1
|
Yague-Sanz C, Migeot V, Larochelle M, Bachand F, Wéry M, Morillon A, Hermand D. Chromatin remodeling by Pol II primes efficient Pol III transcription. Nat Commun 2023; 14:3587. [PMID: 37328480 PMCID: PMC10276017 DOI: 10.1038/s41467-023-39387-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 06/09/2023] [Indexed: 06/18/2023] Open
Abstract
The packaging of the genetic material into chromatin imposes the remodeling of this barrier to allow efficient transcription. RNA polymerase II activity is coupled with several histone modification complexes that enforce remodeling. How RNA polymerase III (Pol III) counteracts the inhibitory effect of chromatin is unknown. We report here a mechanism where RNA Polymerase II (Pol II) transcription is required to prime and maintain nucleosome depletion at Pol III loci and contributes to efficient Pol III recruitment upon re-initiation of growth from stationary phase in Fission yeast. The Pcr1 transcription factor participates in the recruitment of Pol II, which affects local histone occupancy through the associated SAGA complex and a Pol II phospho-S2 CTD / Mst2 pathway. These data expand the central role of Pol II in gene expression beyond mRNA synthesis.
Collapse
Affiliation(s)
- Carlo Yague-Sanz
- URPHYM-GEMO, The University of Namur, rue de Bruxelles, 61, Namur, 5000, Belgium
| | - Valérie Migeot
- URPHYM-GEMO, The University of Namur, rue de Bruxelles, 61, Namur, 5000, Belgium
| | - Marc Larochelle
- RNA Group, Department of Biochemistry and Functional Genomics, Université de Sherbrooke, Sherbrooke, QC, J1E 4K8, Canada
| | - François Bachand
- RNA Group, Department of Biochemistry and Functional Genomics, Université de Sherbrooke, Sherbrooke, QC, J1E 4K8, Canada
| | - Maxime Wéry
- ncRNA, Epigenetic and Genome Fluidity, Institut Curie, PSL Research University, Université Pierre et Marie Curie, CNRS UMR 3244, Paris, France
| | - Antonin Morillon
- ncRNA, Epigenetic and Genome Fluidity, Institut Curie, PSL Research University, Université Pierre et Marie Curie, CNRS UMR 3244, Paris, France
| | - Damien Hermand
- URPHYM-GEMO, The University of Namur, rue de Bruxelles, 61, Namur, 5000, Belgium.
| |
Collapse
|
2
|
Salat-Canela C, Pérez P, Ayté J, Hidalgo E. Stress-induced cell depolarization through the MAP kinase-Cdc42 axis. Trends Cell Biol 2023; 33:124-137. [PMID: 35773059 DOI: 10.1016/j.tcb.2022.06.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 06/01/2022] [Accepted: 06/08/2022] [Indexed: 01/25/2023]
Abstract
General stress responses, which sense environmental or endogenous signals, aim at promoting cell survival and fitness during adverse conditions. In eukaryotes, mitogen-activated protein (MAP) kinase-driven cascades trigger a shift in the cell's gene expression program as a cellular adaptation to stress. Here, we review another aspect of activated MAP kinase cascades reported in fission yeast: the transient inhibition of cell polarity in response to oxidative stress. The phosphorylation by a stress-activated MAP kinase of regulators of the GTPase cell division cycle 42 (Cdc42) causes a transient inhibition of polarized cell growth. The formation of growth sites depends on limiting and essential polarity components. We summarize here some processes in which inhibition of Cdc42 may be a general mechanism to regulate polarized growth also under physiological conditions.
Collapse
Affiliation(s)
- Clàudia Salat-Canela
- Oxidative Stress and Cell Cycle Group, Universitat Pompeu Fabra, C/Dr. Aiguader 88, 08003, Barcelona, Spain
| | - Pilar Pérez
- Instituto de Biología Funcional y Genómica (IBFG), Consejo Superior de Investigaciones Científicas, Universidad de Salamanca, 37007 Salamanca, Spain
| | - José Ayté
- Oxidative Stress and Cell Cycle Group, Universitat Pompeu Fabra, C/Dr. Aiguader 88, 08003, Barcelona, Spain.
| | - Elena Hidalgo
- Oxidative Stress and Cell Cycle Group, Universitat Pompeu Fabra, C/Dr. Aiguader 88, 08003, Barcelona, Spain.
| |
Collapse
|
3
|
Lou L, Chen L, Wu Y, Zhang G, Qiu R, Su J, Zhao Z, Lu Z, Liao M, Deng X. Identification of hub genes and construction of prognostic nomogram for patients with Wilms tumors. Front Oncol 2022; 12:982110. [PMID: 36338682 PMCID: PMC9634477 DOI: 10.3389/fonc.2022.982110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 10/05/2022] [Indexed: 12/03/2022] Open
Abstract
Background In children, Wilms' tumors are the most common urological cancer with unsatisfactory prognosis, but few molecular prognostic markers have been discovered for it. With the rapid development of high-throughput quantitative proteomic and transcriptomic approaches, the molecular mechanisms of various cancers have been comprehensively explored. This study aimed to uncover the molecular mechanisms underlying Wilms tumor and build predictive models by use of microarray and RNA-seq data. Methods Gene expression datasets were downloaded from Therapeutically Applicable Research to Generate Effective Treatments (TARGET) and Gene Expression Omnibus (GEO) databases. Bioinformatics methods wereutilized to identified hub genes, and these hub genes were validated by experiment. Nomogram predicting OS was developed using genetic risk score model and clinicopathological variables. Results CDC20, BUB1 and CCNB2 were highly expressed in tumor tissues and able to affect cell proliferation and the cell cycle of SK-NEP-1 cells. This may reveal molecular biology features and a new therapeutic target of Wilms tumour.7 genes were selected as prognostic genes after univariate, Lasso, and multivariate Cox regression analyses and had good accuracy, a prognostic nomogram combined gene model with clinical factors was completed with high accuracy. Conclusions The current study discovered CDC20,BUB1 and CCNB2 as hub-genes associated with Wilms tumor, providing references to understand the pathogenesis and be considered a novel candidate to target therapy and construct novel nomogram, incorporating both clinical risk factors and gene model, could be appropriately applied in preoperative individualized prediction of malignancy in patients with Wilms tumor.
Collapse
Affiliation(s)
- Lei Lou
- Department of Pediatric Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
- Department of Pediatric Surgery, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
| | - Luping Chen
- Department of Pediatric Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Yaohao Wu
- Department of Pediatric Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Gang Zhang
- Department of Pediatric Surgery, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
| | - Ronglin Qiu
- Department of Pediatric Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Jianhang Su
- Department of Pediatric Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Zhuangjie Zhao
- Department of Pediatric Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Zijie Lu
- Department of Pediatric Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Minyi Liao
- Department of Pediatric Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Xiaogeng Deng
- Department of Pediatric Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
4
|
Yang Y, Huang P, Ma Y, Jiang R, Jiang C, Wang G. Insights into intracellular signaling network in Fusarium species. Int J Biol Macromol 2022; 222:1007-1014. [PMID: 36179869 DOI: 10.1016/j.ijbiomac.2022.09.211] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 09/23/2022] [Indexed: 11/27/2022]
Abstract
Fusarium is a large genus of filamentous fungi including numerous important plant pathogens. In addition to causing huge economic losses of crops, some Fusarium species produce a wide range of mycotoxins in cereal crops that affect human and animal health. The intracellular signaling in Fusarium plays an important role in growth, sexual and asexual developments, pathogenesis, and mycotoxin biosynthesis. In this review, we highlight the recent advances and provide insight into signal sensing and transduction in Fusarium species. G protein-coupled receptors and other conserved membrane receptors mediate recognition of environmental cues and activate complex intracellular signaling. Once activated, the cAMP-PKA and three well-conserved MAP kinase pathways activate downstream transcriptional regulatory networks. The functions of individual signaling pathways have been well characterized in a variety of Fusarium species, showing the conserved components with diverged functions. Furthermore, these signaling pathways crosstalk and coordinately regulate various fungal development and infection-related morphogenesis.
