within the vasculature (dependent on their size) and proliferate there resulting in vasodilation. Localised cryptococcal growth, originating from a small number of cryptococcal cells in the vasculature was associated with sites of dissemination and simultaneously with loss of blood vessel integrity. Using a cell-cell junction tension reporter we identified dissemination from intact blood vessels and where vessel rupture occurred. Finally, we manipulated blood vessel tension via cell junctions and found increased tension resulted in increased dissemination. Our data suggest that global vascular vasodilation occurs following infection, resulting in increased vessel tension which subsequently increases dissemination events, representing a positive feedback loop. Thus, we identify a mechanism for blood vessel damage during cryptococcal infection that may represent a cause of vascular damage and cortical infarction during cryptococcal meningitis. Meningitis is a life threatening form of infection in the brain that is difficult to treat. How infection spreads from the blood to cause meningitis is not well understood. Here we have shown how infection with the fungus Cryptococcus neoformans can be spread from the blood by blocking and bursting blood vessels. Using zebrafish larvae, we were able to follow the same infections over a period of days to understand how this infection behaves in blood vessels. We found that fungal cells become stuck within blood vessels depending on their size. These cells grow within blood vessels, resulting in the blood vessels becoming wider. We measured increased tension in blood vessels suggesting that, with the bloackage and widening of vessels, there was increased local blood pressure. We found that vessel blockage was associated with their rupture and spreading of fungus into the surround tissue. Finally, by increasing the tension in vessels we could increase the number of blood bursting events supporting our conclusion that blood vessel blockage leads to the spread of the infection outside of blood vessels.
Collapse
Affiliation(s)
- Josie F. Gibson
- Department of Infection, Immunity and Cardiovascular disease, Bateson Centre and Florey Institute, University of Sheffield, United Kingdom
- Institute of Molecular and Cell Biology, Agency of Science, Technology and Research (A-Star), Singapore
| | - Aleksandra Bojarczuk
- Department of Infection, Immunity and Cardiovascular disease, Bateson Centre and Florey Institute, University of Sheffield, United Kingdom
- Faculty of Physical Education, Gdansk University of Physical Education and Sport, Gdansk, Poland
| | - Robert J. Evans
- Department of Infection, Immunity and Cardiovascular disease, Bateson Centre and Florey Institute, University of Sheffield, United Kingdom
| | - Alfred Alinafe Kamuyango
- Department of Infection, Immunity and Cardiovascular disease, Bateson Centre and Florey Institute, University of Sheffield, United Kingdom
| | - Richard Hotham
- Department of Infection, Immunity and Cardiovascular disease, Bateson Centre and Florey Institute, University of Sheffield, United Kingdom
| | - Anne K. Lagendijk
- Division of Genomics of Development and Disease, Institute for Molecular Bioscience, University of Queensland, Brisbane, Australia
| | - Benjamin M. Hogan
- Division of Genomics of Development and Disease, Institute for Molecular Bioscience, University of Queensland, Brisbane, Australia
| | - Philip W. Ingham
- Institute of Molecular and Cell Biology, Agency of Science, Technology and Research (A-Star), Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
| | - Stephen A. Renshaw
- Department of Infection, Immunity and Cardiovascular disease, Bateson Centre and Florey Institute, University of Sheffield, United Kingdom
| | - Simon A. Johnston
- Department of Infection, Immunity and Cardiovascular disease, Bateson Centre and Florey Institute, University of Sheffield, United Kingdom
- * E-mail:
| |
Collapse
|
14
|
Emerging Prospects for Combating Fungal Infections by Targeting Phosphatidylinositol Transfer Proteins. Int J Mol Sci 2021; 22:ijms22136754. [PMID: 34201733 PMCID: PMC8269425 DOI: 10.3390/ijms22136754] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 06/11/2021] [Accepted: 06/11/2021] [Indexed: 12/27/2022] Open
Abstract
The emergence of fungal “superbugs” resistant to the limited cohort of anti-fungal agents available to clinicians is eroding our ability to effectively treat infections by these virulent pathogens. As the threat of fungal infection is escalating worldwide, this dwindling response capacity is fueling concerns of impending global health emergencies. These developments underscore the urgent need for new classes of anti-fungal drugs and, therefore, the identification of new targets. Phosphoinositide signaling does not immediately appear to offer attractive targets due to its evolutionary conservation across the Eukaryota. However, recent evidence argues otherwise. Herein, we discuss the evidence identifying Sec14-like phosphatidylinositol transfer proteins (PITPs) as unexplored portals through which phosphoinositide signaling in virulent fungi can be chemically disrupted with exquisite selectivity. Recent identification of lead compounds that target fungal Sec14 proteins, derived from several distinct chemical scaffolds, reveals exciting inroads into the rational design of next generation Sec14 inhibitors. Development of appropriately refined next generation Sec14-directed inhibitors promises to expand the chemical weaponry available for deployment in the shifting field of engagement between fungal pathogens and their human hosts.
Collapse
|
15
|
Holič R, Šťastný D, Griač P. Sec14 family of lipid transfer proteins in yeasts. Biochim Biophys Acta Mol Cell Biol Lipids 2021; 1866:158990. [PMID: 34118432 DOI: 10.1016/j.bbalip.2021.158990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/31/2021] [Accepted: 06/02/2021] [Indexed: 11/25/2022]
Abstract
The hydrophobicity of lipids prevents their free movement across the cytoplasm. To achieve highly heterogeneous and precisely regulated lipid distribution in different cellular membranes, lipids are transported by lipid transfer proteins (LTPs) in addition to their transport by vesicles. Sec14 family is one of the most extensively studied groups of LTPs. Here we provide an overview of Sec14 family of LTPs in the most studied yeast Saccharomyces cerevisiae as well as in other selected non-Saccharomyces yeasts-Schizosaccharomyces pombe, Kluyveromyces lactis, Candida albicans, Candida glabrata, Cryptococcus neoformans, and Yarrowia lipolytica. Discussed are specificities of Sec14-domain LTPs in various yeasts, their mode of action, subcellular localization, and physiological function. In addition, quite few Sec14 family LTPs are target of antifungal drugs, serve as modifiers of drug resistance or influence virulence of pathologic yeasts. Thus, they represent an important object of study from the perspective of human health.
Collapse
Affiliation(s)
- Roman Holič
- Institute of Animal Biochemistry and Genetics, Centre of Biosciences, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Dominik Šťastný
- Institute of Animal Biochemistry and Genetics, Centre of Biosciences, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Peter Griač
- Institute of Animal Biochemistry and Genetics, Centre of Biosciences, Slovak Academy of Sciences, Bratislava, Slovakia.
| |
Collapse
|
16
|
Strickland AB, Shi M. Mechanisms of fungal dissemination. Cell Mol Life Sci 2021; 78:3219-3238. [PMID: 33449153 PMCID: PMC8044058 DOI: 10.1007/s00018-020-03736-z] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 11/23/2020] [Accepted: 12/08/2020] [Indexed: 12/13/2022]
Abstract
Fungal infections are an increasing threat to global public health. There are more than six million fungal species worldwide, but less than 1% are known to infect humans. Most of these fungal infections are superficial, affecting the hair, skin and nails, but some species are capable of causing life-threatening diseases. The most common of these include Cryptococcus neoformans, Aspergillus fumigatus and Candida albicans. These fungi are typically innocuous and even constitute a part of the human microbiome, but if these pathogens disseminate throughout the body, they can cause fatal infections which account for more than one million deaths worldwide each year. Thus, systemic dissemination of fungi is a critical step in the development of these deadly infections. In this review, we discuss our current understanding of how fungi disseminate from the initial infection sites to the bloodstream, how immune cells eliminate fungi from circulation and how fungi leave the blood and enter distant organs, highlighting some recent advances and offering some perspectives on future directions.
Collapse
Affiliation(s)
- Ashley B Strickland
- Division of Immunology, Virginia-Maryland College of Veterinary Medicine and Maryland Pathogen Research Institute, University of Maryland, College Park, MD, USA.
| | - Meiqing Shi
- Division of Immunology, Virginia-Maryland College of Veterinary Medicine and Maryland Pathogen Research Institute, University of Maryland, College Park, MD, USA.
| |
Collapse
|
17
|
Replicative Aging Remodels the Cell Wall and Is Associated with Increased Intracellular Trafficking in Human Pathogenic Yeasts. mBio 2021; 13:e0019022. [PMID: 35164553 PMCID: PMC8844920 DOI: 10.1128/mbio.00190-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Replicative aging is an underexplored field of research in medical mycology. Cryptococcus neoformans (Cn) and Candida glabrata (Cg) are dreaded fungal pathogens that cause fatal invasive infections. The fungal cell wall is essential for yeast viability and pathogenesis. In this study, we provide data characterizing age-associated modifications to the cell wall of Cn and Cg. Here, we report that old yeast cells upregulate genes of cell wall biosynthesis, leading to cell wall reorganization and increased levels of all major components, including glucan, chitin, and its derivatives, as well as mannan. This results in a significant thickening of the cell wall in aged cells. Old-generation yeast cells exhibited drastic ultrastructural changes, including the presence of abundant vesicle-like particles in the cytoplasm, and enlarged vacuoles with altered pH homeostasis. Our findings suggest that the cell wall modifications could be enabled by augmented intracellular trafficking. This work furthers our understanding of the cell phenotype that emerges during aging. It highlights differences in these two fungal pathogens and elucidates mechanisms that explain the enhanced resistance of old cells to antifungals and phagocytic attacks. IMPORTANCE Cryptococcus neoformans and Candida glabrata are two opportunistic human fungal pathogens that cause life-threatening diseases. During infection, both microorganisms have the ability to persist for long periods, and treatment failure can occur even if standard testing identifies the yeasts to be sensitive to antifungals. Replicative life span is a trait that is measured by the number of divisions a cell undergoes before death. Aging in fungi is associated with enhanced tolerance to antifungals and resistance to phagocytosis, and characterization of old cells may help identify novel antifungal targets. The cell wall remains an attractive target for new therapies because it is essential for fungi and is not present in humans. This study shows that the organization of the fungal cell wall changes remarkably during aging and becomes thicker and is associated with increased intracellular trafficking as well as the alteration of vacuole morphology and pH homeostasis.
Collapse
|
18
|
Gaylord EA, Choy HL, Doering TL. Dangerous Liaisons: Interactions of Cryptococcus neoformans with Host Phagocytes. Pathogens 2020; 9:E891. [PMID: 33121050 PMCID: PMC7692806 DOI: 10.3390/pathogens9110891] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 10/22/2020] [Accepted: 10/25/2020] [Indexed: 02/07/2023] Open
Abstract
Cryptococcus neoformans is an opportunistic fungal pathogen and a leading cause of death in immunocompromised individuals. The interactions of this yeast with host phagocytes are critical to disease outcome, and C. neoformans is equipped with an array of factors to modulate these processes. Cryptococcal infection begins with the deposition of infectious particles into the lungs, where the fungal cells deploy various antiphagocytic factors to resist internalization by host cells. If the cryptococci are still engulfed, they can survive and proliferate within host cells by modulating the phagolysosome environment in which they reside. Lastly, cryptococcal cells may escape from phagocytes by host cell lysis, nonlytic exocytosis, or lateral cell-to-cell transfer. The interactions between C. neoformans and host phagocytes also influence the dissemination of this pathogen to the brain, where it may cross the blood-brain barrier and cause an often-fatal meningoencephalitis. In this review, we highlight key cryptococcal factors involved in various stages of cryptococcal-host interaction and pathogenesis.
