1
|
Moreira RS, Calomeno NA, das Neves GB, do Nascimento LFN, Filho VB, Wagner G, Miletti LC. Trypanosoma evansi secretome carries potential biomarkers for Surra diagnosis. J Proteomics 2023; 272:104789. [PMID: 36464092 DOI: 10.1016/j.jprot.2022.104789] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 11/17/2022] [Accepted: 11/22/2022] [Indexed: 12/03/2022]
Abstract
Trypanosoma evansi is a parasite that is phylogenetically close to Trypanosoma brucei and is the causative agent of a disease known as surra. Surra is responsible for a high mortality rate in livestock and large economic losses in the Americas, Africa, and Asia. This work aimed to analyze in vitro secreted proteins from T. evansi and identify potential treatment and diagnostic biomarkers for surra diagnosis. Two groups were used. In one group the parasites were purified using a DEAE-Cellulose column and maintained in a secretion medium while in the other group the parasites were not purified. Each group was further divided to be maintained at either 37 °C or 27 °C. We identified 246 proteins through mass spectrometry and found that the temperature appears to modulate protein secretion. We found minimal variations in the protein pools from pure and non-purified sets. We observed an emphasis on proteins associated to vesicles, glycolysis, and cellular homeostasis through the enrichment of GO. Also, we found that most secretome proteins share homologous proteins with T. b. brucei, T. b. gambiense, T. vivax, T. equiperdum, and T. b. rhodesiense secretome but unique T. evansi epitopes with potential biomarkers for surra diagnosis were detected. SIGNIFICANCE: Trypanosoma evansi is a parasite of African origin that is phylogenetically close to Trypanosoma brucei. As with other trypanosomatids and blood parasites, its infection causes non-pathognomonic symptoms, which makes its diagnosis difficult. One great problem is the fact that no diagnostic test differentiates between Trypanosoma equiperdum and T. evansi, which is a problem in South America and Asia, and Africa. Thus, it is urgent to study the biochemistry of the parasite to discover proteins that can be used for differential diagnosis or be possible therapeutic targets. In addition, the study of the secretome can point out proteins that are used by the parasite in its interactions with the host, helping to understand the progression of the disease.
Collapse
Affiliation(s)
- Renato Simões Moreira
- Laboratório de Hemoparasitas e Vetores, Centro de Ciências Agroveterinárias (CAV), Universidade do Estado de Santa Catarina (UDESC), Av. Luís de Camões, 2090, Conta Dinheiro, Lages, SC 88520-000, Brazil; Instituto Federal de Santa Catarina (IFSC), Campus Gaspar, R. Adriano Kormann, 510 - Bela Vista, Gaspar, SC 89111-009, Brazil
| | - Nathália Anderson Calomeno
- Laboratório de Hemoparasitas e Vetores, Centro de Ciências Agroveterinárias (CAV), Universidade do Estado de Santa Catarina (UDESC), Av. Luís de Camões, 2090, Conta Dinheiro, Lages, SC 88520-000, Brazil
| | - Gabriella Bassi das Neves
- Laboratório de Hemoparasitas e Vetores, Centro de Ciências Agroveterinárias (CAV), Universidade do Estado de Santa Catarina (UDESC), Av. Luís de Camões, 2090, Conta Dinheiro, Lages, SC 88520-000, Brazil
| | - Luiz Flávio Nepomuceno do Nascimento
- Laboratório de Hemoparasitas e Vetores, Centro de Ciências Agroveterinárias (CAV), Universidade do Estado de Santa Catarina (UDESC), Av. Luís de Camões, 2090, Conta Dinheiro, Lages, SC 88520-000, Brazil
| | - Vilmar Benetti Filho
- Laboratório de Bioinformática, Universidade Federal de Santa Catarina, Campus João David Ferreira Lima, Setor F, Bloco A, Sala 318, Caixa postal 476, Trindade, Florianópolis, SC 88040-970, Brazil
| | - Glauber Wagner
- Laboratório de Bioinformática, Universidade Federal de Santa Catarina, Campus João David Ferreira Lima, Setor F, Bloco A, Sala 318, Caixa postal 476, Trindade, Florianópolis, SC 88040-970, Brazil
| | - Luiz Claudio Miletti
- Laboratório de Hemoparasitas e Vetores, Centro de Ciências Agroveterinárias (CAV), Universidade do Estado de Santa Catarina (UDESC), Av. Luís de Camões, 2090, Conta Dinheiro, Lages, SC 88520-000, Brazil.
| |
Collapse
|
2
|
Genome-scale RNA interference profiling of Trypanosoma brucei cell cycle progression defects. Nat Commun 2022; 13:5326. [PMID: 36088375 PMCID: PMC9464253 DOI: 10.1038/s41467-022-33109-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 08/31/2022] [Indexed: 11/21/2022] Open
Abstract
Trypanosomatids, which include major pathogens of humans and livestock, are flagellated protozoa for which cell cycle controls and the underlying mechanisms are not completely understood. Here, we describe a genome-wide RNA-interference library screen for cell cycle defects in Trypanosoma brucei. We induced massive parallel knockdown, sorted the perturbed population using high-throughput flow cytometry, deep-sequenced RNAi-targets from each stage and digitally reconstructed cell cycle profiles at a genomic scale; also enabling data visualisation using an online tool ( https://tryp-cycle.pages.dev/ ). Analysis of several hundred genes that impact cell cycle progression reveals >100 flagellar component knockdowns linked to genome endoreduplication, evidence for metabolic control of the G1-S transition, surface antigen regulatory mRNA-binding protein knockdowns linked to G2M accumulation, and a putative nucleoredoxin required for both mitochondrial genome segregation and for mitosis. The outputs provide comprehensive functional genomic evidence for the known and novel machineries, pathways and regulators that coordinate trypanosome cell cycle progression.
Collapse
|
3
|
Zhou Q, Hu H, Li Z. KLIF-associated cytoskeletal proteins in Trypanosoma brucei regulate cytokinesis by promoting cleavage furrow positioning and ingression. J Biol Chem 2022; 298:101943. [PMID: 35447115 PMCID: PMC9117871 DOI: 10.1016/j.jbc.2022.101943] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 04/08/2022] [Accepted: 04/09/2022] [Indexed: 10/27/2022] Open
Abstract
Cytokinesis in the early divergent protozoan Trypanosoma brucei occurs from the anterior cell tip of the new-flagellum daughter toward the nascent posterior end of the old-flagellum daughter of a dividing biflagellated cell. The cleavage furrow ingresses unidirectionally along the preformed cell division fold and is regulated by an orphan kinesin named kinesin localized to the ingressing furrow (KLIF) that localizes to the leading edge of the ingressing furrow. Little is known about how furrow ingression is controlled by KLIF and whether KLIF interacts with and cooperates with other cytokinesis regulatory proteins to promote furrow ingression. Here, we investigated the roles of KLIF in cleavage furrow ingression and identified a cohort of KLIF-associated cytoskeletal proteins as essential cytokinesis regulators. By genetic complementation, we demonstrated the requirement of the kinesin motor activity, but not the putative tropomyosin domain, of KLIF in promoting furrow ingression. We further showed that depletion of KLIF impaired the resolution of the nascent posterior of the old-flagellar daughter cell, thereby stalking cleavage furrow ingression at late stages of cytokinesis. Through proximity biotinylation, we identified a subset of cytoskeleton-associated proteins (CAPs) as KLIF-proximal proteins, and functional characterization of these cytoskeletal proteins revealed the essential roles of CAP46 and CAP52 in positioning the cleavage furrow and the crucial roles of CAP42 and CAP50 in promoting cleavage furrow ingression. Together, these results identified multiple cytoskeletal proteins as cytokinesis regulators and uncovered their essential and distinct roles in cytokinesis.