Collapse
Affiliation(s)
- Yang Yang
- State Key Laboratory of Crop Stress Biology for Arid areas, Northwestern A&F University, Yangling, Shaanxi 712100, China
| | - Panpan Huang
- State Key Laboratory of Crop Stress Biology for Arid areas, Northwestern A&F University, Yangling, Shaanxi 712100, China
| | - Yutong Ma
- State Key Laboratory of Crop Stress Biology for Arid areas, Northwestern A&F University, Yangling, Shaanxi 712100, China
| | - Ruoxuan Jiang
- State Key Laboratory of Crop Stress Biology for Arid areas, Northwestern A&F University, Yangling, Shaanxi 712100, China
| | - Cong Jiang
- State Key Laboratory of Crop Stress Biology for Arid areas, Northwestern A&F University, Yangling, Shaanxi 712100, China.
| | - Guanghui Wang
- State Key Laboratory of Crop Stress Biology for Arid areas, Northwestern A&F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
5
|
The transcription factor Atf1 lowers the transition barrier for nucleosome-mediated establishment of heterochromatin. Cell Rep 2022; 39:110828. [PMID: 35584672 DOI: 10.1016/j.celrep.2022.110828] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 03/09/2022] [Accepted: 04/26/2022] [Indexed: 11/22/2022] Open
Abstract
Transcription factors can exert opposite effects depending on the chromosomal context. The fission yeast transcription factor Atf1 both activates numerous genes in response to stresses and mediates heterochromatic gene silencing in the mating-type region. Investigating this context dependency, we report here that the establishment of silent heterochromatin in the mating-type region occurs at a reduced rate in the absence of Atf1 binding. Quantitative modeling accounts for the observed establishment profiles by a combinatorial recruitment of histone-modifying enzymes: locally by Atf1 at two binding sites and over the whole region by dynamically appearing heterochromatic nucleosomes, a source of which is the RNAi-dependent cenH element. In the absence of Atf1 binding, the synergy is lost, resulting in a slow rate of heterochromatin formation. The system shows how DNA-binding proteins can influence local nucleosome states and thereby potentiate long-range positive feedback on histone-modification reactions to enable heterochromatin formation over large regions in a context-dependent manner.
Collapse
|
6
|
Expression of Huntingtin and TDP-43 Derivatives in Fission Yeast Can Cause Both Beneficial and Toxic Effects. Int J Mol Sci 2022; 23:ijms23073950. [PMID: 35409310 PMCID: PMC8999813 DOI: 10.3390/ijms23073950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 03/29/2022] [Accepted: 03/30/2022] [Indexed: 11/16/2022] Open
Abstract
Many neurodegenerative disorders display protein aggregation as a hallmark, Huntingtin and TDP-43 aggregates being characteristic of Huntington disease and amyotrophic lateral sclerosis, respectively. However, whether these aggregates cause the diseases, are secondary by-products, or even have protective effects, is a matter of debate. Mutations in both human proteins can modulate the structure, number and type of aggregates, as well as their toxicity. To study the role of protein aggregates in cellular fitness, we have expressed in a highly tractable unicellular model different variants of Huntingtin and TDP-43. They each display specific patterns of aggregation and toxicity, even though in both cases proteins have to be very highly expressed to affect cell fitness. The aggregation properties of Huntingtin, but not of TDP-43, are affected by chaperones such as Hsp104 and the Hsp40 couple Mas5, suggesting that the TDP-43, but not Huntingtin, derivatives have intrinsic aggregation propensity. Importantly, expression of the aggregating form of Huntingtin causes a significant extension of fission yeast lifespan, probably as a consequence of kidnapping chaperones required for maintaining stress responses off. Our study demonstrates that in general these prion-like proteins do not cause toxicity under normal conditions, and in fact they can protect cells through indirect mechanisms which up-regulate cellular defense pathways.
Collapse
|
7
|
Cohen A, Pataki E, Kupiec M, Weisman R. TOR complex 2 contributes to regulation of gene expression via inhibiting Gcn5 recruitment to subtelomeric and DNA replication stress genes. PLoS Genet 2022; 18:e1010061. [PMID: 35157728 PMCID: PMC8880919 DOI: 10.1371/journal.pgen.1010061] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 02/25/2022] [Accepted: 01/28/2022] [Indexed: 11/18/2022] Open
Abstract
The fission yeast TOR complex 2 (TORC2) is required for gene silencing at subtelomeric regions and for the induction of gene transcription in response to DNA replication stress. Thus, TORC2 affects transcription regulation both negatively and positively. Whether these two TORC2-dependent functions share a common molecular mechanism is currently unknown. Here, we show that Gad8 physically interacts with proteins that regulate transcription, including subunits of the Spt-Ada-Gcn5-acetyltransferase (SAGA) complex and the BET bromodomain protein Bdf2. We demonstrate that in the absence of TORC2, Gcn5, the histone acetyltransferase subunit of SAGA, accumulates at subtelomeric genes and at non-induced promoters of DNA replication genes. Remarkably, the loss of Gcn5 in TORC2 mutant cells restores gene silencing as well as transcriptional induction in response to DNA replication stress. Loss of Bdf2 alleviates excess of Gcn5 binding in TORC2 mutant cells and also rescues the aberrant regulation of transcription in these cells. Furthermore, the loss of either SAGA or Bdf2 suppresses the sensitivity of TORC2 mutant cells to a variety of stresses, including DNA replication, DNA damage, temperature and nutrient stresses. We suggest a role of TORC2 in transcriptional regulation that is critical for gene silencing and gene induction in response to stress and involves the binding of Gcn5 to the chromatin.
Collapse
Affiliation(s)
- Adiel Cohen
- Department of Natural and Life Sciences, The Open University of Israel, Ra’anana, Israel
| | - Emese Pataki
- Department of Natural and Life Sciences, The Open University of Israel, Ra’anana, Israel
| | - Martin Kupiec
- The Shmunis School of Biomedicine & Cancer Research, Tel Aviv University, Tel Aviv, Israel
| | - Ronit Weisman
- Department of Natural and Life Sciences, The Open University of Israel, Ra’anana, Israel
| |
Collapse
|
8
|
Wang X, Paulo JA, Li X, Zhou H, Yu J, Gygi SP, Moazed D. A composite DNA element that functions as a maintainer required for epigenetic inheritance of heterochromatin. Mol Cell 2021; 81:3979-3991.e4. [PMID: 34375584 DOI: 10.1016/j.molcel.2021.07.017] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 04/27/2021] [Accepted: 07/14/2021] [Indexed: 11/16/2022]
Abstract
Epigenetic inheritance of heterochromatin requires DNA-sequence-independent propagation mechanisms, coupling to RNAi, or input from DNA sequence, but how DNA contributes to inheritance is not understood. Here, we identify a DNA element (termed "maintainer") that is sufficient for epigenetic inheritance of pre-existing histone H3 lysine 9 methylation (H3K9me) and heterochromatin in Schizosaccharomyces pombe but cannot establish de novo gene silencing in wild-type cells. This maintainer is a composite DNA element with binding sites for the Atf1/Pcr1 and Deb1 transcription factors and the origin recognition complex (ORC), located within a 130-bp region, and can be converted to a silencer in cells with lower rates of H3K9me turnover, suggesting that it participates in recruiting the H3K9 methyltransferase Clr4/Suv39h. These results suggest that, in the absence of RNAi, histone H3K9me is only heritable when it can collaborate with maintainer-associated DNA-binding proteins that help recruit the enzyme responsible for its epigenetic deposition.
Collapse
Affiliation(s)
- Xiaoyi Wang
- Howard Hughes Medical Institute, Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Joao A Paulo
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Xue Li
- Bioinformatics and Integrative Biology Program, University of Massachusetts Medical School, Worcester, MA, USA
| | - Haining Zhou
- Howard Hughes Medical Institute, Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Juntao Yu
- Howard Hughes Medical Institute, Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Steven P Gygi
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Danesh Moazed
- Howard Hughes Medical Institute, Department of Cell Biology, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
9
|
Leiter É, Emri T, Pákozdi K, Hornok L, Pócsi I. The impact of bZIP Atf1ortholog global regulators in fungi. Appl Microbiol Biotechnol 2021; 105:5769-5783. [PMID: 34302199 PMCID: PMC8390427 DOI: 10.1007/s00253-021-11431-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 06/22/2021] [Accepted: 06/24/2021] [Indexed: 11/09/2022]
Abstract
Regulation of signal transduction pathways is crucial for the maintenance of cellular homeostasis and organismal development in fungi. Transcription factors are key elements of this regulatory network. The basic-region leucine zipper (bZIP) domain of the bZIP-type transcription factors is responsible for DNA binding while their leucine zipper structural motifs are suitable for dimerization with each other facilitiating the formation of homodimeric or heterodimeric bZIP proteins. This review highlights recent knowledge on the function of fungal orthologs of the Schizosaccharomyces pombe Atf1, Aspergillus nidulans AtfA, and Fusarium verticillioides FvAtfA, bZIP-type transcription factors with a special focus on pathogenic species. We demonstrate that fungal Atf1-AtfA-FvAtfA orthologs play an important role in vegetative growth, sexual and asexual development, stress response, secondary metabolite production, and virulence both in human pathogens, including Aspergillus fumigatus, Mucor circinelloides, Penicillium marneffei, and Cryptococcus neoformans and plant pathogens, like Fusarium ssp., Magnaporthe oryzae, Claviceps purpurea, Botrytis cinerea, and Verticillium dahliae. KEY POINTS: • Atf1 orthologs play crucial role in the growth and development of fungi. • Atf1 orthologs orchestrate environmental stress response of fungi. • Secondary metabolite production and virulence are coordinated by Atf1 orthologs.