Collapse
Affiliation(s)
| | | | - Tamara L. Doering
- Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, MO 63110, USA; (E.A.G.); (H.L.C.)
| |
Collapse
|
19
|
Frazão SDO, Sousa HRD, Silva LGD, Folha JDS, Gorgonha KCDM, Oliveira GPD, Felipe MSS, Silva-Pereira I, Casadevall A, Nicola AM, Albuquerque P. Laccase Affects the Rate of Cryptococcus neoformans Nonlytic Exocytosis from Macrophages. mBio 2020; 11:e02085-20. [PMID: 32900810 PMCID: PMC7482070 DOI: 10.1128/mbio.02085-20] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 08/05/2020] [Indexed: 11/25/2022] Open
Abstract
Nonlytic exocytosis is a process in which previously ingested microbes are expelled from host phagocytes with the concomitant survival of both cell types. This process has been observed in the interaction of Cryptococcus spp. and other fungal cells with phagocytes as distant as mammalian, bird, and fish macrophages and ameboid predators. Despite a great amount of research dedicated to unraveling this process, there are still many questions about its regulation and its final benefits for host or fungal cells. During a study to characterize the virulence attributes of Brazilian clinical isolates of C. neoformans, we observed great variability in their rates of nonlytic exocytosis and noted a correlation between this process and fungal melanin production/laccase activity. Flow cytometry experiments using melanized cells, nonmelanized cells, and lac1Δ mutants revealed that laccase has a role in the process of nonlytic exocytosis that seems to be independent of melanin production. These results identify a role for laccase in virulence, independent of its role in pigment production, that represents a new variable in the regulation of nonlytic exocytosis.IMPORTANCECryptococcus neoformans is a yeast that causes severe disease, primarily in immunosuppressed people. It has many attributes that allow it to survive and cause disease, such as a polysaccharide capsule and the dark pigment melanin produced by the laccase enzyme. Upon infection, the yeast is ingested by cells called macrophages, whose function is to kill them. Instead, these fungal cells can exit from macrophages in a process called nonlytic exocytosis. We know that this process is controlled by both host and fungal factors, only some of which are known. As part of an ongoing study, we observed that C. neoformans isolates that produce melanin faster are more-frequent targets of nonlytic exocytosis. Further experiments showed that this is probably due to higher production of laccase, because fungi lacking this enzyme are nonlytically exocytosed less often. This shows that laccase is an important signal/regulator of nonlytic exocytosis of C. neoformans from macrophages.
Collapse
Affiliation(s)
- Stefânia de Oliveira Frazão
- Laboratory of Molecular Biology of Pathogenic Fungi, Laboratory of Molecular Biology, Department of Cell Biology, Institute of Biological Sciences, University of Brasília, Brasília, Brazil
| | - Herdson Renney de Sousa
- Microbiology, Immunology, and Biotechnology Laboratory, Faculty of Medicine, University of Brasília, Brasília, Brazil
| | - Lenise Gonçalves da Silva
- Laboratory of Molecular Biology of Pathogenic Fungi, Laboratory of Molecular Biology, Department of Cell Biology, Institute of Biological Sciences, University of Brasília, Brasília, Brazil
| | - Jéssica Dos Santos Folha
- Laboratory of Molecular Biology of Pathogenic Fungi, Laboratory of Molecular Biology, Department of Cell Biology, Institute of Biological Sciences, University of Brasília, Brasília, Brazil
| | - Kaio César de Melo Gorgonha
- Microbiology, Immunology, and Biotechnology Laboratory, Faculty of Medicine, University of Brasília, Brasília, Brazil
| | - Getúlio Pereira de Oliveira
- Microbiology, Immunology, and Biotechnology Laboratory, Faculty of Medicine, University of Brasília, Brasília, Brazil
- Division of Allergy and Inflammation, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Maria Sueli Soares Felipe
- Graduate Program in Genomic Sciences and Biotechnology, Catholic University of Brasília, Brasília, Brazil
| | - Ildinete Silva-Pereira
- Laboratory of Molecular Biology of Pathogenic Fungi, Laboratory of Molecular Biology, Department of Cell Biology, Institute of Biological Sciences, University of Brasília, Brasília, Brazil
| | - Arturo Casadevall
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - André Moraes Nicola
- Microbiology, Immunology, and Biotechnology Laboratory, Faculty of Medicine, University of Brasília, Brasília, Brazil
- Graduate Program in Genomic Sciences and Biotechnology, Catholic University of Brasília, Brasília, Brazil
| | - Patrícia Albuquerque
- Laboratory of Molecular Biology of Pathogenic Fungi, Laboratory of Molecular Biology, Department of Cell Biology, Institute of Biological Sciences, University of Brasília, Brasília, Brazil
- Faculty of Ceilândia, University of Brasília, Brasília, Brazil
| |
Collapse
|
20
|
Subramani A, Griggs P, Frantzen N, Mendez J, Tucker J, Murriel J, Sircy LM, Millican GE, McClelland EE, Seipelt-Thiemann RL, Nelson DE. Intracellular Cryptococcus neoformans disrupts the transcriptome profile of M1- and M2-polarized host macrophages. PLoS One 2020; 15:e0233818. [PMID: 32857777 PMCID: PMC7454990 DOI: 10.1371/journal.pone.0233818] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 08/12/2020] [Indexed: 02/06/2023] Open
Abstract
Macrophages serve as a first line of defense against infection with the facultative intracellular pathogen, Cryptococcus neoformans (Cn). However, the ability of these innate phagocytic cells to destroy ingested Cn is strongly influenced by polarization state with classically (M1) activated macrophages better able to control cryptococcal infections than alternatively (M2) activated cells. While earlier studies have demonstrated that intracellular Cn minimally affects the expression of M1 and M2 markers, the impact on the broader transcriptome associated with these states remains unclear. To investigate this, an in vitro cell culture model of intracellular infection together with RNA sequencing-based transcriptome profiling was used to measure the impact of Cn infection on gene expression in both polarization states. The gene expression profile of both M1 and M2 cells was extensively altered to become more like naive (M0) macrophages. Gene ontology analysis suggested that this involved changes in the activity of the Janus kinase-signal transducers and activators of transcription (JAK-STAT), p53, and nuclear factor-κB (NF-κB) pathways. Analyses of the principle polarization markers at the protein-level also revealed discrepancies between the RNA- and protein-level responses. In contrast to earlier studies, intracellular Cn was found to increase protein levels of the M1 marker iNos. In addition, common gene expression changes were identified that occurred post-Cn infection, independent of polarization state. This included upregulation of the transcriptional co-regulator Cited1, which was also apparent at the protein level in M1-polarized macrophages. These changes constitute a transcriptional signature of macrophage Cn infection and provide new insights into how Cn impacts gene expression and the phenotype of host phagocytes.
Collapse
Affiliation(s)
- Aarthi Subramani
- Biology Department, Middle Tennessee State University, Murfreesboro, TN, United States of America
| | - Prianca Griggs
- Biology Department, Middle Tennessee State University, Murfreesboro, TN, United States of America
| | - Niah Frantzen
- Biology Department, Middle Tennessee State University, Murfreesboro, TN, United States of America
| | - James Mendez
- Biology Department, Middle Tennessee State University, Murfreesboro, TN, United States of America
| | - Jamila Tucker
- Biology Department, Middle Tennessee State University, Murfreesboro, TN, United States of America
- Microbiology, Immunology, and Molecular Genetics Department, University of Kentucky, Lexington, KY, United States of America
| | - Jada Murriel
- Biology Department, Middle Tennessee State University, Murfreesboro, TN, United States of America
| | - Linda M. Sircy
- Biology Department, Middle Tennessee State University, Murfreesboro, TN, United States of America
- Department of Pathology, University of Utah, Salt Lake City, UT, United States of America
| | - Grace E. Millican
- Biology Department, Middle Tennessee State University, Murfreesboro, TN, United States of America
| | - Erin E. McClelland
- Biology Department, Middle Tennessee State University, Murfreesboro, TN, United States of America
- M&P Associates, Inc., Murfreesboro, TN, United States of America
| | | | - David E. Nelson
- Biology Department, Middle Tennessee State University, Murfreesboro, TN, United States of America
- * E-mail:
| |
Collapse
|
21
|
Khan D, Lee D, Gulten G, Aggarwal A, Wofford J, Krieger I, Tripathi A, Patrick JW, Eckert DM, Laganowsky A, Sacchettini J, Lindahl P, Bankaitis VA. A Sec14-like phosphatidylinositol transfer protein paralog defines a novel class of heme-binding proteins. eLife 2020; 9:57081. [PMID: 32780017 PMCID: PMC7462610 DOI: 10.7554/elife.57081] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 08/10/2020] [Indexed: 01/02/2023] Open
Abstract
Yeast Sfh5 is an unusual member of the Sec14-like phosphatidylinositol transfer protein (PITP) family. Whereas PITPs are defined by their abilities to transfer phosphatidylinositol between membranes in vitro, and to stimulate phosphoinositide signaling in vivo, Sfh5 does not exhibit these activities. Rather, Sfh5 is a redox-active penta-coordinate high spin FeIII hemoprotein with an unusual heme-binding arrangement that involves a co-axial tyrosine/histidine coordination strategy and a complex electronic structure connecting the open shell iron d-orbitals with three aromatic ring systems. That Sfh5 is not a PITP is supported by demonstrations that heme is not a readily exchangeable ligand, and that phosphatidylinositol-exchange activity is resuscitated in heme binding-deficient Sfh5 mutants. The collective data identify Sfh5 as the prototype of a new class of fungal hemoproteins, and emphasize the versatility of the Sec14-fold as scaffold for translating the binding of chemically distinct ligands to the control of diverse sets of cellular activities.
Collapse
Affiliation(s)
- Danish Khan
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, United States
| | - Dongju Lee
- Department of Molecular and Cellular Medicine, Texas A&M Health Sciences Center, College Station, United States
| | - Gulcin Gulten
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, United States
| | - Anup Aggarwal
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, United States
| | - Joshua Wofford
- Department of Chemistry, Texas A&M University, College Station, United States.,Department of Chemistry, Charleston Southern University, North Charleston, United States
| | - Inna Krieger
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, United States
| | - Ashutosh Tripathi
- Department of Molecular and Cellular Medicine, Texas A&M Health Sciences Center, College Station, United States
| | - John W Patrick
- Department of Chemistry, Texas A&M University, College Station, United States
| | - Debra M Eckert
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, United States
| | - Arthur Laganowsky
- Department of Chemistry, Texas A&M University, College Station, United States
| | - James Sacchettini
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, United States
| | - Paul Lindahl
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, United States.,Department of Chemistry, Texas A&M University, College Station, United States
| | - Vytas A Bankaitis
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, United States.,Department of Molecular and Cellular Medicine, Texas A&M Health Sciences Center, College Station, United States.,Department of Chemistry, Texas A&M University, College Station, United States
| |
Collapse
|
22
|
Liu M, Zhang Z, Ding C, Wang T, Kelly B, Wang P. Transcriptomic Analysis of Extracellular RNA Governed by the Endocytic Adaptor Protein Cin1 of Cryptococcus deneoformans. Front Cell Infect Microbiol 2020; 10:256. [PMID: 32656093 PMCID: PMC7324655 DOI: 10.3389/fcimb.2020.00256] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 05/01/2020] [Indexed: 12/31/2022] Open
Abstract
Membrane vesicles are considered virulence cargoes as they carry capsular and melanin components whose secretory transport is critical for the virulence of the human fungal pathogen Cryptococcus species. However, other components of the vesicles and their function in the growth and virulence of the fungus remain unclear. We have previously found that the cryptococcal intersectin protein Cin1 governs a unique Cin1-Wsp1-Cdc42 endocytic pathway required for intracellular transport and virulence. Using RNA sequencing, we compared the profiles of extracellular RNA (exRNA), including microRNA (miRNA), small interference RNA (siRNA), long noncoding RNA (lncRNA), and messenger RNA (mRNA) between the wild-type (WT), and derived Δcin1 mutant strains of Cryptococcus deneoformans. Seven hundred twelve miRNAs and 88 siRNAs were identified from WT, whereas 799 miRNAs and 66 siRNAs were found in Δcin1. Also, 572 lncRNAs and 7,721 mRNAs were identified from WT and 584 lncRNAs and 7,703 mRNAs from Δcin1. Differential expression analysis revealed that the disruption of CIN1 results in many important cellular changes, including those in exRNA expression, transport, and function. First, for miRNA target genes, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis revealed that cellular processes, components, and macromolecular functions are the most affected pathways. A higher number of genes were involved in the intracellular transport of endocytosis. Second, the results of GO term and KEGG analysis of differentially expressed lncRNA target genes and mRNA genes were consistent with those of miRNA targets. In particular, protein export is the topmost affected pathway among lncRNA target genes and one of the affected pathways among mRNA genes. The result of quantitative real-time reverse transcription PCR (qRT-PCR) from 12 mRNAs tested is largely agreeable with that of RNA-Seq. Taken together, our studies provide a comprehensive reference that Cryptococcus secretes abundant RNAs and that Cin1 plays a critical role in regulating their secretion. Given the growing clinical importance of exRNAs, our studies illuminate the significance of exploring this cutting-edge technology in studies of cryptococcal pathogenesis for the discovery of novel therapeutic strategies.
