1
|
Kishi K, Kamizaki M, Kaji N, Iino S, Hori M. A Close Relationship Between Networks of Interstitial Cells of Cajal and Gastrointestinal Transit In Vivo. Front Pharmacol 2020; 11:587453. [PMID: 33633564 PMCID: PMC7902082 DOI: 10.3389/fphar.2020.587453] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Accepted: 10/14/2020] [Indexed: 01/02/2023] Open
Abstract
The interstitial cells of Cajal associated with the myenteric plexus (ICC-MP) are located in the same area as the myenteric plexus. ICC-MP networks are linked to the generation of electrical pacemaker activity that causes spontaneous gastrointestinal (GI) contractions; however, its role in GI transit is not clear. The aim of this study was to comprehensively investigate the effect of ICC-MP disruption on GI transit in vivo using W/Wv mice, partially ICC-deficient model mice. In this study, we measured GI transit using a 13C-octanoic acid breath test, an orally administered dye and a bead expulsion assay. ICC were detected by immunohistochemical staining for c-Kit, a specific marker for ICC. Interestingly, we found that gastric emptying in W/Wv mice was normal. We also found that the ability of small intestinal and colonic transit was significantly reduced in W/Wv mice. Immunohistochemical staining using whole-mount muscularis samples revealed that c-Kit-positive ICC-MP networks were formed in wild-type mice. In contrast, ICC-MP networks in W/Wv mice were maintained only in the gastric antrum and were significantly reduced in the ileum and colon. No significant changes were observed in the nerve structures of the myenteric plexus in W/Wv mice. These findings suggest that ICC-MP contribute to GI transit as a powerful driving function in vivo.
Collapse
Affiliation(s)
- Kazuhisa Kishi
- Department of Veterinary Pharmacology, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Moe Kamizaki
- Department of Veterinary Pharmacology, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Noriyuki Kaji
- Department of Pharmacology, School of Veterinary Medicine, Azabu University, Kanagawa, Japan
| | - Satoshi Iino
- Division of Anatomy and Neuroscience, Department of Morphological and Physiological Sciences, Faculty of Medical Sciences, University of Fukui, Fukui, Japan
| | - Masatoshi Hori
- Department of Veterinary Pharmacology, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
2
|
Sanders KM. Spontaneous Electrical Activity and Rhythmicity in Gastrointestinal Smooth Muscles. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1124:3-46. [PMID: 31183821 PMCID: PMC7035145 DOI: 10.1007/978-981-13-5895-1_1] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The gastrointestinal (GI) tract has multifold tasks of ingesting, processing, and assimilating nutrients and disposing of wastes at appropriate times. These tasks are facilitated by several stereotypical motor patterns that build upon the intrinsic rhythmicity of the smooth muscles that generate phasic contractions in many regions of the gut. Phasic contractions result from a cyclical depolarization/repolarization cycle, known as electrical slow waves, which result from intrinsic pacemaker activity. Interstitial cells of Cajal (ICC) are electrically coupled to smooth muscle cells (SMCs) and generate and propagate pacemaker activity and slow waves. The mechanism of slow waves is dependent upon specialized conductances expressed by pacemaker ICC. The primary conductances responsible for slow waves in mice are Ano1, Ca2+-activated Cl- channels (CaCCs), and CaV3.2, T-type, voltage-dependent Ca2+ channels. Release of Ca2+ from intracellular stores in ICC appears to be the initiator of pacemaker depolarizations, activation of T-type current provides voltage-dependent Ca2+ entry into ICC, as slow waves propagate through ICC networks, and Ca2+-induced Ca2+ release and activation of Ano1 in ICC amplifies slow wave depolarizations. Slow waves conduct to coupled SMCs, and depolarization elicited by these events enhances the open-probability of L-type voltage-dependent Ca2+ channels, promotes Ca2+ entry, and initiates contraction. Phasic contractions timed by the occurrence of slow waves provide the basis for motility patterns such as gastric peristalsis and segmentation. This chapter discusses the properties of ICC and proposed mechanism of electrical rhythmicity in GI muscles.
Collapse
Affiliation(s)
- Kenton M Sanders
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV, USA.
| |
Collapse
|
3
|
Blair PJ, Rhee PL, Sanders KM, Ward SM. The significance of interstitial cells in neurogastroenterology. J Neurogastroenterol Motil 2014; 20:294-317. [PMID: 24948131 PMCID: PMC4102150 DOI: 10.5056/jnm14060] [Citation(s) in RCA: 90] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Revised: 06/06/2014] [Accepted: 06/07/2014] [Indexed: 12/21/2022] Open
Abstract
Smooth muscle layers of the gastrointestinal tract consist of a heterogeneous population of cells that include enteric neurons, several classes of interstitial cells of mesenchymal origin, a variety of immune cells and smooth muscle cells (SMCs). Over the last number of years the complexity of the interactions between these cell types has begun to emerge. For example, interstitial cells, consisting of both interstitial cells of Cajal (ICC) and platelet-derived growth factor receptor alpha-positive (PDGFRα(+)) cells generate pacemaker activity throughout the gastrointestinal (GI) tract and also transduce enteric motor nerve signals and mechanosensitivity to adjacent SMCs. ICC and PDGFRα(+) cells are electrically coupled to SMCs possibly via gap junctions forming a multicellular functional syncytium termed the SIP syncytium. Cells that make up the SIP syncytium are highly specialized containing unique receptors, ion channels and intracellular signaling pathways that regulate the excitability of GI muscles. The unique role of these cells in coordinating GI motility is evident by the altered motility patterns in animal models where interstitial cell networks are disrupted. Although considerable advances have been made in recent years on our understanding of the roles of these cells within the SIP syncytium, the full physiological functions of these cells and the consequences of their disruption in GI muscles have not been clearly defined. This review gives a synopsis of the history of interstitial cell discovery and highlights recent advances in structural, molecular expression and functional roles of these cells in the GI tract.
Collapse
Affiliation(s)
- Peter J Blair
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, NV, USA; and
| | - Poong-Lyul Rhee
- Division of Gastroenterology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Kenton M Sanders
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, NV, USA; and
| | - Sean M Ward
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, NV, USA; and
| |
Collapse
|
4
|
Blair PJ, Rhee PL, Sanders KM, Ward SM. The significance of interstitial cells in neurogastroenterology. J Neurogastroenterol Motil 2014. [PMID: 24948131 DOI: 10.5056/jnm140] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Smooth muscle layers of the gastrointestinal tract consist of a heterogeneous population of cells that include enteric neurons, several classes of interstitial cells of mesenchymal origin, a variety of immune cells and smooth muscle cells (SMCs). Over the last number of years the complexity of the interactions between these cell types has begun to emerge. For example, interstitial cells, consisting of both interstitial cells of Cajal (ICC) and platelet-derived growth factor receptor alpha-positive (PDGFRα(+)) cells generate pacemaker activity throughout the gastrointestinal (GI) tract and also transduce enteric motor nerve signals and mechanosensitivity to adjacent SMCs. ICC and PDGFRα(+) cells are electrically coupled to SMCs possibly via gap junctions forming a multicellular functional syncytium termed the SIP syncytium. Cells that make up the SIP syncytium are highly specialized containing unique receptors, ion channels and intracellular signaling pathways that regulate the excitability of GI muscles. The unique role of these cells in coordinating GI motility is evident by the altered motility patterns in animal models where interstitial cell networks are disrupted. Although considerable advances have been made in recent years on our understanding of the roles of these cells within the SIP syncytium, the full physiological functions of these cells and the consequences of their disruption in GI muscles have not been clearly defined. This review gives a synopsis of the history of interstitial cell discovery and highlights recent advances in structural, molecular expression and functional roles of these cells in the GI tract.