Collapse
Affiliation(s)
- Éva Leiter
- Department of Molecular Biotechnology and Microbiology, Institute of Biotechnology, University of Debrecen, P.O. Box 63, Debrecen, H-4010, Hungary.
| | - Tamás Emri
- Department of Molecular Biotechnology and Microbiology, Institute of Biotechnology, University of Debrecen, P.O. Box 63, Debrecen, H-4010, Hungary
| | - Klaudia Pákozdi
- Department of Molecular Biotechnology and Microbiology, Institute of Biotechnology, University of Debrecen, P.O. Box 63, Debrecen, H-4010, Hungary
| | - László Hornok
- Hungarian University of Agriculture and Life Sciences, Gödöllő, Hungary
| | - István Pócsi
- Department of Molecular Biotechnology and Microbiology, Institute of Biotechnology, University of Debrecen, P.O. Box 63, Debrecen, H-4010, Hungary
| |
Collapse
|
10
|
Ohtsuka H, Shimasaki T, Aiba H. Genes affecting the extension of chronological lifespan in Schizosaccharomyces pombe (fission yeast). Mol Microbiol 2020; 115:623-642. [PMID: 33064911 PMCID: PMC8246873 DOI: 10.1111/mmi.14627] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 09/17/2020] [Accepted: 10/11/2020] [Indexed: 02/06/2023]
Abstract
So far, more than 70 genes involved in the chronological lifespan (CLS) of Schizosaccharomyces pombe (fission yeast) have been reported. In this mini‐review, we arrange and summarize these genes based on the reported genetic interactions between them and the physical interactions between their products. We describe the signal transduction pathways that affect CLS in S. pombe: target of rapamycin complex 1, cAMP‐dependent protein kinase, Sty1, and Pmk1 pathways have important functions in the regulation of CLS extension. Furthermore, the Php transcription complex, Ecl1 family proteins, cyclin Clg1, and the cyclin‐dependent kinase Pef1 are important for the regulation of CLS extension in S. pombe. Most of the known genes involved in CLS extension are related to these pathways and genes. In this review, we focus on the individual genes regulating CLS extension in S. pombe and discuss the interactions among them.
Collapse
Affiliation(s)
- Hokuto Ohtsuka
- Laboratory of Molecular Microbiology, Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical Sciences, Nagoya University, Nagoya, Japan
| | - Takafumi Shimasaki
- Laboratory of Molecular Microbiology, Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical Sciences, Nagoya University, Nagoya, Japan
| | - Hirofumi Aiba
- Laboratory of Molecular Microbiology, Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical Sciences, Nagoya University, Nagoya, Japan
| |
Collapse
|
11
|
Szabó Z, Pákozdi K, Murvai K, Pusztahelyi T, Kecskeméti Á, Gáspár A, Logrieco AF, Emri T, Ádám AL, Leiter É, Hornok L, Pócsi I. FvatfA regulates growth, stress tolerance as well as mycotoxin and pigment productions in Fusarium verticillioides. Appl Microbiol Biotechnol 2020; 104:7879-7899. [PMID: 32719911 PMCID: PMC7447684 DOI: 10.1007/s00253-020-10717-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 05/22/2020] [Accepted: 06/01/2020] [Indexed: 01/22/2023]
Abstract
FvatfA from the maize pathogen Fusarium verticillioides putatively encodes the Aspergillus nidulans AtfA and Schizasaccharomyces pombe Atf1 orthologous bZIP-type transcription factor, FvAtfA. In this study, a ΔFvatfA deletion mutant was constructed and then genetically complemented with the fully functional FvatfA gene. Comparing phenotypic features of the wild-type parental, the deletion mutant and the restored strains shed light on the versatile regulatory functions played by FvAtfA in (i) the maintenance of vegetative growth on Czapek-Dox and Potato Dextrose agars and invasive growth on unwounded tomato fruits, (ii) the preservation of conidiospore yield and size, (iii) the orchestration of oxidative (H2O2, menadione sodium bisulphite) and cell wall integrity (Congo Red) stress defences and (iv) the regulation of mycotoxin (fumonisins) and pigment (bikaverin, carotenoid) productions. Expression of selected biosynthetic genes both in the fumonisin (fum1, fum8) and the carotenoid (carRA, carB) pathways were down-regulated in the ΔFvatfA strain resulting in defected fumonisin production and considerably decreased carotenoid yields. The expression of bik1, encoding the polyketide synthase needed in bikaverin biosynthesis, was not up-regulated by the deletion of FvatfA meanwhile the ΔFvatfA strain produced approximately ten times more bikaverin than the wild-type or the genetically complemented strains. The abolishment of fumonisin production of the ΔFvatfA strain may lead to the development of new-type, biology-based mycotoxin control strategies. The novel information gained on the regulation of pigment production by this fungus can be interesting for experts working on new, Fusarium-based biomass and pigment production technologies.Key points • FvatfA regulates vegetative and invasive growths of F. verticillioides. • FvatfA also orchestrates oxidative and cell wall integrity stress defenses. • The ΔFvatfA mutant was deficient in fumonisin production. • FvatfA deletion resulted in decreased carotenoid and increased bikaverin yields. |
Collapse
Affiliation(s)
- Zsuzsa Szabó
- Department of Molecular Biotechnology and Microbiology, Institute of Biotechnology, Faculty of Science and Technology, University of Debrecen, Debrecen, Hungary.,Doctoral School of Biological Sciences, Faculty of Agricultural and Environmental Sciences, Szent István University, Gödöllő, Hungary
| | - Klaudia Pákozdi
- Department of Molecular Biotechnology and Microbiology, Institute of Biotechnology, Faculty of Science and Technology, University of Debrecen, Debrecen, Hungary.,Doctoral School of Nutrition and Food Sciences, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Katalin Murvai
- Department of Molecular Biotechnology and Microbiology, Institute of Biotechnology, Faculty of Science and Technology, University of Debrecen, Debrecen, Hungary
| | - Tünde Pusztahelyi
- Central Laboratory of Agricultural and Food Products, Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, Debrecen, Hungary
| | - Ádám Kecskeméti
- Department of Inorganic and Analytical Chemistry, Faculty of Science and Technology, University of Debrecen, Debrecen, Hungary
| | - Attila Gáspár
- Department of Inorganic and Analytical Chemistry, Faculty of Science and Technology, University of Debrecen, Debrecen, Hungary
| | | | - Tamás Emri
- Department of Molecular Biotechnology and Microbiology, Institute of Biotechnology, Faculty of Science and Technology, University of Debrecen, Debrecen, Hungary
| | - Attila L Ádám
- Plant Protection Institute, Centre for Agricultural Research, Budapest, Hungary
| | - Éva Leiter
- Department of Molecular Biotechnology and Microbiology, Institute of Biotechnology, Faculty of Science and Technology, University of Debrecen, Debrecen, Hungary
| | - László Hornok
- Faculty of Agricultural and Environmental Sciences, Szent István University, Gödöllő, Hungary
| | - István Pócsi
- Department of Molecular Biotechnology and Microbiology, Institute of Biotechnology, Faculty of Science and Technology, University of Debrecen, Debrecen, Hungary.
| |
Collapse
|
12
|
Fraile R, Sánchez-Mir L, Hidalgo E. A new adaptation strategy to glucose starvation: modulation of the gluconate shunt and pentose phosphate pathway by the transcriptional repressor Rsv1. FEBS J 2019; 287:874-877. [PMID: 31777167 DOI: 10.1111/febs.15131] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 11/08/2019] [Indexed: 11/27/2022]
Abstract
Survival upon glucose starvation requires a delicate balance between different metabolic pathways. A recent work by the Roe laboratory provides a mechanistic link between glucose deprivation and the regulation of the pentose phosphate pathway, with the transcriptional repressor Rsv1 playing a key role in the process. Rsv1 regulates the flow of glucose into its possible metabolic fates and promotes long-term survival under low glucose.
