1
|
Wiegard JC, Damm K, Lechner M, Thölken C, Ngo S, Putzer H, Hartmann RK. Processing and decay of 6S-1 and 6S-2 RNAs in Bacillus subtilis. RNA (NEW YORK, N.Y.) 2023; 29:1481-1499. [PMID: 37369528 PMCID: PMC10578484 DOI: 10.1261/rna.079666.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023]
Abstract
Noncoding 6S RNAs regulate transcription by binding to the active site of bacterial RNA polymerase holoenzymes. Processing and decay of 6S-1 and 6S-2 RNA were investigated in Bacillus subtilis by northern blot and RNA-seq analyses using different RNase knockout strains, as well as by in vitro processing assays. For both 6S RNA paralogs, we identified a key-but mechanistically different-role of RNase J1. RNase J1 catalyzes 5'-end maturation of 6S-1 RNA, yet relatively inefficient and possibly via the enzyme's "sliding endonuclease" activity. 5'-end maturation has no detectable effect on 6S-1 RNA function, but rather regulates its decay: The generated 5'-monophosphate on matured 6S-1 RNA propels endonucleolytic cleavage in its apical loop region. The major 6S-2 RNA degradation pathway is initiated by endonucleolytic cleavage in the 5'-central bubble to trigger 5'-to-3'-exoribonucleolytic degradation of the downstream fragment by RNase J1. The four 3'-exonucleases of B. subtilis-RNase R, PNPase, YhaM, and particularly RNase PH-are involved in 3'-end trimming of both 6S RNAs, degradation of 6S-1 RNA fragments, and decay of abortive transcripts (so-called product RNAs, ∼14 nt in length) synthesized on 6S-1 RNA during outgrowth from stationary phase. In the case of the growth-retarded RNase Y deletion strain, we were unable to infer a specific role of RNase Y in 6S RNA decay. Yet, a participation of RNase Y in 6S RNA decay still remains possible, as evidence for such a function may have been obscured by overlapping substrate specificities of RNase Y, RNase J1, and RNase J2.
Collapse
Affiliation(s)
- Jana Christin Wiegard
- Philipps-Universität Marburg, Institut für Pharmazeutische Chemie, D-35037 Marburg, Germany
| | - Katrin Damm
- Philipps-Universität Marburg, Institut für Pharmazeutische Chemie, D-35037 Marburg, Germany
| | - Marcus Lechner
- Philipps-Universität Marburg, Center for Synthetic Microbiology (SYNMIKRO), Bioinformatics Core Facility, D-35032 Marburg, Germany
| | - Clemens Thölken
- Philipps-Universität Marburg, Center for Synthetic Microbiology (SYNMIKRO), Bioinformatics Core Facility, D-35032 Marburg, Germany
| | - Saravuth Ngo
- Expression Génétique Microbienne, CNRS, Université Paris Cité, Institut de Biologie Physico-Chimique, 75005 Paris, France
| | - Harald Putzer
- Expression Génétique Microbienne, CNRS, Université Paris Cité, Institut de Biologie Physico-Chimique, 75005 Paris, France
| | - Roland K Hartmann
- Philipps-Universität Marburg, Institut für Pharmazeutische Chemie, D-35037 Marburg, Germany
| |
Collapse
|
2
|
Jia H, Dantuluri S, Margulies S, Smith V, Lever R, Allers T, Koh J, Chen S, Maupin-Furlow JA. RecJ3/4-aRNase J form a Ubl-associated nuclease complex functioning in survival against DNA damage in Haloferax volcanii. mBio 2023; 14:e0085223. [PMID: 37458473 PMCID: PMC10470531 DOI: 10.1128/mbio.00852-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 06/02/2023] [Indexed: 09/02/2023] Open
Abstract
Nucleases are strictly regulated and often localized in the cell to avoid the uncontrolled degradation of DNA and RNA. Here, a new type of nuclease complex, composed of RecJ3, RecJ4, and aRNase J, was identified through its ATP-dependent association with the ubiquitin-like SAMP1 and AAA-ATPase Cdc48a. The complex was discovered in Haloferax volcanii, an archaeon lacking an RNA exosome. Genetic analysis revealed aRNase J to be essential and RecJ3, RecJ4, and Cdc48a to function in the recovery from DNA damage including genotoxic agents that generate double-strand breaks. The RecJ3:RecJ4:aRNase J complex (isolated in 2:2:1 stoichiometry) functioned primarily as a 3'-5' exonuclease in hydrolyzing RNA and ssDNA, with the mechanism non-processive for ssDNA. aRNase J could also be purified as a homodimer that catalyzed endoribonuclease activity and, thus, was not restricted to the 5'-3' exonuclease activity typical of aRNase J homologs. Moreover, RecJ3 and RecJ4 could be purified as a 560-kDa subcomplex in equimolar subunit ratio with nuclease activities mirroring the full RecJ3/4-aRNase J complex. These findings prompted reconstitution assays that suggested RecJ3/4 could suppress, alter, and/or outcompete the nuclease activities of aRNase J. Based on the phenotypic results, this control mechanism of aRNase J by RecJ3/4 is not necessary for cell growth but instead appears important for DNA repair. IMPORTANCE Nucleases are critical for various cellular processes including DNA replication and repair. Here, a dynamic type of nuclease complex is newly identified in the archaeon Haloferax volcanii, which is missing the canonical RNA exosome. The complex, composed of RecJ3, RecJ4, and aRNase J, functions primarily as a 3'-5' exonuclease and was discovered through its ATP-dependent association with the ubiquitin-like SAMP1 and Cdc48a. aRNase J alone forms a homodimer that has endonuclease function and, thus, is not restricted to 5'-3' exonuclease activity typical of other aRNase J enzymes. RecJ3/4 appears to suppress, alter, and/or outcompete the nuclease activities of aRNase J. While aRNase J is essential for growth, RecJ3/4, Cdc48a, and SAMPs are important for recovery against DNA damage. These biological distinctions may correlate with the regulated nuclease activity of aRNase J in the RecJ3/4-aRNaseJ complex.
Collapse
Affiliation(s)
- Huiyong Jia
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Science, University of Florida, Gainesville, Florida, USA
| | - Swathi Dantuluri
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Science, University of Florida, Gainesville, Florida, USA
| | - Shae Margulies
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Science, University of Florida, Gainesville, Florida, USA
| | - Victoria Smith
- School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Rebecca Lever
- School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Thorsten Allers
- School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Jin Koh
- Proteomics and Mass Spectrometry, Interdisciplinary Center for Biotechnology Research, University of Florida, Gainesville, Florida, USA
| | - Sixue Chen
- Proteomics and Mass Spectrometry, Interdisciplinary Center for Biotechnology Research, University of Florida, Gainesville, Florida, USA
- Genetics Institute, University of Florida, Gainesville, Florida, USA
- Department of Biology, College of Liberal Arts and Sciences, University of Florida, Gainesville, Florida, USA
| | - Julie A. Maupin-Furlow
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Science, University of Florida, Gainesville, Florida, USA
- Genetics Institute, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
3
|
Huang L, Tam KS, Xie W. Structural and Biochemical Studies of the Novel Hexameric Endoribonuclease YicC. ACS Chem Biol 2023; 18:1738-1747. [PMID: 37535940 DOI: 10.1021/acschembio.3c00091] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/05/2023]
Abstract
The decay of mRNA is an essential process to bacteria. The newly identified E. coli protein YicC is a founding member of the UPF0701 family, and biochemical studies indicated that it is an RNase involved in mRNA degradation. However, its biochemical properties and catalytic mechanism are poorly understood. Here, we report the crystal structure of YicC, which shows an extended shape consisting of modular domains. While the backbone trace of the monomer forms a unique, nearly closed loop, the three monomers present in the asymmetric unit make a "shoulder-by-shoulder" trimer. In vitro RNA cleavage assays indicated that this endoribonuclease mainly recognizes the consensus GUG motif, with a preference for an extended CGUG sequence. Additionally, the active enzyme exists as a hexamer in solution and assumes a funnel shape. Structural analysis indicated that the hexamer interface is mainly formed by the hexamerization domain consisting of D71-D124 and that the disruption of the oligomeric form greatly diminished the enzymatic activity. By studying the surface charge potential and the sequence conservation, we identified a series of residues that play critical functional roles, which helps to reveal the catalytic mechanism of this divalent metal-ion-dependent RNase. Last but not least, we discovered that the catalytic domain of YicC did not share similarity with any known nuclease fold, suggesting that the enzyme adopts a novel fold to perform its catalysis and in vivo functions. In summary, our investigations into YicC provide an in-depth understanding of the functions of the UPF0701 protein family and the DUF1732 domain in general.
Collapse
Affiliation(s)
- Lin Huang
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory for Biocontrol, School of Life Sciences, The Sun Yat-Sen University, Guangzhou, Guangdong 510006, People's Republic of China
| | - King Sing Tam
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory for Biocontrol, School of Life Sciences, The Sun Yat-Sen University, Guangzhou, Guangdong 510006, People's Republic of China
| | - Wei Xie
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory for Biocontrol, School of Life Sciences, The Sun Yat-Sen University, Guangzhou, Guangdong 510006, People's Republic of China
| |
Collapse
|
4
|
Structural Insights into the Dimeric Form of Bacillus subtilis RNase Y Using NMR and AlphaFold. Biomolecules 2022; 12:biom12121798. [PMID: 36551226 PMCID: PMC9775385 DOI: 10.3390/biom12121798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 11/23/2022] [Accepted: 11/28/2022] [Indexed: 12/04/2022] Open
Abstract
RNase Y is a crucial component of genetic translation, acting as the key enzyme initiating mRNA decay in many Gram-positive bacteria. The N-terminal domain of Bacillus subtilis RNase Y (Nter-BsRNaseY) is thought to interact with various protein partners within a degradosome complex. Bioinformatics and biophysical analysis have previously shown that Nter-BsRNaseY, which is in equilibrium between a monomeric and a dimeric form, displays an elongated fold with a high content of α-helices. Using multidimensional heteronuclear NMR and AlphaFold models, here, we show that the Nter-BsRNaseY dimer is constituted of a long N-terminal parallel coiled-coil structure, linked by a turn to a C-terminal region composed of helices that display either a straight or bent conformation. The structural organization of the N-terminal domain is maintained within the AlphaFold model of the full-length RNase Y, with the turn allowing flexibility between the N- and C-terminal domains. The catalytic domain is globular, with two helices linking the KH and HD modules, followed by the C-terminal region. This latter region, with no function assigned up to now, is most likely involved in the dimerization of B. subtilis RNase Y together with the N-terminal coiled-coil structure.
Collapse
|
5
|
The absence of PNPase activity in Enterococcus faecalis results in alterations of the bacterial cell-wall but induces high proteolytic and adhesion activities. Gene 2022; 833:146610. [PMID: 35609794 DOI: 10.1016/j.gene.2022.146610] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 04/21/2022] [Accepted: 05/18/2022] [Indexed: 11/21/2022]
Abstract
Enterococci are lactic acid bacteria (LAB) used as starters and probiotics, delineating their positive attributes. Nevertheless, enterococci can be culprit for thousands of infectious diseases, including urinary tract infections, bacteremia and endocarditis. Here, we aim to determine the impact of polynucleotide phosphorylase (PNPase) in the biology of Enterococcus faecalis 14; a human isolate from meconium. Thus, a mutant strain deficient in PNPase synthesis, named ΔpnpA mutant, was genetically obtained. After that, a transcriptomic study revealed a set of 244 genes differentially expressed in the ΔpnpA mutant compared with the wild-type strain, when exploiting RNAs extracted from these strains after 3 and 6 h of growth. Differentially expressed genes include those involved in cell wall synthesis, adhesion, biofilm formation, bacterial competence and conjugation, stress response, transport, DNA repair and many other functions related to the primary and secondary metabolism of the bacteria. Moreover, the ΔpnpA mutant showed an altered cell envelope ultrastructure compared with the WT strain, and is also distinguished by a strong adhesion capacity on eukaryotic cell as well as a high proteolytic activity. This study, which combines genetics, physiology and transcriptomics enabled us to show further biological functions that could be directly or indirectly controlled by the PNPase in E. faecalis 14.
Collapse
|
6
|
Chhabra S, Mandell ZF, Liu B, Babitzke P, Bechhofer DH. Analysis of mRNA Decay Intermediates in Bacillus subtilis 3' Exoribonuclease and RNA Helicase Mutant Strains. mBio 2022; 13:e0040022. [PMID: 35311531 PMCID: PMC9040804 DOI: 10.1128/mbio.00400-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 02/28/2022] [Indexed: 12/22/2022] Open
Abstract
The Bacillus subtilis genome encodes four 3' exoribonucleases: polynucleotide phosphorylase (PNPase), RNase R, RNase PH, and YhaM. Previous work showed that PNPase, encoded by the pnpA gene, is the major 3' exonuclease involved in mRNA turnover; in a pnpA deletion strain, numerous mRNA decay intermediates accumulate. Whether B. subtilis mRNA decay occurs in the context of a degradosome complex is controversial. In this study, global mapping of mRNA decay intermediate 3' ends within coding sequences was performed in strains that were either deleted for or had an inactivating point mutation in the pnpA gene. The patterns of 3'-end accumulation in these strains were highly similar, which may have implications for the role of a degradosome in mRNA decay. A comparison with mapped 3' ends in a strain lacking CshA, the major RNA helicase, indicated that many mRNAs require both PNPase and CshA for efficient decay. Transcriptome sequencing (RNA-seq) analysis of strains lacking RNase R suggested that this enzyme did not play a major role in mRNA turnover in the wild-type strain. Strains were constructed that contained only one of the four known 3' exoribonucleases. When RNase R was the only 3' exonuclease present, it was able to degrade a model mRNA efficiently, showing processive decay even through a strong stem-loop structure that inhibits PNPase processivity. Strains containing only RNase PH or only YhaM were also insensitive to this RNA secondary structure, suggesting the existence of another, as-yet-unidentified, 3' exoribonuclease. IMPORTANCE The ability to rapidly change bacterial gene expression programs in response to environmental conditions is highly dependent on the efficient turnover of mRNA. While much is known about the regulation of gene expression at the transcriptional and translational levels, much less is known about the intermediate step of mRNA decay. Here, we mapped the 3' ends of mRNA decay intermediates in strains that were missing the major 3' exoribonuclease PNPase or the RNA helicase CshA. We also assessed the roles of three other B. subtilis 3' exonucleases in the mRNA decay process. The data confirm the primary role of PNPase in mRNA turnover and suggest the involvement of one or more unknown RNases.
