1
|
Abstract
Tissue acidosis due to ischemia occurs under several pathological conditions and is believed to contribute to pain in these circumstances. TRPV1, TRPA1, and ASICs are known to be sensitive to acidic pH. Addressing their possible role in acidosis perception, the respective antagonists BCTC, A-967079, and amiloride were injected in the volar forearm skin of 32 healthy volunteers. To investigate possible redundancies between channels, a full-factorial study design was used. Injections were performed in a prerandomized, double-blind, and balanced design. Each injection included a three-step pH protocol from pH 7.0 over pH 6.5 to pH 6.0 with a step duration of 90 seconds. Pain was reported by volunteers on a numerical scale every 10 seconds during injections. Confirming the primary hypothesis, the combination of all 3 antagonists reduced acid-induced pain at pH 6.0. Because of the full-factorial design, it could be concluded that BCTC alone, but not A-967079 or amiloride, or any combination thereof, was responsible for the observed effects, suggesting TRPV1 as primary sensor for pH 6.0-induced pain. Surprisingly, A-967079 even enhanced pain induced by pH 6.0. In cultured mouse dorsal root ganglion neurons, TPRV1 dependence of pH 6-induced calcium responses could be confirmed. Responses of hTRPV1 to acidic stimulation showed a maximum around pH6, providing an explanation for the pH-dependent inhibition by BCTC. A-967079 sensitizes pH responses is a TRPA1-responsive dorsal root ganglion neuron population, and a direct effect of A-967079 on hTRPA1 and hTRPV1 was excluded. In conclusion, inhibiting TRPV1-mediated acidosis-induced pain could be a symptomatic and potentially also a disease-modifying approach.
Collapse
|
2
|
Zhang Y, Lin C, Wang X, Ji T. Calcitonin gene-related peptide: A promising bridge between cancer development and cancer-associated pain in oral squamous cell carcinoma. Oncol Lett 2020; 20:253. [PMID: 32994816 PMCID: PMC7509602 DOI: 10.3892/ol.2020.12116] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 05/27/2020] [Indexed: 01/23/2023] Open
Abstract
Nerves have been widely demonstrated to exert major effects in tumor-associated microenvironments. Due to the characteristic innervation of the oral cavity and the fact that cancer-associated pain is a distinct feature of oral squamous cell carcinoma (OSCC), the sensory nerves may dominate in the OSCC-nerve microenvironment. As the most abundant neuropeptide in the trigeminal ganglion, the calcitonin gene-related peptide (CGRP) exerts a dual effect on cancer development and cancer-associated pain in various types of cancer. The present review explored the potential molecular mechanisms of the roles of CGRP in cancer development and cancer-associated pain, suggesting that CGRP may be a promising therapeutic target for OSCC.
Collapse
Affiliation(s)
- Yu Zhang
- Department of Oral and Maxillofacial Head and Neck Oncology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, P.R. China.,Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, P.R. China
| | - Chengzhong Lin
- Department of Oral and Maxillofacial Head and Neck Oncology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, P.R. China.,Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, P.R. China
| | - Xu Wang
- Department of Oral and Maxillofacial Head and Neck Oncology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, P.R. China.,Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, P.R. China
| | - Tong Ji
- Department of Oral and Maxillofacial Head and Neck Oncology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, P.R. China.,Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, P.R. China
| |
Collapse
|
3
|
Majima M, Ito Y, Hosono K, Amano H. CGRP/CGRP Receptor Antibodies: Potential Adverse Effects Due to Blockade of Neovascularization? Trends Pharmacol Sci 2018; 40:11-21. [PMID: 30502971 DOI: 10.1016/j.tips.2018.11.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 11/01/2018] [Accepted: 11/06/2018] [Indexed: 01/23/2023]
Abstract
Migraine is a severe neurological disorder in which calcitonin gene-related peptide (CGRP) is a key molecule in pathophysiology. Neuronal system-derived CGRP enhances neovascularization in several important pathological conditions and sends a cue to the vascular system. In 2018, the FDA approved erenumab and fremanezumab, antibodies against CGRP receptor and CGRP, as the first new class of drugs for migraine. Treatment of migraine with these antibodies requires great care because neovascularization-related adverse effects may be induced in some patients. Here, we focus on enhancement of neovascularization by CGRP and discuss possible adverse effects resulting from blocking neovascularization. We also suggest that CGRP antibodies may also be used as novel antitumor agents by suppressing tumor-associated angiogenesis.