Collapse
Affiliation(s)
- Rodrigo Fraile
- Oxidative Stress and Cell Cycle Group, Universitat Pompeu Fabra, Barcelona, Spain
| | - Laura Sánchez-Mir
- Oxidative Stress and Cell Cycle Group, Universitat Pompeu Fabra, Barcelona, Spain
| | - Elena Hidalgo
- Oxidative Stress and Cell Cycle Group, Universitat Pompeu Fabra, Barcelona, Spain
| |
Collapse
|
13
|
Hibi T, Ohtsuka H, Shimasaki T, Inui S, Shibuya M, Tatsukawa H, Kanie K, Yamamoto Y, Aiba H. Tschimganine and its derivatives extend the chronological life span of yeast via activation of the Sty1 pathway. Genes Cells 2018; 23:620-637. [PMID: 29900664 DOI: 10.1111/gtc.12604] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2017] [Revised: 05/01/2018] [Accepted: 05/15/2018] [Indexed: 12/13/2022]
Abstract
Most antiaging factors or life span extenders are associated with calorie restriction (CR). Very few of these factors function independently of, or additively with, CR. In this study, we focused on tschimganine, a compound that was reported to extend chronological life span (CLS). Although tschimganine led to the extension of CLS, it also inhibited yeast cell growth. We acquired a Schizosaccharomyces pombe mutant with a tolerance for tschimganine due to the gene crm1. The resulting Crm1 protein appears to export the stress-activated protein kinase Sty1 from the nucleus to the cytosol even under stressful conditions. Furthermore, we synthesized two derivative compounds of tschimganine, α-hibitakanine and β-hibitakanine; these derivatives did not inhibit cell growth, as seen with tschimganine. α-hibitakanine extended the CLS, not only in S. pombe but also in Saccharomyces cerevisiae, indicating the possibility that life span regulation by tschimganine derivative may be conserved across various yeast species. We found that the longevity induced by tschimganine was dependent on the Sty1 pathway. Based on our results, we propose that tschimganine and its derivatives extend CLS by activating the Sty1 pathway in fission yeast, and CR extends CLS via two distinct pathways, one Sty1-dependent and the other Sty1-independent. These findings provide the potential for creating an additive life span extension effect when combined with CR, as well as a better understanding of the mechanism of CLS.
Collapse
Affiliation(s)
- Takahide Hibi
- Laboratory of Molecular Microbiology, Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical Sciences, Nagoya University, Chikusa-ku, Nagoya, Japan
| | - Hokuto Ohtsuka
- Laboratory of Molecular Microbiology, Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical Sciences, Nagoya University, Chikusa-ku, Nagoya, Japan
| | - Takafumi Shimasaki
- Laboratory of Molecular Microbiology, Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical Sciences, Nagoya University, Chikusa-ku, Nagoya, Japan
| | - Shougo Inui
- Laboratory of Molecular Design, Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical Sciences, Nagoya University, Chikusa-ku, Nagoya, Japan
| | - Masatoshi Shibuya
- Laboratory of Molecular Design, Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical Sciences, Nagoya University, Chikusa-ku, Nagoya, Japan
| | - Hideki Tatsukawa
- Laboratory of Cellular Biochemistry, Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical Sciences, Nagoya University, Chikusa-ku, Nagoya, Japan
| | - Kei Kanie
- Laboratory of Cell and Molecular Bioengineering, Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical Sciences, Nagoya University, Chikusa-ku, Nagoya, Japan
| | - Yoshihiko Yamamoto
- Laboratory of Molecular Design, Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical Sciences, Nagoya University, Chikusa-ku, Nagoya, Japan
| | - Hirofumi Aiba
- Laboratory of Molecular Microbiology, Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical Sciences, Nagoya University, Chikusa-ku, Nagoya, Japan
| |
Collapse
|
14
|
Ohtsuka H, Aiba H. Factors extending the chronological lifespan of yeast: Ecl1 family genes. FEMS Yeast Res 2018; 17:4085637. [PMID: 28934413 DOI: 10.1093/femsyr/fox066] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Accepted: 08/18/2017] [Indexed: 01/10/2023] Open
Abstract
Ecl1 family genes are conserved among yeast, in which their overexpression extends chronological lifespan. Ecl1 family genes were first identified in the fission yeast Schizosaccharomyces pombe; at the time, they were considered noncoding RNA owing to their short coding sequence of fewer than 300 base pairs. Schizosaccharomyces pombe carries three Ecl1 family genes, ecl1+, ecl2+ and ecl3+, whereas Saccharomyces cerevisiae has one, ECL1. Their overexpression extends chronological lifespan, increases oxidative stress resistance and induces sexual development in fission yeast. A recent study indicated that Ecl1 family genes play a significant role in responding to environmental zinc or sulfur depletion. In this review, we focus on Ecl1 family genes in fission yeast and describe the relationship between nutritional depletion and cellular output, as the latter depends on Ecl1 family genes. Furthermore, we present the roles and functions of Ecl1 family genes characterized to date.
Collapse
Affiliation(s)
- Hokuto Ohtsuka
- Laboratory of Molecular Microbiology, Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical Sciences, Nagoya University, Chikusa-ku, Nagoya 464-8601, Japan
| | - Hirofumi Aiba
- Laboratory of Molecular Microbiology, Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical Sciences, Nagoya University, Chikusa-ku, Nagoya 464-8601, Japan
| |
Collapse
|
15
|
Elp3 and Dph3 of Schizosaccharomyces pombe mediate cellular stress responses through tRNA LysUUU modifications. Sci Rep 2017; 7:7225. [PMID: 28775286 PMCID: PMC5543170 DOI: 10.1038/s41598-017-07647-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 06/30/2017] [Indexed: 01/31/2023] Open
Abstract
Efficient protein synthesis in eukaryotes requires diphthamide modification of translation elongation factor eEF2 and wobble uridine modifications of tRNAs. In higher eukaryotes, these processes are important for preventing neurological and developmental defects and cancer. In this study, we used Schizosaccharomyces pombe as a model to analyse mutants defective in eEF2 modification (dph1Δ), in tRNA modifications (elp3Δ), or both (dph3Δ) for sensitivity to cytotoxic agents and thermal stress. The dph3Δ and elp3Δ mutants were sensitive to a range of drugs and had growth defects at low temperature. dph3Δ was epistatic with dph1Δ for sensitivity to hydroxyurea and methyl methanesulfonate, and with elp3Δ for methyl methanesulfonate and growth at 16 °C. The dph1Δ and dph3Δ deletions rescued growth defects of elp3Δ in response to thiabendazole and at 37 °C. Elevated tRNALysUUU levels suppressed the elp3Δ phenotypes and some of the dph3Δ phenotypes, indicating that lack of tRNALysUUU modifications were responsible. Furthermore, we found positive genetic interactions of elp3Δ and dph3Δ with sty1Δ and atf1Δ, indicating that Elp3/Dph3-dependent tRNA modifications are important for efficient biosynthesis of key factors required for accurate responses to cytotoxic stress conditions.
Collapse
|
16
|
Transcriptome-Based Modeling Reveals that Oxidative Stress Induces Modulation of the AtfA-Dependent Signaling Networks in Aspergillus nidulans. Int J Genomics 2017; 2017:6923849. [PMID: 28770220 PMCID: PMC5523550 DOI: 10.1155/2017/6923849] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 05/17/2017] [Accepted: 06/13/2017] [Indexed: 01/01/2023] Open
Abstract
To better understand the molecular functions of the master stress-response regulator AtfA in Aspergillus nidulans, transcriptomic analyses of the atfA null mutant and the appropriate control strains exposed to menadione sodium bisulfite- (MSB-), t-butylhydroperoxide- and diamide-induced oxidative stresses were performed. Several elements of oxidative stress response were differentially expressed. Many of them, including the downregulation of the mitotic cell cycle, as the MSB stress-specific upregulation of FeS cluster assembly and the MSB stress-specific downregulation of nitrate reduction, tricarboxylic acid cycle, and ER to Golgi vesicle-mediated transport, showed AtfA dependence. To elucidate the potential global regulatory role of AtfA governing expression of a high number of genes with very versatile biological functions, we devised a model based on the comprehensive transcriptomic data. Our model suggests that an important function of AtfA is to modulate the transduction of stress signals. Although it may regulate directly only a limited number of genes, these include elements of the signaling network, for example, members of the two-component signal transduction systems. AtfA acts in a stress-specific manner, which may increase further the number and diversity of AtfA-dependent genes. Our model sheds light on the versatility of the physiological functions of AtfA and its orthologs in fungi.