Collapse
Affiliation(s)
- Shivani Chhabra
- Icahn School of Medicine at Mount Sinai, Department of Pharmacological Sciences, New York, New York, USA
| | - Zachary F. Mandell
- The Pennsylvania State University, Department of Biochemistry and Molecular Biology, Center for RNA Molecular Biology, University Park, Pennsylvania, USA
| | - Bo Liu
- Icahn School of Medicine at Mount Sinai, Department of Pharmacological Sciences, New York, New York, USA
| | - Paul Babitzke
- The Pennsylvania State University, Department of Biochemistry and Molecular Biology, Center for RNA Molecular Biology, University Park, Pennsylvania, USA
| | - David H. Bechhofer
- Icahn School of Medicine at Mount Sinai, Department of Pharmacological Sciences, New York, New York, USA
| |
Collapse
|
7
|
Ingle S, Chhabra S, Chen J, Lazarus MB, Luo X, Bechhofer DH. Discovery and initial characterization of YloC, a novel endoribonuclease in Bacillus subtilis. RNA (NEW YORK, N.Y.) 2022; 28:227-238. [PMID: 34815358 PMCID: PMC8906540 DOI: 10.1261/rna.078962.121] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 11/02/2021] [Indexed: 06/13/2023]
Abstract
The Bacillus subtilis genome is predicted to encode numerous ribonucleases, including four 3' exoribonucleases that have been characterized to some extent. A strain containing gene knockouts of all four known 3' exoribonucleases is viable, suggesting that one or more additional RNases remain to be discovered. A protein extract from the quadruple RNase mutant strain was fractionated and RNase activity was followed, resulting in the identification of an enzyme activity catalyzed by the YloC protein. YloC is an endoribonuclease and is a member of the highly conserved "YicC family" of proteins that is widespread in bacteria. YloC is a metal-dependent enzyme that catalyzes the cleavage of single-stranded RNA, preferentially at U residues, and exists in an oligomeric form, most likely a hexamer. As such, YloC shares some characteristics with the SARS-CoV Nsp15 endoribonuclease. While the in vivo function of YloC in B. subtilis is yet to be determined, YloC was found to act similarly to YicC in an Escherichia coli in vivo assay that assesses decay of the small RNA, RyhB. Thus, YloC may play a role in small RNA regulation.
Collapse
Affiliation(s)
- Shakti Ingle
- Department of Pharmacology and Systems Therapeutics, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
| | - Shivani Chhabra
- Department of Pharmacology and Systems Therapeutics, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
| | - Jiandong Chen
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Michael B Lazarus
- Department of Pharmacology and Systems Therapeutics, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
| | - Xing Luo
- Laboratory of Molecular Biology, National Cancer Institute, Bethesda, Maryland 20892, USA
| | - David H Bechhofer
- Department of Pharmacology and Systems Therapeutics, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
| |
Collapse
|
8
|
Different Regulatory Modes of Synechocystis sp. PCC 6803 in Response to Photosynthesis Inhibitory Conditions. mSystems 2021; 6:e0094321. [PMID: 34874777 PMCID: PMC8651088 DOI: 10.1128/msystems.00943-21] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Cyanobacteria are promising industrial platforms owing to their ability to produce diverse natural secondary metabolites and nonnative value-added biochemicals from CO2 and light. To fully utilize their industrial potency, it is critical to understand their photosynthetic efficiency under various environmental conditions. In this study, we elucidated the inhibitory mechanisms of photosynthesis under high-light and low-temperature stress conditions in the model cyanobacterium Synechocystis sp. PCC 6803. Under each stress condition, the transcript abundance and translation efficiency were measured using transcriptome sequencing (RNA-seq) and ribosome profiling, and the genome-wide transcription unit architecture was constructed by data integration of transcription start sites and transcript 3′-end positions obtained from differential RNA-seq and sequencing of 3′-ends (Term-seq), respectively. Our results suggested that the mode of photosynthesis inhibition differed between the two stress conditions; high light stress induced photodamage responses, while low temperature stress impaired the translation efficiency of photosynthesis-associated genes. In particular, poor translation of photosystem I resulted from ribosome stalling at the untranslated regions, affecting the overall photosynthetic yield under low temperature stress. Our comprehensive multiomics analysis with transcription unit architecture provides foundational information on photosynthesis for future industrial strain development. IMPORTANCE Cyanobacteria are a compelling biochemical production platform for their ability to propagate using light and atmospheric CO2 via photosynthesis. However, the engineering of strains is hampered by limited understanding of photosynthesis under diverse environmental conditions such as high-light and low-temperature stresses. Herein, we decipher the transcriptomic and translatomic responses of the photosynthetic efficiency to stress conditions using the integrative analysis of multiomic data generated by RNA-seq and ribosome profiling, respectively. Through the generated massive data, along with the guide of the genome-wide transcription unit architecture constructed by transcription start sites and transcript 3′-end positions, we identified the factors affecting photosynthesis at transcription, posttranscription, and translation levels. Importantly, the high-light stress induces photodamage responses, and the low-temperature stress cripples the translation efficiency of photosynthesis-associated genes. The resulting insights provide pivotal information for future cyanobacterial cell factories powered by the engineering toward robust photosynthesis ability.
Collapse
|
9
|
Oviedo-Bocanegra LM, Hinrichs R, Rotter DAO, Dersch S, Graumann PL. Single molecule/particle tracking analysis program SMTracker 2.0 reveals different dynamics of proteins within the RNA degradosome complex in Bacillus subtilis. Nucleic Acids Res 2021; 49:e112. [PMID: 34417617 PMCID: PMC8565344 DOI: 10.1093/nar/gkab696] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 07/29/2021] [Indexed: 01/06/2023] Open
Abstract
Single-molecule (particle) tracking is a powerful method to study dynamic processes in cells at highest possible spatial and temporal resolution. We have developed SMTracker, a graphical user interface for automatic quantifying, visualizing and managing of data. Version 2.0 determines distributions of positional displacements in x- and y-direction using multi-state diffusion models, discriminates between Brownian, sub- or superdiffusive behaviour, and locates slow or fast diffusing populations in a standardized cell. Using SMTracker, we show that the Bacillus subtilis RNA degradosome consists of a highly dynamic complex of RNase Y and binding partners. We found similar changes in molecule dynamics for RNase Y, CshA, PNPase and enolase, but not for phosphofructokinase, RNase J1 and J2, to inhibition of transcription. However, the absence of PfkA or of RNase J2 affected molecule dynamics of RNase Y-mVenus, indicating that these two proteins are indeed part of the degradosome. Molecule counting suggests that RNase Y is present as a dimer in cells, at an average copy number of about 500, of which 46% are present in a slow-diffusive state and thus likely engaged within degradosomes. Thus, RNase Y, CshA, PNPase and enolase likely play central roles, and RNase J1, J2 and PfkA more peripheral roles, in degradosome architecture.
Collapse
Affiliation(s)
- Luis M Oviedo-Bocanegra
- Centre for Synthetic Microbiology (SYNMIKRO) and Fachbereich Chemie, Philipps-Universität Marburg, 35032 Marburg, Germany
| | - Rebecca Hinrichs
- Centre for Synthetic Microbiology (SYNMIKRO) and Fachbereich Chemie, Philipps-Universität Marburg, 35032 Marburg, Germany
| | - Daniel Andreas Orlando Rotter
- Centre for Synthetic Microbiology (SYNMIKRO) and Fachbereich Chemie, Philipps-Universität Marburg, 35032 Marburg, Germany
| | - Simon Dersch
- Centre for Synthetic Microbiology (SYNMIKRO) and Fachbereich Chemie, Philipps-Universität Marburg, 35032 Marburg, Germany
| | - Peter L Graumann
- Centre for Synthetic Microbiology (SYNMIKRO) and Fachbereich Chemie, Philipps-Universität Marburg, 35032 Marburg, Germany
| |
Collapse
|
10
|
Harwood CR, Kikuchi Y. The ins and outs of Bacillus proteases: activities, functions and commercial significance. FEMS Microbiol Rev 2021; 46:6354784. [PMID: 34410368 PMCID: PMC8767453 DOI: 10.1093/femsre/fuab046] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 08/17/2021] [Indexed: 12/23/2022] Open
Abstract
Because the majority of bacterial species divide by binary fission, and do not have distinguishable somatic and germline cells, they could be considered to be immortal. However, bacteria ‘age’ due to damage to vital cell components such as DNA and proteins. DNA damage can often be repaired using efficient DNA repair mechanisms. However, many proteins have a functional ‘shelf life’; some are short lived, while others are relatively stable. Specific degradation processes are built into the life span of proteins whose activities are required to fulfil a specific function during a prescribed period of time (e.g. cell cycle, differentiation process, stress response). In addition, proteins that are irreparably damaged or that have come to the end of their functional life span need to be removed by quality control proteases. Other proteases are involved in performing a variety of specific functions that can be broadly divided into three categories: processing, regulation and feeding. This review presents a systematic account of the proteases of Bacillus subtilis and their activities. It reviews the proteases found in, or associated with, the cytoplasm, the cell membrane, the cell wall and the external milieu. Where known, the impacts of the deletion of particular proteases are discussed, particularly in relation to industrial applications.
Collapse
Affiliation(s)
- Colin R Harwood
- Centre for Bacterial Cell Biology, Biosciences Institute, Newcastle University NE2 4AX, Newcastle upon Tyne, UK
| | - Yoshimi Kikuchi
- Research Institute for Bioscience Products & Fine Chemicals, Ajinomoto Co., Inc., Kawasaki 210-8681, JAPAN
| |
Collapse
|
11
|
Benda M, Woelfel S, Faßhauer P, Gunka K, Klumpp S, Poehlein A, Kálalová D, Šanderová H, Daniel R, Krásný L, Stülke J. Quasi-essentiality of RNase Y in Bacillus subtilis is caused by its critical role in the control of mRNA homeostasis. Nucleic Acids Res 2021; 49:7088-7102. [PMID: 34157109 PMCID: PMC8266666 DOI: 10.1093/nar/gkab528] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 05/28/2021] [Accepted: 06/08/2021] [Indexed: 01/18/2023] Open
Abstract
RNA turnover is essential in all domains of life. The endonuclease RNase Y (rny) is one of the key components involved in RNA metabolism of the model organism Bacillus subtilis. Essentiality of RNase Y has been a matter of discussion, since deletion of the rny gene is possible, but leads to severe phenotypic effects. In this work, we demonstrate that the rny mutant strain rapidly evolves suppressor mutations to at least partially alleviate these defects. All suppressor mutants had acquired a duplication of an about 60 kb long genomic region encompassing genes for all three core subunits of the RNA polymerase—α, β, β′. When the duplication of the RNA polymerase genes was prevented by relocation of the rpoA gene in the B. subtilis genome, all suppressor mutants carried distinct single point mutations in evolutionary conserved regions of genes coding either for the β or β’ subunits of the RNA polymerase that were not tolerated by wild type bacteria. In vitro transcription assays with the mutated polymerase variants showed a severe decrease in transcription efficiency. Altogether, our results suggest a tight cooperation between RNase Y and the RNA polymerase to establish an optimal RNA homeostasis in B. subtilis cells.
Collapse
Affiliation(s)
- Martin Benda
- Department of General Microbiology, GZMB, Georg-August-University Göttingen, Göttingen, Germany
| | - Simon Woelfel
- Department of General Microbiology, GZMB, Georg-August-University Göttingen, Göttingen, Germany
| | - Patrick Faßhauer
- Department of General Microbiology, GZMB, Georg-August-University Göttingen, Göttingen, Germany
| | - Katrin Gunka
- Department of General Microbiology, GZMB, Georg-August-University Göttingen, Göttingen, Germany
| | - Stefan Klumpp
- Institute for the Dynamics of Complex Systems, Georg-August-University Göttingen, Göttingen, Germany
| | - Anja Poehlein
- Department of Genomic and Applied Microbiology & Göttingen Genomics Laboratory, GZMB, Georg-August-University Göttingen, Göttingen, Germany
| | - Debora Kálalová
- Laboratory of Microbial Genetics and Gene Expression, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Hana Šanderová
- Laboratory of Microbial Genetics and Gene Expression, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Rolf Daniel
- Department of Genomic and Applied Microbiology & Göttingen Genomics Laboratory, GZMB, Georg-August-University Göttingen, Göttingen, Germany
| | - Libor Krásný
- Laboratory of Microbial Genetics and Gene Expression, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Jörg Stülke
- Department of General Microbiology, GZMB, Georg-August-University Göttingen, Göttingen, Germany
| |
Collapse
|
12
|
Ingle S, Chhabra S, Laspina D, Salvo E, Liu B, Bechhofer DH. Polynucleotide phosphorylase and RNA helicase CshA cooperate in Bacillus subtilis mRNA decay. RNA Biol 2020; 18:1692-1701. [PMID: 33323028 DOI: 10.1080/15476286.2020.1864183] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Abstract
Polynucleotide phosphorylase (PNPase), a 3' exoribonuclease that degrades RNA in the 3'-to-5' direction, is the major mRNA decay activity in Bacillus subtilis. PNPase is known to be inhibited in vitro by strong RNA secondary structure, and rapid mRNA turnover in vivo is thought to require an RNA helicase activity working in conjunction with PNPase. The most abundant RNA helicase in B. subtilis is CshA. We found for three small, monocistronic mRNAs that, for some RNA sequences, PNPase processivity was unimpeded even without CshA, whereas others required CshA for efficient degradation. A novel colour screen for decay of mRNA in B. subtilis was created, using mRNA encoded by the slrA gene, which is degraded from its 3' end by PNPase. A significant correlation between the predicted strength of a stem-loop structure, located in the body of the message, and PNPase processivity was observed. Northern blot analysis confirmed that PNPase processivity was greatly hindered by the internal RNA structure, and even more so in the absence of CshA. Three other B. subtilis RNA helicases did not appear to be involved in mRNA decay during vegetative growth. The results confirm the hypothesis that efficient 3' exonucleolytic decay of B. subtilis RNA depends on the combined activity of PNPase and CshA.