Collapse
Affiliation(s)
| | | | - Ziyin Li
- Department of Microbiology and Molecular Genetics, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas, USA.
| |
Collapse
|
4
|
Novel Cytoskeleton-Associated Proteins in Trypanosoma brucei Are Essential for Cell Morphogenesis and Cytokinesis. Microorganisms 2021; 9:microorganisms9112234. [PMID: 34835360 PMCID: PMC8625193 DOI: 10.3390/microorganisms9112234] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 10/19/2021] [Accepted: 10/22/2021] [Indexed: 11/24/2022] Open
Abstract
Trypanosome brucei, the causative agent of African sleeping sickness, harbours a highly ordered, subpellicular microtubule cytoskeleton that defines many aspects of morphology, motility and virulence. This array of microtubules is associated with a large number of proteins involved in its regulation. Employing proximity-dependent biotinylation assay (BioID) using the well characterised cytoskeleton-associated protein CAP5.5 as a probe, we identified CAP50 (Tb927.11.2610). This protein colocalises with the subpellicular cytoskeleton microtubules but not with the flagellum. Depletion by RNAi results in defects in cytokinesis, morphology and partial disorganisation of microtubule arrays. Published proteomics data indicate a possible association of CAP50 with two other, yet uncharacterised, cytoskeletal proteins, CAP52 (Tb927.6.5070) and CAP42 (Tb927.4.1300), which were therefore included in our analysis. We show that their depletion causes phenotypes similar to those described for CAP50 and that they are essential for cellular integrity.
Collapse
|
5
|
Dean S. Basic Biology of Trypanosoma brucei with Reference to the Development of Chemotherapies. Curr Pharm Des 2021; 27:1650-1670. [PMID: 33463458 DOI: 10.2174/1381612827666210119105008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 12/01/2020] [Accepted: 12/08/2020] [Indexed: 11/22/2022]
Abstract
Trypanosoma brucei are protozoan parasites that cause the lethal human disease African sleeping sickness and the economically devastating disease of cattle, Nagana. African sleeping sickness, also known as Human African Trypanosomiasis (HAT), threatens 65 million people and animal trypanosomiasis makes large areas of farmland unusable. There is no vaccine and licensed therapies against the most severe, late-stage disease are toxic, impractical and ineffective. Trypanosomes are transmitted by tsetse flies, and HAT is therefore predominantly confined to the tsetse fly belt in sub-Saharan Africa. They are exclusively extracellular and they differentiate between at least seven developmental forms that are highly adapted to host and vector niches. In the mammalian (human) host they inhabit the blood, cerebrospinal fluid (late-stage disease), skin, and adipose fat. In the tsetse fly vector they travel from the tsetse midgut to the salivary glands via the ectoperitrophic space and proventriculus. Trypanosomes are evolutionarily divergent compared with most branches of eukaryotic life. Perhaps most famous for their extraordinary mechanisms of monoallelic gene expression and antigenic variation, they have also been investigated because much of their biology is either highly unconventional or extreme. Moreover, in addition to their importance as pathogens, many researchers have been attracted to the field because trypanosomes have some of the most advanced molecular genetic tools and database resources of any model system. The following will cover just some aspects of trypanosome biology and how its divergent biochemistry has been leveraged to develop drugs to treat African sleeping sickness. This is by no means intended to be a comprehensive survey of trypanosome features. Rather, I hope to present trypanosomes as one of the most fascinating and tractable systems to do discovery biology.
Collapse
Affiliation(s)
- Samuel Dean
- Warwick Medical School, University of Warwick, Coventry, CV4 7AL, United Kingdom
| |
Collapse
|
6
|
Sinclair AN, Huynh CT, Sladewski TE, Zuromski JL, Ruiz AE, de Graffenried CL. The Trypanosoma brucei subpellicular microtubule array is organized into functionally discrete subdomains defined by microtubule associated proteins. PLoS Pathog 2021; 17:e1009588. [PMID: 34010336 PMCID: PMC8168904 DOI: 10.1371/journal.ppat.1009588] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 06/01/2021] [Accepted: 04/25/2021] [Indexed: 11/19/2022] Open
Abstract
Microtubules are inherently dynamic cytoskeletal polymers whose length and organization can be altered to perform essential functions in eukaryotic cells, such as providing tracks for intracellular trafficking and forming the mitotic spindle. Microtubules can be bundled to create more stable structures that collectively propagate force, such as in the flagellar axoneme, which provides motility. The subpellicular microtubule array of the protist parasite Trypanosoma brucei, the causative agent of African sleeping sickness, is a remarkable example of a highly specialized microtubule bundle. It is comprised of a single layer of microtubules that are crosslinked to each other and to the overlying plasma membrane. The array microtubules appear to be highly stable and remain intact throughout the cell cycle, but very little is known about the pathways that tune microtubule properties in trypanosomatids. Here, we show that the subpellicular microtubule array is organized into subdomains that consist of differentially localized array-associated proteins at the array posterior, middle, and anterior. The array-associated protein PAVE1 stabilizes array microtubules at the cell posterior and is essential for maintaining its tapered shape. PAVE1 and the newly identified protein PAVE2 form a complex that binds directly to the microtubule lattice, demonstrating that they are a true kinetoplastid-specific MAP. TbAIR9, which localizes to the entirety of the subpellicular array, is necessary for maintaining the localization of array-associated proteins within their respective subdomains of the array. The arrangement of proteins within the array likely tunes the local properties of array microtubules and creates the asymmetric shape of the cell, which is essential for parasite viability.