Collapse
Affiliation(s)
- Muxing Liu
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Zhengguang Zhang
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Chen Ding
- College of Life and Health Sciences, Northeastern University, Liaoning, China
| | - Tuo Wang
- Department of Chemistry, Louisiana State University, Baton Rouge, LA, United States
| | - Ben Kelly
- Department of Microbiology, Immunology, and Parasitology, Louisiana State University Health Sciences Center, New Orleans, LA, United States
| | - Ping Wang
- Department of Microbiology, Immunology, and Parasitology, Louisiana State University Health Sciences Center, New Orleans, LA, United States.,Department of Pediatrics, Louisiana State University Health Sciences Center, New Orleans, LA, United States
| |
Collapse
|
23
|
Beattie SR, Schnicker NJ, Murante T, Kettimuthu K, Williams NS, Gakhar L, Krysan DJ. Benzothiourea Derivatives Target the Secretory Pathway of the Human Fungal Pathogen Cryptococcus neoformans. ACS Infect Dis 2020; 6:529-539. [PMID: 32070095 DOI: 10.1021/acsinfecdis.9b00478] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Cryptococcus neoformans is one of the most important human fungal pathogens and causes life-threatening meningoencephalitis in immunocompromised patients. The current gold standard therapy for C. neoformans meningoencephalitis is based on medications that are over 50 years old and is not readily available in regions with high disease burden. Here, we report the mycologic, mechanistic, and pharmacologic characterization of a set of benzothioureas with highly selective fungicidal activity against C. neoformans. In addition, to direct antifungal activity, benzothioureas inhibit C. neoformans virulence traits. On the basis of a set of phenotypic, biochemical, and biophysical assays, the benzothioureas (BTUs) inhibit the late secretory pathway (post-Golgi), possibly through a direct interaction with Sav1, an orthologue of the Sec4-class small GTPase. Importantly, pharmacological characterization of the BTUs indicates it readily penetrates the blood-brain barrier. Together, our data support the further development of this scaffold as an antifungal agent with a novel mechanism of action against C. neoformans.
Collapse
Affiliation(s)
- Sarah R. Beattie
- Department of Pediatrics, Carver College of Medicine, University of Iowa, 25 South Grand Avenue, Iowa City, Iowa 52245, United States
| | - Nicholas J. Schnicker
- Protein and Crystallography Facility, Carver College of Medicine, University of Iowa, 51 Newton Road, Iowa City, Iowa 52245, United States
| | - Thomas Murante
- Department of Pediatrics, University of Rochester, 601 Elmwood Avenue, Rochester, New York 14642, United States
| | - Kavitha Kettimuthu
- Department of Biochemistry, University of Texas Southwestern, 5323 Harry Hines Boulevard, Dallas, Texas 75390, United States
| | - Noelle S. Williams
- Department of Biochemistry, University of Texas Southwestern, 5323 Harry Hines Boulevard, Dallas, Texas 75390, United States
| | - Lokesh Gakhar
- Protein and Crystallography Facility, Carver College of Medicine, University of Iowa, 51 Newton Road, Iowa City, Iowa 52245, United States
- Department of Biochemistry, Carver College of Medicine, University of Iowa, 51 Newton Road, Iowa City, Iowa 52245, United States
| | - Damian J. Krysan
- Department of Pediatrics, Carver College of Medicine, University of Iowa, 25 South Grand Avenue, Iowa City, Iowa 52245, United States
- Department of Microbiology and Immunology, Carver College of Medicine, University of Iowa, 25 South Grand Avenue, Iowa City, Iowa 52245, United States
| |
Collapse
|
24
|
Garcia-Rubio R, de Oliveira HC, Rivera J, Trevijano-Contador N. The Fungal Cell Wall: Candida, Cryptococcus, and Aspergillus Species. Front Microbiol 2020; 10:2993. [PMID: 31993032 PMCID: PMC6962315 DOI: 10.3389/fmicb.2019.02993] [Citation(s) in RCA: 368] [Impact Index Per Article: 92.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 12/10/2019] [Indexed: 01/23/2023] Open
Abstract
The fungal cell wall is located outside the plasma membrane and is the cell compartment that mediates all the relationships of the cell with the environment. It protects the contents of the cell, gives rigidity and defines the cellular structure. The cell wall is a skeleton with high plasticity that protects the cell from different stresses, among which osmotic changes stand out. The cell wall allows interaction with the external environment since some of its proteins are adhesins and receptors. Since, some components have a high immunogenic capacity, certain wall components can drive the host's immune response to promote fungus growth and dissemination. The cell wall is a characteristic structure of fungi and is composed mainly of glucans, chitin and glycoproteins. As the components of the fungal cell wall are not present in humans, this structure is an excellent target for antifungal therapy. In this article, we review recent data on the composition and synthesis, influence of the components of the cell wall in fungi-host interaction and the role as a target for the next generation of antifungal drugs in yeasts (Candida and Cryptococcus) and filamentous fungi (Aspergillus).
Collapse
Affiliation(s)
- Rocio Garcia-Rubio
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ, United States
| | | | - Johanna Rivera
- Division of Infectious Diseases, Department of Medicine, Albert Einstein College of Medicine, New York, NY, United States
| | - Nuria Trevijano-Contador
- Division of Infectious Diseases, Department of Medicine, Albert Einstein College of Medicine, New York, NY, United States
| |
Collapse
|
25
|
Seoane PI, May RC. Vomocytosis: What we know so far. Cell Microbiol 2019; 22:e13145. [PMID: 31730731 DOI: 10.1111/cmi.13145] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 10/23/2019] [Accepted: 10/26/2019] [Indexed: 01/10/2023]
Abstract
Vomocytosis, or nonlytic exocytosis, has been reported for Cryptococcus neoformans since 2006. Since then, the repertoire of vomocytosing pathogens and host cells has increased and so have the molecular components linked to vomocytosis occurrence. Nonetheless, the mechanism underlying this phenomenon, whether it is triggered by the host or the pathogen, and how it affects disease progression are still unresolved. This review contains a summary of the main findings regarding vomocytosis and the outstanding questions puzzling scientists to this day.
Collapse
Affiliation(s)
- Paula I Seoane
- Laboratory of Host and Pathogen Interactions, Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Birmingham, UK
| | - Robin C May
- Laboratory of Host and Pathogen Interactions, Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Birmingham, UK
| |
Collapse
|
26
|
Deciphering Fungal Extracellular Vesicles: From Cell Biology to Pathogenesis. CURRENT CLINICAL MICROBIOLOGY REPORTS 2019. [DOI: 10.1007/s40588-019-00128-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
27
|
Denham ST, Wambaugh MA, Brown JCS. How Environmental Fungi Cause a Range of Clinical Outcomes in Susceptible Hosts. J Mol Biol 2019; 431:2982-3009. [PMID: 31078554 PMCID: PMC6646061 DOI: 10.1016/j.jmb.2019.05.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 04/18/2019] [Accepted: 05/01/2019] [Indexed: 12/11/2022]
Abstract
Environmental fungi are globally ubiquitous and human exposure is near universal. However, relatively few fungal species are capable of infecting humans, and among fungi, few exposure events lead to severe systemic infections. Systemic infections have mortality rates of up to 90%, cost the US healthcare system $7.2 billion annually, and are typically associated with immunocompromised patients. Despite this reputation, exposure to environmental fungi results in a range of outcomes, from asymptomatic latent infections to severe systemic infection. Here we discuss different exposure outcomes for five major fungal pathogens: Aspergillus, Blastomyces, Coccidioides, Cryptococcus, and Histoplasma species. These fungi include a mold, a budding yeast, and thermal dimorphic fungi. All of these species must adapt to dramatically changing environments over the course of disease. These dynamic environments include the human lung, which is the first exposure site for these organisms. Fungi must defend themselves against host immune cells while germinating and growing, which risks further exposing microbe-associated molecular patterns to the host. We discuss immune evasion strategies during early infection, from disruption of host immune cells to major changes in fungal cell morphology.
Collapse
Affiliation(s)
- Steven T Denham
- Division of Microbiology and Immunology, Pathology Department, University of Utah School of Medicine, Salt Lake City, UT 84132, USA
| | - Morgan A Wambaugh
- Division of Microbiology and Immunology, Pathology Department, University of Utah School of Medicine, Salt Lake City, UT 84132, USA
| | - Jessica C S Brown
- Division of Microbiology and Immunology, Pathology Department, University of Utah School of Medicine, Salt Lake City, UT 84132, USA.
| |
Collapse
|
28
|
Evans RJ, Pline K, Loynes CA, Needs S, Aldrovandi M, Tiefenbach J, Bielska E, Rubino RE, Nicol CJ, May RC, Krause HM, O’Donnell VB, Renshaw SA, Johnston SA. 15-keto-prostaglandin E2 activates host peroxisome proliferator-activated receptor gamma (PPAR-γ) to promote Cryptococcus neoformans growth during infection. PLoS Pathog 2019; 15:e1007597. [PMID: 30921435 PMCID: PMC6438442 DOI: 10.1371/journal.ppat.1007597] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 01/25/2019] [Indexed: 12/19/2022] Open
Abstract
Cryptococcus neoformans is one of the leading causes of invasive fungal infection in humans worldwide. C. neoformans uses macrophages as a proliferative niche to increase infective burden and avoid immune surveillance. However, the specific mechanisms by which C. neoformans manipulates host immunity to promote its growth during infection remain ill-defined. Here we demonstrate that eicosanoid lipid mediators manipulated and/or produced by C. neoformans play a key role in regulating pathogenesis. C. neoformans is known to secrete several eicosanoids that are highly similar to those found in vertebrate hosts. Using eicosanoid deficient cryptococcal mutants Δplb1 and Δlac1, we demonstrate that prostaglandin E2 is required by C. neoformans for proliferation within macrophages and in vivo during infection. Genetic and pharmacological disruption of host PGE2 synthesis is not required for promotion of cryptococcal growth by eicosanoid production. We find that PGE2 must be dehydrogenated into 15-keto-PGE2 to promote fungal growth, a finding that implicated the host nuclear receptor PPAR-γ. C. neoformans infection of macrophages activates host PPAR-γ and its inhibition is sufficient to abrogate the effect of 15-keto-PGE2 in promoting fungal growth during infection. Thus, we describe the first mechanism of reliance on pathogen-derived eicosanoids in fungal pathogenesis and the specific role of 15-keto-PGE2 and host PPAR-γ in cryptococcosis. Cryptococcus neoformans is an opportunistic fungal pathogen that is responsible for significant numbers of deaths in the immunocompromised population worldwide. Here we address whether eicosanoids produced by C. neoformans manipulate host innate immune cells during infection. Cryptococcus neoformans produces several eicosanoids that are notable for their similarity to vertebrate eicosanoids, it is therefore possible that fungal-derived eicosanoids may provoke physiological effects in the host. Using a combination of in vitro and in vivo infection models we identify a specific eicosanoid species—prostaglandin E2 –that is required by C. neoformans for growth during infection. We subsequently show that prostaglandin E2 must be converted to 15-keto-prostaglandin E2 within the host before it has these effects. Furthermore, we find that prostaglandin E2/15-keto-prostaglandin E2 mediated virulence is via activation of host PPAR-γ –an intracellular eicosanoid receptor known to interact with 15-keto-PGE2.