Collapse
Affiliation(s)
- Shakti Ingle
- Icahn School of Medicine at Mount Sinai, Department of Pharmacological Sciences, New York, NY, USA
| | - Shivani Chhabra
- Icahn School of Medicine at Mount Sinai, Department of Pharmacological Sciences, New York, NY, USA
| | - Denise Laspina
- Icahn School of Medicine at Mount Sinai, Department of Pharmacological Sciences, New York, NY, USA
| | - Elizabeth Salvo
- Icahn School of Medicine at Mount Sinai, Department of Pharmacological Sciences, New York, NY, USA
| | - Bo Liu
- Icahn School of Medicine at Mount Sinai, Department of Pharmacological Sciences, New York, NY, USA
| | - David H Bechhofer
- Icahn School of Medicine at Mount Sinai, Department of Pharmacological Sciences, New York, NY, USA
| |
Collapse
|
13
|
Abstract
Here, we describe SR7, a dual-function antisense RNA encoded on the Bacillus subtilis chromosome. This RNA was earlier described as SigB-dependent regulatory RNA S1136 and reported to reduce the amount of the small ribosomal subunit under ethanol stress. We found that the 5ʹ portion of SR7 encodes a small protein composed of 39 amino acids which we designated SR7P. It is translated from a 185 nt SigB-dependent mRNA under five different stress conditions and a longer SigB-independent RNA constitutively. About three-fold higher amounts of SR7P were detected in B. subtilis cells exposed to salt, ethanol, acid or heat stress. Co-elution experiments with SR7PC-FLAG and Far-Western blotting demonstrated that SR7P interacts with the glycolytic enzyme enolase. Enolase is a scaffolding component of the B. subtilis degradosome where it interacts with RNase Y and phosphofructokinase PfkA. We found that SR7P increases the amount of RNase Y bound to enolase without affecting PfkA. RNA does not bridge the SR7P-enolase-RNase Y interaction. In vitro-degradation assays with the known RNase Y substrates yitJ and rpsO mRNA revealed enhanced enzymatic activity of enolase-bound RNase Y in the presence of SR7P. Northern blots showed a major effect of enolase and a minor effect of SR7P on the half-life of rpsO mRNA indicating a fine-tuning role of SR7P in RNA degradation.
Collapse
Affiliation(s)
- Inam Ul Haq
- Friedrich-Schiller-Universität Jena, Matthias-Schleiden-Institut , AG Bakteriengenetik, Jena, Germany
| | - Peter Müller
- Friedrich-Schiller-Universität Jena, Matthias-Schleiden-Institut , AG Bakteriengenetik, Jena, Germany
| | - Sabine Brantl
- Friedrich-Schiller-Universität Jena, Matthias-Schleiden-Institut , AG Bakteriengenetik, Jena, Germany
| |
Collapse
|
14
|
Phung DK, Etienne C, Batista M, Langendijk-Genevaux P, Moalic Y, Laurent S, Liuu S, Morales V, Jebbar M, Fichant G, Bouvier M, Flament D, Clouet-d’Orval B. RNA processing machineries in Archaea: the 5'-3' exoribonuclease aRNase J of the β-CASP family is engaged specifically with the helicase ASH-Ski2 and the 3'-5' exoribonucleolytic RNA exosome machinery. Nucleic Acids Res 2020; 48:3832-3847. [PMID: 32030412 PMCID: PMC7144898 DOI: 10.1093/nar/gkaa052] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 01/14/2020] [Accepted: 01/23/2020] [Indexed: 01/22/2023] Open
Abstract
A network of RNA helicases, endoribonucleases and exoribonucleases regulates the quantity and quality of cellular RNAs. To date, mechanistic studies focussed on bacterial and eukaryal systems due to the challenge of identifying the main drivers of RNA decay and processing in Archaea. Here, our data support that aRNase J, a 5'-3' exoribonuclease of the β-CASP family conserved in Euryarchaeota, engages specifically with a Ski2-like helicase and the RNA exosome to potentially exert control over RNA surveillance, at the vicinity of the ribosome. Proteomic landscapes and direct protein-protein interaction analyses, strengthened by comprehensive phylogenomic studies demonstrated that aRNase J interplay with ASH-Ski2 and a cap exosome subunit. Finally, Thermococcus barophilus whole-cell extract fractionation experiments provide evidences that an aRNase J/ASH-Ski2 complex might exist in vivo and hint at an association of aRNase J with the ribosome that is emphasised in absence of ASH-Ski2. Whilst aRNase J homologues are found among bacteria, the RNA exosome and the Ski2-like RNA helicase have eukaryotic homologues, underlining the mosaic aspect of archaeal RNA machines. Altogether, these results suggest a fundamental role of β-CASP RNase/helicase complex in archaeal RNA metabolism.
Collapse
Affiliation(s)
- Duy Khanh Phung
- Laboratoire de Microbiologie et de Génétique Moléculaires, UMR5100, Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, Université Paul Sabatier, F-31062 Toulouse, France
| | - Clarisse Etienne
- Laboratoire de Microbiologie et de Génétique Moléculaires, UMR5100, Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, Université Paul Sabatier, F-31062 Toulouse, France
| | - Manon Batista
- Laboratoire de Microbiologie et de Génétique Moléculaires, UMR5100, Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, Université Paul Sabatier, F-31062 Toulouse, France
| | - Petra Langendijk-Genevaux
- Laboratoire de Microbiologie et de Génétique Moléculaires, UMR5100, Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, Université Paul Sabatier, F-31062 Toulouse, France
| | - Yann Moalic
- Ifremer, Univ Brest, CNRS, Laboratoire de Microbiologie des Environnements Extrêmes, F-29280 Plouzané, France
| | - Sébastien Laurent
- Ifremer, Univ Brest, CNRS, Laboratoire de Microbiologie des Environnements Extrêmes, F-29280 Plouzané, France
| | - Sophie Liuu
- Micalis Institute, PAPPSO, INRA, AgroParisTech, Université Paris-Saclay, 78350, Jouy-en-Josas, France
| | - Violette Morales
- Laboratoire de Microbiologie et de Génétique Moléculaires, UMR5100, Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, Université Paul Sabatier, F-31062 Toulouse, France
| | - Mohamed Jebbar
- Ifremer, Univ Brest, CNRS, Laboratoire de Microbiologie des Environnements Extrêmes, F-29280 Plouzané, France
| | - Gwennaele Fichant
- Laboratoire de Microbiologie et de Génétique Moléculaires, UMR5100, Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, Université Paul Sabatier, F-31062 Toulouse, France
| | - Marie Bouvier
- Laboratoire de Microbiologie et de Génétique Moléculaires, UMR5100, Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, Université Paul Sabatier, F-31062 Toulouse, France
| | - Didier Flament
- Ifremer, Univ Brest, CNRS, Laboratoire de Microbiologie des Environnements Extrêmes, F-29280 Plouzané, France
| | - Béatrice Clouet-d’Orval
- Laboratoire de Microbiologie et de Génétique Moléculaires, UMR5100, Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, Université Paul Sabatier, F-31062 Toulouse, France
- To whom correspondence should be addressed. Tel: +33 561 335 875; Fax: +33 561 335 886;
| |
Collapse
|
15
|
Snow S, Bacon E, Bergeron J, Katzman D, Wilhelm A, Lewis O, Syangtan D, Calkins A, Archambault L, Anacker ML, Schlax PJ. Transcript decay mediated by RNase III in Borrelia burgdorferi. Biochem Biophys Res Commun 2020; 529:386-391. [PMID: 32703440 DOI: 10.1016/j.bbrc.2020.05.201] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 05/26/2020] [Indexed: 11/29/2022]
Abstract
The causative agent of Lyme disease, Borrelia burgdorferi, requires shifts in gene expression to undergo its natural enzootic cycle between tick and vertebrate hosts. mRNA decay mechanisms play significant roles in governing gene expression in other bacteria, but are not yet characterized in B. burgdorferi. RNase III is an important enzyme in processing ribosomal RNA, but it also plays a role in mRNA decay in many bacteria. We compared RNA decay profiles and steady-state abundances of transcripts in wild-type Borrelia burgdorferi strain B31 and in an RNase III null (rnc-) mutant. Transcripts encoding RNA polymerase subunits (rpoA and rpoS), ribosomal proteins (rpsD, rpsK, rpsM, rplQ, and rpsO), a nuclease (pnp), a flagellar protein (flaB), and a translational regulator (bpuR) decayed more rapidly in the wild-type strain than in the slow growing rnc- mutant indicating that RNA turnover is mediated by RNase III in the bacterium that causes Lyme disease. Additionally, in wild type bacteria, RNA decay rates of rpoS, rpoN, ospA, ospC, bpuR and dbpA transcripts are only modestly affected by changes in the osmolarity.
Collapse
Affiliation(s)
- Santina Snow
- Department of Chemistry and Biochemistry, Bates College, Lewiston, ME, USA
| | - Emily Bacon
- Department of Chemistry and Biochemistry, Bates College, Lewiston, ME, USA
| | - Jennifer Bergeron
- Department of Chemistry and Biochemistry, Bates College, Lewiston, ME, USA
| | - David Katzman
- Department of Chemistry and Biochemistry, Bates College, Lewiston, ME, USA
| | - Amelia Wilhelm
- Department of Chemistry and Biochemistry, Bates College, Lewiston, ME, USA
| | - Owen Lewis
- Department of Chemistry and Biochemistry, Bates College, Lewiston, ME, USA
| | - Deepsing Syangtan
- Department of Chemistry and Biochemistry, Bates College, Lewiston, ME, USA
| | - Andrew Calkins
- Department of Chemistry and Biochemistry, Bates College, Lewiston, ME, USA
| | - Linda Archambault
- Department of Chemistry and Biochemistry, Bates College, Lewiston, ME, USA
| | - Melissa L Anacker
- Division of Biological Sciences, University of Montana, Missoula, MT, USA
| | - Paula Jean Schlax
- Department of Chemistry and Biochemistry, Bates College, Lewiston, ME, USA.
| |
Collapse
|
16
|
Zhou C, Zhang J, Hu X, Li C, Wang L, Huang Q, Chen W. RNase II binds to RNase E and modulates its endoribonucleolytic activity in the cyanobacterium Anabaena PCC 7120. Nucleic Acids Res 2020; 48:3922-3934. [PMID: 32055835 PMCID: PMC7144899 DOI: 10.1093/nar/gkaa092] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 02/03/2020] [Accepted: 02/10/2020] [Indexed: 11/16/2022] Open
Abstract
In Escherichia coli, the endoribonuclease E (RNase E) can recruit several other ribonucleases and regulatory proteins via its noncatalytic domain to form an RNA degradosome that controls cellular RNA turnover. Similar RNA degradation complexes have been found in other bacteria; however, their compositions are varied among different bacterial species. In cyanobacteria, only the exoribonuclease PNPase was shown to bind to the noncatalytic domain of RNase E. Here, we showed that Alr1240, a member of the RNB family of exoribonucleases, could be co-isolated with RNase E from the lysate of the cyanobacterium Anabaena PCC 7120. Enzymatic analysis revealed that Alr1240 is an exoribonuclease II (RNase II), as it only degrades non-structured single-stranded RNA substrates. In contrast to known RNase E-interacting ribonucleases, which bind to the noncatalytic domain of RNase E, the Anabaena RNase II was shown to associate with the catalytic domain of RNase E. Using a strain in which RNase E and RNase II were tagged in situ with GFP and BFP, respectively, we showed that RNase E and RNase II form a compact complex in vivo by a fluorescence resonance energy transfer (FRET) assay. RNase E activity on several synthetic substrates was boosted in the presence of RNase II, suggesting that the activity of RNase E could be regulated by RNase II-RNase E interaction. To our knowledge, Anabaena RNase II is an unusual ribonuclease that interacts with the catalytic domain of RNase E, and it may represent a new type of RNA degradosome and a novel mechanism for regulating the activity of the RNA degradosome. As Anabaena RNase E interacts with RNase II and PNPase via different regions, it is very likely that the three ribonucleases form a large complex and cooperatively regulate RNA metabolism in the cell.
Collapse
Affiliation(s)
- Cong Zhou
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
| | - Juyuan Zhang
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430070, China
| | - Xinyu Hu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
| | - Changchang Li
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
| | - Li Wang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
| | - Qiaoyun Huang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
| | - Wenli Chen
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
17
|
Salze M, Muller C, Bernay B, Hartke A, Clamens T, Lesouhaitier O, Rincé A. Study of key RNA metabolism proteins in Enterococcus faecalis. RNA Biol 2020; 17:794-804. [PMID: 32070211 DOI: 10.1080/15476286.2020.1728103] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
The control of mRNA turnover is essential in bacteria to allow rapid adaptation, especially in opportunistic pathogen like Enterococcus faecalis. This mechanism involves RNase and DEAD-box helicases that are key elements in RNA processing and their associations form the degradosome with accessory proteins. In this study, we investigated the function of four RNases (J1, J2, Y and III) and three DEAD-box helicases (CshA, CshB, CshC) present in most Enterococci. The interactions of all these RNA metabolism actors were investigated in vitro, and the results are in accordance with a degradosome structure close to the one of Bacillus subtilis. At the physiological level, we showed that RNase J1 is essential, whereas RNases J2 and III have a role in cold, oxidative and bile salts stress response, and RNase Y in general fitness. Furthermore, RNases J2, Y and III mutants are affected in virulence in the Galleria mellonella infection model. Concerning DEAD-box helicases, all of them are involved in cold shock response. Since the ΔcshA mutant was the most stress impacted strain, we studied this DEAD-box helicase CshA in more detail. This showed that CshA autoregulates its own expression by binding to its mRNA 5'Unstranslated Region. Interestingly, CshC is also involved in the expression control of CshA by a hitherto unprecedented mechanism.