Collapse
Affiliation(s)
- Peter J Blair
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, NV, USA
| | - Poong-Lyul Rhee
- Division of Gastroenterology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Kenton M Sanders
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, NV, USA
| | - Sean M Ward
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, NV, USA
| |
Collapse
|
5
|
Huizinga JD, Martz S, Gil V, Wang XY, Jimenez M, Parsons S. Two independent networks of interstitial cells of cajal work cooperatively with the enteric nervous system to create colonic motor patterns. Front Neurosci 2011; 5:93. [PMID: 21833164 PMCID: PMC3153851 DOI: 10.3389/fnins.2011.00093] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2011] [Accepted: 07/13/2011] [Indexed: 12/12/2022] Open
Abstract
Normal motility of the colon is critical for quality of life and efforts to normalize abnormal colon function have had limited success. A better understanding of control systems of colonic motility is therefore essential. We report here a hypothesis with supporting experimental data to explain the origin of rhythmic propulsive colonic motor activity induced by general distention. The theory holds that both networks of interstitial cells of Cajal (ICC), those associated with the submuscular plexus (ICC-SMP) and those associated with the myenteric plexus (ICC-MP), orchestrate propagating contractions as pacemaker cells in concert with the enteric nervous system (ENS). ICC-SMP generate an omnipresent slow wave activity that causes propagating but non-propulsive contractions ("rhythmic propagating ripples") enhancing absorption. The ICC-MP generate stimulus-dependent cyclic depolarizations propagating anally and directing propulsive activity ("rhythmic propulsive motor complexes"). The ENS is not essential for both rhythmic motor patterns since distention and pharmacological means can produce the motor patterns after blocking neural activity, but it supplies the primary stimulus in vivo. Supporting data come from studies on segments of the rat colon, simultaneously measuring motility through spatiotemporal mapping of video recordings, intraluminal pressure, and outflow measurements.
Collapse
Affiliation(s)
- Jan D Huizinga
- Department of Medicine, Farncombe Family Digestive Health Research Institute, McMaster University Hamilton, ON, Canada
| | | | | | | | | | | |
Collapse
|
6
|
Gallego D, Gil V, Aleu J, Martinez-Cutillas M, Clavé P, Jimenez M. Pharmacological characterization of purinergic inhibitory neuromuscular transmission in the human colon. Neurogastroenterol Motil 2011; 23:792-e338. [PMID: 21585621 DOI: 10.1111/j.1365-2982.2011.01725.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
BACKGROUND In the present study, we further characterize the purinergic receptors mediating the inhibitory junction potential (IJP) and smooth muscle relaxation in the human colon using a new, potent and selective agonist (MRS2365), and antagonists (MR2279 and MRS2500) of the P2Y(1) receptor. The P2Y(12) antagonist AR-C66096 was tested as well. Using this pharmacological approach, we tested whether β-nicotinamide adenine dinucleotide (β-NAD) fulfilled the criteria to be considered an inhibitory neurotransmitter in the human colon. METHODS We carried out muscle bath and microelectrode experiments on circular strips from the human colon and calcium imaging recordings on HEK293 cells, which constitutively express the human P2Y(1) receptor. KEY RESULTS Both the fast component of IJP and non-nitrergic relaxation was concentration-dependently inhibited by MRS2279 and MRS2500. This antagonism was confirmed in HEK293 cells. However, AR-C66096 did not modify either inhibitory response. Adenosine 5'-Ο-2-thiodiphosphate and MRS2365 caused a smooth muscle hyperpolarization and transient inhibition of spontaneous motility that was antagonized by MRS2279 and MRS2500. β-Nicotinamide adenine dinucleotide inhibited the spontaneous motility (IC(50) = 3.3 mmol L(-1) ). Nevertheless, this effect was not antagonized by high concentrations of P2Y(1) antagonists. CONCLUSIONS & INFERENCES Inhibitory purinergic neuromuscular transmission in the human colon was pharmacologically assessed by the use of new P2Y(1) receptor antagonists MRS2179, MRS2279, and MRS2500. The rank order of potency of the P2Y(1) antagonists is MRS2500 > MRS2279 > MRS2179. We found that β-NAD partially fulfills the criteria to be considered an inhibitory neurotransmitter in the human colon, but the relative contribution of each purine (ATP/ADP vsβ-NAD) requires further studies.
Collapse
Affiliation(s)
- D Gallego
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas, (CIBERehd), Instituto de Salud Carlos III, Barcelona, Spain
| | | | | | | | | | | |
Collapse
|
7
|
Gallego D, Gil V, Aleu J, Aulí M, Clavé P, Jiménez M. Purinergic and nitrergic junction potential in the human colon. Am J Physiol Gastrointest Liver Physiol 2008; 295:G522-33. [PMID: 18599588 DOI: 10.1152/ajpgi.00510.2007] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The aim of the present work is to investigate a putative junction transmission [nitric oxide (NO) and ATP] in the human colon and to characterize the electrophysiological and mechanical responses that might explain different functions from both neurotransmitters. Muscle bath and microelectrode techniques were performed on human colonic circular muscle strips. The NO donor sodium nitroprusside (10 microM), but not the P2Y receptor agonist adenosine 5'-O-2-thiodiphosphate (10 microM), was able to cause a sustained relaxation. NG-nitro-L-arginine (L-NNA) (1 mM), a NO synthase inhibitor, but not 2'-deoxy-N6-methyl adenosine 3',5'-diphosphate tetraammonium salt (MRS 2179) (10 microM), a P2Y antagonist, increased spontaneous motility. Electrical field stimulation (EFS) at 1 Hz caused fast inhibitory junction potentials (fIJPs) and a relaxation sensitive to MRS 2179 (10 microM). EFS at higher frequencies (5 Hz) showed biphasic IJP with fast hyperpolarization sensitive to MRS 2179 followed by sustained hyperpolarization sensitive to L-NNA; both drugs were needed to fully block the EFS relaxation at 2 and 5 Hz. Two consecutive single pulses induced MRS 2179-sensitive fIJPs that showed a rundown. The rundown mechanism was not dependent on the degree of hyperpolarization and was present after incubation with L-NNA (1 mM), hexamethonium (100 microM), MRS 2179 (1 microM), and NF023 (10 microM). We concluded that single pulses elicit ATP release from enteric motor neurons that cause a fIJP and a transient relaxation that is difficult to maintain over time; also, NO is released at higher frequencies causing a sustained hyperpolarization and relaxation. These differences might be responsible for complementary mechanisms of relaxation being phasic (ATP) and tonic (NO).