Collapse
Affiliation(s)
- Robert J. Evans
- Bateson Centre, Firth Court, University of Sheffield, Sheffield, South Yorkshire, United Kingdom
- Department of Infection, Immunity and Cardiovascular Disease, Medical School, University of Sheffield, Sheffield, South Yorkshire, United Kingdom
| | - Katherine Pline
- Bateson Centre, Firth Court, University of Sheffield, Sheffield, South Yorkshire, United Kingdom
- Department of Infection, Immunity and Cardiovascular Disease, Medical School, University of Sheffield, Sheffield, South Yorkshire, United Kingdom
| | - Catherine A. Loynes
- Bateson Centre, Firth Court, University of Sheffield, Sheffield, South Yorkshire, United Kingdom
- Department of Infection, Immunity and Cardiovascular Disease, Medical School, University of Sheffield, Sheffield, South Yorkshire, United Kingdom
| | - Sarah Needs
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Birmingham, West Midlands, United Kingdom
| | - Maceler Aldrovandi
- Systems Immunity Research Institute, and Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, South Glamorgan, United Kingdom
| | - Jens Tiefenbach
- Banting and Best Department of Medical Research, The Terrence Donnelly Centre for Cellular and Biomolecular Research (CCBR), University of Toronto, Toronto, Ontario, Canada
- InDanio Bioscience Inc., Toronto, Ontario, Canada
| | - Ewa Bielska
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Birmingham, West Midlands, United Kingdom
| | - Rachel E. Rubino
- Department of Pathology and Molecular Medicine, Queen's University, Kingston, Ontario, Canada
| | - Christopher J. Nicol
- Department of Pathology and Molecular Medicine, Queen's University, Kingston, Ontario, Canada
| | - Robin C. May
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Birmingham, West Midlands, United Kingdom
| | - Henry M. Krause
- Banting and Best Department of Medical Research, The Terrence Donnelly Centre for Cellular and Biomolecular Research (CCBR), University of Toronto, Toronto, Ontario, Canada
- InDanio Bioscience Inc., Toronto, Ontario, Canada
| | - Valerie B. O’Donnell
- Systems Immunity Research Institute, and Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, South Glamorgan, United Kingdom
| | - Stephen A. Renshaw
- Bateson Centre, Firth Court, University of Sheffield, Sheffield, South Yorkshire, United Kingdom
- Department of Infection, Immunity and Cardiovascular Disease, Medical School, University of Sheffield, Sheffield, South Yorkshire, United Kingdom
| | - Simon A. Johnston
- Bateson Centre, Firth Court, University of Sheffield, Sheffield, South Yorkshire, United Kingdom
- Department of Infection, Immunity and Cardiovascular Disease, Medical School, University of Sheffield, Sheffield, South Yorkshire, United Kingdom
- * E-mail:
| |
Collapse
|
29
|
Abstract
Invasive fungal diseases pose a serious threat, and new drugs are urgently needed. In this issue of Cell Chemical Biology, Pries et al. (2018) identified benzamide- and picolinamide-based small-molecule inhibitors with antifungal properties, including some active against pathogenic Candida species. These compounds target an essential component of the fungal secretion machinery, suggesting a new approach to antifungal development.
Collapse
Affiliation(s)
- Julianne Teresa Djordjevic
- Centre for Infectious Diseases and Microbiology, The Westmead Institute for Medical Research, 176 Hawkesbury Road, Westmead, NSW 2145, Australia; Sydney Medical School - Westmead, University of Sydney, Westmead, NSW 2145, Australia; Marie Bashir Institute for Infectious Diseases and Biosecurity, University of Sydney, NSW, Australia.
| | - Sophie Lev
- Centre for Infectious Diseases and Microbiology, The Westmead Institute for Medical Research, 176 Hawkesbury Road, Westmead, NSW 2145, Australia; Sydney Medical School - Westmead, University of Sydney, Westmead, NSW 2145, Australia; Marie Bashir Institute for Infectious Diseases and Biosecurity, University of Sydney, NSW, Australia
| |
Collapse
|
30
|
Flieger A, Frischknecht F, Häcker G, Hornef MW, Pradel G. Pathways of host cell exit by intracellular pathogens. MICROBIAL CELL 2018; 5:525-544. [PMID: 30533418 PMCID: PMC6282021 DOI: 10.15698/mic2018.12.659] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Host cell exit is a critical step in the life-cycle of intracellular pathogens, intimately linked to barrier penetration, tissue dissemination, inflammation, and pathogen transmission. Like cell invasion and intracellular survival, host cell exit represents a well-regulated program that has evolved during host-pathogen co-evolution and that relies on the dynamic and intricate interplay between multiple host and microbial factors. Three distinct pathways of host cell exit have been identified that are employed by three different taxa of intracellular pathogens, bacteria, fungi and protozoa, namely (i) the initiation of programmed cell death, (ii) the active breaching of host cellderived membranes, and (iii) the induced membrane-dependent exit without host cell lysis. Strikingly, an increasing number of studies show that the majority of intracellular pathogens utilize more than one of these strategies, dependent on life-cycle stage, environmental factors and/or host cell type. This review summarizes the diverse exit strategies of intracellular-living bacterial, fungal and protozoan pathogens and discusses the convergently evolved commonalities as well as system-specific variations thereof. Key microbial molecules involved in host cell exit are highlighted and discussed as potential targets for future interventional approaches.
Collapse
Affiliation(s)
- Antje Flieger
- Division of Enteropathogenic Bacteria and Legionella, Robert Koch Institute, Wernigerode, Germany
| | | | - Georg Häcker
- Institute of Medical Microbiology and Hygiene, Medical Center - University of Freiburg, Germany
| | - Mathias W Hornef
- Institute of Medical Microbiology, RWTH Aachen University Hospital, Germany
| | - Gabriele Pradel
- Division of Cellular and Applied Infection Biology, Institute of Biology II, RWTH Aachen University, Germany
| |
Collapse
|
31
|
De Leon-Rodriguez CM, Rossi DCP, Fu MS, Dragotakes Q, Coelho C, Guerrero Ros I, Caballero B, Nolan SJ, Casadevall A. The Outcome of the Cryptococcus neoformans-Macrophage Interaction Depends on Phagolysosomal Membrane Integrity. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2018; 201:583-603. [PMID: 29858266 PMCID: PMC6245949 DOI: 10.4049/jimmunol.1700958] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 05/08/2018] [Indexed: 01/15/2023]
Abstract
Cryptococcus neoformans is a fungal pathogen with worldwide distribution. C. neoformans resides within mature phagolysosomes where it often evades killing and replicates. C. neoformans induces phagolysosomal membrane permeabilization (PMP), but the mechanism for this phenomenon and its consequences for macrophage viability are unknown. In this study, we used flow cytometry methodology in combination with cell viability markers and LysoTracker to measure PMP in J774.16 and murine bone marrow-derived macrophages infected with C. neoformans Our results showed that cells manifesting PMP were positive for apoptotic markers, indicating an association between PMP and apoptosis. We investigated the role of phospholipase B1 in C. neoformans induction of PMP. Macrophages infected with a C. neoformans Δplb1 mutant had reduced PMP compared with those infected with wild-type and phospholipase B1-complemented strains, suggesting a mechanism of action for this virulence factor. Capsular enlargement inside macrophages was identified as an additional likely mechanism for phagolysosomal membrane damage. Macrophages undergoing apoptosis did not maintain an acidic phagolysosomal pH. Induction of PMP with ciprofloxacin enhanced macrophages to trigger lytic exocytosis whereas nonlytic exocytosis was common in those without PMP. Our results suggest that modulation of PMP is a critical event in determining the outcome of C. neoformans-macrophage interaction.
Collapse
Affiliation(s)
| | - Diego C P Rossi
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205
| | - Man Shun Fu
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205
| | - Quigly Dragotakes
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205
| | - Carolina Coelho
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205
| | - Ignacio Guerrero Ros
- Department of Pathology, Albert Einstein College of Medicine, New York, NY 10461; and
| | - Benjamin Caballero
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, New York, NY 10461
| | - Sabrina J Nolan
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205
| | - Arturo Casadevall
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, New York, NY 10461;
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205
| |
Collapse
|
32
|
Roy KR, Smith JD, Vonesch SC, Lin G, Tu CS, Lederer AR, Chu A, Suresh S, Nguyen M, Horecka J, Tripathi A, Burnett WT, Morgan MA, Schulz J, Orsley KM, Wei W, Aiyar RS, Davis RW, Bankaitis VA, Haber JE, Salit ML, St Onge RP, Steinmetz LM. Multiplexed precision genome editing with trackable genomic barcodes in yeast. Nat Biotechnol 2018; 36:512-520. [PMID: 29734294 PMCID: PMC5990450 DOI: 10.1038/nbt.4137] [Citation(s) in RCA: 114] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2017] [Accepted: 03/12/2018] [Indexed: 12/26/2022]
Abstract
Our understanding of how genotype controls phenotype is limited by the scale at which we can precisely alter the genome and assess the phenotypic consequences of each perturbation. Here we describe a CRISPR-Cas9-based method for multiplexed accurate genome editing with short, trackable, integrated cellular barcodes (MAGESTIC) in Saccharomyces cerevisiae. MAGESTIC uses array-synthesized guide-donor oligos for plasmid-based high-throughput editing and features genomic barcode integration to prevent plasmid barcode loss and to enable robust phenotyping. We demonstrate that editing efficiency can be increased more than fivefold by recruiting donor DNA to the site of breaks using the LexA-Fkh1p fusion protein. We performed saturation editing of the essential gene SEC14 and identified amino acids critical for chemical inhibition of lipid signaling. We also constructed thousands of natural genetic variants, characterized guide mismatch tolerance at the genome scale, and ascertained that cryptic Pol III termination elements substantially reduce guide efficacy. MAGESTIC will be broadly useful to uncover the genetic basis of phenotypes in yeast.