Collapse
Affiliation(s)
- Marine Salze
- Normandie Univ, UNICAEN, Unité De Recherche Risques Microbiens U2RM , Caen, France
| | - Cécile Muller
- Normandie Univ, UNICAEN, Unité De Recherche Risques Microbiens U2RM , Caen, France
| | - Benoit Bernay
- Proteogen Platform, Normandie Univ, UNICAEN, SFR ICORE , Caen, France
| | - Axel Hartke
- Normandie Univ, UNICAEN, Unité De Recherche Risques Microbiens U2RM , Caen, France
| | - Thomas Clamens
- Laboratoire de Microbiologie Signaux et Microenvironnement LMSM, Normandie Univ, University of Rouen , Evreux, France
| | - Olivier Lesouhaitier
- Laboratoire de Microbiologie Signaux et Microenvironnement LMSM, Normandie Univ, University of Rouen , Evreux, France
| | - Alain Rincé
- Normandie Univ, UNICAEN, Unité De Recherche Risques Microbiens U2RM , Caen, France
| |
Collapse
|
18
|
Šiková M, Wiedermannová J, Převorovský M, Barvík I, Sudzinová P, Kofroňová O, Benada O, Šanderová H, Condon C, Krásný L. The torpedo effect in Bacillus subtilis: RNase J1 resolves stalled transcription complexes. EMBO J 2020; 39:e102500. [PMID: 31840842 PMCID: PMC6996504 DOI: 10.15252/embj.2019102500] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 11/26/2019] [Accepted: 11/27/2019] [Indexed: 12/17/2022] Open
Abstract
RNase J1 is the major 5'-to-3' bacterial exoribonuclease. We demonstrate that in its absence, RNA polymerases (RNAPs) are redistributed on DNA, with increased RNAP occupancy on some genes without a parallel increase in transcriptional output. This suggests that some of these RNAPs represent stalled, non-transcribing complexes. We show that RNase J1 is able to resolve these stalled RNAP complexes by a "torpedo" mechanism, whereby RNase J1 degrades the nascent RNA and causes the transcription complex to disassemble upon collision with RNAP. A heterologous enzyme, yeast Xrn1 (5'-to-3' exonuclease), is less efficient than RNase J1 in resolving stalled Bacillus subtilis RNAP, suggesting that the effect is RNase-specific. Our results thus reveal a novel general principle, whereby an RNase can participate in genome-wide surveillance of stalled RNAP complexes, preventing potentially deleterious transcription-replication collisions.
Collapse
Affiliation(s)
- Michaela Šiková
- Institute of Microbiology of the Czech Academy of SciencesPrague 4Czech Republic
| | - Jana Wiedermannová
- Institute of Microbiology of the Czech Academy of SciencesPrague 4Czech Republic
| | - Martin Převorovský
- Department of Cell BiologyFaculty of ScienceCharles UniversityPragueCzech Republic
| | - Ivan Barvík
- Division of Biomolecular PhysicsInstitute of PhysicsCharles UniversityPrague 2Czech Republic
| | - Petra Sudzinová
- Institute of Microbiology of the Czech Academy of SciencesPrague 4Czech Republic
| | - Olga Kofroňová
- Institute of Microbiology of the Czech Academy of SciencesPrague 4Czech Republic
| | - Oldřich Benada
- Institute of Microbiology of the Czech Academy of SciencesPrague 4Czech Republic
| | - Hana Šanderová
- Institute of Microbiology of the Czech Academy of SciencesPrague 4Czech Republic
| | - Ciarán Condon
- UMR8261CNRSUniversité de ParisInstitut de Biologie Physico‐ChimiqueParisFrance
| | - Libor Krásný
- Institute of Microbiology of the Czech Academy of SciencesPrague 4Czech Republic
| |
Collapse
|
19
|
Frindert J, Kahloon MA, Zhang Y, Ahmed YL, Sinning I, Jäschke A. YvcI from Bacillus subtilis has in vitro RNA pyrophosphohydrolase activity. J Biol Chem 2019; 294:19967-19977. [PMID: 31740579 DOI: 10.1074/jbc.ra119.011485] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 11/15/2019] [Indexed: 12/23/2022] Open
Abstract
RNA degradation is one of several ways for organisms to regulate gene expression. In bacteria, the removal of two terminal phosphate moieties as orthophosphate (Bacillus subtilis) or pyrophosphate (Escherichia coli) triggers ribonucleolytic decay of primary transcripts by 5'-monophosphate-dependent ribonucleases. In the soil-dwelling firmicute species B. subtilis, the RNA pyrophosphohydrolase BsRppH, a member of the Nudix family, triggers RNA turnover by converting primary transcripts to 5'-monophospate RNA. In addition to BsRppH, a source of redundant activity in B. subtilis has been proposed. Here, using recombinant protein expression and in vitro enzyme assays, we provide evidence for several additional RNA pyrophosphohydrolases, among them MutT, NudF, YmaB, and YvcI in B. subtilis We found that in vitro, YvcI converts RNA 5'-di- and triphosphates into monophosphates in the presence of manganese at neutral to slightly acidic pH. It preferred G-initiating RNAs and required at least one unpaired nucleotide at the 5'-end of its substrates, with the 5'-terminal nucleotide determining whether primarily ortho- or pyrophosphate is released. Exchanges of catalytically important glutamate residues in the Nudix motif impaired or abolished the enzymatic activity of YvcI. In summary, the results of our extensive in vitro biochemical characterization raise the possibility that YvcI is an additional RNA pyrophosphohydrolase in B. subtilis.
Collapse
Affiliation(s)
- Jens Frindert
- Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, D-69120 Heidelberg, Germany
| | - Masroor Ahmad Kahloon
- Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, D-69120 Heidelberg, Germany
| | - Yaqing Zhang
- Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, D-69120 Heidelberg, Germany
| | - Yasar Luqman Ahmed
- Heidelberg University Biochemistry Center, Heidelberg University, D-69120 Heidelberg, Germany
| | - Irmgard Sinning
- Heidelberg University Biochemistry Center, Heidelberg University, D-69120 Heidelberg, Germany
| | - Andres Jäschke
- Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, D-69120 Heidelberg, Germany
| |
Collapse
|
20
|
Mu R, Shinde P, Zou Z, Kreth J, Merritt J. Examining the Protein Interactome and Subcellular Localization of RNase J2 Complexes in Streptococcus mutans. Front Microbiol 2019; 10:2150. [PMID: 31620106 PMCID: PMC6759994 DOI: 10.3389/fmicb.2019.02150] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 09/02/2019] [Indexed: 12/18/2022] Open
Abstract
Regulated RNA turnover is vital for the control of gene expression in all cellular life. In Escherichia coli, this process is largely controlled by a stable degradosome complex containing RNase E and a variety of additional enzymes. In the Firmicutes phylum, species lack RNase E and often encode the paralogous enzymes RNase J1 and RNase J2. Unlike RNase J1, surprisingly little is known about the regulatory function and protein interactions of RNase J2, despite being a central pleiotropic regulator for the streptococci and other closely related organisms. Using crosslink coimmunoprecipitation in Streptococcus mutans, we have identified the major proteins found within RNase J2 protein complexes located in the cytoplasm and at the cell membrane. In both subcellular fractions, RNase J2 exhibited the most robust interactions with RNase J1, while additional transient and/or weaker "degradosome-like" interactions were also detected. In addition, RNase J2 exhibits multiple novel interactions that have not been previously reported for any RNase J proteins, some of which were highly biased for either the cytoplasmic or membrane fractions. We also determined that the RNase J2 C-terminal domain (CTD) encodes a structure that is likely conserved among RNase J enzymes and may have an analogous function to the C-terminal portion of RNase E. While we did observe a number of parallels between the RNase J2 interactome and the E. coli degradosome paradigm, our results suggest that S. mutans degradosomes are either unlikely to exist or are quite distinct from those of E. coli.
Collapse
Affiliation(s)
- Rong Mu
- Department of Restorative Dentistry, School of Dentistry, Oregon Health and Science University, Portland, OR, United States
| | - Pushkar Shinde
- Emory College of Arts and Sciences, Atlanta, GA, United States
| | - Zhengzhong Zou
- Department of Restorative Dentistry, School of Dentistry, Oregon Health and Science University, Portland, OR, United States
| | - Jens Kreth
- Department of Restorative Dentistry, School of Dentistry, Oregon Health and Science University, Portland, OR, United States.,Department of Molecular Microbiology and Immunology, School of Medicine, Oregon Health and Science University, Portland, OR, United States
| | - Justin Merritt
- Department of Restorative Dentistry, School of Dentistry, Oregon Health and Science University, Portland, OR, United States.,Department of Molecular Microbiology and Immunology, School of Medicine, Oregon Health and Science University, Portland, OR, United States
| |
Collapse
|
21
|
Calvanese L, Squeglia F, Romano M, D'Auria G, Falcigno L, Berisio R. Structural and dynamic studies provide insights into specificity and allosteric regulation of ribonuclease as, a key enzyme in mycobacterial virulence. J Biomol Struct Dyn 2019; 38:2455-2467. [PMID: 31299874 DOI: 10.1080/07391102.2019.1643786] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Ribonuclease AS (RNase AS) is a crucial enzyme for virulence of Mycobacterium tuberculosis. We previously observed that RNase AS structurally resembles RNase T from Escherichia coli, an important enzyme for tRNA maturation and turnover. Here, we combine X-ray crystallography and molecular dynamics (MD) to investigate the specificity and dynamic properties of substrate binding. Both X-ray and MD data provide structural determinants that corroborate the strict substrate specificity of RNase AS to cleave only adenosine residues, due to the structural features of adenine base. Beside suggesting tRNA as most likely substrate of RNase AS, MD and modeling studies identify key enzyme-ligand interactions, both involving the catalytic site and the double helix region of tRNA, which is locked by interactions with a set of arginine residues. The MD data also evidence a ligand-induced conformational change of the enzyme which is transferred from one chain to the adjacent one. These data will explain the dimeric nature of both RNase AS and RNase T, with two catalytic grooves composed of both chains. Also, they account for the dichotomy of tRNA, which contains both the substrate poly(A) chain and an inhibiting double strand RNA. Indeed, they provide a possible mechanism of allosteric regulation, which unlocks one catalytic groove when the second groove is inhibited by the double strand region of tRNA. Finally, a full comprehension of the molecular details of tRNA maturation processes is essential to develop novel strategies to modulate RNA processing, for therapeutic purposes. AbbreviationsMDmolecular dynamicsPDBProtein Data BankRMSDroot mean square deviationRMSFroot mean square fluctuationRNAribonucleotidic acidRNase ASRibonuclease ASCommunicated by Ramasamy H. Sarma.
Collapse
Affiliation(s)
- Luisa Calvanese
- CIRPeB, University of Naples Federico II, Naples, Italy.,Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | - Flavia Squeglia
- Institute of Bio-Structures and Bio-Imaging - CNR-IBB, Naples, Italy
| | - Maria Romano
- Department of Life Sciences, Imperial College London, London, UK
| | - Gabriella D'Auria
- CIRPeB, University of Naples Federico II, Naples, Italy.,Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | - Lucia Falcigno
- CIRPeB, University of Naples Federico II, Naples, Italy.,Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | - Rita Berisio
- Institute of Bio-Structures and Bio-Imaging - CNR-IBB, Naples, Italy
| |
Collapse
|
22
|
Abstract
Diverse mechanisms and functions of posttranscriptional regulation by small regulatory RNAs and RNA-binding proteins have been described in bacteria. In contrast, little is known about the spatial organization of RNAs in bacterial cells. In eukaryotes, subcellular localization and transport of RNAs play important roles in diverse physiological processes, such as embryonic patterning, asymmetric cell division, epithelial polarity, and neuronal plasticity. It is now clear that bacterial RNAs also can accumulate at distinct sites in the cell. However, due to the small size of bacterial cells, RNA localization and localization-associated functions are more challenging to study in bacterial cells, and the underlying molecular mechanisms of transcript localization are less understood. Here, we review the emerging examples of RNAs localized to specific subcellular locations in bacteria, with indications that subcellular localization of transcripts might be important for gene expression and regulatory processes. Diverse mechanisms for bacterial RNA localization have been suggested, including close association to their genomic site of transcription, or to the localizations of their protein products in translation-dependent or -independent processes. We also provide an overview of the state of the art of technologies to visualize and track bacterial RNAs, ranging from hybridization-based approaches in fixed cells to in vivo imaging approaches using fluorescent protein reporters and/or RNA aptamers in single living bacterial cells. We conclude with a discussion of open questions in the field and ongoing technological developments regarding RNA imaging in eukaryotic systems that might likewise provide novel insights into RNA localization in bacteria.