Collapse
|
17
|
Salat-Canela C, Paulo E, Sánchez-Mir L, Carmona M, Ayté J, Oliva B, Hidalgo E. Deciphering the role of the signal- and Sty1 kinase-dependent phosphorylation of the stress-responsive transcription factor Atf1 on gene activation. J Biol Chem 2017; 292:13635-13644. [PMID: 28652406 DOI: 10.1074/jbc.m117.794339] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Revised: 06/23/2017] [Indexed: 01/01/2023] Open
Abstract
Adaptation to stress triggers the most dramatic shift in gene expression in fission yeast (Schizosaccharomyces pombe), and this response is driven by signaling via the MAPK Sty1. Upon activation, Sty1 accumulates in the nucleus and stimulates expression of hundreds of genes via the nuclear transcription factor Atf1, including expression of atf1 itself. However, the role of stress-induced, Sty1-mediated Atf1 phosphorylation in transcriptional activation is unclear. To this end, we expressed Atf1 phosphorylation mutants from a constitutive promoter to uncouple Atf1 activity from endogenous, stress-activated Atf1 expression. We found that cells expressing a nonphosphorylatable Atf1 variant are sensitive to oxidative stress because of impaired transcription of a subset of stress genes whose expression is also controlled by another transcription factor, Pap1. Furthermore, cells expressing a phospho-mimicking Atf1 mutant display enhanced stress resistance, and although expression of the Pap1-dependent genes still relied on stress induction, another subset of stress-responsive genes was constitutively expressed in these cells. We also observed that, in cells expressing the phospho-mimicking Atf1 mutant, the presence of Sty1 was completely dispensable, with all stress defects of Sty1-deficient cells being suppressed by expression of the Atf1 mutant. We further demonstrated that Sty1-mediated Atf1 phosphorylation does not stimulate binding of Atf1 to DNA but, rather, establishes a platform of interactions with the basal transcriptional machinery to facilitate transcription initiation. In summary, our results provide evidence that Atf1 phosphorylation by the MAPK Sty1 is required for oxidative stress responses in fission yeast cells by promoting transcription initiation.
Collapse
Affiliation(s)
| | - Esther Paulo
- From the Oxidative Stress and Cell Cycle Group and
| | | | | | - José Ayté
- From the Oxidative Stress and Cell Cycle Group and
| | - Baldo Oliva
- Structural Bioinformatics Laboratory (GRIB), Universitat Pompeu Fabra, C/ Dr. Aiguader 88, 08003 Barcelona, Spain
| | | |
Collapse
|
18
|
Ohtsuka H, Takinami M, Shimasaki T, Hibi T, Murakami H, Aiba H. Sulfur restriction extends fission yeast chronological lifespan through Ecl1 family genes by downregulation of ribosome. Mol Microbiol 2017; 105:84-97. [PMID: 28388826 DOI: 10.1111/mmi.13686] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Revised: 03/20/2017] [Accepted: 03/30/2017] [Indexed: 01/11/2023]
Abstract
Nutritional restrictions such as calorie restrictions are known to increase the lifespan of various organisms. Here, we found that a restriction of sulfur extended the chronological lifespan (CLS) of the fission yeast Schizosaccharomyces pombe. The restriction decreased cellular size, RNA content, and ribosomal proteins and increased sporulation rate. These responses depended on Ecl1 family genes, the overexpression of which results in the extension of CLS. We also showed that the Zip1 transcription factor results in the sulfur restriction-dependent expression of the ecl1+ gene. We demonstrated that a decrease in ribosomal activity results in the extension of CLS. Based on these observations, we propose that sulfur restriction extends CLS through Ecl1 family genes in a ribosomal activity-dependent manner.
Collapse
Affiliation(s)
- Hokuto Ohtsuka
- Laboratory of Molecular Microbiology, Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical Sciences, Nagoya University, Chikusa-ku, Nagoya, 464-8601, Japan
| | - Masahiro Takinami
- Laboratory of Molecular Microbiology, Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical Sciences, Nagoya University, Chikusa-ku, Nagoya, 464-8601, Japan
| | - Takafumi Shimasaki
- Laboratory of Molecular Microbiology, Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical Sciences, Nagoya University, Chikusa-ku, Nagoya, 464-8601, Japan
| | - Takahide Hibi
- Laboratory of Molecular Microbiology, Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical Sciences, Nagoya University, Chikusa-ku, Nagoya, 464-8601, Japan
| | - Hiroshi Murakami
- Department of Biological Science, Faculty of Science and Engineering, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo, 112-8551, Japan
| | - Hirofumi Aiba
- Laboratory of Molecular Microbiology, Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical Sciences, Nagoya University, Chikusa-ku, Nagoya, 464-8601, Japan
| |
Collapse
|
19
|
Abstract
Schizosaccharomyces pombe is a popular model eukaryotic organism to study diverse aspects of mammalian biology, including responses to cellular stress triggered by redox imbalances within its compartments. The review considers the current knowledge on the signaling pathways that govern the transcriptional response of fission yeast cells to elevated levels of hydrogen peroxide. Particular attention is paid to the mechanisms that yeast cells employ to promote cell survival in conditions of intermediate and acute oxidative stress. The role of the Sty1/Spc1/Phh1 mitogen-activated protein kinase in regulating gene expression at multiple levels is discussed in detail.
Collapse
Affiliation(s)
- Manos A Papadakis
- a Center for Biological Sequence Analysis, Department of Systems Biology, Technical University of Denmark , Lyngby , Denmark
| | - Christopher T Workman
- a Center for Biological Sequence Analysis, Department of Systems Biology, Technical University of Denmark , Lyngby , Denmark
| |
Collapse
|
20
|
Emri T, Szarvas V, Orosz E, Antal K, Park H, Han KH, Yu JH, Pócsi I. Core oxidative stress response in Aspergillus nidulans. BMC Genomics 2015; 16:478. [PMID: 26115917 PMCID: PMC4482186 DOI: 10.1186/s12864-015-1705-z] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Accepted: 06/15/2015] [Indexed: 01/23/2023] Open
Abstract
BACKGROUND The b-Zip transcription factor AtfA plays a key role in regulating stress responses in the filamentous fungus Aspergillus nidulans. To identify the core regulons of AtfA, we examined genome-wide expression changes caused by various stresses in the presence/absence of AtfA using A. nidulans microarrays. We also intended to address the intriguing question regarding the existence of core environmental stress response in this important model eukaryote. RESULTS Examination of the genome wide expression changes caused by five different oxidative stress conditions in wild type and the atfA null mutant has identified a significant number of stereotypically regulated genes (Core Oxidative Stress Response genes). The deletion of atfA increased the oxidative stress sensitivity of A. nidulans and affected mRNA accumulation of several genes under both unstressed and stressed conditions. The numbers of genes under the AtfA control appear to be specific to a stress-type. We also found that both oxidative and salt stresses induced expression of some secondary metabolite gene clusters and the deletion of atfA enhanced the stress responsiveness of additional clusters. Moreover, certain clusters were down-regulated by the stresses tested. CONCLUSION Our data suggest that the observed co-regulations were most likely consequences of the overlapping physiological effects of the stressors and not of the existence of a general environmental stress response. The function of AtfA in governing various stress responses is much smaller than anticipated and/or other regulators may play a redundant or overlapping role with AtfA. Both stress inducible and stress repressive regulations of secondary metabolism seem to be frequent features in A. nidulans.
Collapse
Affiliation(s)
- Tamás Emri
- Department of Biotechnology and Microbiology, Faculty of Science and Technology, University of Debrecen, P.O. Box 63, H-4032, Debrecen, Hungary.
| | - Vera Szarvas
- Department of Biotechnology and Microbiology, Faculty of Science and Technology, University of Debrecen, P.O. Box 63, H-4032, Debrecen, Hungary.
| | - Erzsébet Orosz
- Department of Biotechnology and Microbiology, Faculty of Science and Technology, University of Debrecen, P.O. Box 63, H-4032, Debrecen, Hungary.
| | - Károly Antal
- Department of Zoology, Faculty of Sciences, Eszterházy Károly College, Eszterházy út 1, H-3300, Eger, Hungary.
| | - HeeSoo Park
- Department of Bacteriology, University of Wisconsin, 1550 Linden Dr, Madison, WI, 53706, USA.
| | - Kap-Hoon Han
- Department of Pharmaceutical Engineering, Woosuk University, 565-701, Wanju, Republic of Korea.
| | - Jae-Hyuk Yu
- Department of Bacteriology, University of Wisconsin, 1550 Linden Dr, Madison, WI, 53706, USA.
| | - István Pócsi
- Department of Biotechnology and Microbiology, Faculty of Science and Technology, University of Debrecen, P.O. Box 63, H-4032, Debrecen, Hungary.
| |
Collapse
|
21
|
Hu L, Fang Y, Hayafuji T, Ma Y, Furuyashiki T. Azoles activate Atf1-mediated transcription through MAP kinase pathway for antifungal effects in fission yeast. Genes Cells 2015; 20:695-705. [PMID: 26108447 DOI: 10.1111/gtc.12263] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Accepted: 05/16/2015] [Indexed: 11/29/2022]
Abstract
Azole antifungals directly inhibit enzymes for ergosterol biosynthesis, and this direct action is thought to underlie antifungal actions of these drugs. Recent studies showed that azoles alter expression of genes for various cellular functions. However, transcription factors regulated by azoles and their roles in antifungal actions remain poorly characterized. Using luciferase assay, we found that miconazole increased luciferase activity under the promoter containing the cAMP response element (CRE) motif. This azole-induced activation of CRE reporter was abolished in Atf1-deficient cells, suggesting that azoles induce Atf1 activation. As Atf1 is activated by stress-activated MAP kinase Sty1 upon various stressors, we examined its involvement. Azoles increased phosphorylation of Sty1 for its activation, and Sty1 deletion impaired azole-induced CRE reporter activation. In contrast, deletion of Pyp1, a tyrosine phosphatase which negatively regulates Sty1, increased CRE reporter activation. In addition, cells deficient in Atf1 and stress-activated MAP kinase pathway showed resistance to azoles, whereas cells lacking Pyp1 increased azole susceptibility, suggesting a critical role for azole-induced activation of MAP kinase-Atf1 pathway in antifungal actions of azoles. Collectively, these results suggest that azoles activate stress-activated MAP kinase pathway, thereby facilitating Atf1-mediated transcription for antifungal effects.