Collapse
Affiliation(s)
- Kevin R. Roy
- Stanford Genome Technology Center, Stanford University, Palo Alto, California, USA
- Genome-Scale Measurements Group, Material Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland, USA
- Joint Initiative for Metrology in Biology, Stanford, California, USA
- Department of Genetics, Stanford University School of Medicine, Stanford, California, USA
| | - Justin D. Smith
- Stanford Genome Technology Center, Stanford University, Palo Alto, California, USA
- Department of Genetics, Stanford University School of Medicine, Stanford, California, USA
| | - Sibylle C. Vonesch
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, Heidelberg, Germany
| | - Gen Lin
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, Heidelberg, Germany
| | - Chelsea Szu Tu
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, Heidelberg, Germany
| | - Alex R. Lederer
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, Heidelberg, Germany
| | - Angela Chu
- Stanford Genome Technology Center, Stanford University, Palo Alto, California, USA
- Department of Biochemistry, Stanford University School of Medicine, Stanford, California, USA
| | - Sundari Suresh
- Stanford Genome Technology Center, Stanford University, Palo Alto, California, USA
- Department of Biochemistry, Stanford University School of Medicine, Stanford, California, USA
| | - Michelle Nguyen
- Stanford Genome Technology Center, Stanford University, Palo Alto, California, USA
- Department of Genetics, Stanford University School of Medicine, Stanford, California, USA
| | - Joe Horecka
- Stanford Genome Technology Center, Stanford University, Palo Alto, California, USA
- Department of Biochemistry, Stanford University School of Medicine, Stanford, California, USA
| | - Ashutosh Tripathi
- Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, College Station, Texas, USA
| | - Wallace T. Burnett
- Stanford Genome Technology Center, Stanford University, Palo Alto, California, USA
- Department of Genetics, Stanford University School of Medicine, Stanford, California, USA
| | - Maddison A. Morgan
- Stanford Genome Technology Center, Stanford University, Palo Alto, California, USA
- Department of Genetics, Stanford University School of Medicine, Stanford, California, USA
| | - Julia Schulz
- Stanford Genome Technology Center, Stanford University, Palo Alto, California, USA
- Department of Genetics, Stanford University School of Medicine, Stanford, California, USA
| | - Kevin M. Orsley
- Stanford Genome Technology Center, Stanford University, Palo Alto, California, USA
- Department of Genetics, Stanford University School of Medicine, Stanford, California, USA
| | - Wu Wei
- Stanford Genome Technology Center, Stanford University, Palo Alto, California, USA
- Department of Genetics, Stanford University School of Medicine, Stanford, California, USA
| | - Raeka S. Aiyar
- Stanford Genome Technology Center, Stanford University, Palo Alto, California, USA
| | - Ronald W. Davis
- Stanford Genome Technology Center, Stanford University, Palo Alto, California, USA
- Department of Genetics, Stanford University School of Medicine, Stanford, California, USA
- Department of Biochemistry, Stanford University School of Medicine, Stanford, California, USA
| | - Vytas A. Bankaitis
- Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, College Station, Texas, USA
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas, USA
- Department of Chemistry, Texas A&M University, College Station, Texas, USA
| | - James E. Haber
- Rosenstiel Basic Medical Sciences Research Center and Department of Biology, Brandeis University, Waltham, Massachusetts, USA
| | - Marc L. Salit
- Genome-Scale Measurements Group, Material Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland, USA
- Joint Initiative for Metrology in Biology, Stanford, California, USA
| | - Robert P. St Onge
- Stanford Genome Technology Center, Stanford University, Palo Alto, California, USA
- Department of Biochemistry, Stanford University School of Medicine, Stanford, California, USA
| | - Lars M. Steinmetz
- Stanford Genome Technology Center, Stanford University, Palo Alto, California, USA
- Joint Initiative for Metrology in Biology, Stanford, California, USA
- Department of Genetics, Stanford University School of Medicine, Stanford, California, USA
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, Heidelberg, Germany
| |
Collapse
|
33
|
Obando D, Koda Y, Pantarat N, Lev S, Zuo X, Bijosono Oei J, Widmer F, Djordjevic JT, Sorrell TC, Jolliffe KA. Synthesis and Evaluation of a Series of Bis(pentylpyridinium) Compounds as Antifungal Agents. ChemMedChem 2018; 13:1421-1436. [PMID: 29781143 DOI: 10.1002/cmdc.201800331] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Indexed: 01/05/2023]
Abstract
A series of bis(4-pentylpyridinium) compounds with a variety of spacers between the pyridinium headgroups was synthesised, and the antifungal activity of these compounds was investigated. Lengthening the alkyl spacer between the pentylpyridinium headgroups from 12 to 16 methylene units resulted in increased antifungal activity against C. neoformans and C. albicans, but also resulted in increased hemolytic activity and cytotoxicity against mammalian cells. However, inclusion of an ortho-substituted benzene ring in the centre of the alkyl spacer resulted in decreased cytotoxicity and hemolytic activity, while maintaining antifungal potency. Replacement of the alkyl and aromatic-containing spacers by more hydrophilic ethylene glycol groups resulted in a loss of antifungal activity. Some of the compounds inhibited fungal PLB1 activity, but the low correlation of this inhibition with antifungal potency indicates PLB1 inhibition is unlikely to be the predominant mode of antifungal action of this class of compounds, with preliminary studies suggesting they may act via disruption of fungal mitochondrial function.
Collapse
Affiliation(s)
- Daniel Obando
- School of Chemistry, The University of Sydney, 2006, NSW, Australia
| | - Yasuko Koda
- School of Chemistry, The University of Sydney, 2006, NSW, Australia.,The University of Sydney, Marie Bashir Institute for Infectious Diseases and Biosecurity, Centre for Infectious Diseases and Microbiology, Westmead Institute for Medical Research, Westmead, 2145, NSW, Australia
| | - Namfon Pantarat
- The University of Sydney, Marie Bashir Institute for Infectious Diseases and Biosecurity, Centre for Infectious Diseases and Microbiology, Westmead Institute for Medical Research, Westmead, 2145, NSW, Australia
| | - Sophie Lev
- The University of Sydney, Marie Bashir Institute for Infectious Diseases and Biosecurity, Centre for Infectious Diseases and Microbiology, Westmead Institute for Medical Research, Westmead, 2145, NSW, Australia
| | - Xiaoming Zuo
- The University of Sydney, Marie Bashir Institute for Infectious Diseases and Biosecurity, Centre for Infectious Diseases and Microbiology, Westmead Institute for Medical Research, Westmead, 2145, NSW, Australia
| | - Johanes Bijosono Oei
- The University of Sydney, Marie Bashir Institute for Infectious Diseases and Biosecurity, Centre for Infectious Diseases and Microbiology, Westmead Institute for Medical Research, Westmead, 2145, NSW, Australia
| | - Fred Widmer
- The University of Sydney, Marie Bashir Institute for Infectious Diseases and Biosecurity, Centre for Infectious Diseases and Microbiology, Westmead Institute for Medical Research, Westmead, 2145, NSW, Australia
| | - Julianne T Djordjevic
- The University of Sydney, Marie Bashir Institute for Infectious Diseases and Biosecurity, Centre for Infectious Diseases and Microbiology, Westmead Institute for Medical Research, Westmead, 2145, NSW, Australia
| | - Tania C Sorrell
- The University of Sydney, Marie Bashir Institute for Infectious Diseases and Biosecurity, Centre for Infectious Diseases and Microbiology, Westmead Institute for Medical Research, Westmead, 2145, NSW, Australia
| | | |
Collapse
|
34
|
Fu MS, Coelho C, De Leon-Rodriguez CM, Rossi DCP, Camacho E, Jung EH, Kulkarni M, Casadevall A. Cryptococcus neoformans urease affects the outcome of intracellular pathogenesis by modulating phagolysosomal pH. PLoS Pathog 2018; 14:e1007144. [PMID: 29906292 PMCID: PMC6021110 DOI: 10.1371/journal.ppat.1007144] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 06/27/2018] [Accepted: 06/05/2018] [Indexed: 01/22/2023] Open
Abstract
Cryptococcus neoformans is a facultative intracellular pathogen and its interaction with macrophages is a key event determining the outcome of infection. Urease is a major virulence factor in C. neoformans but its role during macrophage interaction has not been characterized. Consequently, we analyzed the effect of urease on fungal-macrophage interaction using wild-type, urease-deficient and urease-complemented strains of C. neoformans. The frequency of non-lytic exocytosis events was reduced in the absence of urease. Urease-positive C. neoformans manifested reduced and delayed intracellular replication with fewer macrophages displaying phagolysosomal membrane permeabilization. The production of urease was associated with increased phagolysosomal pH, which in turn reduced growth of urease-positive C. neoformans inside macrophages. Interestingly, the ure1 mutant strain grew slower in fungal growth medium which was buffered to neutral pH (pH 7.4). Mice inoculated with macrophages carrying urease-deficient C. neoformans had lower fungal burden in the brain than mice infected with macrophages carrying wild-type strain. In contrast, the absence of urease did not affect survival of yeast when interacting with amoebae. Because of the inability of the urease deletion mutant to grow on urea as a sole nitrogen source, we hypothesize urease plays a nutritional role involved in nitrogen acquisition in the environment. Taken together, our data demonstrate that urease affects fitness within the mammalian phagosome, promoting non-lytic exocytosis while delaying intracellular replication and thus reducing phagolysosomal membrane damage, events that could facilitate cryptococcal dissemination when transported inside macrophages. This system provides an example where an enzyme involved in nutrient acquisition modulates virulence during mammalian infection.
Collapse
Affiliation(s)
- Man Shun Fu
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| | - Carolina Coelho
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| | - Carlos M. De Leon-Rodriguez
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Diego C. P. Rossi
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| | - Emma Camacho
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| | - Eric H. Jung
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Madhura Kulkarni
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| | - Arturo Casadevall
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, United States of America
| |
Collapse
|
35
|
Esher SK, Zaragoza O, Alspaugh JA. Cryptococcal pathogenic mechanisms: a dangerous trip from the environment to the brain. Mem Inst Oswaldo Cruz 2018; 113:e180057. [PMID: 29668825 PMCID: PMC5909089 DOI: 10.1590/0074-02760180057] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 03/08/2018] [Indexed: 12/16/2022] Open
Abstract
Cryptococcus neoformans is an opportunistic pathogenic yeast that causes serious infections, most commonly of the central nervous system (CNS). C. neoformans is mainly found in the environment and acquired by inhalation. It could be metaphorically imagined that cryptococcal disease is a "journey" for the microorganism that starts in the environment, where this yeast loads its suitcase with virulence traits. C. neoformans first encounters the infected mammalian host in the lungs, a site in which it must choose the right elements from its "virulence suitcase" to survive the pulmonary immune response. However, the lung is often only the first stop in this journey, and in some individuals the fungal trip continues to the brain. To enter the brain, C. neoformans must "open" the main barrier that protects this organ, the blood brain barrier (BBB). Once in the brain, C. neoformans expresses a distinct set of protective attributes that confers a strong neurotropism and the ability to cause brain colonisation. In summary, C. neoformans is a unique fungal pathogen as shown in its ability to survive in the face of multiple stress factors and to express virulence factors that contribute to the development of disease.
Collapse
Affiliation(s)
- Shannon K Esher
- Duke University School of Medicine, Department of Molecular Genetics and Microbiology, Department of Medicine, Durham, USA
| | - Oscar Zaragoza
- Instituto de Salud Carlos III, National Centre for Microbiology, Mycology Reference Laboratory, Madrid, Spain
| | - James Andrew Alspaugh
- Duke University School of Medicine, Department of Molecular Genetics and Microbiology, Department of Medicine, Durham, USA
| |
Collapse
|
36
|
Watkins RA, Andrews A, Wynn C, Barisch C, King JS, Johnston SA. Cryptococcus neoformans Escape From Dictyostelium Amoeba by Both WASH-Mediated Constitutive Exocytosis and Vomocytosis. Front Cell Infect Microbiol 2018; 8:108. [PMID: 29686972 PMCID: PMC5900056 DOI: 10.3389/fcimb.2018.00108] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Accepted: 03/19/2018] [Indexed: 01/01/2023] Open
Abstract
Cryptococcus neoformans is an environmental yeast that can cause opportunistic infections in humans. As infecting animals does not form part of its normal life-cycle, it has been proposed that the virulence traits that allow cryptococci to resist immune cells were selected through interactions with environmental phagocytes such as amoebae. Here, we investigate the interactions between C. neoformans and the social amoeba Dictyostelium discoideum. We show that like macrophages, D. discoideum is unable to kill C. neoformans upon phagocytosis. Despite this, we find that the yeast pass through the amoebae with an apparently normal phagocytic transit and are released alive by constitutive exocytosis after ~80 min. This is the canonical pathway in amoebae, used to dispose of indigestible material after nutrient extraction. Surprisingly however, we show that upon either genetic or pharmacological blockage of constitutive exocytosis, C. neoformans still escape from D. discoideum by a secondary mechanism. We demonstrate that constitutive exocytosis-independent egress is stochastic and actin-independent. This strongly resembles the non-lytic release of cryptococci by vomocytosis from macrophages, which do not perform constitutive exocytosis and normally retain phagocytosed material. Our data indicate that vomocytosis is functionally redundant for escape from amoebae, which thus may not be the primary driver for its evolutionary selection. Nonetheless, we show that vomocytosis of C. neoformans is mechanistically conserved in hosts ranging from amoebae to man, providing new avenues to understand this poorly-understood but important virulence mechanism.