Collapse
Affiliation(s)
- Amy N. Sinclair
- Department of Molecular Microbiology and Immunology, Brown University, Providence, Rhode Island, United States of America
| | - Christine T. Huynh
- Department of Molecular Microbiology and Immunology, Brown University, Providence, Rhode Island, United States of America
| | - Thomas E. Sladewski
- Department of Molecular Microbiology and Immunology, Brown University, Providence, Rhode Island, United States of America
| | - Jenna L. Zuromski
- Department of Pathology and Laboratory Medicine, Center for International Health Research, Brown University, Providence, Rhode Island, United States of America
| | - Amanda E. Ruiz
- Department of Pathology and Laboratory Medicine, Center for International Health Research, Brown University, Providence, Rhode Island, United States of America
| | - Christopher L. de Graffenried
- Department of Molecular Microbiology and Immunology, Brown University, Providence, Rhode Island, United States of America
- * E-mail:
| |
Collapse
|
7
|
Hammarton TC. Who Needs a Contractile Actomyosin Ring? The Plethora of Alternative Ways to Divide a Protozoan Parasite. Front Cell Infect Microbiol 2019; 9:397. [PMID: 31824870 PMCID: PMC6881465 DOI: 10.3389/fcimb.2019.00397] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 11/06/2019] [Indexed: 01/21/2023] Open
Abstract
Cytokinesis, or the division of the cytoplasm, following the end of mitosis or meiosis, is accomplished in animal cells, fungi, and amoebae, by the constriction of an actomyosin contractile ring, comprising filamentous actin, myosin II, and associated proteins. However, despite this being the best-studied mode of cytokinesis, it is restricted to the Opisthokonta and Amoebozoa, since members of other evolutionary supergroups lack myosin II and must, therefore, employ different mechanisms. In particular, parasitic protozoa, many of which cause significant morbidity and mortality in humans and animals as well as considerable economic losses, employ a wide diversity of mechanisms to divide, few, if any, of which involve myosin II. In some cases, cell division is not only myosin II-independent, but actin-independent too. Mechanisms employed range from primitive mechanical cell rupture (cytofission), to motility- and/or microtubule remodeling-dependent mechanisms, to budding involving the constriction of divergent contractile rings, to hijacking host cell division machinery, with some species able to utilize multiple mechanisms. Here, I review current knowledge of cytokinesis mechanisms and their molecular control in mammalian-infective parasitic protozoa from the Excavata, Alveolata, and Amoebozoa supergroups, highlighting their often-underappreciated diversity and complexity. Billions of people and animals across the world are at risk from these pathogens, for which vaccines and/or optimal treatments are often not available. Exploiting the divergent cell division machinery in these parasites may provide new avenues for the treatment of protozoal disease.
Collapse
Affiliation(s)
- Tansy C Hammarton
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|
8
|
Sinclair AN, de Graffenried CL. More than Microtubules: The Structure and Function of the Subpellicular Array in Trypanosomatids. Trends Parasitol 2019; 35:760-777. [PMID: 31471215 PMCID: PMC6783356 DOI: 10.1016/j.pt.2019.07.008] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 07/25/2019] [Accepted: 07/26/2019] [Indexed: 10/26/2022]
Abstract
The subpellicular microtubule array defines the wide range of cellular morphologies found in parasitic kinetoplastids (trypanosomatids). Morphological studies have characterized array organization, but little progress has been made towards identifying the molecular mechanisms that are responsible for array differentiation during the trypanosomatid life cycle, or the apparent stability and longevity of array microtubules. In this review, we outline what is known about the structure and biogenesis of the array, with emphasis on Trypanosoma brucei, Trypanosoma cruzi, and Leishmania, which cause life-threatening diseases in humans and livestock. We highlight unanswered questions about this remarkable cellular structure that merit new consideration in light of our recently improved understanding of how the 'tubulin code' influences microtubule dynamics to generate complex cellular structures.
Collapse
Affiliation(s)
- Amy N Sinclair
- Department of Molecular Microbiology and Immunology, Brown University, Providence, RI 02912, USA
| | | |
Collapse
|
9
|
Mensa-Wilmot K, Hoffman B, Wiedeman J, Sullenberger C, Sharma A. Kinetoplast Division Factors in a Trypanosome. Trends Parasitol 2019; 35:119-128. [PMID: 30638954 DOI: 10.1016/j.pt.2018.11.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 11/06/2018] [Accepted: 11/11/2018] [Indexed: 02/08/2023]
Abstract
Inheritance of the single mitochondrial nucleoid (kinetoplast) in the trypanosome requires numerous proteins, many of whose precise roles are unclear. By considering kinetoplast DNA (kDNA) as a template for cleavage into two equal-size networks, we predicted sets of mutant kinetoplasts associated with defects in each of the five steps in the kinetoplast cycle. Comparison of these kinetoplasts with those obtained after gene knockdowns enabled assignment of proteins to five classes - kDNA synthesis, site of scission selection, scission, separation, and partitioning. These studies highlight how analysis of mutant kinetoplast phenotypes may be used to predict functional categories of proteins involved in the biogenesis of kinetoplasts.
Collapse
Affiliation(s)
- Kojo Mensa-Wilmot
- Department of Cellular Biology, 724 Biological Sciences Building, University of Georgia, Athens, Georgia 30602, USA; Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, Georgia 30602, USA.
| | - Benjamin Hoffman
- Department of Cellular Biology, 724 Biological Sciences Building, University of Georgia, Athens, Georgia 30602, USA; Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, Georgia 30602, USA
| | - Justin Wiedeman
- Department of Cellular Biology, 724 Biological Sciences Building, University of Georgia, Athens, Georgia 30602, USA; Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, Georgia 30602, USA
| | - Catherine Sullenberger
- Department of Cellular Biology, 724 Biological Sciences Building, University of Georgia, Athens, Georgia 30602, USA
| | - Amrita Sharma
- Department of Cellular Biology, 724 Biological Sciences Building, University of Georgia, Athens, Georgia 30602, USA; Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, Georgia 30602, USA
| |
Collapse
|
10
|
Hilton NA, Sladewski TE, Perry JA, Pataki Z, Sinclair-Davis AN, Muniz RS, Tran HL, Wurster JI, Seo J, de Graffenried CL. Identification of TOEFAZ1-interacting proteins reveals key regulators of Trypanosoma brucei cytokinesis. Mol Microbiol 2018; 109:306-326. [PMID: 29781112 PMCID: PMC6359937 DOI: 10.1111/mmi.13986] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/13/2018] [Indexed: 01/07/2023]
Abstract
The protist parasite Trypanosoma brucei is an obligate extracellular pathogen that retains its highly polarized morphology during cell division and has evolved a novel cytokinetic process independent of non-muscle myosin II. The polo-like kinase homolog TbPLK is essential for transmission of cell polarity during division and for cytokinesis. We previously identified a putative TbPLK substrate named Tip of the Extending FAZ 1 (TOEFAZ1) as an essential kinetoplastid-specific component of the T. brucei cytokinetic machinery. We performed a proximity-dependent biotinylation identification (BioID) screen using TOEFAZ1 as a means to identify additional proteins that are involved in cytokinesis. Using quantitative proteomic methods, we identified nearly 500 TOEFAZ1-proximal proteins and characterized 59 in further detail. Among the candidates, we identified an essential putative phosphatase that regulates the expression level and localization of both TOEFAZ1 and TbPLK, a previously uncharacterized protein that is necessary for the assembly of a new cell posterior, and a microtubule plus-end directed orphan kinesin that is required for completing cleavage furrow ingression. The identification of these proteins provides new insight into T. brucei cytokinesis and establishes TOEFAZ1 as a key component of this essential and uniquely configured process in kinetoplastids.