Collapse
|
23
|
Cai D, Rao Y, Zhan Y, Wang Q, Chen S. EngineeringBacillusfor efficient production of heterologous protein: current progress, challenge and prospect. J Appl Microbiol 2019; 126:1632-1642. [DOI: 10.1111/jam.14192] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 12/13/2018] [Accepted: 12/28/2018] [Indexed: 12/18/2022]
Affiliation(s)
- D. Cai
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province Hubei Collaborative Innovation Center for Green Transformation of Bio‐Resources, College of Life Sciences, Hubei University Wuhan PR China
| | - Y. Rao
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province Hubei Collaborative Innovation Center for Green Transformation of Bio‐Resources, College of Life Sciences, Hubei University Wuhan PR China
| | - Y. Zhan
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province Hubei Collaborative Innovation Center for Green Transformation of Bio‐Resources, College of Life Sciences, Hubei University Wuhan PR China
| | - Q. Wang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province Hubei Collaborative Innovation Center for Green Transformation of Bio‐Resources, College of Life Sciences, Hubei University Wuhan PR China
| | - S. Chen
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province Hubei Collaborative Innovation Center for Green Transformation of Bio‐Resources, College of Life Sciences, Hubei University Wuhan PR China
| |
Collapse
|
24
|
Hasegawa T, Takahashi J, Iwahashi H. RNA Quality Control Using External Standard RNA. Pol J Microbiol 2018; 67:347-353. [PMID: 30451452 PMCID: PMC7256816 DOI: 10.21307/pjm-2018-042] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/14/2018] [Indexed: 11/13/2022] Open
Abstract
In this paper, we propose a new evaluation method using external standard RNA for quality control of the extracted RNA. RNA Integrity Number and UV absorption are generally used as a basis for RNA quality control; however, these methods do not always reflect the quality of mRNA. While standard RNA is supposedly designed on the basis of mRNA, it has the potential to be used to evaluate the quality of the mRNA. In this study, we took into consideration the three essential factors, viz., yield of mRNA, inhibition to DNA polymerase, and degradation of mRNA for determining the RNA quality using standard RNA. It would be possible to know yield of mRNA and inhibition of the enzyme reaction by adding standard RNA before RNA extraction and looking at standard RNA loss. Degradation was evaluated by comparing the differences in the 3’ and 5’ regions of the RNA. In our study, it was demonstrated that in the crude extract of Saccharomyces cerevisiae, degradation was comparatively higher at the 3’ end of RNA than at the 5’ end. Hence, the degree of RNA degradation can be evaluated by comparing the ratio of degradation from the 3’ and 5’ end.
Collapse
Affiliation(s)
- Takema Hasegawa
- Faculty of Applied Biological Sciences, Gifu University, Yanagido, Gifu, Japan
| | - Junko Takahashi
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba, Japan
| | - Hitoshi Iwahashi
- Faculty of Applied Biological Sciences, Gifu University, Yanagido, Gifu, Japan
| |
Collapse
|
25
|
Hardouin P, Velours C, Bou-Nader C, Assrir N, Laalami S, Putzer H, Durand D, Golinelli-Pimpaneau B. Dissociation of the Dimer of the Intrinsically Disordered Domain of RNase Y upon Antibody Binding. Biophys J 2018; 115:2102-2113. [PMID: 30447990 DOI: 10.1016/j.bpj.2018.10.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 09/17/2018] [Accepted: 10/17/2018] [Indexed: 12/12/2022] Open
Abstract
Although RNase Y acts as the key enzyme initiating messenger RNA decay in Bacillus subtilis and likely in many other Gram-positive bacteria, its three-dimensional structure remains unknown. An antibody belonging to the rare immunoglobulin G (IgG) 2b λx isotype was raised against a 12-residue conserved peptide from the N-terminal noncatalytic domain of B. subtilis RNase Y (BsRNaseY) that is predicted to be intrinsically disordered. Here, we show that this domain can be produced as a stand-alone protein called Nter-BsRNaseY that undergoes conformational changes between monomeric and dimeric forms. Circular dichroism and size exclusion chromatography coupled with multiangle light scattering or with small angle x-ray scattering indicate that the Nter-BsRNaseY dimer displays an elongated form and a high content of α-helices, in agreement with the existence of a central coiled-coil structure appended with flexible ends, and that the monomeric state of Nter-BsRNaseY is favored upon binding the fragment antigen binding (Fab) of the antibody. The dissociation constants of the IgG/BsRNaseY, IgG/Nter-BsRNaseY, and IgG/peptide complexes indicate that the affinity of the IgG for Nter-BsRNaseY is in the nM range and suggest that the peptide is less accessible in BsRNaseY than in Nter-BsRNaseY. The crystal structure of the Fab in complex with the peptide antigen shows that the peptide adopts an elongated U-shaped conformation in which the unique hydrophobic residue of the peptide, Leu6, is completely buried. The peptide/Fab complex may mimic the interaction of a microdomain of the N-terminal domain of BsRNaseY with one of its cellular partners within the degradosome complex. Altogether, our results suggest that BsRNaseY may become accessible for protein interaction upon dissociation of its N-terminal domain into the monomeric form.
Collapse
Affiliation(s)
- Pierre Hardouin
- Laboratoire de Chimie des Processus Biologiques, UMR 8229 CNRS, Collège de France, Université Pierre et Marie Curie, Paris CEDEX 05, France
| | - Christophe Velours
- Institute for Integrative Biology of the Cell, CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette CEDEX, France
| | - Charles Bou-Nader
- Laboratoire de Chimie des Processus Biologiques, UMR 8229 CNRS, Collège de France, Université Pierre et Marie Curie, Paris CEDEX 05, France
| | - Nadine Assrir
- Structural Chemistry and Biology Team, Institut de Chimie des Substances Naturelles, CNRS UPR 2301, Université Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Soumaya Laalami
- CNRS UMR8261-Université Paris Diderot, Sorbonne Paris Cité, Institut de Biologie Physico-Chimique, Paris, France
| | - Harald Putzer
- CNRS UMR8261-Université Paris Diderot, Sorbonne Paris Cité, Institut de Biologie Physico-Chimique, Paris, France
| | - Dominique Durand
- Institute for Integrative Biology of the Cell, CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette CEDEX, France
| | - Béatrice Golinelli-Pimpaneau
- Laboratoire de Chimie des Processus Biologiques, UMR 8229 CNRS, Collège de France, Université Pierre et Marie Curie, Paris CEDEX 05, France.
| |
Collapse
|
26
|
Chignell JF, Park S, Lacerda CMR, De Long SK, Reardon KF. Label-Free Proteomics of a Defined, Binary Co-culture Reveals Diversity of Competitive Responses Between Members of a Model Soil Microbial System. MICROBIAL ECOLOGY 2018; 75:701-719. [PMID: 28975425 DOI: 10.1007/s00248-017-1072-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Accepted: 09/08/2017] [Indexed: 06/07/2023]
Abstract
Interactions among members of microbial consortia drive the complex dynamics in soil, gut, and biotechnology microbiomes. Proteomic analysis of defined co-cultures of well-characterized species provides valuable information about microbial interactions. We used a label-free approach to quantify the responses to co-culture of two model bacterial species relevant to soil and rhizosphere ecology, Bacillus atrophaeus and Pseudomonas putida. Experiments determined the ratio of species in co-culture that would result in the greatest number of high-confidence protein identifications for both species. The 281 and 256 proteins with significant shifts in abundance for B. atrophaeus and P. putida, respectively, indicated responses to co-culture in overall metabolism, cell motility, and response to antagonistic compounds. Proteins associated with a virulent phenotype during surface-associated growth were significantly more abundant for P. putida in co-culture. Co-culture on agar plates triggered a filamentous phenotype in P. putida and avoidance of P. putida by B. atrophaeus colonies, corroborating antagonistic interactions between these species. Additional experiments showing increased relative abundance of P. putida under conditions of iron or zinc limitation and increased relative abundance of B. atrophaeus under magnesium limitation were consistent with patterns of changes in abundance of metal-binding proteins during co-culture. These results provide details on the nature of interactions between two species with antagonistic capabilities. Significant challenges remaining for the development of proteomics as a tool in microbial ecology include accurate quantification of low-abundance peptides, especially from rare species present at low relative abundance in a consortium.
Collapse
Affiliation(s)
- J F Chignell
- Department of Chemical and Biological Engineering, Colorado State University, Fort Collins, CO, USA
| | - S Park
- Department of Chemical and Biological Engineering, Colorado State University, Fort Collins, CO, USA
| | - C M R Lacerda
- Department of Chemical Engineering, Texas Tech University, Lubbock, TX, USA
| | - S K De Long
- Department of Civil and Environmental Engineering, Colorado State University, Fort Collins, CO, USA
| | - K F Reardon
- Department of Chemical and Biological Engineering, Colorado State University, Fort Collins, CO, USA.
- Cell and Molecular Biology Graduate Program, Colorado State University, Fort Collins, CO, USA.
| |
Collapse
|
27
|
Nouaille S, Mondeil S, Finoux AL, Moulis C, Girbal L, Cocaign-Bousquet M. The stability of an mRNA is influenced by its concentration: a potential physical mechanism to regulate gene expression. Nucleic Acids Res 2017; 45:11711-11724. [PMID: 28977619 PMCID: PMC5714132 DOI: 10.1093/nar/gkx781] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Accepted: 08/28/2017] [Indexed: 01/19/2023] Open
Abstract
Changing mRNA stability is a major post-transcriptional way of controlling gene expression, particularly in newly encountered conditions. As the concentration of mRNA is the result of an equilibrium between transcription and degradation, it is generally assumed that at constant transcription, any change in mRNA concentration is the consequence of mRNA stabilization or destabilization. However, the literature reports many cases of opposite variations in mRNA concentration and stability in bacteria. Here, we analyzed the causal link between the concentration and stability of mRNA in two phylogenetically distant bacteria Escherichia coli and Lactococcus lactis. Using reporter mRNAs, we showed that modifying the stability of an mRNA had unpredictable effects, either higher or lower, on its concentration, whereas increasing its concentration systematically reduced stability. This inverse relationship between the concentration and stability of mRNA was generalized to native genes at the genome scale in both bacteria. Higher mRNA turnover in the case of higher concentrations appears to be a simple physical mechanism to regulate gene expression in the bacterial kingdom. The consequences for bacterial adaptation of this control of the stability of an mRNA by its concentration are discussed.
Collapse
Affiliation(s)
- Sébastien Nouaille
- LISBP, Université de Toulouse, CNRS, INRA, INSA, Toulouse, France. 135 av de Rangueil. 31077 Toulouse Cedex 4, France
| | - Sophie Mondeil
- LISBP, Université de Toulouse, CNRS, INRA, INSA, Toulouse, France. 135 av de Rangueil. 31077 Toulouse Cedex 4, France
| | - Anne-Laure Finoux
- LISBP, Université de Toulouse, CNRS, INRA, INSA, Toulouse, France. 135 av de Rangueil. 31077 Toulouse Cedex 4, France
| | - Claire Moulis
- LISBP, Université de Toulouse, CNRS, INRA, INSA, Toulouse, France. 135 av de Rangueil. 31077 Toulouse Cedex 4, France
| | - Laurence Girbal
- LISBP, Université de Toulouse, CNRS, INRA, INSA, Toulouse, France. 135 av de Rangueil. 31077 Toulouse Cedex 4, France
| | - Muriel Cocaign-Bousquet
- LISBP, Université de Toulouse, CNRS, INRA, INSA, Toulouse, France. 135 av de Rangueil. 31077 Toulouse Cedex 4, France
| |
Collapse
|
28
|
Raj R, Mitra S, Gopal B. Characterization of Staphylococcus epidermidis Polynucleotide phosphorylase and its interactions with ribonucleases RNase J1 and RNase J2. Biochem Biophys Res Commun 2017; 495:2078-2084. [PMID: 29242153 DOI: 10.1016/j.bbrc.2017.12.056] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Accepted: 12/10/2017] [Indexed: 11/16/2022]
Abstract
Polynucleotide phosphorylase catalyzes both 3'-5' exoribonuclease and polyadenylation reactions. The crystal structure of Staphylococcus epidermidis PNPase revealed a bound phosphate in the PH2 domain of each protomer coordinated by three adjacent serine residues. Mutational analysis suggests that phosphate coordination by these serine residues is essential to maintain the catalytic center in an active conformation. We note that PNPase forms a complex with RNase J1 and RNase J2 without substantially altering either exo-ribonuclease or polyadenylation activity of this enzyme. This decoupling of catalytic activity from protein-protein interactions suggests that association of these endo- or exo-ribonucleases with PNPase could be more relevant for cellular localization or concerted targeting of structured RNA for recycling.
Collapse
Affiliation(s)
- Rishi Raj
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560012, India
| | - Sharmistha Mitra
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560012, India
| | | |
Collapse
|
29
|
The special existences: nanoRNA and nanoRNase. Microbiol Res 2017; 207:134-139. [PMID: 29458847 DOI: 10.1016/j.micres.2017.11.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 11/23/2017] [Accepted: 11/25/2017] [Indexed: 12/21/2022]
Abstract
To adapt to a wide range of nutritional and environmental changes, cells must adjust their gene expression profiles. This process is completed by the frequent transcription and rapid degradation of mRNA. mRNA decay is initiated by a series of endo- and exoribonucleases. These enzymes leave behind 2- to 5-nt-long oligoribonucleotides termed "nanoRNAs" that are degraded by specific nanoRNases; the degradation of nanoRNA is essential because nanoRNA can mediate the priming of transcription initiation that is harmful for the cell via an unknown mechanism. Identified nanoRNases include Orn in E. coli, NrnA and NrnB in B. subtilis, and NrnC in Bartonella. Even though these nanoRNases can degrade nanoRNA specifically into mononucleotides, the biochemical features, structural features and functional mechanisms of these enzymes are different. Sequence analysis has identified homologs of these nanoRNases in different bacteria, including Gammaproteobacteria, Betaproteobacteria, Alphaproteobacteria, Firmicutes and Cyanobacteria. However, there are several bacteria, such as those belonging to the class Thermolithobacteria, that do not have homologs of these nanoRNases. In this paper, the source of nanoRNA, the features of different kinds of nanoRNases and the distribution of these enzymes in prokaryotes are described in detail.