Collapse
Affiliation(s)
- Rhys A. Watkins
- Bateson Centre, University of Sheffield, Sheffield, United Kingdom
- Department of Infection Immunity and Cardiovascular Disease, Medical School, University of Sheffield, Sheffield, United Kingdom
| | - Alexandre Andrews
- Bateson Centre, University of Sheffield, Sheffield, United Kingdom
- Department of Infection Immunity and Cardiovascular Disease, Medical School, University of Sheffield, Sheffield, United Kingdom
| | - Charlotte Wynn
- Bateson Centre, University of Sheffield, Sheffield, United Kingdom
- Department of Infection Immunity and Cardiovascular Disease, Medical School, University of Sheffield, Sheffield, United Kingdom
| | - Caroline Barisch
- Department of Biochemistry, Faculty of Science, University of Geneva, Geneva, Switzerland
| | - Jason S. King
- Bateson Centre, University of Sheffield, Sheffield, United Kingdom
- Department of Biomedical Sciences, University of Sheffield, Sheffield, United Kingdom
| | - Simon A. Johnston
- Bateson Centre, University of Sheffield, Sheffield, United Kingdom
- Department of Infection Immunity and Cardiovascular Disease, Medical School, University of Sheffield, Sheffield, United Kingdom
| |
Collapse
|
37
|
Mechanisms of Pulmonary Escape and Dissemination by Cryptococcus neoformans. J Fungi (Basel) 2018; 4:jof4010025. [PMID: 29463005 PMCID: PMC5872328 DOI: 10.3390/jof4010025] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 02/09/2018] [Accepted: 02/16/2018] [Indexed: 12/15/2022] Open
Abstract
Cryptococcus neoformans is a common environmental saprophyte and human fungal pathogen that primarily causes disease in immunocompromised individuals. Similar to many environmentally acquired human fungal pathogens, C. neoformans initiates infection in the lungs. However, the main driver of mortality is invasive cryptococcosis leading to fungal meningitis. After C. neoformans gains a foothold in the lungs, a critical early step in invasion is transversal of the respiratory epithelium. In this review, we summarize current knowledge relating to pulmonary escape. We focus on fungal factors that allow C. neoformans to disseminate from the lungs via intracellular and extracellular routes.
Collapse
|
38
|
Abstract
The coevolution of intracellular bacteria with their eukaryotic hosts has presented these pathogens with numerous challenges for their evolutionary progress and survival. Chief among these is the ability to exit from host cells, an event that is fundamentally linked to pathogen dissemination and transmission. Recent years have witnessed a major expansion of research in this area, and this chapter summarizes our current understanding of the spectrum of exit strategies that are exploited by intracellular pathogens. Clear themes regarding the mechanisms of microbial exit have emerged and are most easily conceptualized as (i) lysis of the host cell, (ii) nonlytic exit of free bacteria, and (iii) release of microorganisms into membrane-encased compartments. The adaptation of particular exit strategies is closely linked with additional themes in microbial pathogenesis, including host cell death, manipulation of host signaling pathways, and coincident activation of proinflammatory responses. This chapter will explore the molecular determinants used by intracellular pathogens to promote host cell escape and the infectious advantages each exit pathway may confer, and it will provide an evolutionary framework for the adaptation of these mechanisms.
Collapse
|
39
|
Target Identification and Mechanism of Action of Picolinamide and Benzamide Chemotypes with Antifungal Properties. Cell Chem Biol 2018; 25:279-290.e7. [PMID: 29307839 DOI: 10.1016/j.chembiol.2017.12.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Revised: 10/18/2017] [Accepted: 12/06/2017] [Indexed: 11/20/2022]
Abstract
Invasive fungal infections are accompanied by high mortality rates that range up to 90%. At present, only three different compound classes are available for use in the clinic, and these often suffer from low bioavailability, toxicity, and drug resistance. These issues emphasize an urgent need for novel antifungal agents. Herein, we report the identification of chemically versatile benzamide and picolinamide scaffolds with antifungal properties. Chemogenomic profiling and biochemical assays with purified protein identified Sec14p, the major phosphatidylinositol/phosphatidylcholine transfer protein in Saccharomyces cerevisiae, as the sole essential target for these compounds. A functional variomics screen identified resistance-conferring residues that localized to the lipid-binding pocket of Sec14p. Determination of the X-ray co-crystal structure of a Sec14p-compound complex confirmed binding in this cavity and rationalized both the resistance-conferring residues and the observed structure-activity relationships. Taken together, these findings open new avenues for rational compound optimization and development of novel antifungal agents.
Collapse
|
40
|
Li C, Lev S, Desmarini D, Kaufman-Francis K, Saiardi A, Silva APG, Mackay JP, Thompson PE, Sorrell TC, Djordjevic JT. IP 3-4 kinase Arg1 regulates cell wall homeostasis and surface architecture to promote clearance of Cryptococcus neoformans infection in a mouse model. Virulence 2017; 8:1833-1848. [PMID: 28976803 DOI: 10.1080/21505594.2017.1385692] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Abstract
We previously identified a series of inositol polyphosphate kinases (IPKs), Arg1, Ipk1, Kcs1 and Asp1, in the opportunistic fungal pathogen Cryptococcus neoformans. Using gene deletion analysis, we characterized Arg1, Ipk1 and Kcs1 and showed that they act sequentially to convert IP3 to PP-IP5 (IP7), a key metabolite promoting stress tolerance, metabolic adaptation and fungal dissemination to the brain. We have now directly characterized the enzymatic activity of Arg1, demonstrating that it is a dual specificity (IP3/IP4) kinase producing IP5. We showed previously that IP5 is further phosphorylated by Ipk1 to produce IP6, which is a substrate for the synthesis of PP-IP5 by Kcs1. Phenotypic comparison of the arg1Δ and kcs1Δ deletion mutants (both PP-IP5-deficient) reveals that arg1Δ has the most deleterious phenotype: while PP-IP5 is essential for metabolic and stress adaptation in both mutant strains, PP-IP5 is dispensable for virulence-associated functions such as capsule production, cell wall organization, and normal N-linked mannosylation of the virulence factor, phospholipase B1, as these phenotypes were defective only in arg1Δ. The more deleterious arg1Δ phenotype correlated with a higher rate of arg1Δ phagocytosis by human peripheral blood monocytes and rapid arg1Δ clearance from lung in a mouse model. This observation is in contrast to kcs1Δ, which we previously reported establishes a chronic, confined lung infection. In summary, we show that Arg1 is the most crucial IPK for cryptococcal virulence, conveying PP-IP5-dependent and novel PP-IP5-independent functions.
Collapse
Affiliation(s)
- Cecilia Li
- a Centre for Infectious Diseases and Microbiology, The Westmead Institute for Medical Research , 176 Hawkesbury road, Westmead NSW 2145 , Australia.,b Sydney Medical School-Westmead, The University of Sydney , Westmead NSW 2145 , Australia.,c Marie Bashir Institute for Infectious Diseases and Biosecurity, University of Sydney , NSW Australia
| | - Sophie Lev
- a Centre for Infectious Diseases and Microbiology, The Westmead Institute for Medical Research , 176 Hawkesbury road, Westmead NSW 2145 , Australia.,b Sydney Medical School-Westmead, The University of Sydney , Westmead NSW 2145 , Australia.,c Marie Bashir Institute for Infectious Diseases and Biosecurity, University of Sydney , NSW Australia
| | - Desmarini Desmarini
- a Centre for Infectious Diseases and Microbiology, The Westmead Institute for Medical Research , 176 Hawkesbury road, Westmead NSW 2145 , Australia
| | - Keren Kaufman-Francis
- a Centre for Infectious Diseases and Microbiology, The Westmead Institute for Medical Research , 176 Hawkesbury road, Westmead NSW 2145 , Australia.,c Marie Bashir Institute for Infectious Diseases and Biosecurity, University of Sydney , NSW Australia
| | - Adolfo Saiardi
- d Medical Research Council Laboratory for Molecular Cell Biology, University College London , Gower street, London WC1E 6BT , UK
| | - Ana P G Silva
- e School of Life and Environmental Sciences, The University of Sydney , Camperdown , NSW 2006 , Australia
| | - Joel P Mackay
- e School of Life and Environmental Sciences, The University of Sydney , Camperdown , NSW 2006 , Australia
| | - Philip E Thompson
- f Medicinal Chemistry, Faculty of Pharmacy and Pharmaceutical Sciences , Monash University , 381 Royal Parade, Parkville , VIC 3052 , Australia
| | - Tania C Sorrell
- a Centre for Infectious Diseases and Microbiology, The Westmead Institute for Medical Research , 176 Hawkesbury road, Westmead NSW 2145 , Australia.,b Sydney Medical School-Westmead, The University of Sydney , Westmead NSW 2145 , Australia.,c Marie Bashir Institute for Infectious Diseases and Biosecurity, University of Sydney , NSW Australia.,g Westmead Hospital , Westmead , NSW 2145 , Australia
| | - Julianne T Djordjevic
- a Centre for Infectious Diseases and Microbiology, The Westmead Institute for Medical Research , 176 Hawkesbury road, Westmead NSW 2145 , Australia.,b Sydney Medical School-Westmead, The University of Sydney , Westmead NSW 2145 , Australia.,c Marie Bashir Institute for Infectious Diseases and Biosecurity, University of Sydney , NSW Australia.,g Westmead Hospital , Westmead , NSW 2145 , Australia
| |
Collapse
|
41
|
Squizani ED, Oliveira NK, Reuwsaat JCV, Marques BM, Lopes W, Gerber AL, de Vasconcelos ATR, Lev S, Djordjevic JT, Schrank A, Vainstein MH, Staats CC, Kmetzsch L. Cryptococcal dissemination to the central nervous system requires the vacuolar calcium transporter Pmc1. Cell Microbiol 2017; 20. [PMID: 29113016 DOI: 10.1111/cmi.12803] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 10/27/2017] [Accepted: 10/30/2017] [Indexed: 12/26/2022]
Abstract
Cryptococcus neoformans is a basidiomycetous yeast and the cause of cryptococcosis in immunocompromised individuals. The most severe form of the disease is meningoencephalitis, which is one of the leading causes of death in HIV/AIDS patients. In order to access the central nervous system, C. neoformans relies on the activity of certain virulence factors such as urease, which allows transmigration through the blood-brain barrier. In this study, we demonstrate that the calcium transporter Pmc1 enables C. neoformans to penetrate the central nervous system, because the pmc1 null mutant failed to infect and to survive within the brain parenchyma in a murine systemic infection model. To investigate potential alterations in transmigration pathways in these mutants, global expression profiling of the pmc1 mutant strain was undertaken, and genes associated with urease, the Ca2+ -calcineurin pathway, and capsule assembly were identified as being differentially expressed. Also, a decrease in urease activity was observed in the calcium transporter null mutants. Finally, we demonstrate that the transcription factor Crz1 regulates urease activity and that the Ca2+ -calcineurin signalling pathway positively controls the transcription of calcium transporter genes and factors related to transmigration.