Collapse
Affiliation(s)
- Nicholas A. Hilton
- Department of Molecular Microbiology and Immunology, Brown University, Providence, RI, 02912
| | - Thomas E. Sladewski
- Department of Molecular Microbiology and Immunology, Brown University, Providence, RI, 02912
| | - Jenna A. Perry
- Department of Molecular Microbiology and Immunology, Brown University, Providence, RI, 02912
| | - Zemplen Pataki
- Department of Molecular Microbiology and Immunology, Brown University, Providence, RI, 02912
| | - Amy N. Sinclair-Davis
- Department of Molecular Microbiology and Immunology, Brown University, Providence, RI, 02912
| | - Richard S. Muniz
- Department of Molecular Microbiology and Immunology, Brown University, Providence, RI, 02912
| | - Holly L. Tran
- Department of Molecular Microbiology and Immunology, Brown University, Providence, RI, 02912
| | - Jenna I. Wurster
- Department of Molecular Microbiology and Immunology, Brown University, Providence, RI, 02912
| | - Jiwon Seo
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI, 02912
| | | |
Collapse
|
11
|
Mir R, Morris VH, Buschmann H, Rasmussen CG. Division Plane Orientation Defects Revealed by a Synthetic Double Mutant Phenotype. PLANT PHYSIOLOGY 2018; 176:418-431. [PMID: 29146775 PMCID: PMC5761783 DOI: 10.1104/pp.17.01075] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Accepted: 11/13/2017] [Indexed: 05/09/2023]
Abstract
TANGLED1 (TAN1) and AUXIN-INDUCED-IN-ROOTS9 (AIR9) are microtubule-binding proteins that localize to the division site in plants. Their function in Arabidopsis (Arabidopsis thaliana) remained unclear because neither tan1 nor air9 single mutants have a strong phenotype. We show that tan1 air9 double mutants have a synthetic phenotype consisting of short, twisted roots with disordered cortical microtubule arrays that are hypersensitive to a microtubule-depolymerizing drug. The tan1 air9 double mutants have significant defects in division plane orientation due to failures in placing the new cell wall at the correct division site. Full-length TAN1 fused to yellow fluorescent protein, TAN1-YFP, and several deletion constructs were transformed into the double mutant to assess which regions of TAN1 are required for its function in root growth, root twisting, and division plane orientation. TAN1-YFP expressed in tan1 air9 significantly rescued the double mutant phenotype in all three respects. Interestingly, TAN1 missing the first 126 amino acids, TAN1-ΔI-YFP, failed to rescue the double mutant phenotype, while TAN1 missing a conserved middle region, TAN1-ΔII-YFP, significantly rescued the mutant phenotype in terms of root growth and division plane orientation but not root twisting. We use the tan1 air9 double mutant to discover new functions for TAN1 and AIR9 during phragmoplast guidance and root morphogenesis.
Collapse
Affiliation(s)
- Ricardo Mir
- Center for Plant Cell Biology, Institute for Integrative Genome Biology, Department of Botany and Plant Sciences, University of California, Riverside, California 92521
| | - Victoria H Morris
- Center for Plant Cell Biology, Institute for Integrative Genome Biology, Department of Botany and Plant Sciences, University of California, Riverside, California 92521
| | - Henrik Buschmann
- Osnabrück University, Department of Biology and Chemistry, 49076 Osnabrueck, Germany
| | - Carolyn G Rasmussen
- Center for Plant Cell Biology, Institute for Integrative Genome Biology, Department of Botany and Plant Sciences, University of California, Riverside, California 92521
| |
Collapse
|
12
|
Hu H, Majneri P, Li D, Kurasawa Y, An T, Dong G, Li Z. Functional analyses of the CIF1-CIF2 complex in trypanosomes identify the structural motifs required for cytokinesis. J Cell Sci 2017; 130:4108-4119. [PMID: 29074577 DOI: 10.1242/jcs.207134] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Accepted: 10/10/2017] [Indexed: 12/28/2022] Open
Abstract
Cytokinesis in trypanosomes occurs uni-directionally along the longitudinal axis from the cell anterior towards the cell posterior and requires a trypanosome-specific CIF1-CIF2 protein complex. However, little is known about the contribution of the structural motifs in CIF1 and CIF2 to complex assembly and cytokinesis. Here, we demonstrate that the two zinc-finger motifs but not the coiled-coil motif in CIF1 are required for interaction with the EF-hand motifs in CIF2. We further show that localization of CIF1 depends on the coiled-coil motif and the first zinc-finger motif and that localization of CIF2 depends on the EF-hand motifs. Deletion of the coiled-coil motif and mutation of either zinc-finger motif in CIF1 disrupts cytokinesis. Furthermore, mutation of either zinc-finger motif in CIF1 mislocalizes CIF2 to the cytosol and destabilizes CIF2, whereas deletion of the coiled-coil motif in CIF1 spreads CIF2 over to the new flagellum attachment zone and stabilizes CIF2. Together, these results uncover the requirement of the coiled-coil and zinc-finger motifs for CIF1 function in cytokinesis and for CIF2 localization and stability, providing structural insights into the functional interplay between the two cytokinesis regulators.
Collapse
Affiliation(s)
- Huiqing Hu
- Department of Microbiology and Molecular Genetics, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Paul Majneri
- Max F. Perutz Laboratories, Vienna Bio-center, Medical University of Vienna, Dr. Bohr-Gasse 9, 1030 Vienna, Austria
| | - Dielan Li
- Department of Microbiology and Molecular Genetics, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Yasuhiro Kurasawa
- Department of Microbiology and Molecular Genetics, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Tai An
- Department of Microbiology and Molecular Genetics, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Gang Dong
- Max F. Perutz Laboratories, Vienna Bio-center, Medical University of Vienna, Dr. Bohr-Gasse 9, 1030 Vienna, Austria
| | - Ziyin Li
- Department of Microbiology and Molecular Genetics, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| |
Collapse
|
13
|
Tan J, Chen XJ, Shen CL, Zhang HX, Tang LY, Lu SY, Wu WT, Kuang Y, Fei J, Wang ZG. Lacking of palladin leads to multiple cellular events changes which contribute to NTD. Neural Dev 2017; 12:4. [PMID: 28340616 PMCID: PMC5366166 DOI: 10.1186/s13064-017-0081-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Accepted: 03/03/2017] [Indexed: 11/23/2022] Open
Abstract
Background The actin cytoskeleton-associated protein palladin plays an important role in cell motility, morphogenesis and adhesion. In mice, Palladin deficient embryos are lethal before embryonic day (E) 15.5, and exhibit severe cranial neural tube and body wall closure defects. However, the mechanism how palladin regulates the process of cranial neural tube closure (NTC) remains unknown. Methods In this paper, we use gene knockout mouse to elucidate the function of palladin in the regulation of NTC process. Results We initially focuse on the expression pattern of palladin and found that in embryonic brain, palladin is predominantly expressed in the neural folds at E9.5. We further check the major cellular events in the neural epithelium that may contribute to NTC during the early embryogenesis. Palladin deficiency leads to a disturbance of cytoskeleton in the neural tube and the cultured neural progenitors. Furthermore, increased cell proliferation, decreased cell differentiation and diminished apical cell apoptosis of neural epithelium are found in palladin deficient embryos. Cell cycle of neural progenitors in Palladin-/- embryos is much shorter than that in wt ones. Cell adhesion shows a reduction in Palladin-/- neural tubes. Conclusions Palladin is expressed with proper spatio-temporal pattern in the neural folds. It plays a crucial role in regulating mouse cranial NTC by modulating cytoskeleton, proliferation, differentiation, apoptosis, and adhesion of neural epithelium. Our findings facilitate further study of the function of palladin and the underlying molecular mechanism involved in NTC. Electronic supplementary material The online version of this article (doi:10.1186/s13064-017-0081-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Juan Tan
- State Key Laboratory of Medical Genomics, Research Center for Experimental Medicine, Rui-Jin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine (SJTUSM), Building 17, No. 197, Ruijin 2nd Rd, Shanghai, 200025, China.,Model Organism Division, E-Institutes of Shanghai Universities, SJTUSM, Shanghai, 200025, China