Collapse
Affiliation(s)
- Diana Gallego
- Department of Cell Biology, Physiology and Immunology, Edifici V, Universitat Autònoma de Barcelona 08193, Bellaterra, Barcelona, Spain
| | | | | | | | | | | |
Collapse
|
8
|
Abstract
There has been considerable speculation about the function of interstitial cells of Cajal (ICC) since their discovery more than 100 years ago. It has been difficult to study these cells under native conditions, but great insights about the function of ICC have come from studies of genetic models with loss-of function mutations in the Kit signalling pathway. First it was discovered that signalling via Kit (a receptor tyrosine kinase) was vital for the development and maintenance of the ICC phenotype in gastrointestinal (GI) muscles. In compound heterozygotes (W/W(V) and Sl/Sl(d) animals), where there are partial loss-of-function mutations in Kit receptors or Kit ligand (stem cell factor), ICC failed to develop in various regions of the GI tract, but no major changes in the smooth muscle layers or enteric nervous system occurred in the absence of these cells. Animals with these mutations provided an unprecedented opportunity to understand the role of ICC in GI motor function, and it is now clear from these studies that ICC serve as: (i) pacemaker cells, generating the spontaneous electrical rhythms of the gut known as slow waves; (ii) a propagation pathway for slow waves so that large areas of the musculature can be entrained to a dominant pacemaker frequency; (iii) mediators of excitatory cholinergic and inhibitory nitrergic neural inputs from the enteric nervous system, and (iv) stretch receptors that modulate membrane potential and electrical slow wave frequency. This review describes the use of genetic models to understand the important physiological role of ICC in the GI tract.
Collapse
Affiliation(s)
- Kenton M Sanders
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, NV 89557, USA.
| | | |
Collapse
|
9
|
Gallego D, Hernández P, Clavé P, Jiménez M. P2Y1 receptors mediate inhibitory purinergic neuromuscular transmission in the human colon. Am J Physiol Gastrointest Liver Physiol 2006; 291:G584-94. [PMID: 16751171 DOI: 10.1152/ajpgi.00474.2005] [Citation(s) in RCA: 114] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Indirect evidence suggests that ATP is a neurotransmitter involved in inhibitory pathways in the neuromuscular junction in the gastrointestinal tract. The aim of this study was to characterize purinergic inhibitory neuromuscular transmission in the human colon. Tissue was obtained from colon resections for neoplasm. Muscle bath, microelectrode experiments, and immunohistochemical techniques were performed. 2'-deoxy-N(6)-methyl adenosine 3',5'-diphosphate tetraammonium salt (MRS 2179) was used as a selective inhibitor of P2Y(1) receptors. We found that 1) ATP (1 mM) and adenosine 5'-beta-2-thiodiphosphate (ADPbetaS) (10 microM), a preferential P2Y agonist, inhibited spontaneous motility and caused smooth muscle hyperpolarization (about -12 mV); 2) MRS 2179 (10 microM) and apamin (1 microM) significantly reduced these effects; 3) both the fast component of the inhibitory junction potential (IJP) and the nonnitrergic relaxation induced by electrical field stimulation were dose dependently inhibited (IC(50) approximately 1 microM) by MRS 2179; 4) ADPbetaS reduced the IJP probably by a desensitization mechanism; 5) apamin (1 microM) reduced the fast component of the IJP (by 30-40%) and the inhibitory effect induced by electrical field stimulation; and 6) P2Y(1) receptors were localized in smooth muscle cells as well as in enteric neurons. These results show that ATP or a related purine is released by enteric inhibitory motoneurons, causing a fast hyperpolarization and smooth muscle relaxation. The high sensitivity of MRS 2179 has revealed, for the first time in the human gastrointestinal tract, that a P2Y(1) receptor present in smooth muscle probably mediates this mechanism through a pathway that partially involves apamin-sensitive calcium-activated potassium channels. P2Y(1) receptors can be an important pharmacological target to modulate smooth muscle excitability.
Collapse
Affiliation(s)
- Diana Gallego
- Dept. of Cell Biology, Physiology, and Immunology, Edifici V, Universidad Autònoma de Barcelona, Bellaterra 08193, Spain
| | | | | | | |
Collapse
|
10
|
Yin J, Hou X, Chen JDZ. Roles of interstitial cells of Cajal in intestinal transit and exogenous electrical pacing. Dig Dis Sci 2006; 51:1818-23. [PMID: 16957993 DOI: 10.1007/s10620-006-9313-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2005] [Accepted: 03/12/2006] [Indexed: 12/27/2022]
Abstract
The aims of this study were to investigate the role of interstitial cells of Cajal (ICCs) on small intestinal transit and its responses to exogenous pacing in W/W(v) mice. Eleven W/W(v) mice and their controls implanted with four pairs of gastrointestinal electrodes were used for testing the entrainment of slow waves. Another 20 W/W(v) mice and their controls equipped with a duodenal catheter and one pair of intestinal electrodes were used to test small intestinal transit represented by the geometric center (GC). Results were as follows. (1) The effect of pacing on slow wave frequency was sustained only in controls, and not in W/W(v) mice. (2) Both gastric and intestinal slow waves were completely entrained in controls and W/W(v) mice. Higher energy was required for pacing the stomach than the small intestine. (3) There was no significant difference in small intestinal transit between the controls and the W/W(v) mice (GC: 5.4 vs. 5.5). (4) Pacing showed no effects on small intestinal transit in either wild-type (GC: 5.4 vs. 5.6) or W/W(v) mice (GC: 5.5 vs. 5.7). We conclude that myenteric ICCs may not play an important role in the regulation of small intestinal transit in conscious mice. Gastric and intestinal pacing can be achieved without ICCs.
Collapse
Affiliation(s)
- Jieyun Yin
- Veterans Research and Education Foundation, VA Medical Center Transneuronix Inc, Oklahoma City, Oklahoma, USA
| | | | | |
Collapse
|
11
|
Abstract
In the gastrointestinal tract, phasic contractions are caused by electrical activity termed slow waves. Slow waves are generated and actively propagated by interstitial cells of Cajal (ICC). The initiation of pacemaker activity in the ICC is caused by release of Ca2+ from inositol 1,4,5-trisphosphate (IP3) receptor-operated stores, uptake of Ca2+ into mitochondria, and the development of unitary currents. Summation of unitary currents causes depolarization and activation of a dihydropyridine-resistant Ca2+ conductance that entrains pacemaker activity in a network of ICC, resulting in the active propagation of slow waves. Slow wave frequency is regulated by a variety of physiological agonists and conditions, and shifts in pacemaker dominance can occur in response to both neural and nonneural inputs. Loss of ICC in many human motility disorders suggests exciting new hypotheses for the etiology of these disorders.