Collapse
Affiliation(s)
| | | | | | | | - William Lopes
- Centro de Biotecnologia, UFRGS, Porto Alegre, RS, Brazil
| | - Alexandra L Gerber
- Laboratório Nacional de Computação Científica (LNCC), Petrópolis, RJ, Brazil
| | | | - Sophie Lev
- Fungal Pathogenesis Laboratory, Centre for Infectious Diseases and Microbiology, The Westmead Institute for Medical Research, Westmead, NSW, Australia
| | - Julianne T Djordjevic
- Fungal Pathogenesis Laboratory, Centre for Infectious Diseases and Microbiology, The Westmead Institute for Medical Research, Westmead, NSW, Australia
| | | | | | | | - Lívia Kmetzsch
- Centro de Biotecnologia, UFRGS, Porto Alegre, RS, Brazil
| |
Collapse
|
42
|
Uribe-Querol E, Rosales C. Control of Phagocytosis by Microbial Pathogens. Front Immunol 2017; 8:1368. [PMID: 29114249 PMCID: PMC5660709 DOI: 10.3389/fimmu.2017.01368] [Citation(s) in RCA: 141] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2017] [Accepted: 10/05/2017] [Indexed: 12/17/2022] Open
Abstract
Phagocytosis is a fundamental process of cells to capture and ingest foreign particles. Small unicellular organisms such as free-living amoeba use this process to acquire food. In pluricellular organisms, phagocytosis is a universal phenomenon that all cells are able to perform (including epithelial, endothelial, fibroblasts, etc.), but some specialized cells (such as neutrophils and macrophages) perform this very efficiently and were therefore named professional phagocytes by Rabinovitch. Cells use phagocytosis to capture and clear all particles larger than 0.5 µm, including pathogenic microorganisms and cellular debris. Phagocytosis involves a series of steps from recognition of the target particle, ingestion of it in a phagosome (phagocytic vacuole), maturation of this phagosome into a phagolysosome, to the final destruction of the ingested particle in the robust antimicrobial environment of the phagolysosome. For the most part, phagocytosis is an efficient process that eliminates invading pathogens and helps maintaining homeostasis. However, several pathogens have also evolved different strategies to prevent phagocytosis from proceeding in a normal way. These pathogens have a clear advantage to perpetuate the infection and continue their replication. Here, we present an overview of the phagocytic process with emphasis on the antimicrobial elements professional phagocytes use. We also summarize the current knowledge on the microbial strategies different pathogens use to prevent phagocytosis either at the level of ingestion, phagosome formation, and maturation, and even complete escape from phagosomes.
Collapse
Affiliation(s)
- Eileen Uribe-Querol
- División de Estudios de Posgrado e Investigación, Facultad de Odontología, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Carlos Rosales
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| |
Collapse
|
43
|
Na Pombejra S, Salemi M, Phinney BS, Gelli A. The Metalloprotease, Mpr1, Engages AnnexinA2 to Promote the Transcytosis of Fungal Cells across the Blood-Brain Barrier. Front Cell Infect Microbiol 2017; 7:296. [PMID: 28713781 PMCID: PMC5492700 DOI: 10.3389/fcimb.2017.00296] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Accepted: 06/16/2017] [Indexed: 12/19/2022] Open
Abstract
Eukaryotic pathogens display multiple mechanisms for breaching the blood-brain barrier (BBB) and invading the central nervous system (CNS). Of the fungal spp., that cause disease in mammals, only some cross brain microvascular endothelial cells which constitute the BBB, and invade the brain. Cryptococcus neoformans, the leading cause of fungal meningoencephalitis, crosses the BBB directly by transcytosis or by co-opting monocytes. We previously determined that Mpr1, a secreted fungal metalloprotease, facilitates association of fungal cells to brain microvascular endothelial cells and we confirmed that the sole expression of CnMPR1 endowed S. cerevisiae with an ability to cross the BBB. Here, the gain of function conferred onto S. cerevisiae by CnMPR1 (i.e., Sc<CnMPR1> strain) was used to identify targets of Mpr1 that might reside on the surface of the BBB. Following biotin-labeling of BBB surface proteins, Sc<CnMPR1>-associated proteins were identified by LC-MS/MS. Of the 62 proteins identified several were cytoskeleton-endocytosis-associated including AnnexinA2 (AnxA2). Using an in vitro model of the human BBB where AnxA2 activity was blocked, we found that the lack of AnxA2 activity prevented the movement of S. cerevisiae across the BBB (i.e., transcytosis of Sc<CnMPR1> strain) but unexpectedly, TEM analysis revealed that AnxA2 was not required for the association or the internalization of Sc<CnMPR1>. Additionally, the co-localization of AnxA2 and Sc<CnMPR1> suggest that successful crossing of the BBB is dependent on an AxnA2-Mpr1-mediated interaction. Collectively the data suggest that AnxA2 plays a central role in fungal transcytosis in human brain microvascular endothelial cells. The movement and exocytosis of Sc<CnMPR1> is dependent on membrane trafficking events that involve AnxA2 but these events appear to be independent from the actions of AnxA2 at the host cell surface. We propose that Mpr1 activity promotes cytoskeleton remodeling in brain microvascular endothelial cells and thereby engages AnxA2 in order to facilitate fungal transcytosis of the BBB.
Collapse
Affiliation(s)
- Sarisa Na Pombejra
- Department of Pharmacology, School of Medicine, Genome and Biomedical Sciences Facility, University of California, DavisDavis, CA, United States
| | - Michelle Salemi
- Proteomics Core Facility, Genome and Biomedical Sciences Facility, University of California, DavisDavis, CA, United States
| | - Brett S Phinney
- Proteomics Core Facility, Genome and Biomedical Sciences Facility, University of California, DavisDavis, CA, United States
| | - Angie Gelli
- Department of Pharmacology, School of Medicine, Genome and Biomedical Sciences Facility, University of California, DavisDavis, CA, United States
| |
Collapse
|
44
|
Filipuzzi I, Cotesta S, Perruccio F, Knapp B, Fu Y, Studer C, Pries V, Riedl R, Helliwell SB, Petrovic KT, Movva NR, Sanglard D, Tao J, Hoepfner D. High-Resolution Genetics Identifies the Lipid Transfer Protein Sec14p as Target for Antifungal Ergolines. PLoS Genet 2016; 12:e1006374. [PMID: 27855158 PMCID: PMC5147771 DOI: 10.1371/journal.pgen.1006374] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Accepted: 09/20/2016] [Indexed: 12/25/2022] Open
Abstract
Invasive infections by fungal pathogens cause more deaths than malaria worldwide. We found the ergoline compound NGx04 in an antifungal screen, with selectivity over mammalian cells. High-resolution chemogenomics identified the lipid transfer protein Sec14p as the target of NGx04 and compound-resistant mutations in Sec14p define compound-target interactions in the substrate binding pocket of the protein. Beyond its essential lipid transfer function in a variety of pathogenic fungi, Sec14p is also involved in secretion of virulence determinants essential for the pathogenicity of fungi such as Cryptococcus neoformans, making Sec14p an attractive antifungal target. Consistent with this dual function, we demonstrate that NGx04 inhibits the growth of two clinical isolates of C. neoformans and that NGx04-related compounds have equal and even higher potency against C. neoformans. Furthermore NGx04 analogues showed fungicidal activity against a fluconazole resistant C. neoformans strain. In summary, we present genetic evidence that NGx04 inhibits fungal Sec14p and initial data supporting NGx04 as a novel antifungal starting point. Emerging resistance to antibiotics led to an inglorious revival of infectious diseases. Furthermore, in the past 30 years, only one novel anti-fungal target has been discovered which was used to develop therapies against. Therefore pathogen-selective targets and knowledge about possible resistance determinants are of utmost importance to successfully develop new medicines. Here we describe the identification of anti-fungal ergolines, targeting the lipid transfer protein Sec14p, and inhibiting the growth of two clinical isolates of the pathogenic fungus Cryptococcus neoformans. Both, compound and target represent attractive points for further investigations: Sec14p as it differs significantly from the human homolog and as it has been implicated in fungal viability and pathogenicity, and, ergolines as they are used in the clinic against a variety of diseases demonstrating both efficacy and safety.
Collapse
Affiliation(s)
- Ireos Filipuzzi
- Novartis Institutes for BioMedical Research, Novartis Campus, Basel, Switzerland
- * E-mail:
| | - Simona Cotesta
- Novartis Institutes for BioMedical Research, Novartis Campus, Basel, Switzerland
| | - Francesca Perruccio
- Novartis Institutes for BioMedical Research, Novartis Campus, Basel, Switzerland
| | - Britta Knapp
- Novartis Institutes for BioMedical Research, Novartis Campus, Basel, Switzerland
| | - Yue Fu
- Genomics Institute of the Novartis Research Foundation, San Diego, California, United States of America
| | - Christian Studer
- Novartis Institutes for BioMedical Research, Novartis Campus, Basel, Switzerland
| | - Verena Pries
- Novartis Institutes for BioMedical Research, Novartis Campus, Basel, Switzerland
| | - Ralph Riedl
- Novartis Institutes for BioMedical Research, Novartis Campus, Basel, Switzerland
| | - Stephen B. Helliwell
- Novartis Institutes for BioMedical Research, Novartis Campus, Basel, Switzerland
| | - Katarina T. Petrovic
- Novartis Institutes for BioMedical Research, Novartis Campus, Basel, Switzerland
| | - N. Rao Movva
- Novartis Institutes for BioMedical Research, Novartis Campus, Basel, Switzerland
| | - Dominique Sanglard
- Institute of Microbiology, University of Lausanne and University Hospital Center, Lausanne, Switzerland
| | - Jianshi Tao
- Genomics Institute of the Novartis Research Foundation, San Diego, California, United States of America
| | - Dominic Hoepfner
- Novartis Institutes for BioMedical Research, Novartis Campus, Basel, Switzerland
| |
Collapse
|
45
|
Marcos CM, de Oliveira HC, de Melo WDCMA, da Silva JDF, Assato PA, Scorzoni L, Rossi SA, de Paula E Silva ACA, Mendes-Giannini MJS, Fusco-Almeida AM. Anti-Immune Strategies of Pathogenic Fungi. Front Cell Infect Microbiol 2016; 6:142. [PMID: 27896220 PMCID: PMC5108756 DOI: 10.3389/fcimb.2016.00142] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Accepted: 10/13/2016] [Indexed: 12/24/2022] Open
Abstract
Pathogenic fungi have developed many strategies to evade the host immune system. Multiple escape mechanisms appear to function together to inhibit attack by the various stages of both the adaptive and the innate immune response. Thus, after entering the host, such pathogens fight to overcome the immune system to allow their survival, colonization and spread to different sites of infection. Consequently, the establishment of a successful infectious process is closely related to the ability of the pathogen to modulate attack by the immune system. Most strategies employed to subvert or exploit the immune system are shared among different species of fungi. In this review, we summarize the main strategies employed for immune evasion by some of the major pathogenic fungi.