| | - Xue-Jiao Chen
- State Key Laboratory of Medical Genomics, Research Center for Experimental Medicine, Rui-Jin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine (SJTUSM), Building 17, No. 197, Ruijin 2nd Rd, Shanghai, 200025, China.,Model Organism Division, E-Institutes of Shanghai Universities, SJTUSM, Shanghai, 200025, China
| | - Chun-Ling Shen
- State Key Laboratory of Medical Genomics, Research Center for Experimental Medicine, Rui-Jin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine (SJTUSM), Building 17, No. 197, Ruijin 2nd Rd, Shanghai, 200025, China
| | - Hong-Xin Zhang
- State Key Laboratory of Medical Genomics, Research Center for Experimental Medicine, Rui-Jin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine (SJTUSM), Building 17, No. 197, Ruijin 2nd Rd, Shanghai, 200025, China
| | - Ling-Yun Tang
- State Key Laboratory of Medical Genomics, Research Center for Experimental Medicine, Rui-Jin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine (SJTUSM), Building 17, No. 197, Ruijin 2nd Rd, Shanghai, 200025, China.,Model Organism Division, E-Institutes of Shanghai Universities, SJTUSM, Shanghai, 200025, China
| | - Shun-Yuan Lu
- State Key Laboratory of Medical Genomics, Research Center for Experimental Medicine, Rui-Jin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine (SJTUSM), Building 17, No. 197, Ruijin 2nd Rd, Shanghai, 200025, China
| | - Wen-Ting Wu
- Shanghai Research Center for Model Organisms, Shanghai, 201203, China
| | - Ying Kuang
- Shanghai Research Center for Model Organisms, Shanghai, 201203, China
| | - Jian Fei
- Shanghai Research Center for Model Organisms, Shanghai, 201203, China
| | - Zhu-Gang Wang
- State Key Laboratory of Medical Genomics, Research Center for Experimental Medicine, Rui-Jin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine (SJTUSM), Building 17, No. 197, Ruijin 2nd Rd, Shanghai, 200025, China. .,Model Organism Division, E-Institutes of Shanghai Universities, SJTUSM, Shanghai, 200025, China. .,Shanghai Research Center for Model Organisms, Shanghai, 201203, China.
| |
Collapse
|
14
|
Moreira BP, Fonseca CK, Hammarton TC, Baqui MMA. Giant FAZ10 is required for flagellum attachment zone stabilization and furrow positioning in Trypanosoma brucei. J Cell Sci 2017; 130:1179-1193. [PMID: 28193733 PMCID: PMC5358337 DOI: 10.1242/jcs.194308] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Accepted: 02/02/2017] [Indexed: 01/09/2023] Open
Abstract
The flagellum and flagellum attachment zone (FAZ) are important cytoskeletal structures in trypanosomatids, being required for motility, cell division and cell morphogenesis. Trypanosomatid cytoskeletons contain abundant high molecular mass proteins (HMMPs), but many of their biological functions are still unclear. Here, we report the characterization of the giant FAZ protein, FAZ10, in Trypanosoma brucei, which, using immunoelectron microscopy, we show localizes to the intermembrane staples in the FAZ intracellular domain. Our data show that FAZ10 is a giant cytoskeletal protein essential for normal growth and morphology in both procyclic and bloodstream parasite life cycle stages, with its depletion leading to defects in cell morphogenesis, flagellum attachment, and kinetoplast and nucleus positioning. We show that the flagellum attachment defects are probably brought about by reduced tethering of the proximal domain of the paraflagellar rod to the FAZ filament. Further, FAZ10 depletion also reduces abundance of FAZ flagellum domain protein, ClpGM6. Moreover, ablation of FAZ10 impaired the timing and placement of the cleavage furrow during cytokinesis, resulting in premature or asymmetrical cell division.
Collapse
Affiliation(s)
- Bernardo P Moreira
- Department of Cellular and Molecular Biology and Pathogenic Bioagents, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto 14049-900, Brazil
| | - Carol K Fonseca
- Department of Cellular and Molecular Biology and Pathogenic Bioagents, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto 14049-900, Brazil
| | - Tansy C Hammarton
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Munira M A Baqui
- Department of Cellular and Molecular Biology and Pathogenic Bioagents, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto 14049-900, Brazil
| |
Collapse
|
15
|
Rout MP, Obado SO, Schenkman S, Field MC. Specialising the parasite nucleus: Pores, lamins, chromatin, and diversity. PLoS Pathog 2017; 13:e1006170. [PMID: 28253370 PMCID: PMC5333908 DOI: 10.1371/journal.ppat.1006170] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Affiliation(s)
- Michael P. Rout
- The Rockefeller University, New York, New York, United States of America
| | - Samson O. Obado
- The Rockefeller University, New York, New York, United States of America
| | | | - Mark C. Field
- Wellcome Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| |
Collapse
|
16
|
Kariithi HM, Boeren S, Murungi EK, Vlak JM, Abd-Alla AMM. A proteomics approach reveals molecular manipulators of distinct cellular processes in the salivary glands of Glossina m. morsitans in response to Trypanosoma b. brucei infections. Parasit Vectors 2016; 9:424. [PMID: 27485005 PMCID: PMC4969678 DOI: 10.1186/s13071-016-1714-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Accepted: 07/20/2016] [Indexed: 12/28/2022] Open
Abstract
Background Glossina m. morsitans is the primary vector of the Trypanosoma brucei group, one of the causative agents of African trypanosomoses. The parasites undergo metacyclogenesis, i.e. transformation into the mammalian-infective metacyclic trypomastigote (MT) parasites, in the salivary glands (SGs) of the tsetse vector. Since the MT-parasites are largely uncultivable in vitro, information on the molecular processes that facilitate metacyclogenesis is scanty. Methods To bridge this knowledge gap, we employed tandem mass spectrometry to investigate protein expression modulations in parasitized (T. b. brucei-infected) and unparasitized SGs of G. m. morsitans. We annotated the identified proteins into gene ontologies and mapped the up- and downregulated proteins within protein-protein interaction (PPI) networks. Results We identified 361 host proteins, of which 76.6 % (n = 276) and 22.3 % (n = 81) were up- and downregulated, respectively, in parasitized SGs compared to unparasitized SGs. Whilst 32 proteins were significantly upregulated (> 10-fold), only salivary secreted adenosine was significantly downregulated. Amongst the significantly upregulated proteins, there were proteins associated with blood feeding, immunity, cellular proliferation, homeostasis, cytoskeletal traffic and regulation of protein turnover. The significantly upregulated proteins formed major hubs in the PPI network including key regulators of the Ras/MAPK and Ca2+/cAMP signaling pathways, ubiquitin-proteasome system and mitochondrial respiratory chain. Moreover, we identified 158 trypanosome-specific proteins, notable of which were proteins in the families of the GPI-anchored surface glycoproteins, kinetoplastid calpains, peroxiredoxins, retrotransposon host spot multigene and molecular chaperones. Whilst immune-related trypanosome proteins were over-represented, membrane transporters and proteins involved in translation repression (e.g. ribosomal proteins) were under-represented, potentially reminiscent of the growth-arrested MT-parasites. Conclusions Our data implicate the significantly upregulated proteins as manipulators of diverse cellular processes in response to T. b. brucei infection, potentially to prepare the MT-parasites for invasion and evasion of the mammalian host immune defences. We discuss potential strategies to exploit our findings in enhancement of trypanosome refractoriness or reduce the vector competence of the tsetse vector. Electronic supplementary material The online version of this article (doi:10.1186/s13071-016-1714-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Henry M Kariithi
- Biotechnology Research Institute, Kenya Agricultural and Livestock Research Organization, P.O Box 57811, 00200, Kaptagat Rd, Loresho, Nairobi, Kenya. .,Insect Pest Control Laboratories, Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, International Atomic Energy Agency, Wagrammer Straße 5, Vienna, Austria.