Collapse
Affiliation(s)
- Kenton M Sanders
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, Nevada 89557, USA.
| | | | | |
Collapse
|
12
|
Faussone-Pellegrini MS. Relationships between neurokinin receptor-expressing interstitial cells of Cajal and tachykininergic nerves in the gut. J Cell Mol Med 2006; 10:20-32. [PMID: 16563219 PMCID: PMC3933099 DOI: 10.1111/j.1582-4934.2006.tb00288.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2006] [Accepted: 02/10/2006] [Indexed: 01/25/2023] Open
Abstract
The so-called interstitial cells of Cajal (ICC) are distributed throughout the muscle coat of the alimentary tract with characteristic intramural location and species-variations in structure and staining. Several ICC sub-types have been identified: ICC-DMP, ICC-MP, ICC-IM, ICC-SM. Gut motility is regulated by ICC and each sub-type is responsible for the electrical activities typical of each gut region and/or muscle layer. The interstitial position of the ICC between nerve endings and smooth muscle cells has been extensively considered. Some of these nerve endings contain tachykinins. Three distinct tachykinin receptors (NK1r, NK2r and NK3r) have been demonstrated by molecular biology. Each of them binds with different affinities to a series of tachykinins (SP, NKA and NKB). In the ileum, SP-immunoreactive (SP-IR) nerve fibers form a rich plexus at the deep muscular plexus (DMP), distributed around SP-negative cells, and ICC-DMP intensely express the SP-preferred receptor NK1r; conversely a faint NK1r-IR is detected on the ICC-MP and mainly after receptor internalization was induced by agonists. ICC-IM are never stained in laboratory mammals, while those of the human antrum are NK1r- IR. RT-PCR conducted on isolated ileal ICC-MP and gastric ICC-IM showed that these cells express NK1r and NK3r. Colonic ICC, except those in humans, do not express NK1r-IR, at least in resting conditions. Outside the gut, NK1r-IR cells were seen in the arterial wall and exocrine pancreas. In the mouse gut only, NK1r-IR is present in non-neuronal cells located within the intestinal villi, so-called myoid cells, which are c-kit-negative and alpha-smooth muscle actin-positive. Immunohistochemistry and functional studies confirmed that ICC receive input from SP-IR terminals, with differences between ICC sub-types. In the rat, very early after birth, NK1r is expressed by the ICC-DMP and SP by the related nerve varicosities. Studies on pathological conditions are few and those on mutant strains practically absent. It has only been reported that in the inflamed ileum of rats the NK1r-IR ICC-DMP disappear and that at the peak of inflammatory conditions ICC-MP are NK1r-IR. In the ileum of mice with a mutation in the W locus, ICC-DMP were seen to express c-kit-IR but not NK1-IR, and SP-IR innervation seems unchanged. In summary, there are distinct ICC populations, each of them under a different tachykininergic control and, likely, having different functions. Further studies are recommended at the aim of understanding ICC involvement in modulating/transmitting tachykininergic inputs.
Collapse
Affiliation(s)
- Maria-Simonetta Faussone-Pellegrini
- Department of Anatomy, Histology and Forensic Medicine, Section of Histology, University of Florence, Viale G. Pieraccini, 6, 50134 Florence, Italy.
| |
Collapse
|
13
|
Wang XY, Vannucchi MG, Nieuwmeyer F, Ye J, Faussone-Pellegrini MS, Huizinga JD. Changes in interstitial cells of Cajal at the deep muscular plexus are associated with loss of distention-induced burst-type muscle activity in mice infected by Trichinella spiralis. THE AMERICAN JOURNAL OF PATHOLOGY 2005; 167:437-53. [PMID: 16049330 PMCID: PMC1603561 DOI: 10.1016/s0002-9440(10)62988-4] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The physiology and pathophysiology of the network of interstitial cells of Cajal associated with the deep muscular plexus (ICC-DMP) of the small intestine are still poorly understood. The objectives of the present study were to evaluate the effects of inflammation associated with Trichinella spiralis infection on the ICC-DMP and to correlate loss of function with structural changes in these cells and associated structures. We used immunohistochemistry, electron microscopy, and assessment of distention-inducing electrophysiological parameters in vitro. Damage to ICC-DMP was associated with a loss of distention-induced patterns of electrical activity normally associated with distention-induced peristalsis. Consistently, the timing of recovery of ICC-DMP paralleled the timing of recovery of the distention-induced activity. Nerve varicosities associated with ICC-DMP including cholinergic nerves, assessed by immunoelectron microscopy and whole mount double labeling, paralleled injury to ICC-DMP thus contributing to impaired excitatory innervation of smooth muscle cells. Major additional changes included a remodeling of the inner circular muscle layer, which may affect long-term sensitivity to distention after infection. In conclusion, transient injury to ICC-DMP in response to T. spiralis infection is severe and associated with a complete lack of distention-induced burst-type muscle activity.
Collapse
Affiliation(s)
- Xuan-Yu Wang
- Department of Medicine, McMaster University, Hamilton, ON, Canada
| | | | | | | | | | | |
Collapse
|
14
|
Abstract
The aim was to investigate whether there are regular gastric and intestinal slow waves in conscious W/WV mice. Eleven W/WV mice and 11 wild-type mice were implanted with two pairs of electrodes in the stomach and small intestine. Gastrointestinal slow waves were recorded both under anesthesia and in the conscious state. Atropine and verapamil were given separately to an additional 10 W/WV mice. Results were as follows. (1) The conscious W/WV mice showed lower rhythmic slow waves in the small intestine (77.1 vs 93.5%; P < 0.001). However, the frequency (10.7 vs 18.8 cpm; P < 0.0001) and the antregrade propagation of intestinal slow waves in W/Wv mice were significantly lower than in the controls. In the stomach, regular slow waves were recorded in both groups, with no difference between the two groups. (2) Anesthesia significantly impaired both gastric and intestinal slow waves in both groups. (3) Atropine and verapamil had no effects on the rhythmicity of intestinal slow waves. We conclude that ICC-MY may not be the sole pacemaker cells for slow waves in the small intestine. There may be some abnormality of smooth muscle cells in W/WV mice that causes a reduction in the frequency, rhythmicity, and antegrade propagation of slow waves.
Collapse
Affiliation(s)
- Xiaohua Hou
- Division of Gastroenterology, University of Texas Medical Branch, Galveston, Texas 77555-0764, USA
| | | | | | | | | |
Collapse
|
15
|
Abstract
Interstitial cells of Cajal (ICC) pace gastrointestinal muscle by initiating slow waves in both muscle layers and appear to be preferred sites for reception of neurotransmitters. ICC of the myenteric plexus (ICC-MP) pace stomach and small intestine, while intramuscular ICC (ICC-IM) receive nerve messages. Recently, ICC-IM have been found to provide regenerative responses to and amplification of pacing messages from ICC-MP, at least in some systems. This review will examine the assumption that gap junctions provide low-resistance contacts for pacing. Structural and functional evidence will be evaluated. Structural, theoretical and experimental difficulties with the gap junctions hypothesis for pacing will be considered. So far little direct evidence about the role of gap junctions in neurotransmission exists, although a structural basis exists. Alternate possibilities for transmission of ICC pacing and neural messages will be examined and suggestions for future research made.