Collapse
Affiliation(s)
- Caroline M Marcos
- Laboratório de Micologia Clínica, Departamento de Análises Clínicas, Faculdade de Ciências Farmacêuticas, Univ Estadual Paulista São Paulo, Brasil
| | - Haroldo C de Oliveira
- Laboratório de Micologia Clínica, Departamento de Análises Clínicas, Faculdade de Ciências Farmacêuticas, Univ Estadual Paulista São Paulo, Brasil
| | - Wanessa de Cássia M Antunes de Melo
- Laboratório de Micologia Clínica, Departamento de Análises Clínicas, Faculdade de Ciências Farmacêuticas, Univ Estadual Paulista São Paulo, Brasil
| | - Julhiany de Fátima da Silva
- Laboratório de Micologia Clínica, Departamento de Análises Clínicas, Faculdade de Ciências Farmacêuticas, Univ Estadual Paulista São Paulo, Brasil
| | - Patrícia A Assato
- Laboratório de Micologia Clínica, Departamento de Análises Clínicas, Faculdade de Ciências Farmacêuticas, Univ Estadual Paulista São Paulo, Brasil
| | - Liliana Scorzoni
- Laboratório de Micologia Clínica, Departamento de Análises Clínicas, Faculdade de Ciências Farmacêuticas, Univ Estadual Paulista São Paulo, Brasil
| | - Suélen A Rossi
- Laboratório de Micologia Clínica, Departamento de Análises Clínicas, Faculdade de Ciências Farmacêuticas, Univ Estadual Paulista São Paulo, Brasil
| | - Ana C A de Paula E Silva
- Laboratório de Micologia Clínica, Departamento de Análises Clínicas, Faculdade de Ciências Farmacêuticas, Univ Estadual Paulista São Paulo, Brasil
| | - Maria J S Mendes-Giannini
- Laboratório de Micologia Clínica, Departamento de Análises Clínicas, Faculdade de Ciências Farmacêuticas, Univ Estadual Paulista São Paulo, Brasil
| | - Ana M Fusco-Almeida
- Laboratório de Micologia Clínica, Departamento de Análises Clínicas, Faculdade de Ciências Farmacêuticas, Univ Estadual Paulista São Paulo, Brasil
| |
Collapse
|
46
|
Zhang Z, Li H, Qin G, He C, Li B, Tian S. The MADS-Box transcription factor Bcmads1 is required for growth, sclerotia production and pathogenicity of Botrytis cinerea. Sci Rep 2016; 6:33901. [PMID: 27658442 PMCID: PMC5034256 DOI: 10.1038/srep33901] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Accepted: 09/02/2016] [Indexed: 02/08/2023] Open
Abstract
MADS-box transcription factors are highly conserved in eukaryotic species and involved in a variety of biological processes. Little is known, however, regarding the function of MADS-box genes in Botrytis cinerea, a fungal pathogen with a wide host range. Here, the functional role of the B. cinerea MADS-box gene, Bcmads1, was characterized in relation to the development, pathogenicity and production of sclerotia. The latter are formed upon incubation in darkness and serve as survival structures during winter and as the female parent in sexual reproduction. Bcmads1 is indispensable for sclerotia production. RT-qPCR analysis suggested that Bcmads1 modulated sclerotia formation by regulating the expression of light-responsive genes. Bcmads1 is required for the full virulence potential of B. cinerea on apple fruit. A comparative proteomic analysis identified 63 proteins, representing 55 individual genes that are potential targets of Bcmads1. Among them, Bcsec14 and Bcsec31 are associated with vesicle transport. Deletion of Bcsec14 and Bcsec31 resulted in a reduction in the virulence and protein secretion of B. cinerea. These results suggest that Bcmads1 may influence sclerotia formation by modulating light responsive gene expression and regulate pathogenicity by its effect on the protein secretion process.
Collapse
Affiliation(s)
- Zhanquan Zhang
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Hua Li
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Guozheng Qin
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Chang He
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Boqiang Li
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Shiping Tian
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
47
|
Li C, Lev S, Saiardi A, Desmarini D, Sorrell TC, Djordjevic JT. Inositol Polyphosphate Kinases, Fungal Virulence and Drug Discovery. J Fungi (Basel) 2016; 2:jof2030024. [PMID: 29376941 PMCID: PMC5753137 DOI: 10.3390/jof2030024] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Revised: 08/23/2016] [Accepted: 08/30/2016] [Indexed: 12/31/2022] Open
Abstract
Opportunistic fungi are a major cause of morbidity and mortality world-wide, particularly in immunocompromised individuals. Developing new treatments to combat invasive fungal disease is challenging given that fungal and mammalian host cells are eukaryotic, with similar organization and physiology. Even therapies targeting unique fungal cell features have limitations and drug resistance is emerging. New approaches to the development of antifungal drugs are therefore needed urgently. Cryptococcus neoformans, the commonest cause of fungal meningitis worldwide, is an accepted model for studying fungal pathogenicity and driving drug discovery. We recently characterized a phospholipase C (Plc1)-dependent pathway in C. neoformans comprising of sequentially-acting inositol polyphosphate kinases (IPK), which are involved in synthesizing inositol polyphosphates (IP). We also showed that the pathway is essential for fungal cellular function and pathogenicity. The IP products of the pathway are structurally diverse, each consisting of an inositol ring, with phosphate (P) and pyrophosphate (PP) groups covalently attached at different positions. This review focuses on (1) the characterization of the Plc1/IPK pathway in C. neoformans; (2) the identification of PP-IP₅ (IP₇) as the most crucial IP species for fungal fitness and virulence in a mouse model of fungal infection; and (3) why IPK enzymes represent suitable candidates for drug development.
Collapse
Affiliation(s)
- Cecilia Li
- Centre for Infectious Diseases and Microbiology, The Westmead Institute for Medical Research, The University of Sydney, Westmead, NSW 2145, Australia.
| | - Sophie Lev
- Centre for Infectious Diseases and Microbiology, The Westmead Institute for Medical Research, The University of Sydney, Westmead, NSW 2145, Australia.
| | - Adolfo Saiardi
- Medical Research Council Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, UK.
| | - Desmarini Desmarini
- Centre for Infectious Diseases and Microbiology, The Westmead Institute for Medical Research, The University of Sydney, Westmead, NSW 2145, Australia.
| | - Tania C Sorrell
- Centre for Infectious Diseases and Microbiology, The Westmead Institute for Medical Research, The University of Sydney, Westmead, NSW 2145, Australia.
- Marie Bashir Institute for Infectious Diseases and Biosecurity, University of Sydney, Westmead, NSW 2145, Australia.
- Westmead Hospital, Westmead, NSW 2145, Australia.
| | - Julianne T Djordjevic
- Centre for Infectious Diseases and Microbiology, The Westmead Institute for Medical Research, The University of Sydney, Westmead, NSW 2145, Australia.
- Marie Bashir Institute for Infectious Diseases and Biosecurity, University of Sydney, Westmead, NSW 2145, Australia.
- Westmead Hospital, Westmead, NSW 2145, Australia.
| |
Collapse
|
48
|
Suresh S, Schlecht U, Xu W, Bray W, Miranda M, Davis RW, Nislow C, Giaever G, Lokey RS, St Onge RP. Systematic Mapping of Chemical-Genetic Interactions in Saccharomyces cerevisiae. Cold Spring Harb Protoc 2016; 2016:2016/9/pdb.top077701. [PMID: 27587783 DOI: 10.1101/pdb.top077701] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Chemical-genetic interactions (CGIs) describe a phenomenon where the effects of a chemical compound (i.e., a small molecule) on cell growth are dependent on a particular gene. CGIs can reveal important functional information about genes and can also be powerful indicators of a compound's mechanism of action. Mapping CGIs can lead to the discovery of new chemical probes, which, in contrast to genetic perturbations, operate at the level of the gene product (or pathway) and can be fast-acting, tunable, and reversible. The simple culture conditions required for yeast and its rapid growth, as well as the availability of a complete set of barcoded gene deletion strains, facilitate systematic mapping of CGIs in this organism. This process involves two basic steps: first, screening chemical libraries to identify bioactive compounds affecting growth and, second, measuring the effects of these compounds on genome-wide collections of mutant strains. Here, we introduce protocols for both steps that have great potential for the discovery and development of new small-molecule tools and medicines.
Collapse
Affiliation(s)
- Sundari Suresh
- Stanford Genome Technology Center, Department of Biochemistry, Stanford University, Palo Alto, California 94304
| | - Ulrich Schlecht
- Stanford Genome Technology Center, Department of Biochemistry, Stanford University, Palo Alto, California 94304
| | - Weihong Xu
- Stanford Genome Technology Center, Department of Biochemistry, Stanford University, Palo Alto, California 94304
| | - Walter Bray
- Department of Chemistry and Biochemistry, University of California Santa Cruz, Santa Cruz, California 95064
| | - Molly Miranda
- Stanford Genome Technology Center, Department of Biochemistry, Stanford University, Palo Alto, California 94304
| | - Ronald W Davis
- Stanford Genome Technology Center, Department of Biochemistry, Stanford University, Palo Alto, California 94304
| | - Corey Nislow
- Pharmaceutical Sciences, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Guri Giaever
- Pharmaceutical Sciences, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - R Scott Lokey
- Department of Chemistry and Biochemistry, University of California Santa Cruz, Santa Cruz, California 95064
| | - Robert P St Onge
- Stanford Genome Technology Center, Department of Biochemistry, Stanford University, Palo Alto, California 94304
| |
Collapse
|
49
|
Taylor-Smith LM, May RC. New weapons in the Cryptococcus infection toolkit. Curr Opin Microbiol 2016; 34:67-74. [PMID: 27522351 DOI: 10.1016/j.mib.2016.07.018] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2016] [Accepted: 07/12/2016] [Indexed: 12/30/2022]
Abstract
The global burden of fungal infections is unacceptably high. The human fungal pathogen Cryptococcus neoformans causes cryptococcosis and accounts for a significant proportion of this burden. Cryptococci undergo a number of elaborate interactions with their hosts, including survival and proliferation within phagocytes as well as dissemination to the central nervous system and other tissues. In this review we highlight a number of exciting recent advances in the field of cryptococcal biology. In particular we discuss new insights into cryptococcal morphology and its impact on virulence, as well as describing novel findings revealing how cryptoccoci may 'talk' to each other.
Collapse
Affiliation(s)
- Leanne M Taylor-Smith
- Institute of Microbiology and Infection and School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Robin C May
- Institute of Microbiology and Infection and School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK.
| |
Collapse
|
50
|
Stukes S, Coelho C, Rivera J, Jedlicka AE, Hajjar KA, Casadevall A. The Membrane Phospholipid Binding Protein Annexin A2 Promotes Phagocytosis and Nonlytic Exocytosis of Cryptococcus neoformans and Impacts Survival in Fungal Infection. THE JOURNAL OF IMMUNOLOGY 2016; 197:1252-61. [PMID: 27371724 DOI: 10.4049/jimmunol.1501855] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Accepted: 06/02/2016] [Indexed: 12/31/2022]
Abstract
Cryptococcus neoformans is a fungal pathogen with a unique intracellular pathogenic strategy that includes nonlytic exocytosis, a phenomenon whereby fungal cells are expunged from macrophages without lysing the host cell. The exact mechanism and specific proteins involved in this process have yet to be completely defined. Using murine macrophages deficient in the membrane phospholipid binding protein, annexin A2 (ANXA2), we observed a significant decrease in both phagocytosis of yeast cells and the frequency of nonlytic exocytosis. Cryptococcal cells isolated from Anxa2-deficient (Anxa2(-/-)) bone marrow-derived macrophages and lung parenchyma displayed significantly larger capsules than those isolated from wild-type macrophages and tissues. Concomitantly, we observed significant differences in the amount of reactive oxygen species produced between Anxa2(-/-) and Anxa2(+/+) macrophages. Despite comparable fungal burden, Anxa2(-/-) mice died more rapidly than wild-type mice when infected with C. neoformans, and Anxa2(-/-) mice exhibited enhanced inflammatory responses, suggesting that the reduced survival reflected greater immune-mediated damage. Together, these findings suggest a role for ANXA2 in the control of cryptococcal infection, macrophage function, and fungal morphology.
Collapse
Affiliation(s)
- Sabriya Stukes
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461
| | - Carolina Coelho
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461; Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205
| | - Johanna Rivera
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461
| | - Anne E Jedlicka
- Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205
| | - Katherine A Hajjar
- Department of Pediatrics, Weill Cornell Medicine, New York, NY 10065; and Department of Cell and Developmental Biology, Weill Cornell Medicine, New York, NY 10065
| | - Arturo Casadevall
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461; Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205;
| |
Collapse
|