Collapse
|
30
|
Marincola G, Wolz C. Downstream element determines RNase Y cleavage of the saePQRS operon in Staphylococcus aureus. Nucleic Acids Res 2017; 45:5980-5994. [PMID: 28453818 PMCID: PMC5449607 DOI: 10.1093/nar/gkx296] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Accepted: 04/12/2017] [Indexed: 12/19/2022] Open
Abstract
In gram-positive bacteria, RNase J1, RNase J2 and RNase Y are thought to be major contributors to mRNA degradation and maturation. In Staphylococcus aureus, RNase Y activity is restricted to regulating the mRNA decay of only certain transcripts. Here the saePQRS operon was used as a model to analyze RNase Y specificity in living cells. A RNase Y cleavage site is located in an intergenic region between saeP and saeQ. This cleavage resulted in rapid degradation of the upstream fragment and stabilization of the downstream fragment. Thereby, the expression ratio of the different components of the operon was shifted towards saeRS, emphasizing the regulatory role of RNase Y activity. To assess cleavage specificity different regions surrounding the sae CS were cloned upstream of truncated gfp, and processing was analyzed in vivo using probes up- and downstream of CS. RNase Y cleavage was not determined by the cleavage site sequence. Instead a 24-bp double-stranded recognition structure was identified that was required to initiate cleavage 6 nt upstream. The results indicate that RNase Y activity is determined by secondary structure recognition determinants, which guide cleavage from a distance.
Collapse
Affiliation(s)
- Gabriella Marincola
- Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, Tübingen 72076, Germany
| | - Christiane Wolz
- Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, Tübingen 72076, Germany
| |
Collapse
|
31
|
Koch G, Wermser C, Acosta IC, Kricks L, Stengel ST, Yepes A, Lopez D. Attenuating Staphylococcus aureus Virulence by Targeting Flotillin Protein Scaffold Activity. Cell Chem Biol 2017; 24:845-857.e6. [PMID: 28669526 DOI: 10.1016/j.chembiol.2017.05.027] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Revised: 04/11/2017] [Accepted: 05/30/2017] [Indexed: 01/13/2023]
Abstract
Scaffold proteins are ubiquitous chaperones that bind proteins and facilitate physical interaction of multi-enzyme complexes. Here we used a biochemical approach to dissect the scaffold activity of the flotillin-homolog protein FloA of the multi-drug-resistant human pathogen Staphylococcus aureus. We show that FloA promotes oligomerization of membrane protein complexes, such as the membrane-associated RNase Rny, which forms part of the RNA-degradation machinery called the degradosome. Cells lacking FloA had reduced Rny function and a consequent increase in the targeted sRNA transcripts that negatively regulate S. aureus toxin expression. Small molecules that altered FloA oligomerization also reduced Rny function and decreased the virulence potential of S. aureus in vitro, as well as in vivo, using invertebrate and murine infection models. Our results suggest that flotillin assists in the assembly of protein complexes involved in S. aureus virulence, and could thus be an attractive target for the development of new antimicrobial therapies.
Collapse
Affiliation(s)
- Gudrun Koch
- Research Centre for Infectious Diseases (ZINF), University of Würzburg, Würzburg 97080, Germany; Institute for Molecular Infection Biology (IMIB), University of Würzburg, Würzburg 97080, Germany
| | - Charlotte Wermser
- Research Centre for Infectious Diseases (ZINF), University of Würzburg, Würzburg 97080, Germany; Institute for Molecular Infection Biology (IMIB), University of Würzburg, Würzburg 97080, Germany
| | - Ivan C Acosta
- National Centre for Biotechnology (CNB), Spanish Research Council (CSIC), Darwin 3, Madrid 28049, Spain
| | - Lara Kricks
- National Centre for Biotechnology (CNB), Spanish Research Council (CSIC), Darwin 3, Madrid 28049, Spain
| | - Stephanie T Stengel
- Research Centre for Infectious Diseases (ZINF), University of Würzburg, Würzburg 97080, Germany; Institute for Molecular Infection Biology (IMIB), University of Würzburg, Würzburg 97080, Germany
| | - Ana Yepes
- Research Centre for Infectious Diseases (ZINF), University of Würzburg, Würzburg 97080, Germany; Institute for Molecular Infection Biology (IMIB), University of Würzburg, Würzburg 97080, Germany
| | - Daniel Lopez
- Research Centre for Infectious Diseases (ZINF), University of Würzburg, Würzburg 97080, Germany; Institute for Molecular Infection Biology (IMIB), University of Würzburg, Würzburg 97080, Germany; National Centre for Biotechnology (CNB), Spanish Research Council (CSIC), Darwin 3, Madrid 28049, Spain.
| |
Collapse
|
32
|
Hausmann S, Guimarães VA, Garcin D, Baumann N, Linder P, Redder P. Both exo- and endo-nucleolytic activities of RNase J1 from Staphylococcus aureus are manganese dependent and active on triphosphorylated 5'-ends. RNA Biol 2017; 14:1431-1443. [PMID: 28277929 DOI: 10.1080/15476286.2017.1300223] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Abstract
RNA decay and RNA maturation are important steps in the regulation of bacterial gene expression. RNase J, which is present in about half of bacterial species, has been shown to possess both endo- and 5' to 3' exo-ribonuclease activities. The exonucleolytic activity is clearly involved in the degradation of mRNA and in the maturation of at least the 5' end of 16S rRNA in the 2 Firmicutes Staphylococcus aureus and Bacillus subtilis. The endoribonuclease activity of RNase J from several species has been shown to be weak in vitro and 3-D structural data of different RNase J orthologs have not provided a clear explanation for the molecular basis of this activity. Here, we show that S. aureus RNase J1 is a manganese dependent homodimeric enzyme with strong 5' to 3' exo-ribonuclease as well as endo-ribonuclease activity. In addition, we demonstrated that SauJ1 can efficiently degrade 5' triphosphorylated RNA. Our results highlight RNase J1 as an important player in RNA turnover in S. aureus.
Collapse
Affiliation(s)
- Stéphane Hausmann
- a Department of Microbiology and Molecular Medicine , Medical Faculty, University of Geneva , Geneva , Switzerland
| | - Vanessa Andrade Guimarães
- a Department of Microbiology and Molecular Medicine , Medical Faculty, University of Geneva , Geneva , Switzerland
| | - Dominique Garcin
- a Department of Microbiology and Molecular Medicine , Medical Faculty, University of Geneva , Geneva , Switzerland
| | - Natalia Baumann
- a Department of Microbiology and Molecular Medicine , Medical Faculty, University of Geneva , Geneva , Switzerland
| | - Patrick Linder
- a Department of Microbiology and Molecular Medicine , Medical Faculty, University of Geneva , Geneva , Switzerland
| | - Peter Redder
- a Department of Microbiology and Molecular Medicine , Medical Faculty, University of Geneva , Geneva , Switzerland.,b Laboratoire de Microbiologie et de Génétique Moléculaires, Centre de Biologie Intégrative, Université de Toulouse III Toulouse , France
| |
Collapse
|
33
|
Huen J, Lin CL, Golzarroshan B, Yi WL, Yang WZ, Yuan HS. Structural Insights into a Unique Dimeric DEAD-Box Helicase CshA that Promotes RNA Decay. Structure 2017; 25:469-481. [PMID: 28238534 DOI: 10.1016/j.str.2017.01.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Revised: 01/05/2017] [Accepted: 01/29/2017] [Indexed: 11/28/2022]
Abstract
CshA is a dimeric DEAD-box helicase that cooperates with ribonucleases for mRNA turnover. The molecular mechanism for how a dimeric DEAD-box helicase aids in RNA decay remains unknown. Here, we report the crystal structure and small-angle X-ray scattering solution structure of the CshA from Geobacillus stearothermophilus. In contrast to typical monomeric DEAD-box helicases, CshA is exclusively a dimeric protein with the RecA-like domains of each protomer forming a V-shaped structure. We show that the C-terminal domains protruding outward from the tip of the V-shaped structure is critical for mediating strong RNA binding and is crucial for efficient RNA-dependent ATP hydrolysis. We also show that RNA remains bound with CshA during ATP hydrolysis cycles and thus bulk RNAs could be unwound and degraded in a processive manner through cooperation between exoribonucleases and CshA. A dimeric helicase is hence preserved in RNA-degrading machinery for efficient RNA turnover in prokaryotes and eukaryotes.
Collapse
Affiliation(s)
- Jennifer Huen
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan 11529, ROC
| | - Chia-Liang Lin
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan 11529, ROC
| | - Bagher Golzarroshan
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan 11529, ROC; Chemical Biology and Molecular Biophysics Program, Taiwan International Graduate Program, Academia Sinica, Taipei, Taiwan 11529, ROC; Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu, Taiwan 30013, ROC
| | - Wan-Li Yi
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan 11529, ROC
| | - Wei-Zen Yang
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan 11529, ROC
| | - Hanna S Yuan
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan 11529, ROC; Graduate Institute of Biochemistry and Molecular Biology, National Taiwan University, Taipei, Taiwan 10048, ROC.
| |
Collapse
|
34
|
Cho KH. The Structure and Function of the Gram-Positive Bacterial RNA Degradosome. Front Microbiol 2017; 8:154. [PMID: 28217125 PMCID: PMC5289998 DOI: 10.3389/fmicb.2017.00154] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 01/20/2017] [Indexed: 11/24/2022] Open
Abstract
The RNA degradosome is a highly structured protein complex responsible for bulk RNA decay in bacteria. The main components of the complex, ribonucleases, an RNA helicase, and glycolytic enzymes are well-conserved in bacteria. Some components of the degradosome are essential for growth and the disruption of degradosome formation causes slower growth, indicating that this complex is required for proper cellular function. The study of the Escherichia coli degradosome has been performed extensively for the last several decades and has revealed detailed information on its structure and function. On the contrary, the Gram-positive bacterial degradosome, which contains ribonucleases different from the E. coli one, has been studied only recently. Studies on the Gram-positive degradosome revealed that its major component RNase Y was necessary for the full virulence of medically important Gram-positive bacterial pathogens, suggesting that it could be a target of antimicrobial therapy. This review describes the structures and function of Gram-positive bacterial RNA degradosomes, especially those of a Gram-positive model organism Bacillus subtilis, and two important Gram-positive pathogens, Staphylococcus aureus and Streptococcus pyogenes.
Collapse
Affiliation(s)
- Kyu Hong Cho
- Department of Biology, Indiana State University Terre Haute, IN, USA
| |
Collapse
|
35
|
Role of RNase Y in Clostridium perfringens mRNA Decay and Processing. J Bacteriol 2016; 199:JB.00703-16. [PMID: 27821608 DOI: 10.1128/jb.00703-16] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Accepted: 10/27/2016] [Indexed: 11/20/2022] Open
Abstract
RNase Y is a major endoribonuclease that plays a crucial role in mRNA degradation and processing. We study the role of RNase Y in the Gram-positive anaerobic pathogen Clostridium perfringens, which until now has not been well understood. Our study implies an important role for RNase Y-mediated RNA degradation and processing in virulence gene expression and the physiological development of the organism. We began by constructing an RNase Y conditional knockdown strain in order to observe the importance of RNase Y on growth and virulence. Our resulting transcriptome analysis shows that RNase Y affects the expression of many genes, including toxin-producing genes. We provide data to show that RNase Y depletion repressed several toxin genes in C. perfringens and involved the virR-virS two-component system. We also observe evidence that RNase Y is indispensable for processing and stabilizing the transcripts of colA (encoding a major toxin collagenase) and pilA2 (encoding a major pilin component of the type IV pili). Posttranscriptional regulation of colA is known to be mediated by cleavage in the 5' untranslated region (5'UTR), and we observe that RNase Y depletion diminishes colA 5'UTR processing. We show that RNase Y is also involved in the posttranscriptional stabilization of pilA2 mRNA, which is thought to be important for host cell adherence and biofilm formation. IMPORTANCE RNases have important roles in RNA degradation and turnover in all organisms. C. perfringens is a Gram-positive anaerobic spore-forming bacterial pathogen that produces numerous extracellular enzymes and toxins, and it is linked to digestive disorders and disease. A highly conserved endoribonuclease, RNase Y, affects the expression of hundreds of genes, including toxin genes, and studying these effects is useful for understanding C. perfringens specifically and RNases generally. Moreover, RNase Y is involved in processing specific transcripts, and we observed that this processing in C. perfringens results in the stabilization of mRNAs encoding a toxin and bacterial extracellular apparatus pili. Our study shows that RNase activity is associated with gene expression, helping to determine the growth, proliferation, and virulence of C. perfringens.
Collapse
|
36
|
Regulatory RNAs in Bacillus subtilis: a Gram-Positive Perspective on Bacterial RNA-Mediated Regulation of Gene Expression. Microbiol Mol Biol Rev 2016; 80:1029-1057. [PMID: 27784798 DOI: 10.1128/mmbr.00026-16] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Bacteria can employ widely diverse RNA molecules to regulate their gene expression. Such molecules include trans-acting small regulatory RNAs, antisense RNAs, and a variety of transcriptional attenuation mechanisms in the 5' untranslated region. Thus far, most regulatory RNA research has focused on Gram-negative bacteria, such as Escherichia coli and Salmonella. Hence, there is uncertainty about whether the resulting insights can be extrapolated directly to other bacteria, such as the Gram-positive soil bacterium Bacillus subtilis. A recent study identified 1,583 putative regulatory RNAs in B. subtilis, whose expression was assessed across 104 conditions. Here, we review the current understanding of RNA-based regulation in B. subtilis, and we categorize the newly identified putative regulatory RNAs on the basis of their conservation in other bacilli and the stability of their predicted secondary structures. Our present evaluation of the publicly available data indicates that RNA-mediated gene regulation in B. subtilis mostly involves elements at the 5' ends of mRNA molecules. These can include 5' secondary structure elements and metabolite-, tRNA-, or protein-binding sites. Importantly, sense-independent segments are identified as the most conserved and structured potential regulatory RNAs in B. subtilis. Altogether, the present survey provides many leads for the identification of new regulatory RNA functions in B. subtilis.