Collapse
Affiliation(s)
- E E Daniel
- Department of Pharmacology, University of Alberta, Edmonton, AB, Canada.
| |
Collapse
|
16
|
Abstract
A simple model of pacing in mouse intestine to longitudinal (LM) as well as circular muscle (CM) has been developed. Undissected segments of LM or CM from mouse ileum or jejunum were prepared to record contractions, nerve functions were inhibited, and regular spontaneous contractions were recorded. These had the properties expected of interstitial cells of Cajal (ICC) paced contractions: ileum slower than jejunum, inhibited but not abolished by nicardipine, reduced in frequency by cyclopiazonic acid, abolished by Ca(2+)-free media, and high temperature dependence (Q10 approximately 2.6-3.2). Nicardipine significantly reduced the pacing frequency in LM and CM. Intestinal segments from W/W(V) mice had few irregular contractions in CM but had regular contractions in LM. Other differences were found between LM and CM that suggest that the control of pacing of LM differed from pacing of CM. Moreover, both LM and CM segments in wild-type and W/W(V) and after cyclopiazonic acid responded to electrical pacing (50 V/cm, 50 or 100 ms) at 1 pulse per second. Temperature <26 degrees C inhibited electrically paced contractions in CM. These findings suggest that the current models of ICC pacing need to be modified to apply to intact segments of mouse intestine.
Collapse
Affiliation(s)
- E E Daniel
- Department of Pharmacology, University of Alberta, Edmonton, AB, T6G 2H7 Canada.
| | | | | | | |
Collapse
|
17
|
Spencer NJ, Sanders KM, Smith TK. Migrating motor complexes do not require electrical slow waves in the mouse small intestine. J Physiol 2003; 553:881-93. [PMID: 14514874 PMCID: PMC2343631 DOI: 10.1113/jphysiol.2003.049700] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
We have investigated whether migrating motor complexes (MMCs) are impaired or absent in the small intestine of W/Wv mutant mice, which lack pacemaker interstitial cells of Cajal (ICC) and electrical slow waves. The intracellular electrical and mechanical activities of the small intestines of wild-type (+/+) and W/Wv mutant mice were recorded. Electrical recordings from circular muscle cells confirmed the absence of slow waves in W/Wv mice, whereas slow waves were always recorded from +/+ muscle cells. Spontaneous phasic contractions were recorded from W/Wv muscles in the absence of slow waves, but these events occurred at a lower frequency than in +/+ tissues. MMC activity was recorded consistently from the ileum of +/+ mice, and normal MMCs were also recorded from W/Wv mice. MMCs in both +/+ and W/Wv mice were abolished by tetrodotoxin (1 microM), hexamethonium (300 microM) or atropine (1 microM), suggesting that the neural control mechanisms responsible for MMCs in +/+ mice are intact and are responsible for MMCs in W/Wv mice. Transmural nerve stimulation demonstrated intact inhibitory and excitatory neural regulation of W/Wv intestinal muscles. Prolonged trains of cholinergic motor nerve stimulation failed to activate slow waves in the intestinal muscles of W/Wv mice. Our findings show that the generation and directional propagation of MMC activity in mouse small intestine does not require slow-wave activity or an intact network of myenteric ICC. The generation and propagation of MMCs appear to be an intrinsic capability of the enteric nervous system and are not related to slow waves or the gradient in slow-wave frequency.
Collapse
Affiliation(s)
- Nick J Spencer
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, NV 89557, USA.
| | | | | |
Collapse
|
18
|
Schultz T, Daniel V, Daniel EE. Does ICC pacing require functional gap junctions between ICC and smooth muscle in mouse intestine? Neurogastroenterol Motil 2003; 15:129-38. [PMID: 12680912 DOI: 10.1046/j.1365-2982.2003.00401.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
We tested the hypothesis that interstitial cells of Cajal (ICC) pace longitudinal and circular muscle of mouse intestine through gap junctions. Carbenoxolone (10(-6), 10(-5), 10(-4) mol L(-1)), an inhibitor of gap junction conductance, was applied to segments of longitudinal or circular muscle with contractions driven by ICC after inhibition of nerve function by tetrodotoxin (10(-6) mol L(-1)) and L-NOARG (10(-4) mol L(-1)). Carbenoxolone concentration- and time-dependently inhibited the amplitude of contraction (0.2-1.5 g in controls) of segments of longitudinal muscle, but had no effect on the frequency of contractions (from 36-54 min). It also inhibited the amplitude of contractions of circular muscle segments and reduced the frequency slightly at 10(-4) mol L(-)1. Carbenoxolone inhibited tonic contractions of longitudinal but not circular segments to 60 mmol L(-1) KCl, suggesting that it directly inhibited contractions of longitudinal muscle. The responses to pacing by electrical field stimulation (40 V cm(-1), 50-100 ms, 1 Hz) after block of nerve function were reduced insignificantly in amplitude, and not in frequency in both longitudinal and circular segments. We conclude that it is likely that only gap junctions within circular muscle are involved in pacing of muscle by ICC. Carbenoxolone also has effects on muscle contractility in longitudinal muscle.
Collapse
Affiliation(s)
- T Schultz
- Department of Pharmacology, University of Alberta, Edmonton, Canada
| | | | | |
Collapse
|
19
|
Horiguchi K, Semple GS, Sanders KM, Ward SM. Distribution of pacemaker function through the tunica muscularis of the canine gastric antrum. J Physiol 2001; 537:237-50. [PMID: 11711577 PMCID: PMC2278930 DOI: 10.1111/j.1469-7793.2001.0237k.x] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
1. Interstitial cells of Cajal (ICC) have been shown to generate pacemaker activity in gastrointestinal (GI) muscles. Experiments were performed to characterize the ICC within the canine gastric antrum and to determine the site(s) of pacemaker activity and whether active propagation pathways exist within the thick-walled tunica muscularis of large mammals. 2. Immunohistochemistry and electron microscopy revealed four populations of ICC within the antral muscularis on the basis of anatomical location. Typical ICC were found in the myenteric region of the small intestine (IC-MY). Intramuscular ICC (IC-IM) were intermingled between muscle fibres of circular and longitudinal muscle layers. ICC were also found within septa (IC-SEP) between muscle bundles and along the submucosal surface of the circular muscle layer (IC-SM). ICC were identified in each location by ultrastructural features. 3. Intracellular electrical recordings demonstrated nifedipine-insensitive slow waves throughout the circular muscle layer. Separation of interior and submucosal circular muscle strips from the dominant (myenteric) pacemaker region dramatically slowed frequency but did not block spontaneous slow waves, suggesting that pacemaker cells populate all regions of the circular muscle. 4. Slow waves could be evoked in interior and submucosal circular muscles at rates above normal antral frequency by electrical pacing or by acetylcholine (0.3 microM). Active slow wave propagation occurred in all regions of the circular muscle, and propagation velocities were similar in each region. 5. In summary, antral muscles of the canine stomach have pacemaker capability throughout the circular muscle. Normally, a dominant pacemaker near the myenteric plexus drives slow waves that actively propagate throughout the circular layer. Pacemaker activity and the active propagation pathway may occur in networks of ICC that are distributed in the region of the myenteric plexus and throughout the circular muscle layer.