Collapse
Affiliation(s)
- Lingling Hu
- Division of Pharmacology, Kobe University Graduate School of Medicine, Kobe, 650-0017, Japan
| | - Yue Fang
- Department of Biopharmaceutics, School of Pharmacy, China Medical University, Shenyang, 110122, China
| | - Tsutomu Hayafuji
- Division of Pharmacology, Kobe University Graduate School of Medicine, Kobe, 650-0017, Japan
| | - Yan Ma
- Division of Pharmacology, Kobe University Graduate School of Medicine, Kobe, 650-0017, Japan
| | - Tomoyuki Furuyashiki
- Division of Pharmacology, Kobe University Graduate School of Medicine, Kobe, 650-0017, Japan
| |
Collapse
|
22
|
Materne P, Anandhakumar J, Migeot V, Soriano I, Yague-Sanz C, Hidalgo E, Mignion C, Quintales L, Antequera F, Hermand D. Promoter nucleosome dynamics regulated by signalling through the CTD code. eLife 2015; 4:e09008. [PMID: 26098123 PMCID: PMC4502402 DOI: 10.7554/elife.09008] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Accepted: 06/19/2015] [Indexed: 12/26/2022] Open
Abstract
The phosphorylation of the RNA polymerase II C-terminal domain (CTD) plays a key role in delineating transcribed regions within chromatin by recruiting histone methylases and deacetylases. Using genome-wide nucleosome mapping, we show that CTD S2 phosphorylation controls nucleosome dynamics in the promoter of a subset of 324 genes, including the regulators of cell differentiation ste11 and metabolic adaptation inv1. Mechanistic studies on these genes indicate that during gene activation a local increase of phospho-S2 CTD nearby the promoter impairs the phospho-S5 CTD-dependent recruitment of Set1 and the subsequent recruitment of specific HDACs, which leads to nucleosome depletion and efficient transcription. The early increase of phospho-S2 results from the phosphorylation of the CTD S2 kinase Lsk1 by MAP kinase in response to cellular signalling. The artificial tethering of the Lsk1 kinase at the ste11 promoter is sufficient to activate transcription. Therefore, signalling through the CTD code regulates promoter nucleosomes dynamics. DOI:http://dx.doi.org/10.7554/eLife.09008.001 The process of activating genes—known as gene expression—involves a number of steps. During the first step, the gene's DNA is copied or ‘transcribed’ to produce a molecule of messenger RNA. However, most of the DNA in a cell is wrapped around proteins called histones to make structures known as nucleosomes, and the DNA has to be unpacked to allow the enzymes that make messenger RNA to access it. Cells regulate how the DNA is packed by attaching chemical groups to the histone proteins. Adding acetyl groups to histones usually causes the nucleosomes to unwrap and creates loosely packed DNA that helps with gene expression. On the other hand, the addition of methyl groups has the opposite effect. RNA polymerase II is the enzyme that carries out transcription of messenger RNAs in all eukaryotic cells—that is, the cells of organisms like plants, animals, and fungi. Like all enzymes, RNA polymerase II is made of smaller building blocks called amino acids. One end of the RNA polymerase II enzyme, called the C-terminal domain (or CTD), contains a unique sequence of amino acids that serves as a scaffold to recruit other proteins involved in transcription and histone modifications. Different amino acids in this region of RNA polymerase II can be modified by the addition of phosphate groups. The pattern of these modifications is often thought of as a code and can influence which other proteins get recruited. It remains poorly understood how RNA polymerase II regulates nucleosomes to allow transcription to occur. Materne, Anandhakumar et al. have now addressed this issue by engineering mutant yeast cells in which phosphate groups cannot be added to specific amino acids in the RNA polymerase II enzyme. Most genes were expressed as normal in these yeast cells, but a few hundred genes were not expressed. Materne, Anandhakumar et al. then used a technique called MNase-Seq to map the position of nucleosomes across the genome and found that there were more nucleosomes near to start of these down-regulated genes. Further experiments showed that the addition of phosphate groups onto the RNA polymerase II is required to deplete the nucleosomes at the start of a gene called ste11, which allows transcription to occur. Materne, Anandhakumar et al. also found that artificially tethering the enzyme that adds phosphate groups to the C-terminal domain to the start of the ste11 gene was sufficient to oust nucleosomes and activate transcription by RNA polymerase II. Future work will address if this newly discovered mechanism is implicated in the activation of specific patterns of gene expression during the development of more complex organisms. DOI:http://dx.doi.org/10.7554/eLife.09008.002
Collapse
Affiliation(s)
- Philippe Materne
- URPHYM-GEMO, Namur Research College, University of Namur, Namur, Belgium
| | | | - Valerie Migeot
- URPHYM-GEMO, Namur Research College, University of Namur, Namur, Belgium
| | - Ignacio Soriano
- Instituto de Biología Funcional y Genómica, Consejo Superior de Investigaciones Científicas, Universidad de Salamanca, Salamanca, Spain
| | - Carlo Yague-Sanz
- URPHYM-GEMO, Namur Research College, University of Namur, Namur, Belgium
| | - Elena Hidalgo
- Departament de Ciencies Experimentals i de la Salut, Universitat Pompeu Fabra, Barcelona, Spain
| | - Carole Mignion
- URPHYM-GEMO, Namur Research College, University of Namur, Namur, Belgium
| | - Luis Quintales
- Instituto de Biología Funcional y Genómica, Consejo Superior de Investigaciones Científicas, Universidad de Salamanca, Salamanca, Spain
| | - Francisco Antequera
- Instituto de Biología Funcional y Genómica, Consejo Superior de Investigaciones Científicas, Universidad de Salamanca, Salamanca, Spain
| | - Damien Hermand
- URPHYM-GEMO, Namur Research College, University of Namur, Namur, Belgium
| |
Collapse
|
23
|
Huang X, Leggas M, Dickson RC. Drug synergy drives conserved pathways to increase fission yeast lifespan. PLoS One 2015; 10:e0121877. [PMID: 25786258 PMCID: PMC4364780 DOI: 10.1371/journal.pone.0121877] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Accepted: 02/11/2015] [Indexed: 01/02/2023] Open
Abstract
Aging occurs over time with gradual and progressive loss of physiological function. Strategies to reduce the rate of functional loss and mitigate the subsequent onset of deadly age-related diseases are being sought. We demonstrated previously that a combination of rapamycin and myriocin reduces age-related functional loss in the Baker’s yeast Saccharomyces cerevisiae and produces a synergistic increase in lifespan. Here we show that the same drug combination also produces a synergistic increase in the lifespan of the fission yeast Schizosaccharomyces pombe and does so by controlling signal transduction pathways conserved across a wide evolutionary time span ranging from yeasts to mammals. Pathways include the target of rapamycin complex 1 (TORC1) protein kinase, the protein kinase A (PKA) and a stress response pathway, which in fission yeasts contains the Sty1 protein kinase, an ortholog of the mammalian p38 MAP kinase, a type of Stress Activated Protein Kinase (SAPK). These results along with previous studies in S. cerevisiae support the premise that the combination of rapamycin and myriocin enhances lifespan by regulating signaling pathways that couple nutrient and environmental conditions to cellular processes that fine-tune growth and stress protection in ways that foster long term survival. The molecular mechanisms for fine-tuning are probably species-specific, but since they are driven by conserved nutrient and stress sensing pathways, the drug combination may enhance survival in other organisms.