Collapse
|
37
|
Abstract
Bacillus subtilis is one of the best-studied organisms. Due to the broad knowledge and annotation and the well-developed genetic system, this bacterium is an excellent starting point for genome minimization with the aim of constructing a minimal cell. We have analyzed the genome of B. subtilis and selected all genes that are required to allow life in complex medium at 37°C. This selection is based on the known information on essential genes and functions as well as on gene and protein expression data and gene conservation. The list presented here includes 523 and 119 genes coding for proteins and RNAs, respectively. These proteins and RNAs are required for the basic functions of life in information processing (replication and chromosome maintenance, transcription, translation, protein folding, and secretion), metabolism, cell division, and the integrity of the minimal cell. The completeness of the selected metabolic pathways, reactions, and enzymes was verified by the development of a model of metabolism of the minimal cell. A comparison of the MiniBacillus genome to the recently reported designed minimal genome of Mycoplasma mycoides JCVI-syn3.0 indicates excellent agreement in the information-processing pathways, whereas each species has a metabolism that reflects specific evolution and adaptation. The blueprint of MiniBacillus presented here serves as the starting point for a successive reduction of the B. subtilis genome.
Collapse
|
38
|
Cascante-Estepa N, Gunka K, Stülke J. Localization of Components of the RNA-Degrading Machine in Bacillus subtilis. Front Microbiol 2016; 7:1492. [PMID: 27708634 PMCID: PMC5030255 DOI: 10.3389/fmicb.2016.01492] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Accepted: 09/07/2016] [Indexed: 11/17/2022] Open
Abstract
In bacteria, the control of mRNA stability is crucial to allow rapid adaptation to changing conditions. In most bacteria, RNA degradation is catalyzed by the RNA degradosome, a protein complex composed of endo- and exoribonucleases, RNA helicases, and accessory proteins. In the Gram-positive model organism Bacillus subtilis, the existence of a RNA degradosome assembled around the membrane-bound endoribonuclease RNase Y has been proposed. Here, we have studied the intracellular localization of the protein that have been implicated in the potential B. subtilis RNA degradosome, i.e., polynucleotide phosphorylase, the exoribonucleases J1 and J2, the DEAD-box RNA helicase CshA, and the glycolytic enzymes enolase and phosphofructokinase. Our data suggests that the bulk of these enzymes is located in the cytoplasm. The RNases J1 and J2 as well as the RNA helicase CshA were mainly localized in the peripheral regions of the cell where also the bulk of messenger RNA is localized. We were able to demonstrate active exclusion of these proteins from the transcribing nucleoid. Taken together, our findings suggest that the interactions of the enzymes involved in RNA degradation in B. subtilis are rather transient.
Collapse
Affiliation(s)
- Nora Cascante-Estepa
- Department of General Microbiology, Institute of Microbiology and Genetics, Georg-August-Universität Göttingen Göttingen, Germany
| | - Katrin Gunka
- Department of General Microbiology, Institute of Microbiology and Genetics, Georg-August-Universität Göttingen Göttingen, Germany
| | - Jörg Stülke
- Department of General Microbiology, Institute of Microbiology and Genetics, Georg-August-Universität Göttingen Göttingen, Germany
| |
Collapse
|
39
|
Gimpel M, Brantl S. Dual-function sRNA encoded peptide SR1P modulates moonlighting activity of B. subtilis GapA. RNA Biol 2016; 13:916-26. [PMID: 27449348 PMCID: PMC5013986 DOI: 10.1080/15476286.2016.1208894] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
SR1 is a dual-function sRNA from B. subtilis that acts as a base-pairing regulatory RNA and as a peptide-encoding mRNA. Both functions of SR1 are highly conserved. Previously, we uncovered that the SR1 encoded peptide SR1P binds the glycolytic enzyme GapA resulting in stabilization of gapA mRNA. Here, we demonstrate that GapA interacts with RNases Y and J1, and this interaction was RNA-independent. About 1% of GapA molecules purified from B. subtilis carry RNase J1 and about 2% RNase Y. In contrast to the GapA/RNase Y interaction, the GapA/RNaseJ1 interaction was stronger in the presence of SR1P. GapA/SR1P-J1/Y displayed in vitro RNase activity on known RNase J1 substrates. Moreover, the RNase J1 substrate SR5 has altered half-lives in a ΔgapA strain and a Δsr1 strain, suggesting in vivo functions of the GapA/SR1P/J1 interaction. Our results demonstrate that the metabolic enzyme GapA moonlights in recruiting RNases while GapA bound SR1P promotes binding of RNase J1 and enhances its activity.
Collapse
Affiliation(s)
- Matthias Gimpel
- a AG Bakteriengenetik, Lehrstuhl für Genetik, Friedrich-Schiller-Universität Jena , Philosophenweg , Jena , Germany
| | - Sabine Brantl
- a AG Bakteriengenetik, Lehrstuhl für Genetik, Friedrich-Schiller-Universität Jena , Philosophenweg , Jena , Germany
| |
Collapse
|
40
|
DiChiara JM, Liu B, Figaro S, Condon C, Bechhofer DH. Mapping of internal monophosphate 5' ends of Bacillus subtilis messenger RNAs and ribosomal RNAs in wild-type and ribonuclease-mutant strains. Nucleic Acids Res 2016; 44:3373-89. [PMID: 26883633 PMCID: PMC4838370 DOI: 10.1093/nar/gkw073] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Accepted: 01/29/2016] [Indexed: 11/14/2022] Open
Abstract
The recent findings that the narrow-specificity endoribonuclease RNase III and the 5′ exonuclease RNase J1 are not essential in the Gram-positive model organism, Bacillus subtilis, facilitated a global analysis of internal 5′ ends that are generated or acted upon by these enzymes. An RNA-Seq protocol known as PARE (Parallel Analysis of RNA Ends) was used to capture 5′ monophosphorylated RNA ends in ribonuclease wild-type and mutant strains. Comparison of PARE peaks in strains with RNase III present or absent showed that, in addition to its well-known role in ribosomal (rRNA) processing, many coding sequences and intergenic regions appeared to be direct targets of RNase III. These target sites were, in most cases, not associated with a known antisense RNA. The PARE analysis also revealed an accumulation of 3′-proximal peaks that correlated with the absence of RNase J1, confirming the importance of RNase J1 in degrading RNA fragments that contain the transcription terminator structure. A significant result from the PARE analysis was the discovery of an endonuclease cleavage just 2 nts downstream of the 16S rRNA 3′ end. This latter observation begins to answer, at least for B. subtilis, a long-standing question on the exonucleolytic versus endonucleolytic nature of 16S rRNA maturation.
Collapse
Affiliation(s)
- Jeanne M DiChiara
- Department of Pharmacology and Systems Therapeutics, Icahn School of Medicine at Mount Sinai, Box 1603, 1 Gustave L. Levy Place, New York, NY 10029, USA
| | - Bo Liu
- Department of Pharmacology and Systems Therapeutics, Icahn School of Medicine at Mount Sinai, Box 1603, 1 Gustave L. Levy Place, New York, NY 10029, USA
| | - Sabine Figaro
- CNRS UMR8261 (affiliated with Université Paris Diderot, Sorbonne Paris Cité), Institut de Biologie Physico-Chimique, 13 rue Pierre et Marie Curie, 75005 Paris, France
| | - Ciarán Condon
- CNRS UMR8261 (affiliated with Université Paris Diderot, Sorbonne Paris Cité), Institut de Biologie Physico-Chimique, 13 rue Pierre et Marie Curie, 75005 Paris, France
| | - David H Bechhofer
- Department of Pharmacology and Systems Therapeutics, Icahn School of Medicine at Mount Sinai, Box 1603, 1 Gustave L. Levy Place, New York, NY 10029, USA
| |
Collapse
|
41
|
Liu B, Kearns DB, Bechhofer DH. Expression of multiple Bacillus subtilis genes is controlled by decay of slrA mRNA from Rho-dependent 3' ends. Nucleic Acids Res 2016; 44:3364-72. [PMID: 26857544 PMCID: PMC4838369 DOI: 10.1093/nar/gkw069] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 01/28/2016] [Indexed: 12/17/2022] Open
Abstract
Timely turnover of RNA is an important element in the control of bacterial gene expression, but relatively few specific targets of RNA turnover regulation are known. Deletion of the Bacillus subtilis pnpA gene, encoding the major 3' exonuclease turnover enzyme, polynucleotide phosphorylase (PNPase), was shown previously to cause a motility defect correlated with a reduced level of the 32-gene fla/che flagellar biosynthesis operon transcript.fla/che operon transcript abundance has been shown to be inhibited by an excess of the small regulatory protein, SlrA, and here we find that slrA mRNA accumulated in the pnpA-deletion mutant. Mutation of slrA was epistatic to mutation of pnpA for the motility-related phenotype. Further, Rho-dependent termination was required for PNPase turnover of slrA mRNA. When the slrA gene was provided with a Rho-independent transcription terminator, gene regulation was no longer PNPase-dependent. Thus we show that the slrA transcript is a direct target of PNPase and that regulation of RNA turnover is a major determinant of motility gene expression. The interplay of specific transcription termination and mRNA decay mechanisms suggests selection for fine-tuning of gene expression.
Collapse
Affiliation(s)
- Bo Liu
- Department of Pharmacology and Systems Therapeutics, Box 1603, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Daniel B Kearns
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | - David H Bechhofer
- Department of Pharmacology and Systems Therapeutics, Box 1603, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| |
Collapse
|
42
|
Salvo E, Alabi S, Liu B, Schlessinger A, Bechhofer DH. Interaction of Bacillus subtilis Polynucleotide Phosphorylase and RNase Y: STRUCTURAL MAPPING AND EFFECT ON mRNA TURNOVER. J Biol Chem 2016; 291:6655-63. [PMID: 26797123 DOI: 10.1074/jbc.m115.711044] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Indexed: 11/06/2022] Open
Abstract
Polynucleotide phosphorylase (PNPase), a 3'-to-5' phosphorolytic exoribonuclease, is thought to be the primary enzyme responsible for turnover ofBacillus subtilismRNA. The role of PNPase inB. subtilismRNA decay has been analyzed previously by comparison of mRNA profiles in a wild-type strainversusa strain that is deleted forpnpA, the gene encoding PNPase. Recent studies have provided evidence for a degradosome-like complex inB. subtilisthat is built around the major decay-initiating endonuclease, RNase Y, and there is ample evidence for a strong interaction between PNPase and RNase Y. The role of the PNPase-RNase Y interaction in the exonucleolytic function of PNPase needs to be clarified. We sought to construct aB. subtilisstrain containing a catalytically active PNPase that could not interact with RNase Y. Mapping studies of the PNPase-RNase Y interaction were guided by a homology model ofB. subtilisPNPase based on the known structure of theEscherichia coliPNPase in complex with an RNase E peptide. Mutations inB. subtilisresidues predicted to be involved in RNase Y binding showed a loss of PNPase-RNase Y interaction. Two mRNAs whose decay is dependent on RNase Y and PNPase were examined in strains containing full-length PNPase that was either catalytically active but unable to interact with RNase Y, or catalytically inactive but able to interact with RNase Y. At least for these two mRNAs, disruption of the PNPase-RNase Y interaction did not appear to affect mRNA turnover.
Collapse
Affiliation(s)
- Elizabeth Salvo
- From the Department of Pharmacology and Systems Therapeutics, Icahn School of Medicine at Mount Sinai, New York, New York 10029
| | - Shanique Alabi
- From the Department of Pharmacology and Systems Therapeutics, Icahn School of Medicine at Mount Sinai, New York, New York 10029
| | - Bo Liu
- From the Department of Pharmacology and Systems Therapeutics, Icahn School of Medicine at Mount Sinai, New York, New York 10029
| | - Avner Schlessinger
- From the Department of Pharmacology and Systems Therapeutics, Icahn School of Medicine at Mount Sinai, New York, New York 10029
| | - David H Bechhofer
- From the Department of Pharmacology and Systems Therapeutics, Icahn School of Medicine at Mount Sinai, New York, New York 10029
| |
Collapse
|
43
|
Bäreclev C, Vaitkevicius K, Netterling S, Johansson J. DExD-box RNA-helicases in Listeria monocytogenes are important for growth, ribosomal maturation, rRNA processing and virulence factor expression. RNA Biol 2015; 11:1457-66. [PMID: 25590644 PMCID: PMC4615572 DOI: 10.1080/15476286.2014.996099] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
RNA-helicases are proteins required for the unwinding of occluding secondary RNA structures, especially at low temperatures. In this work, we have deleted all 4 DExD-box RNA helicases in various combinations in the Gram-positive pathogen Listeria monocytogenes. Our results show that 3 out of 4 RNA-helicases were important for growth at low temperatures, whereas the effect was less prominent at 37°C. Over-expression of one RNA-helicase, Lmo1450, was able to overcome the reduced growth of the quadruple mutant strain at temperatures above 26°C, but not at lower temperatures. The maturation of ribosomes was affected in different degrees in the various strains at 20°C, whereas the effect was marginal at 37°C. This was accompanied by an increased level of immature 23S rRNA precursors in some of the RNA-helicase mutants at low temperatures. Although the expression of the PrfA regulated virulence factors ActA and LLO decreased in the quadruple mutant strain, this strain showed a slightly increased infection ability. Interestingly, even though the level of the virulence factor LLO was decreased in the quadruple mutant strain as compared with the wild-type strain, the hly-transcript (encoding LLO) was increased. Hence, our results could suggest a role for the RNA-helicases during translation. In this work, we show that DExD-box RNA-helicases are involved in bacterial virulence gene-expression and infection of eukaryotic cells.