Collapse
Affiliation(s)
- K Horiguchi
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, NV 89557, USA
| | | | | | | |
Collapse
|
20
|
Daniel EE, Thomas J, Ramnarain M, Bowes TJ, Jury J. Do gap junctions couple interstitial cells of Cajal pacing and neurotransmission to gastrointestinal smooth muscle? Neurogastroenterol Motil 2001; 13:297-307. [PMID: 11576389 DOI: 10.1046/j.1365-2982.2001.00269.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Interstitial cells of Cajal (ICC) pace gastrointestinal phasic activity and transmit nerve activity. Gap junctions may couple these cells to smooth muscle, but no functional evidence exists. The objective of this study was to use uncouplers of gap junctions, 18 alpha-glycyrrhetenic acid and its water-soluble analogue carbenoxolone, to evaluate if gap junctions function in pacing and neurotransmission. After inhibition of nerve function with tetrodotoxin (TTX) and N(G)-nitro-L-arginine (L-NOARG), ionomycin- or carbachol-initiated regular phasic activities of circular muscle strips from canine colon and ileum. In some cases, the primary ICC network responsible for pacing was removed. The effects of inhibitors of gap junction conductance (10(-5)-10(-4) mol L(-1)) on frequencies and amplitudes of contraction were compared to appropriate time controls. Lower oesophageal sphincter (LOS) relaxations to nerve stimulation were studied before and after inhibition of gap junction functions. No major changes in LOS relaxations or frequencies of colonic or ileal contractions occurred, but amplitudes of contractions decreased from these agents. Similar results were obtained when the myenteric plexus-ICC network of ileum was removed. Regular phasic activity was not obtained after removal of the colon submuscular plexus ICC. These findings suggest that mechanisms other than gap junctions couple gut pacemaking activity and nerve transmission.
Collapse
Affiliation(s)
- E E Daniel
- Health Sciences Centre, McMaster University, Hamilton, Ontario, Canada.
| | | | | | | | | |
Collapse
|
21
|
Abstract
In the canine gastrointestinal tract, the roles that gap junctions play in pacemaking and neurotransmission are unclear. Using antibodies to connexin (Cx)43, Cx45, and Cx40, we determined the distribution of these connexins. Cx43 was present in all locations where structural gap junctions occur. Cx40 was also widely distributed in the circular muscle of the lower esophageal sphincter (LES), stomach, and ileum. Cx45 was sparsely distributed in circular muscle of the LES. In the interstitial cells of Cajal (ICC) networks of myenteric plexus, in the deep muscular and submuscular plexuses, sparse Cx45 and Cx40 immunoreactivity was present. In colon, immunoreactivity was found only in the myenteric and submuscular plexus and nearby circular muscle cells. No immunoreactivity was found in sites lacking structural gap junctions (longitudinal muscle, inner circular muscle of the intestine, and most circular muscle of the colon). Studies of colocalization of connexins suggested that in the ICC networks, some colocalization of Cx43 with Cx40 and/or Cx45 occurred. Thus gap junctions in canine intestine may be heterotypic or heteromeric and have different conductance properties in different regions based on different connexin compositions.
Collapse
Affiliation(s)
- Y F Wang
- Department of Medicine, Faculty of Health Sciences, McMaster University, Hamilton, Ontario L8N 3Z5, Canada
| | | |
Collapse
|
22
|
Plujà L, Albertí E, Fernández E, Mikkelsen HB, Thuneberg L, Jiménez M. Evidence supporting presence of two pacemakers in rat colon. Am J Physiol Gastrointest Liver Physiol 2001; 281:G255-66. [PMID: 11408279 DOI: 10.1152/ajpgi.2001.281.1.g255] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Intracellular microelectrodes and organ bath techniques were used to study spontaneous cyclic electrical and mechanical activity in the rat colon. Electron microscopy and immunohistochemical studies showed two major populations of interstitial cells of Cajal (ICC): one associated with Auerbach's plexus (ICC-AP) and one with the submuscular plexus (ICC-SMP). The ICC-SMP network partly adhered to the submucosa when removed and was generally strongly damaged after separation of musculature and submucosa. Similarly, longitudinal muscle removal severely damaged AP. Two electrical and mechanical activity patterns were recorded: pattern A, low-frequency (0.5--1.5 cycles/min), high-amplitude oscillations; and pattern B, high-frequency (13--15 cycles/min), low-amplitude oscillations. Pattern A was recorded in preparations with intact AP but absent in those without intact AP. Pattern B was recorded in preparations with intact SMP but was absent in those lacking SMP. With full-thickness strips, the superimposed patterns A and B were recorded in circular muscle. When longitudinal muscle mechanical activity was recorded, only pattern A was present. We conclude that two pacemakers regulate rat colonic cyclic activity: the ICC-SMP network (responsible for cyclic slow waves and small-amplitude contractions) and the ICC-AP network (which may drive the cyclic depolarizations responsible for high-amplitude contractions). This is the first report showing consistent slow wave activity in the rodent colon.
Collapse
Affiliation(s)
- L Plujà
- Department of Cell Biology, Physiology, and Immunology, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Catalunya, Spain
| | | | | | | | | | | |
Collapse
|
23
|
Daniel EE, Kwan CY, Janssen L. Pharmacological techniques for the in vitro study of intestinal smooth muscles. J Pharmacol Toxicol Methods 2001; 45:141-58. [PMID: 11687381 DOI: 10.1016/s1056-8719(01)00131-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
MESH Headings
- Animals
- Dose-Response Relationship, Drug
- Electric Stimulation
- Humans
- In Vitro Techniques
- Intestine, Large/drug effects
- Intestine, Large/innervation
- Intestine, Large/physiology
- Intestine, Small/drug effects
- Intestine, Small/innervation
- Intestine, Small/physiology
- Muscle Contraction/drug effects
- Muscle Contraction/physiology
- Muscle, Smooth/drug effects
- Muscle, Smooth/innervation
- Muscle, Smooth/physiology
- Xenobiotics/pharmacology
Collapse
Affiliation(s)
- E E Daniel
- Department of Medicine, Faculty of Health Sciences, McMaster University, Hamilton, Ontario L8N 3Z5, Canada
| | | | | |
Collapse
|
24
|
Thuneberg L, Peters S. Toward a concept of stretch-coupling in smooth muscle. I. Anatomy of intestinal segmentation and sleeve contractions. THE ANATOMICAL RECORD 2001; 262:110-24. [PMID: 11146434 DOI: 10.1002/1097-0185(20010101)262:1<110::aid-ar1016>3.0.co;2-0] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Motility patterns and their structural basis were studied by video analysis, light and electron microscopy on the physiologically distended gut from normal and W/W(v) suckling mice and normal adult mice. Empty or diltiazem-relaxed intestine were used as references. In contrast to conventional primary aldehyde fixation, a brief primary fixation with osmic acid before aldehydes preserved the visible contraction patterns and revealed dynamic increases in the number of peg-and-socket junctions coupling muscle cells mutually and with interstitial cells of Cajal (ICC). In tissue engaged in segmentation, the major increase was in the circular muscle and involved the ICC-DMP (integrated in the circular muscle layer at the site of the deep muscular plexus), whereas the increase during sleeve contractions was in the longitudinal muscle and involved the ICC-AP (located at the site of Auerbach's plexus). The number and distribution of gap junctions were unaffected. Area analysis of cell profiles supported the involvement of circular muscle in segmentation, but longitudinal muscle alone in sleeve contractions. The gut of both normal and W/W(v) sucklings (and adults) contracted during segmentation at frequencies close to reported slow-wave frequencies. In W/W(v) sucklings, ICC-AP were absent whereas ICC-DMP were present in adult configuration. Before Day 8 pp gap junctions were seen only between ICC-DMP. In the sucklings ICC-DMP may be responsible for rapid circumferential coordination and pacemaking of ring contractions. The geometry, organization, and dynamic regulation of peg-and-socket junctions strongly suggest a crucial role in coordination of smooth muscle and pacemakers, probably as stretch sensors, mediating a 'stretch-coupling' in the system.