| | - Sjef Boeren
- Laboratory of Biochemistry, Wageningen University, Dreijenlaan 3, 6703, HA, Wageningen, The Netherlands
| | - Edwin K Murungi
- Department of Biochemistry and Molecular Biology, Egerton University, P.O. Box 536, 20115, Njoro, Kenya
| | - Just M Vlak
- Laboratory of Virology, Wageningen University, Droevendaalsesteeg 1, 6708, PB, Wageningen, The Netherlands
| | - Adly M M Abd-Alla
- Insect Pest Control Laboratories, Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, International Atomic Energy Agency, Wagrammer Straße 5, Vienna, Austria.
| |
Collapse
|
17
|
Levy GV, Bañuelos CP, Níttolo AG, Ortiz GE, Mendiondo N, Moretti G, Tekiel VS, Sánchez DO. Depletion of the SR-Related Protein TbRRM1 Leads to Cell Cycle Arrest and Apoptosis-Like Death in Trypanosoma brucei. PLoS One 2015; 10:e0136070. [PMID: 26284933 PMCID: PMC4540419 DOI: 10.1371/journal.pone.0136070] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Accepted: 07/29/2015] [Indexed: 11/19/2022] Open
Abstract
Arginine-Serine (RS) domain-containing proteins are RNA binding proteins with multiple functions in RNA metabolism. In mammalian cells this group of proteins is also implicated in regulation and coordination of cell cycle and apoptosis. In trypanosomes, an early branching group within the eukaryotic lineage, this group of proteins is represented by 3 members, two of them are SR proteins and have been recently shown to be involved in rRNA processing as well as in pre-mRNA splicing and stability. Here we report our findings on the 3rd member, the SR-related protein TbRRM1. In the present study, we showed that TbRRM1 ablation by RNA-interference in T. brucei procyclic cells leads to cell-cycle block, abnormal cell elongation compatible with the nozzle phenotype and cell death by an apoptosis-like mechanism. Our results expand the role of the trypanosomal RS-domain containing proteins in key cellular processes such as cell cycle and apoptosis-like death, roles also carried out by the mammalian SR proteins, and thus suggesting a conserved function in this phylogenetically conserved protein family.
Collapse
Affiliation(s)
- Gabriela V. Levy
- Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín (IIB-UNSAM)—Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), 25 de Mayo y Francia. Gral. San Martín, Buenos Aires, Argentina
- * E-mail:
| | - Carolina P. Bañuelos
- Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín (IIB-UNSAM)—Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), 25 de Mayo y Francia. Gral. San Martín, Buenos Aires, Argentina
| | - Analía G. Níttolo
- Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín (IIB-UNSAM)—Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), 25 de Mayo y Francia. Gral. San Martín, Buenos Aires, Argentina
| | - Gastón E. Ortiz
- Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín (IIB-UNSAM)—Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), 25 de Mayo y Francia. Gral. San Martín, Buenos Aires, Argentina
| | - Nicolás Mendiondo
- Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín (IIB-UNSAM)—Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), 25 de Mayo y Francia. Gral. San Martín, Buenos Aires, Argentina
| | - Georgina Moretti
- Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín (IIB-UNSAM)—Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), 25 de Mayo y Francia. Gral. San Martín, Buenos Aires, Argentina
| | - Valeria S. Tekiel
- Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín (IIB-UNSAM)—Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), 25 de Mayo y Francia. Gral. San Martín, Buenos Aires, Argentina
| | - Daniel O. Sánchez
- Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín (IIB-UNSAM)—Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), 25 de Mayo y Francia. Gral. San Martín, Buenos Aires, Argentina
| |
Collapse
|
18
|
Buschmann H, Dols J, Kopischke S, Peña EJ, Andrade-Navarro MA, Heinlein M, Szymanski DB, Zachgo S, Doonan JH, Lloyd CW. Arabidopsis KCBP interacts with AIR9 but stays in the cortical division zone throughout mitosis via its MyTH4-FERM domain. J Cell Sci 2015; 128:2033-46. [DOI: 10.1242/jcs.156570] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Accepted: 04/10/2015] [Indexed: 12/19/2022] Open
Abstract
ABSTRACT
The preprophase band of microtubules performs the crucial function of marking the plane of cell division. Although the preprophase band depolymerises at the onset of mitosis, the division plane is ‘memorized’ by a cortical division zone to which the phragmoplast is attracted during cytokinesis. Proteins have been discovered that are part of the molecular memory but little is known about how they contribute to phragmoplast guidance. Previously, we found that the microtubule-associated protein AIR9 is found in the cortical division zone at preprophase and returns during cell plate insertion but is absent from the cortex during the intervening mitosis. To identify new components of the preprophase memory, we searched for proteins that interact with AIR9. We detected the kinesin-like calmodulin-binding protein, KCBP, which can be visualized at the predicted cortical site throughout division. A truncation study of KCBP indicates that its MyTH4-FERM domain is required for linking the motor domain to the cortex. These results suggest a mechanism by which minus-end-directed KCBP helps guide the centrifugally expanding phragmoplast to the cortical division site.