Collapse
Affiliation(s)
- Xinhe Huang
- Department of Molecular and Cellular Biochemistry and the Lucille Markey Cancer Center, University of Kentucky College of Medicine, Lexington, Kentucky, United States of America
- * E-mail: (RCD); (XH)
| | - Markos Leggas
- Department of Pharmaceutical Sciences and the Lucille Markey Cancer Center, College of Pharmacy, University of Kentucky, Lexington, Kentucky, United States of America
| | - Robert C. Dickson
- Department of Molecular and Cellular Biochemistry and the Lucille Markey Cancer Center, University of Kentucky College of Medicine, Lexington, Kentucky, United States of America
- * E-mail: (RCD); (XH)
| |
Collapse
|
24
|
Abstract
Sexual reproduction is a fundamental aspect of eukaryotic cells, and a conserved feature of gametogenesis is its dependency on a master regulator. The ste11 gene was isolated more than 20 years ago by the Yamamoto laboratory as a suppressor of the uncontrolled meiosis driven by a pat1 mutant. Numerous studies from this laboratory and others have established the role of the Ste11 transcription factor as the master regulator of the switch between proliferation and differentiation in fission yeast. The transcriptional and post-transcriptional controls of ste11 expression are intricate, but most are not redundant. Whereas the transcriptional controls ensure that the gene is transcribed at a high level only when nutrients are rare, the post-transcriptional controls restrict the ability of Ste11 to function as a transcription factor to the G1-phase of the cell cycle from where the differentiation programme is initiated. Several feedback loops ensure that the cell fate decision is irreversible. The complete panel of molecular mechanisms operating to warrant the timely expression of the ste11 gene and its encoded protein basically mirrors the advances in the understanding of the numerous ways by which gene expression can be modulated.
Collapse
|
25
|
García P, Paulo E, Gao J, Wahls WP, Ayté J, Lowy E, Hidalgo E. Binding of the transcription factor Atf1 to promoters serves as a barrier to phase nucleosome arrays and avoid cryptic transcription. Nucleic Acids Res 2014; 42:10351-9. [PMID: 25122751 PMCID: PMC4176342 DOI: 10.1093/nar/gku704] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Schizosaccharomyces pombe displays a large transcriptional response common to several stress conditions, regulated primarily by the transcription factor Atf1. Atf1-dependent promoters contain especially broad nucleosome depleted regions (NDRs) prior to stress imposition. We show here that basal binding of Atf1 to these promoters competes with histones to create wider NDRs at stress genes. Moreover, deletion of atf1 results in nucleosome disorganization specifically at stress coding regions and derepresses antisense transcription. Our data indicate that the transcription factor binding to promoters acts as an effective barrier to fix the +1 nucleosome and phase downstream nucleosome arrays to prevent cryptic transcription.
Collapse
Affiliation(s)
- Patricia García
- Oxidative Stress and Cell Cycle Group, Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, C/ Dr Aiguader 88, 08003 Barcelona, Spain
| | - Esther Paulo
- Oxidative Stress and Cell Cycle Group, Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, C/ Dr Aiguader 88, 08003 Barcelona, Spain
| | - Jun Gao
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, 4301 W Markham St., Little Rock, AR 72205, USA
| | - Wayne P Wahls
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, 4301 W Markham St., Little Rock, AR 72205, USA
| | - José Ayté
- Oxidative Stress and Cell Cycle Group, Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, C/ Dr Aiguader 88, 08003 Barcelona, Spain
| | - Ernesto Lowy
- Core Facilities, Centre for Genomic Regulation, Universitat Pompeu Fabra, C/ Dr Aiguader 88, 0800 Barcelona, Spain
| | - Elena Hidalgo
- Oxidative Stress and Cell Cycle Group, Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, C/ Dr Aiguader 88, 08003 Barcelona, Spain
| |
Collapse
|
26
|
Marguerat S, Lawler K, Brazma A, Bähler J. Contributions of transcription and mRNA decay to gene expression dynamics of fission yeast in response to oxidative stress. RNA Biol 2014; 11:702-14. [PMID: 25007214 PMCID: PMC4156502 DOI: 10.4161/rna.29196] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The cooperation of transcriptional and post-transcriptional levels of control to shape gene regulation is only partially understood. Here we show that a combination of two simple and non-invasive genomic techniques, coupled with kinetic mathematical modeling, afford insight into the intricate dynamics of RNA regulation in response to oxidative stress in the fission yeast Schizosaccharomyces pombe. This study reveals a dominant role of transcriptional regulation in response to stress, but also points to the first minutes after stress induction as a critical time when the coordinated control of mRNA turnover can support the control of transcription for rapid gene regulation. In addition, we uncover specialized gene expression strategies associated with distinct functional gene groups, such as simultaneous transcriptional repression and mRNA destabilization for genes encoding ribosomal proteins, delayed mRNA destabilization with varying contribution of transcription for ribosome biogenesis genes, dominant roles of mRNA stabilization for genes functioning in protein degradation, and adjustment of both transcription and mRNA turnover during the adaptation to stress. We also show that genes regulated independently of the bZIP transcription factor Atf1p are predominantly controlled by mRNA turnover, and identify putative cis-regulatory sequences that are associated with different gene expression strategies during the stress response. This study highlights the intricate and multi-faceted interplay between transcription and RNA turnover during the dynamic regulatory response to stress.
Collapse
Affiliation(s)
- Samuel Marguerat
- Department of Genetics, Evolution & Environment and UCL Cancer Institute; University College London; London, UK
| | - Katherine Lawler
- European Molecular Biology Laboratory; EMBL-EBI; Wellcome Trust Genome Campus; Hinxton, UK
| | - Alvis Brazma
- European Molecular Biology Laboratory; EMBL-EBI; Wellcome Trust Genome Campus; Hinxton, UK
| | - Jürg Bähler
- Department of Genetics, Evolution & Environment and UCL Cancer Institute; University College London; London, UK
| |
Collapse
|
27
|
Shimasaki T, Ohtsuka H, Naito C, Murakami H, Aiba H. Ecl1 is activated by the transcription factor Atf1 in response to H2O2 stress in Schizosaccharomyces pombe. Mol Genet Genomics 2014; 289:685-93. [PMID: 24696293 DOI: 10.1007/s00438-014-0845-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2013] [Accepted: 03/21/2014] [Indexed: 11/29/2022]
Abstract
The Ecl1 family genes extend the lifespan of fission yeast when overexpressed. They also cause resistance against H(2)O(2) stress. In this study, we found that the bZip transcription factor Atf1 is a direct activator of the induction of extender of chronological lifespan (ecl1 (+)) by H(2)O(2) stress. Based on ChIP analysis, we identified that Atf1 binds to the upstream DNA region of ecl1(+). Previously, we reported that overexpression of ecl1(+) increased the expression of the catalase-encoding ctt1(+). This ecl1(+)-dependent increase of ctt1(+) expression occurred in ∆atf1 mutant. On the other hand, the activation of ctt1 (+) caused by the ∆pyp1 mutation, which enhances Sty1-Atf1 activity, could occur in ∆ecl1 mutant. Based on these results, we propose that Atf1 can regulate ctt1(+) in both an Ecl1-dependent and an Ecl1-independent manner.
Collapse
Affiliation(s)
- Takafumi Shimasaki
- Laboratory of Molecular Microbiology, Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical Sciences, Nagoya University, Chikusa-ku, Nagoya, 464-8601, Japan
| | | | | | | | | |
Collapse
|
28
|
Fernández-Vázquez J, Vargas-Pérez I, Sansó M, Buhne K, Carmona M, Paulo E, Hermand D, Rodríguez-Gabriel M, Ayté J, Leidel S, Hidalgo E. Modification of tRNA(Lys) UUU by elongator is essential for efficient translation of stress mRNAs. PLoS Genet 2013; 9:e1003647. [PMID: 23874237 PMCID: PMC3715433 DOI: 10.1371/journal.pgen.1003647] [Citation(s) in RCA: 101] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2013] [Accepted: 06/04/2013] [Indexed: 12/25/2022] Open
Abstract
The Elongator complex, including the histone acetyl transferase Sin3/Elp3, was isolated as an RNA polymerase II-interacting complex, and cells deficient in Elongator subunits display transcriptional defects. However, it has also been shown that Elongator mediates the modification of some tRNAs, modulating translation efficiency. We show here that the fission yeast Sin3/Elp3 is important for oxidative stress survival. The stress transcriptional program, governed by the Sty1-Atf1-Pcr1 pathway, is affected in mutant cells, but not severely. On the contrary, cells lacking Sin3/Elp3 cannot modify the uridine wobble nucleoside of certain tRNAs, and other tRNA modifying activities such as Ctu1-Ctu2 are also essential for normal tolerance to H2O2. In particular, a plasmid over-expressing the tRNALysUUU complements the stress-related phenotypes of Sin3/Elp3 mutant cells. We have determined that the main H2O2-dependent genes, including those coding for the transcription factors Atf1 and Pcr1, are highly expressed mRNAs containing a biased number of lysine-coding codons AAA versus AAG. Thus, their mRNAs are poorly translated after stress in cells lacking Sin3/Elp3 or Ctu2, whereas a mutated atf1 transcript with AAA-to-AAG lysine codons is efficiently translated in all strain backgrounds. Our study demonstrates that the lack of a functional Elongator complex results in stress phenotypes due to its contribution to tRNA modification and subsequent translation inefficiency of certain stress-induced, highly expressed mRNAs. These results suggest that the transcriptional defects of these strain backgrounds may be a secondary consequence of the deficient expression of a transcription factor, Atf1-Pcr1, and other components of the transcriptional machinery. The success of a biological event such as cellular adaptation to environmental changes requires the complex process of protein expression to be carried out with high efficiency and fidelity. Thus, not only transcription but also mRNA homeostasis and translation have to be performed with maximum efficiency, or survival would be hampered. Our study demonstrates that the role of Elongator, a putative Pol II-associated complex, in survival to stress is to optimize translation efficiency by modifying some particular tRNAs. We show here that Sin3/Elp3, an Elongator component, participates in the modification of the anticodon of the low copy number tRNALysUUU, which probably favours codon recognition. This tRNA recognizes one of the two codons for lysine, which is down-represented in highly expressed constitutive genes. The stress mRNAs, highly-expressed upon stress conditions, have not adapted their lysine codon usage from AAA-to-AAG, and proper tRNALysUUU modification by Elongator is an alternative strategy to accomplish efficient translation of these AAA-containing, abundant stress mRNAs.