Collapse
Affiliation(s)
- L Thuneberg
- Institute of Medical Anatomy, University of Copenhagen, Denmark.
| | | |
Collapse
|
25
|
Daniel EE, Wang YF, Salapatek AM, Mao YK, Mori M. Arginosuccinate synthetase, arginosuccinate lyase and NOS in canine gastrointestinal tract: immunocytochemical studies. Neurogastroenterol Motil 2000; 12:317-34. [PMID: 10886674 DOI: 10.1046/j.1365-2982.2000.00208.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Nitric oxide synthase (NOS) requires the substrate L-arginine for NO production to support multiple gastrointestinal functions. We asked, 'Where do enzymes to regenerate L-arginine from L-citrulline exist?'. We examined loci of immunoreactivities in the canine gastrointestinal tract for arginosuccinate synthetase and arginosuccinate lyase, enzymes that resynthesize L-arginine from L-citrulline, in relation to the distribution of nNOS immunoreactivity or NADPH-diaphorase histochemistry. Arginosuccinate synthetase and lyase were present in many neurones and nerve fibres in the myenteric plexus of the lower oesophageal sphincter (LOS), antrum, pylorus, ileum and colon; in the submucosal plexus of ileum and colon; in longitudinal muscle of ileum and colon; and in nerve bundles in circular muscle everywhere. LOS muscle was also immunoreactive for both enzymes. Circular and longitudinal muscle cells of the ileum and colon and cells resembling interstitial cells of Cajal in the deep muscular plexus of the ileum and the submuscular plexus of the colon also appeared immunoreactive. In neurones, arginosuccinate synthetase and nNOS were usually co-localized. NADPH diaphorase activity was present in LOS and likely in pylorus, but not in muscularis externa of ileum or colon. We conclude that resynthesis of L-arginine probably occurs in enteric nerves, interstitial cells of Cajal (ICC) and LOS muscle; also apparently in some cells without NOS to utilize it.
Collapse
Affiliation(s)
- E E Daniel
- Department of Medicine, McMaster University, Hamilton, ON, L8N 3Z5, Canada.
| | | | | | | | | |
Collapse
|
26
|
Abstract
Interstitial cells of Cajal (ICCs) are specialized cells of the gastrointestinal tract forming distinct populations depending on their location in the gut wall. Morphological observations and functional data have led to the hypothesis of two functions for the ICCs: (1) as pacemakers of the rhythmic activity; (2) as intermediaries in neural inputs to the muscle. The identification of specific receptors on the ICCs has represented an important step in the knowledge of these cells. Immunohistochemical labeling of these receptors provided information on both ICC morphology and contacts (particularly those with nerve endings) and on the functions of these cells. All ICC possess the Kit receptor, which represents the best tool to identify these cells under the light microscope. It has been demonstrated that this receptor is essential for ICC differentiation, and, by using mutant mice lacking the Kit-related gene, it has been possible to discriminate among all the ICC those with a primary role as pacemakers. The ileal ICC, in particular those at the deep muscular plexus, express the tachykinin receptor NK1 and a subtype of somatostatin receptors and contain nitric oxide synthase. All these data support a primary role of these ICC in neural transmission.
Collapse
Affiliation(s)
- M G Vannucchi
- Department of Anatomy, Histology and Forensic Medicine, Section of Histology "E. Allara," University of Florence, Florence, Italy.
| |
Collapse
|
27
|
Abstract
This manuscript reviews gap junctions' roles in control of intestinal motility. Gap junctions (GJs) of small intestine (SmIn) are found between circular muscle (CM) cells, between interstitial cells of Cajal (ICC) of deep muscular plexus (DMP) and between them and adjacent outer circular muscle (OCM). GJs between longitudinal muscle (LM) cells or between cells of inner circular muscle (ICM) have not been reported. Occasional GJs have been reported between ICC of the myenteric plexus (MyP) and rarely between these ICC and adjacent LM or CM cells, or between ICC within CM and smooth muscle cells. In the colon (Co) of several species a special network of ICC lines the inner border of CM, the submuscular plexus (SP). GJs are found between ICCs and between them and CM cells. The ICC of MyP of Co are associated with LM and CM; occasional GJs exist between ICC and each muscle layer. Small GJs are missed by electron microscopy or light microscopic Immunocytochemistry. Therefore, GJ coupling may exist without demonstrated GJs. The consequences for the pacemaking functions of ICC networks of varied densities of GJ between ICC and between ICC of MyP or DMP or of SP and CM are considered. Connexins (Cxs) that compose intestinal GJs may affect coupling, but are incompletely known. Understanding of the role of GJs in coordinating intestinal motility requires knowing: (1) what passes through gap junctions to couple ICC to smooth muscle cells; (2) what Cx with what conductances and what modulatory controls connect ICC and smooth muscle cells; (3) whether smooth muscles can generate slow waves independent of ICC networks; and (4) what happens to motility, slow waves, and IJPs when GJs are selectively uncoupled.
Collapse
Affiliation(s)
- E E Daniel
- Department of Medicine, Faculty of Health Sciences, McMaster University, Hamilton, Ontario, L8N 3Z5, Canada.
| | | |
Collapse
|
28
|
Abstract
Peristalsis is a propulsive motor pattern orchestrated by neuronal excitation and inhibition in cooperation with intrinsic muscular control mechanisms, including those residing in interstitial cells of Cajal (ICC). Interstitial cells of Cajal form a network of cells in which electrical slow waves originate and then propagate into the musculature initiating rhythmic contractile activity upon excitaton by enteric nerves. Interstitial cells of Cajal have now been isolated and their intrinsic properties reveal the presence of rhythmic inward currents not found in smooth muscle cells. In tissues where classical slow waves are not present, enteric cholinergic excitation will evoke slow wave-like activity that forces action potentials to occur in a rhythmic manner. Intrinsic and induced slow wave activity directs many of the peristaltic motor patterns in the gut.