Collapse
Affiliation(s)
- Henrik Buschmann
- Department of Cell and Developmental Biology, John Innes Centre, Norwich, Norfolk NR4 7UH, UK
| | - Jacqueline Dols
- Department of Cell and Developmental Biology, John Innes Centre, Norwich, Norfolk NR4 7UH, UK
| | - Sarah Kopischke
- Botanical Institute, Biology and Chemistry Department, University of Osnabrück, 49069 Osnabrück, Germany
| | - Eduardo J. Peña
- Institut de Biologie Moléculaire des Plantes, UPR2357 CNRS, Strasbourg, France
| | | | - Manfred Heinlein
- Institut de Biologie Moléculaire des Plantes, UPR2357 CNRS, Strasbourg, France
| | | | - Sabine Zachgo
- Botanical Institute, Biology and Chemistry Department, University of Osnabrück, 49069 Osnabrück, Germany
| | - John H. Doonan
- Department of Cell and Developmental Biology, John Innes Centre, Norwich, Norfolk NR4 7UH, UK
| | - Clive W. Lloyd
- Department of Cell and Developmental Biology, John Innes Centre, Norwich, Norfolk NR4 7UH, UK
| |
Collapse
|
19
|
Zhou Q, Hu H, Li Z. New insights into the molecular mechanisms of mitosis and cytokinesis in trypanosomes. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2014; 308:127-66. [PMID: 24411171 DOI: 10.1016/b978-0-12-800097-7.00004-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Trypanosoma brucei, a unicellular eukaryote and the causative agent of human sleeping sickness, possesses multiple single-copy organelles that all need to be duplicated and segregated during cell division. Trypanosomes undergo a closed mitosis in which the mitotic spindle is anchored on the nuclear envelope and connects the kinetochores made of novel protein components. Cytokinesis in trypanosomes is initiated from the anterior tip of the new flagellum attachment zone, and proceeds along the longitudinal axis without the involvement of the actomyosin contractile ring, the well-recognized cytokinesis machinery conserved from yeast to humans. Trypanosome appears to employ both evolutionarily conserved and trypanosome-specific proteins to regulate its cell cycle, and has evolved certain cell cycle regulatory pathways that are either distinct between its life cycle stages or different from its human host. Understanding the mechanisms of mitosis and cytokinesis in trypanosomes not only would shed novel light on the evolution of cell cycle control, but also could provide new drug targets for chemotherapy.
Collapse
Affiliation(s)
- Qing Zhou
- Department of Microbiology and Molecular Genetics, University of Texas Medical School at Houston, Houston, Texas, USA
| | - Huiqing Hu
- Department of Microbiology and Molecular Genetics, University of Texas Medical School at Houston, Houston, Texas, USA
| | - Ziyin Li
- Department of Microbiology and Molecular Genetics, University of Texas Medical School at Houston, Houston, Texas, USA.
| |
Collapse
|
20
|
Ooi CP, Bastin P. More than meets the eye: understanding Trypanosoma brucei morphology in the tsetse. Front Cell Infect Microbiol 2013; 3:71. [PMID: 24312899 PMCID: PMC3826061 DOI: 10.3389/fcimb.2013.00071] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Accepted: 10/14/2013] [Indexed: 11/13/2022] Open
Abstract
T. brucei, the causative parasite for African trypanosomiasis, faces an interesting dilemma in its life cycle. It has to successfully complete its infection cycle in the tsetse vector to be able to infect other vertebrate hosts. T. brucei has to undergo multiple morphological changes as it invades the alimentary canal of the tsetse to finally achieve infectivity in the salivary glands. In this review, we attempt to elucidate how these morphological changes are possible for a parasite that has evolved a highly robust cell structure to survive the chemically and physically diverse environments it finds itself in. To achieve this, we juxtaposed the experimental evidence that has been collected from T. brucei forms that are cultured in vitro with the observations that have been carried out on tsetse-infective forms in vivo. Although the accumulated knowledge on T. brucei biology is by no means trivial, several outstanding questions remain for how the parasite mechanistically changes its morphology as it traverses the tsetse and how those changes are triggered. However, we conclude that with recent breakthroughs allowing for the replication of the tsetse-infection process of T. brucei in vitro, these outstanding questions can finally be addressed.
Collapse
Affiliation(s)
| | - Philippe Bastin
- Trypanosome Cell Biology Unit, CNRS URA2581, Institut PasteurParis, France
| |
Collapse
|
21
|
Distinct roles of a mitogen-activated protein kinase in cytokinesis between different life cycle forms of Trypanosoma brucei. EUKARYOTIC CELL 2013; 13:110-8. [PMID: 24213350 DOI: 10.1128/ec.00258-13] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Mitogen-activated protein kinase (MAPK) modules are evolutionarily conserved signaling cascades that function in response to the environment and play crucial roles in intracellular signal transduction in eukaryotes. The involvement of a MAP kinase in regulating cytokinesis in yeast, animals, and plants has been reported, but the requirement for a MAP kinase for cytokinesis in the early-branching protozoa is not documented. Here, we show that a MAP kinase homolog (TbMAPK6) from Trypanosoma brucei plays distinct roles in cytokinesis in two life cycle forms of T. brucei. TbMAPK6 is distributed throughout the cytosol in the procyclic form but is localized in both the cytosol and the nucleus in the bloodstream form. RNA interference (RNAi) of TbMAPK6 results in moderate growth inhibition in the procyclic form but severe growth defects and rapid cell death in the bloodstream form. Moreover, TbMAPK6 appears to be implicated in furrow ingression and cytokinesis completion in the procyclic form but is essential for cytokinesis initiation in the bloodstream form. Despite the distinct defects in cytokinesis in the two forms, RNAi of TbMAPK6 also caused defective basal body duplication/segregation in a small cell population in both life cycle forms. Altogether, our results demonstrate the involvement of the TbMAPK6-mediated pathway in regulating cytokinesis in trypanosomes and suggest distinct roles of TbMAPK6 in cytokinesis between different life cycle stages of T. brucei.
Collapse
|
22
|
Gallet C, Demonchy R, Koppel C, Grellier P, Kohl L. A Protein Phosphatase 1 involved in correct nucleus positioning in trypanosomes. Mol Biochem Parasitol 2013; 192:49-54. [DOI: 10.1016/j.molbiopara.2013.11.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Revised: 11/22/2013] [Accepted: 11/24/2013] [Indexed: 11/16/2022]
|
23
|
Gardiner J. The evolution and diversification of plant microtubule-associated proteins. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2013; 75:219-29. [PMID: 23551562 DOI: 10.1111/tpj.12189] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2012] [Revised: 03/11/2013] [Accepted: 03/22/2013] [Indexed: 05/07/2023]
Abstract
Plant evolution is marked by major advances in structural characteristics that facilitated the highly successful colonization of dry land. Underlying these advances is the evolution of genes encoding specialized proteins that form novel microtubular arrays of the cytoskeleton. This review investigates the evolution of plant families of microtubule-associated proteins (MAPs) through the recently sequenced genomes of Arabidopsis thaliana, Oryza sativa, Selaginella moellendorffii, Physcomitrella patens, Volvox carteri and Chlamydomonas reinhardtii. The families of MAPs examined are AIR9, CLASP, CRIPT, MAP18, MOR1, TON, EB1, AtMAP70, SPR2, SPR1, WVD2 and MAP65 families (abbreviations are defined in the footnote to Table 1). Conjectures are made regarding the evolution of MAPs in plants in relation to the evolution of multicellularity, oriented cell division and vasculature. Angiosperms in particular have high numbers of proteins that are involved in promotion of helical growth or its suppression, and novel plant microtubular structures may have acted as a catalyst for the development of novel plant MAPs. Comparisons of plant MAP gene families with those of animals show that animals may have more flexibility in the structure of their microtubule cytoskeletons than plants, but with both plants and animals possessing many MAP splice variants.