Collapse
|
44
|
Experimental evolution of enhanced growth by Bacillus subtilis at low atmospheric pressure: genomic changes revealed by whole-genome sequencing. Appl Environ Microbiol 2015; 81:7525-32. [PMID: 26296725 DOI: 10.1128/aem.01690-15] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Accepted: 08/14/2015] [Indexed: 01/25/2023] Open
Abstract
Knowledge of how microorganisms respond and adapt to low-pressure (LP) environments is limited. Previously, Bacillus subtilis strain WN624 was grown at the near-inhibitory LP of 5 kPa for 1,000 generations and strain WN1106, which exhibited increased relative fitness at 5 kPa, was isolated. Genomic sequence differences between ancestral strain WN624 and LP-evolved strain WN1106 were identified using whole-genome sequencing. LP-evolved strain WN1106 carried amino acid-altering mutations in the coding sequences of only seven genes (fliI, parC, ytoI, bacD, resD, walK, and yvlD) and a single 9-nucleotide in-frame deletion in the rnjB gene that encodes RNase J2, a component of the RNA degradosome. By using a collection of frozen stocks of the LP-evolved culture taken at 50-generation intervals, it was determined that (i) the fitness increase at LP occurred rapidly, while (ii) mutation acquisition exhibited complex kinetics. A knockout mutant of rnjB was shown to increase the competitive fitness of B. subtilis at both LP and standard atmospheric pressure.
Collapse
|
45
|
Aït-Bara S, Carpousis AJ. RNA degradosomes in bacteria and chloroplasts: classification, distribution and evolution of RNase E homologs. Mol Microbiol 2015; 97:1021-135. [PMID: 26096689 DOI: 10.1111/mmi.13095] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/15/2015] [Indexed: 11/29/2022]
Abstract
Ribonuclease E (RNase E) of Escherichia coli, which is the founding member of a widespread family of proteins in bacteria and chloroplasts, is a fascinating enzyme that still has not revealed all its secrets. RNase E is an essential single-strand specific endoribonuclease that is involved in the processing and degradation of nearly every transcript in E. coli. A striking enzymatic property is a preference for substrates with a 5' monophosphate end although recent work explains how RNase E can overcome the protection afforded by the 5' triphosphate end of a primary transcript. Other features of E. coli RNase E include its interaction with enzymes involved in RNA degradation to form the multienzyme RNA degradosome and its localization to the inner cytoplasmic membrane. The N-terminal catalytic core of the RNase E protomer associates to form a tetrameric holoenzyme. Each RNase E protomer has a large C-terminal intrinsically disordered (ID) noncatalytic region that contains sites for interactions with protein components of the RNA degradosome as well as RNA and phospholipid bilayers. In this review, RNase E homologs have been classified into five types based on their primary structure. A recent analysis has shown that type I RNase E in the γ-proteobacteria forms an orthologous group of proteins that has been inherited vertically. The RNase E catalytic core and a large ID noncatalytic region containing an RNA binding motif and a membrane targeting sequence are universally conserved features of these orthologs. Although the ID noncatalytic region has low composition and sequence complexity, it is possible to map microdomains, which are short linear motifs that are sites of interaction with protein and other ligands. Throughout bacteria, the composition of the multienzyme RNA degradosome varies with species, but interactions with exoribonucleases (PNPase, RNase R), glycolytic enzymes (enolase, aconitase) and RNA helicases (DEAD-box proteins, Rho) are common. Plasticity in RNA degradosome composition is due to rapid evolution of RNase E microdomains. Characterization of the RNase E-PNPase interaction in α-proteobacteria, γ-proteobacteria and cyanobacteria suggests that it arose independently several times during evolution, thus conferring an advantage in control and coordination of RNA processing and degradation.
Collapse
Affiliation(s)
- Soraya Aït-Bara
- Microbes, Intestin, Inflammation et Susceptibilité de l'Hôte, Institut, National de la Santé et de la Recherche Médicale & Université d'Auvergne, Clermont-Ferrand, 63001, France
| | - Agamemnon J Carpousis
- Laboratoire de Microbiologie et Génétique Moléculaires, UMR 5100, Centre National de la Recherche Scientifique et Université de Toulouse 3, Toulouse, 31062, France
| |
Collapse
|
46
|
Gamba P, Jonker MJ, Hamoen LW. A Novel Feedback Loop That Controls Bimodal Expression of Genetic Competence. PLoS Genet 2015; 11:e1005047. [PMID: 26110430 PMCID: PMC4482431 DOI: 10.1371/journal.pgen.1005047] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2014] [Accepted: 02/01/2015] [Indexed: 01/25/2023] Open
Abstract
Gene expression can be highly heterogeneous in isogenic cell populations. An extreme type of heterogeneity is the so-called bistable or bimodal expression, whereby a cell can differentiate into two alternative expression states. Stochastic fluctuations of protein levels, also referred to as noise, provide the necessary source of heterogeneity that must be amplified by specific genetic circuits in order to obtain a bimodal response. A classical model of bimodal differentiation is the activation of genetic competence in Bacillus subtilis. The competence transcription factor ComK activates transcription of its own gene, and an intricate regulatory network controls the switch to competence and ensures its reversibility. However, it is noise in ComK expression that determines which cells activate the ComK autostimulatory loop and become competent for genetic transformation. Despite its important role in bimodal gene expression, noise remains difficult to investigate due to its inherent stochastic nature. We adapted an artificial autostimulatory loop that bypasses all known ComK regulators to screen for possible factors that affect noise. This led to the identification of a novel protein Kre (YkyB) that controls the bimodal regulation of ComK. Interestingly, Kre appears to modulate the induction of ComK by affecting the stability of comK mRNA. The protein influences the expression of many genes, however, Kre is only found in bacteria that contain a ComK homologue and, importantly, kre expression itself is downregulated by ComK. The evolutionary significance of this new feedback loop for the reduction of transcriptional noise in comK expression is discussed. Our findings show the importance of mRNA stability in bimodal regulation, a factor that requires more attention when studying and modelling this non-deterministic developmental mechanism. Gene expression can be highly heterogeneous in clonal cell populations. An extreme type of heterogeneity is the so-called bistable or bimodal expression, whereby a cell can differentiate into two alternative expression states, and consequently a population will be composed of cells that are ‘ON’ and cells that are ‘OFF’. Stochastic fluctuations of protein levels, also referred to as noise, provide the necessary source of heterogeneity that must be amplified by autostimulatory feedback regulation to obtain the bimodal response. A classical model of bistable differentiation is the development of genetic competence in Bacillus subtilis. Noise in expression of the transcription factor ComK ultimately determines the fraction of cells that enter the competent state. Due to its intrinsic random nature, noise is difficult to investigate. We adapted an artificial autostimulatory loop that bypasses all known ComK regulators, to screen for possible factors that affect noise in the bimodal regulation of ComK. This led to the discovery of Kre, a novel factor that controls the bimodal expression of ComK. Kre appears to affect the stability of comK mRNA. Interestingly, ComK itself represses the expression of kre, adding a new double negative feedback loop to the intricate ComK regulation circuit. Our data emphasize that mRNA stability is an important factor in bimodal regulation.
Collapse
Affiliation(s)
- Pamela Gamba
- Centre for Bacterial Cell Biology, Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne, United Kingdom
- * E-mail: (PG); (LWH)
| | - Martijs J. Jonker
- MicroArray Department and Integrative Bioinformatics Unit, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | - Leendert W. Hamoen
- Centre for Bacterial Cell Biology, Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne, United Kingdom
- Bacterial Cell Biology, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
- * E-mail: (PG); (LWH)
| |
Collapse
|
47
|
Affiliation(s)
- Jan Kampf
- Department of General Microbiology, Georg-August-Universität Göttingen, Göttingen, Germany
| | - Jörg Stülke
- Department of General Microbiology, Georg-August-Universität Göttingen, Göttingen, Germany
- * E-mail:
| |
Collapse
|
48
|
Papenfort K, Vanderpool CK. Target activation by regulatory RNAs in bacteria. FEMS Microbiol Rev 2015; 39:362-78. [PMID: 25934124 DOI: 10.1093/femsre/fuv016] [Citation(s) in RCA: 158] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/10/2015] [Indexed: 12/15/2022] Open
Abstract
Bacterial small regulatory RNAs (sRNAs) are commonly known to repress gene expression by base pairing to target mRNAs. In many cases, sRNAs base pair with and sequester mRNA ribosome-binding sites, resulting in translational repression and accelerated transcript decay. In contrast, a growing number of examples of translational activation and mRNA stabilization by sRNAs have now been documented. A given sRNA often employs a conserved region to interact with and regulate both repressed and activated targets. However, the mechanisms underlying activation differ substantially from repression. Base pairing resulting in target activation can involve sRNA interactions with the 5(') untranslated region (UTR), the coding sequence or the 3(') UTR of the target mRNAs. Frequently, the activities of protein factors such as cellular ribonucleases and the RNA chaperone Hfq are required for activation. Bacterial sRNAs, including those that function as activators, frequently control stress response pathways or virulence-associated functions required for immediate responses to changing environments. This review aims to summarize recent advances in knowledge regarding target mRNA activation by bacterial sRNAs, highlighting the molecular mechanisms and biological relevance of regulation.
Collapse
Affiliation(s)
- Kai Papenfort
- Department of Molecular Biology, Princeton University, Princeton, NJ 08540, USA Department of Biology I, Ludwig-Maximilians-University Munich, 82152 Martinsried, Germany
| | - Carin K Vanderpool
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
49
|
Abstract
UNLABELLED Chromosomal DNA is a constant source of information, essential for any given cell to respond and adapt to changing conditions. Here, we investigated the fate of exponentially growing bacterial cells experiencing a sudden and rapid loss of their entire chromosome. Utilizing Bacillus subtilis cells harboring an inducible copy of the endogenous toxin yqcG, which encodes an endonuclease, we induced the formation of a population of cells that lost their genetic information simultaneously. Surprisingly, these DNA-less cells, termed DLCs, did not lyse immediately and exhibited normal cellular morphology for a period of at least 5 h after DNA loss. This cellular integrity was manifested by their capacity to maintain an intact membrane and membrane potential and cell wall architecture similar to those of wild-type cells. Unlike growing cells that exhibit a dynamic profile of macromolecules, DLCs displayed steady protein and RNA reservoirs. Remarkably, following DLCs by time lapse microscopy revealed that they succeeded in synthesizing proteins, elongating, and dividing, apparently forming de novo Z rings at the midcell position. Taken together, the persistence of key cellular events in DLCs indicates that the information to carry out lengthy processes is harbored within the remaining molecular components. IMPORTANCE Perturbing bacterial growth by the use of antibiotics targeting replication, transcription, or translation has been a subject of study for many years; however, the consequences of a more dramatic event, in which the entire bacterial chromosome is lost, have not been described. Here, we followed the fate of bacterial cells encountering an abrupt loss of their entire genome. Surprisingly, the cells preserved an intact envelope and functioning macromolecules. Furthermore, cells lacking their genome could still elongate and divide hours after the loss of DNA. Our data suggest that the information stored in the transient reservoir of macromolecules is sufficient to carry out complex and lengthy processes even in the absence of the chromosome. Based on our study, the formation of DNA-less bacteria could serve as a novel vaccination strategy, enabling an efficient induction of the immune system without the risk of bacterial propagation within the host.
Collapse
|
50
|
Xu C, Huang R, Teng L, Jing X, Hu J, Cui G, Wang Y, Cui Q, Xu J. Cellulosome stoichiometry in Clostridium cellulolyticum is regulated by selective RNA processing and stabilization. Nat Commun 2015; 6:6900. [PMID: 25908225 PMCID: PMC4423207 DOI: 10.1038/ncomms7900] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Accepted: 03/11/2015] [Indexed: 01/23/2023] Open
Abstract
The mechanism, physiological relevance and evolutionary implication of selective RNA processing and stabilization (SRPS) remain elusive. Here we report the genome-wide maps of transcriptional start sites (TSs) and post-transcriptional processed sites (PSs) for Clostridium cellulolyticum. The PS-associated genes are preferably associated with subunits of heteromultimeric protein complexes, and the intergenic PSs (iPSs) are enriched in operons exhibiting highly skewed transcript-abundance landscape. Stem-loop structures associated with those iPSs located at 3′ termini of highly transcribed genes exhibit folding free energy negatively correlated with transcript-abundance ratio of flanking genes. In the cellulosome-encoding cip-cel operon, iPSs and stem-loops precisely regulate structure and abundance of the subunit-encoding transcripts processed from a primary polycistronic RNA, quantitatively specifying cellulosome stoichiometry. Moreover, cellulosome evolution is shaped by the number, position and biophysical nature of TSs, iPSs and stem-loops. Our findings unveil a genome-wide RNA-encoded strategy controlling in vivo stoichiometry of protein complexes. Selective RNA processing and stabilization (SRPS) can regulate bacterial operons, but the process is not well understood. Here, the authors show that the stoichiometry of cellulosome, a 12-subunit protein complex expressed from an operon in Gram-positive Clostridium cellullolyticum, is regulated by SRPS.
Collapse
Affiliation(s)
- Chenggang Xu
- Single-Cell Center, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong 266101, China.,CAS Key Laboratory of Biofuels and Shandong Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong 266101, China
| | - Ranran Huang
- Single-Cell Center, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong 266101, China.,CAS Key Laboratory of Biofuels and Shandong Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong 266101, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lin Teng
- Single-Cell Center, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong 266101, China.,CAS Key Laboratory of Biofuels and Shandong Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong 266101, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaoyan Jing
- Single-Cell Center, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong 266101, China.,CAS Key Laboratory of Biofuels and Shandong Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong 266101, China
| | - Jianqiang Hu
- Single-Cell Center, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong 266101, China.,CAS Key Laboratory of Biofuels and Shandong Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong 266101, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guzhen Cui
- CAS Key Laboratory of Biofuels and Shandong Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong 266101, China
| | - Yilin Wang
- Single-Cell Center, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong 266101, China.,CAS Key Laboratory of Biofuels and Shandong Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong 266101, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qiu Cui
- CAS Key Laboratory of Biofuels and Shandong Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong 266101, China
| | - Jian Xu
- Single-Cell Center, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong 266101, China.,CAS Key Laboratory of Biofuels and Shandong Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong 266101, China
| |
Collapse
|