Collapse
Affiliation(s)
- Jorge Fernández-Vázquez
- Oxidative Stress and Cell Cycle Group, Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, Barcelona, Spain
| | - Itzel Vargas-Pérez
- Oxidative Stress and Cell Cycle Group, Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, Barcelona, Spain
| | - Miriam Sansó
- Oxidative Stress and Cell Cycle Group, Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, Barcelona, Spain
| | - Karin Buhne
- Max Planck Research Group for RNA Biology, Max Planck Institute for Molecular Biomedicine, Münster, Germany
| | - Mercè Carmona
- Oxidative Stress and Cell Cycle Group, Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, Barcelona, Spain
| | - Esther Paulo
- Oxidative Stress and Cell Cycle Group, Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, Barcelona, Spain
| | - Damien Hermand
- Namur Research College (NARC), The University of Namur, Namur, Belgium
| | - Miguel Rodríguez-Gabriel
- Centro de Biología Molecular “Severo Ochoa”, Universidad Autónoma de Madrid (UAM), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - José Ayté
- Oxidative Stress and Cell Cycle Group, Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, Barcelona, Spain
| | - Sebastian Leidel
- Max Planck Research Group for RNA Biology, Max Planck Institute for Molecular Biomedicine, Münster, Germany
| | - Elena Hidalgo
- Oxidative Stress and Cell Cycle Group, Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, Barcelona, Spain
- * E-mail:
| |
Collapse
|
29
|
A stress-activated, p38 mitogen-activated protein kinase-ATF/CREB pathway regulates posttranscriptional, sequence-dependent decay of target RNAs. Mol Cell Biol 2013; 33:3026-35. [PMID: 23732911 DOI: 10.1128/mcb.00349-13] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Broadly conserved, mitogen-activated/stress-activated protein kinases (MAPK/SAPK) of the p38 family regulate multiple cellular processes. They transduce signals via dimeric, basic leucine zipper (bZIP) transcription factors of the ATF/CREB family (such as Atf2, Fos, and Jun) to regulate the transcription of target genes. We report additional mechanisms for gene regulation by such pathways exerted through RNA stability controls. The Spc1 (Sty1/Phh1) kinase-regulated Atf1-Pcr1 (Mts1-Mts2) heterodimer of the fission yeast Schizosaccharomyces pombe controls the stress-induced, posttranscriptional stability and decay of sets of target RNAs. Whole transcriptome RNA sequencing data revealed that decay is associated nonrandomly with transcripts that contain an M26 sequence motif. Moreover, the ablation of an M26 sequence motif in a target mRNA is sufficient to block its stress-induced loss. Conversely, engineered M26 motifs can render a stable mRNA into one that is targeted for decay. This stress-activated RNA decay (SARD) provides a mechanism for reducing the expression of target genes without shutting off transcription itself. Thus, a single p38-ATF/CREB signal transduction pathway can coordinately induce (promote transcription and RNA stability) and repress (promote RNA decay) transcript levels for distinct sets of genes, as is required for developmental decisions in response to stress and other stimuli.
Collapse
|
30
|
Bellini A, Girard PM, Lambert S, Tessier L, Sage E, Francesconi S. Stress activated protein kinase pathway modulates homologous recombination in fission yeast. PLoS One 2012; 7:e47987. [PMID: 23118915 PMCID: PMC3485339 DOI: 10.1371/journal.pone.0047987] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2012] [Accepted: 09/19/2012] [Indexed: 12/24/2022] Open
Abstract
Rad52 is a key player in homologous recombination (HR), a DNA repair pathway that is dedicated to double strand breaks repair and recovery of perturbed replication forks. Here we show that fission yeast Rad52 homologue is phosphorylated when S phase cells are exposed to ROS inducers such as ultraviolet A radiation or hydrogen peroxide, but not to ultraviolet C or camptothecin. Phosphorylation does not depend on kinases Chk1, Rad3, Tel1 or Cdc2, but depends on a functional stress activated protein kinase (SAPK) pathway and can be partially prevented by anti-oxidant treatment. Indeed, cells lacking Sty1, the major fission yeast MAP kinase of the SAPK pathway, do not display Rad52 phosphorylation and have UVA induced Rad52 foci that persist longer if compared to wild type cells. In addition, spontaneous intrachromosomal HR is diminished in cells lacking Sty1 and, more precisely, gene conversion is affected. Moreover, HR induced by site-specific arrest of replication forks is twice less efficient in cells that do not express Sty1. Importantly, impairing HR by deletion of the gene encoding the recombinase Rhp51 leads to Sty1 dependent Rad52 phosphorylation. Thus, SAPK pathway impinges on early step of HR through phosphorylation of Rad52 in cells challenged by oxidative stress or lacking Rhp51 and is required to promote spontaneous gene conversion and recovery from blocked replication forks.
Collapse
|
31
|
Otsubo Y, Yamamoto M. Signaling pathways for fission yeast sexual differentiation at a glance. J Cell Sci 2012; 125:2789-93. [DOI: 10.1242/jcs.094771] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- Yoko Otsubo
- Kazusa DNA Research Institute, Kazusa-kamatari, Kisarazu, Chiba 292-0818, Japan
| | - Masayuki Yamamoto
- Kazusa DNA Research Institute, Kazusa-kamatari, Kisarazu, Chiba 292-0818, Japan
- Department of Biophysics and Biochemistry, Graduate School of Science, University of Tokyo, Hongo, Tokyo 113-0033, Japan
| |
Collapse
|
32
|
Heller J, Ruhnke N, Espino JJ, Massaroli M, Collado IG, Tudzynski P. The mitogen-activated protein kinase BcSak1 of Botrytis cinerea is required for pathogenic development and has broad regulatory functions beyond stress response. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2012; 25:802-16. [PMID: 22352714 DOI: 10.1094/mpmi-11-11-0299] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
The mitogen-activated protein kinase (MAPK) BcSak1 of Botrytis cinerea is activated upon exposure to H(2)O(2) and, hence, might be involved in coping with oxidative stress during infection. However, beside osmotic and oxidative stress sensitivity, Δbcsak1 mutants have a pleiotropic phenotype, as they do not produce conidia and are unable to penetrate unwounded host tissue. In this study, the role of BcSak1 was investigated in the stress response and during infection of French beans by Botrytis cinerea. Using a macroarray approach, it was shown that BcSak1 is only marginally involved in the specific oxidative stress response. In fact, the induction of several genes after oxidative stress treatment is BcSak1-dependent, but most of these genes are also induced under conditions of osmotic stress. The majority of genes regulated by BcSak1 are not involved in the stress response at all. Using a translational fusion of BcSak1 to green fluorescent protein, it was shown clearly that the localization of this MAPK depends on the type of stress being applied; it associates rapidly to the nucleus only under osmotic stress. Therefore, a model is proposed in which BcSak1 acts in the cytosol by activation of one or more transcription factors under oxidative stress and, at the same time, it reacts to osmotic stress by migrating to the nucleus. Interestingly, the MAPK is also involved in the regulation of secondary metabolism, as the major phytotoxins secreted by this fungus are reduced in the Δbcsak1 deletion mutant. Experiments done in planta underlined the essential role of BcSak1 in the early stages of infection, when it translocates to the nucleus and then changes to cytosolic distribution during hyphal growth within the tissue.
Collapse
Affiliation(s)
- Jens Heller
- Institut fuer Biologie und Biotechnologie def Pflanzen, Westf. Wilhelms-Universitaet, Muenster, Germany
| | | | | | | | | | | |
Collapse
|