Collapse
Affiliation(s)
- John Gardiner
- School of Biological Sciences, The University of Sydney, Sydney, NSW 2006, Australia.
| |
Collapse
|
24
|
Monnerat S, Almeida Costa CI, Forkert AC, Benz C, Hamilton A, Tetley L, Burchmore R, Novo C, Mottram JC, Hammarton TC. Identification and Functional Characterisation of CRK12:CYC9, a Novel Cyclin-Dependent Kinase (CDK)-Cyclin Complex in Trypanosoma brucei. PLoS One 2013; 8:e67327. [PMID: 23805309 PMCID: PMC3689728 DOI: 10.1371/journal.pone.0067327] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2012] [Accepted: 05/20/2013] [Indexed: 11/19/2022] Open
Abstract
The protozoan parasite, Trypanosoma brucei, is spread by the tsetse fly and causes trypanosomiasis in humans and animals. Both the life cycle and cell cycle of the parasite are complex. Trypanosomes have eleven cdc2-related kinases (CRKs) and ten cyclins, an unusually large number for a single celled organism. To date, relatively little is known about the function of many of the CRKs and cyclins, and only CRK3 has previously been shown to be cyclin-dependent in vivo. Here we report the identification of a previously uncharacterised CRK:cyclin complex between CRK12 and the putative transcriptional cyclin, CYC9. CRK12:CYC9 interact to form an active protein kinase complex in procyclic and bloodstream T. brucei. Both CRK12 and CYC9 are essential for the proliferation of bloodstream trypanosomes in vitro, and we show that CRK12 is also essential for survival of T. brucei in a mouse model, providing genetic validation of CRK12:CYC9 as a novel drug target for trypanosomiasis. Further, functional characterisation of CRK12 and CYC9 using RNA interference reveals roles for these proteins in endocytosis and cytokinesis, respectively.
Collapse
Affiliation(s)
- Séverine Monnerat
- Wellcome Trust Centre for Molecular Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom
| | - Cristina I. Almeida Costa
- Instituto de Higiene e Medicina Tropical, Universidade Nova de Lisboa, Lisbon, Portugal
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom
| | - Andrea C. Forkert
- Wellcome Trust Centre for Molecular Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom
| | - Corinna Benz
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom
| | - Alana Hamilton
- Wellcome Trust Centre for Molecular Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom
| | - Laurence Tetley
- School of Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Richard Burchmore
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom
| | - Carlos Novo
- Instituto de Higiene e Medicina Tropical, Universidade Nova de Lisboa, Lisbon, Portugal
| | - Jeremy C. Mottram
- Wellcome Trust Centre for Molecular Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom
| | - Tansy C. Hammarton
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|
25
|
Abstract
Faithful transmission of genetic material is essential for the survival of all organisms. Eukaryotic chromosome segregation is driven by the kinetochore that assembles onto centromeric DNA to capture spindle microtubules and govern the movement of chromosomes. Its molecular mechanism has been actively studied in conventional model eukaryotes, such as yeasts, worms, flies and human. However, these organisms are closely related in the evolutionary time scale and it therefore remains unclear whether all eukaryotes use a similar mechanism. The evolutionary origins of the segregation apparatus also remain enigmatic. To gain insights into these questions, it is critical to perform comparative studies. Here, we review our current understanding of the mitotic mechanism in Trypanosoma brucei, an experimentally tractable kinetoplastid parasite that branched early in eukaryotic history. No canonical kinetochore component has been identified, and the design principle of kinetochores might be fundamentally different in kinetoplastids. Furthermore, these organisms do not appear to possess a functional spindle checkpoint that monitors kinetochore-microtubule attachments. With these unique features and the long evolutionary distance from other eukaryotes, understanding the mechanism of chromosome segregation in T. brucei should reveal fundamental requirements for the eukaryotic segregation machinery, and may also provide hints about the origin and evolution of the segregation apparatus.
Collapse
Affiliation(s)
- Bungo Akiyoshi
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK
| | | |
Collapse
|
26
|
Novel bilobe components in Trypanosoma brucei identified using proximity-dependent biotinylation. EUKARYOTIC CELL 2012; 12:356-67. [PMID: 23264645 DOI: 10.1128/ec.00326-12] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The trypanosomes are a family of parasitic protists of which the African trypanosome, Trypanosoma brucei, is the best characterized. The complex and highly ordered cytoskeleton of T. brucei has been shown to play vital roles in its biology but remains difficult to study, in large part owing to the intractability of its constituent proteins. Existing methods of protein identification, such as bioinformatic analysis, generation of monoclonal antibody panels, proteomics, affinity purification, and yeast two-hybrid screens, all have drawbacks. Such deficiencies-troublesome proteins and technical limitations-are common not only to T. brucei but also to many other protists, many of which are even less well studied. Proximity-dependent biotin identification (BioID) is a recently developed technique that allows forward screens for interaction partners and near neighbors in a native environment with no requirement for solubility in nonionic detergent. As such, it is extremely well suited to the exploration of the cytoskeleton. In this project, BioID was adapted for use in T. brucei. The trypanosome bilobe, a discrete cytoskeletal structure with few known protein components, represented an excellent test subject. Use of the bilobe protein TbMORN1 as a probe resulted in the identification of seven new bilobe constituents and two new flagellum attachment zone proteins. This constitutes the first usage of BioID on a largely uncharacterized structure, and demonstrates its utility in identifying new components of such a structure. This remarkable success validates BioID as a new tool for the study of unicellular eukaryotes in particular and the eukaryotic cytoskeleton in general.
Collapse
|
27
|
Abstract
The cell division cycle is tightly regulated by the activation and inactivation of a series of proteins that control the replication and segregation of organelles to the daughter cells. During the past decade, we have witnessed significant advances in our understanding of the cell cycle in Trypanosoma brucei and how the cycle is regulated by various regulatory proteins. However, many other regulators, especially those unique to trypanosomes, remain to be identified, and we are just beginning to delineate the signaling pathways that drive the transitions through different cell cycle stages, such as the G(1)/S transition, G(2)/M transition, and mitosis-cytokinesis transition. Trypanosomes appear to employ both evolutionarily conserved and trypanosome-specific molecules to regulate the various stages of its cell cycle, including DNA replication initiation, spindle assembly, chromosome segregation, and cytokinesis initiation and completion. Strikingly, trypanosomes lack some crucial regulators that are well conserved across evolution, such as Cdc6 and Cdt1, which are involved in DNA replication licensing, the spindle motor kinesin-5, which is required for spindle assembly, the central spindlin complex, which has been implicated in cytokinesis initiation, and the actomyosin contractile ring, which is located at the cleavage furrow. Conversely, trypanosomes possess certain regulators, such as cyclins, cyclin-dependent kinases, and mitotic centromere-associated kinesins, that are greatly expanded and likely play diverse cellular functions. Overall, trypanosomes apparently have integrated unique regulators into the evolutionarily conserved pathways to compensate for the absence of those conserved molecules and, additionally, have evolved certain cell cycle regulatory pathways that are either different from its human host or distinct between its own life cycle forms.
Collapse
|