Collapse
Affiliation(s)
- J D Huizinga
- Intestinal Disease Research Programme and Department of Medicine, McMaster University, Hamilton, ON L8N 3Z5, Canada.
| |
Collapse
|
29
|
Abstract
Networks of interstitial cells of Cajal (ICC) in the myenteric plexus (Myp) or circular muscle (CM) function as pacemakers for gastrointestinal slow waves. ICC in contact with muscle and closely associated with nerves in the CM may mediate inhibitory neurotransmission. We wondered if ICC in Myp and CM and their connections are immature at birth and mature first in the proximal gut in association with nerves. Tissues from lower esophageal sphincter (LES), pylorus (PYL), small intestine (SI) and colon (CO) of 18 term fetal dogs taken from six females were fixed and prepared for ultrastructural examination and studied. Ganglia were present where expected in the Myp and submucous plexus (SMP). ICC cells were present in the Myp of PYL, SI and CO and appeared to have normal relationships to the outer border of CM as in adults. ICC in CM were found associated with nerves in the LES and in PYL, but not in SI or CO. However, axons in CM were everywhere usually free of glial covering, indicating ongoing migration or development. No organized deep muscular plexus (DMP) in SI or submuscular plexus (SP) in colon was present. Visible gap junctions were absent everywhere except for very rare ones between circular muscle cells. We conclude that at birth the neural and ICC networks of CM are more immature in intestine and colon than in oesophagus and stomach. Development of nerve and ICC of CM in oesophagus and stomach apparently precedes that in the remaining gut. However networks in these regions have not achieved adult organization and ICC and smooth muscle cells are anatomically poorly coupled. These findings suggest the reasons that gut motility at birth will not be adult in pattern are because ICC, nerve and muscle control systems are not fully differentiated. Further developmental delays in ICC and nerve maturation could have serious consequences for feeding of infant animals.
Collapse
Affiliation(s)
- E E Daniel
- Department of Biomedical Sciences, Health Sciences, McMaster University, 1200 Main St. W., Hamilton L8N 3Z5, ON, Canada.
| | | |
Collapse
|
30
|
Jiménez M, Borderies JR, Vergara P, Wang Y, Daniel EE. Slow waves in circular muscle of porcine ileum: structural and electrophysiological studies. THE AMERICAN JOURNAL OF PHYSIOLOGY 1999; 276:G393-406. [PMID: 9950813 DOI: 10.1152/ajpgi.1999.276.2.g393] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
The structural and functional bases of pacemaking (slow waves) in porcine ileal circular muscle were studied. The myenteric plexus contained two, structurally distinct types of interstitial cells of Cajal (ICC) interconnected by gap junctions and connected by close contacts to muscle layers. At the deep muscular plexus, ICC were present, not regularly close to nerve axons or in gap junction contact with one another or outer circular muscle, which had many gap junctions. Slow waves (5.2 +/- 2 mV amplitude and 4.6 +/- 0.7 s duration) occurred at 9.9 +/- 1.1 counts/min. Tissue length and time constants were 2.00 +/- 0.3 mm and 111 +/- 37 ms, respectively. Large electrical field-induced hyperpolarizations or depolarizations reduced amplitudes but not frequencies or durations of slow waves; hyperpolarizations progressively reduced inhibitory junction potentials as if the K+ channel opening mediated them. In conclusion, the myenteric plexus ICC of pig ileum, which appears to pace the muscle layers, appears insensitive to voltages applied to the syncytium of circular muscle cells. Limited coupling between ICC and circular muscle or voltage-insensitive pacemaking activity may explain these findings.
Collapse
Affiliation(s)
- M Jiménez
- Department of Cell Biology and Physiology, Veterinary Faculty, Universitat Autónoma de Barcelona, 08193 Barcelona, Spain
| | | | | | | | | |
Collapse
|
31
|
Daniel EE, Wang YF, Cayabyab FS. Role of gap junctions in structural arrangements of interstitial cells of Cajal and canine ileal smooth muscle. THE AMERICAN JOURNAL OF PHYSIOLOGY 1998; 274:G1125-41. [PMID: 9696714 DOI: 10.1152/ajpgi.1998.274.6.g1125] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
We examined the structural and functional basis for pacemaking by interstitial cells of Cajal (ICC) in circular smooth muscle of the canine ileum. Gap junctions were found between ICC of myenteric plexus (MyP), occasionally between MyP ICC and outer circular smooth muscle cells, between individual outer circular smooth muscle cells, between them and ICC of the deep muscular plexus (DMP), and between DMP ICC. No visible gap junctions connected MyP ICC to longitudinal muscle cells or inner circular muscle cells. Occasionally contacts occurred between the two muscle layers. No special structures were found to connect MyP and DMP ICC networks. Octanol concentration dependently reduced the amplitude and frequency of, but did not abolish, slow waves in circular muscle in isolated ileum recorded near the MyP or the DMP. Slow waves triggered from MyP ICC by a current pulse also persisted. Contractile activity was abolished, cells were depolarized, and fast inhibitory junction potentials were reduced by octanol. We conclude that ICC pacemakers of the MyP and DMP utilize gap junctional conductances for pacemaking function but may not require them. Coupling between the two ICC networks may utilize the circular muscle syncytium.
Collapse
Affiliation(s)
- E E Daniel
- Faculty of Health Sciences, Department of Biomedical Sciences, McMaster University, Hamilton, Ontario L8N 3Z5, Canada
| | | | | |
Collapse
|
32
|
Fernández E, Guo X, Vergara P, Jiménez M. Evidence supporting a role for ATP as non-adrenergic non-cholinergic inhibitory transmitter in the porcine ileum. Life Sci 1998; 62:1303-15. [PMID: 9566772 DOI: 10.1016/s0024-3205(98)00064-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The aim of this study was to investigate the nature of the non-adrenergic non-cholinergic (NANC) inhibitory transmitter of the circular muscle of the porcine ileum. For this purpose, the effects of putative NANC mediators i.e. NO, vasoactive intestinal polypeptide (VIP) and ATP were measured in isolated organ bath experiments (in basal conditions and after incubation with neostigmine 3 x 10[-5] M) and using the microelectrode technique. The NO donor sodium nitroprusside (NaNP) up to 10(-4) M, VIP up to 10(-7) M and ATP up to 10(-4) M failed to cause significant relaxation in the basal state. However, all of them induced marked relaxations when the tissue had been preincubated with neostigmine (3 x 10[-5] M) which was added to increase basal mechanical activity. The resting membrane potential (RMP) was unaffected by NaNP(up to 10(-4) M and VIP up to 10(-7) M whereas ATP (up to 10[-4] M) induced a transient hyperpolarization. The inhibitory junction potentials (IJPs) induced by electrical field stimulation (EFS) were not affected by N omega-nitro-L-arginine (L-NNA) (10[-4] M) whereas suramin, a purinoceptor antagonist, decreased (10[-4] M) or abolished (10[-3] M) the IJPs. Relaxations induced by ATP in neostigmine preincubated tissue were resistant to 10(-6) M tetrodotoxin, an axonal blocker, and inhibited by suramin. Apamin (10[-6] M, a small conductance calcium activated potassium channel blocker, completely abolished the IJP (n=5) and significantly decreased the relaxation induced by ATP (n=5). The present data provide support to the hypothesis that ATP is the NANC inhibitory transmitter in the porcine ileum acting on P2 muscular receptors. Nevertheless, VIP and NaNP do also cause relaxation of preparations preincubated with neostigmine.
Collapse
Affiliation(s)
- E Fernández
- Dept. of Physiology and Cell Biology, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | | | | | | |
Collapse
|
33
|
Cayabyab FS, Jiménez M, Vergara P, deBruin H, Daniel EE. Influence of nitric oxide and vasoactive intestinal peptide on the spontaneous and triggered electrical and mechanical activities of the canine ileum. Can J Physiol Pharmacol 1997. [DOI: 10.1139/y97-081] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|