Collapse
MESH Headings
- Angiogenesis Inhibitors/administration & dosage
- Angiogenesis Inhibitors/adverse effects
- Angiogenesis Inhibitors/pharmacology
- Animals
- Antibodies, Monoclonal/administration & dosage
- Antibodies, Monoclonal/adverse effects
- Antibodies, Monoclonal/pharmacology
- Antibodies, Monoclonal, Humanized/administration & dosage
- Antibodies, Monoclonal, Humanized/adverse effects
- Antibodies, Monoclonal, Humanized/pharmacology
- Calcitonin Gene-Related Peptide/immunology
- Calcitonin Gene-Related Peptide/metabolism
- Humans
- Migraine Disorders/drug therapy
- Migraine Disorders/immunology
- Neoplasms/blood supply
- Neoplasms/drug therapy
- Neovascularization, Pathologic/drug therapy
- Neovascularization, Pathologic/pathology
- Receptors, Calcitonin Gene-Related Peptide/immunology
- Receptors, Calcitonin Gene-Related Peptide/metabolism
Collapse
Affiliation(s)
- Masataka Majima
- Department of Pharmacology, Kitasato University School of Medicine and Department of Molecular Pharmacology, Kitasato University Graduate School of Medical Sciences, Sagamihara, Kanagawa 252-0374, Japan.
| | - Yoshiya Ito
- Department of Pharmacology, Kitasato University School of Medicine and Department of Molecular Pharmacology, Kitasato University Graduate School of Medical Sciences, Sagamihara, Kanagawa 252-0374, Japan
| | - Kanako Hosono
- Department of Pharmacology, Kitasato University School of Medicine and Department of Molecular Pharmacology, Kitasato University Graduate School of Medical Sciences, Sagamihara, Kanagawa 252-0374, Japan
| | - Hideki Amano
- Department of Pharmacology, Kitasato University School of Medicine and Department of Molecular Pharmacology, Kitasato University Graduate School of Medical Sciences, Sagamihara, Kanagawa 252-0374, Japan
| |
Collapse
|
4
|
Schwarz MG, Namer B, Reeh PW, Fischer MJM. TRPA1 and TRPV1 Antagonists Do Not Inhibit Human Acidosis-Induced Pain. THE JOURNAL OF PAIN 2017; 18:526-534. [PMID: 28062311 DOI: 10.1016/j.jpain.2016.12.011] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Revised: 11/21/2016] [Accepted: 12/21/2016] [Indexed: 12/31/2022]
Abstract
Acidosis occurs in a variety of pathophysiological and painful conditions where it is thought to excite or contribute to excitation of nociceptive neurons. Despite potential clinical relevance the principal receptor for sensing acidosis is unclear, but several receptors have been proposed. We investigated the contribution of the acid-sensing ion channels, transient receptor potential vanilloid type 1 (TRPV1) and transient receptor potential ankyrin type 1 (TRPA1) to peripheral pain signaling. We first established a human pain model using intraepidermal injection of the TRPA1 agonist carvacrol. This resulted in concentration-dependent pain sensations, which were reduced by experimental TRPA1 antagonist A-967079. Capsaicin-induced pain was reduced by the TRPV1 inhibitor BCTC. Amiloride was used to block acid-sensing ion channels. Testing these antagonists in a double-blind and randomized experiment, we probed the contribution of the respective channels to experimental acidosis-induced pain in 15 healthy human subjects. A continuous intraepidermal injection of pH 4.3 was used to counter the buffering capacity of tissue and generate a prolonged painful stimulation. In this model, addition of A-967079, BCTC or amiloride did not reduce the reported pain. In conclusion, target-validated antagonists, applied locally in human skin, have excluded the main hypothesized targets and the mechanism of the human acidosis-induced pain remains unclear. PERSPECTIVE An acidic milieu is a trigger of pain in many clinical conditions. The aim of this study was to identify the contribution of the currently hypothesized sensors of acid-induced pain in humans. Surprisingly, inhibition of these receptors did not alter acidosis-induced pain.
Collapse
Affiliation(s)
- Matthias G Schwarz
- Institute of Physiology and Pathophysiology, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Barbara Namer
- Institute of Physiology and Pathophysiology, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Peter W Reeh
- Institute of Physiology and Pathophysiology, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Michael J M Fischer
- Institute of Physiology and Pathophysiology, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany; Center of Physiology and Pharmacology Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
5
|
Granger DN, Holm L, Kvietys P. The Gastrointestinal Circulation: Physiology and Pathophysiology. Compr Physiol 2016; 5:1541-83. [PMID: 26140727 DOI: 10.1002/cphy.c150007] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The gastrointestinal (GI) circulation receives a large fraction of cardiac output and this increases following ingestion of a meal. While blood flow regulation is not the intense phenomenon noted in other vascular beds, the combined responses of blood flow, and capillary oxygen exchange help ensure a level of tissue oxygenation that is commensurate with organ metabolism and function. This is evidenced in the vascular responses of the stomach to increased acid production and in intestine during periods of enhanced nutrient absorption. Complimenting the metabolic vasoregulation is a strong myogenic response that contributes to basal vascular tone and to the responses elicited by changes in intravascular pressure. The GI circulation also contributes to a mucosal defense mechanism that protects against excessive damage to the epithelial lining following ingestion of toxins and/or noxious agents. Profound reductions in GI blood flow are evidenced in certain physiological (strenuous exercise) and pathological (hemorrhage) conditions, while some disease states (e.g., chronic portal hypertension) are associated with a hyperdynamic circulation. The sacrificial nature of GI blood flow is essential for ensuring adequate perfusion of vital organs during periods of whole body stress. The restoration of blood flow (reperfusion) to GI organs following ischemia elicits an exaggerated tissue injury response that reflects the potential of this organ system to generate reactive oxygen species and to mount an inflammatory response. Human and animal studies of inflammatory bowel disease have also revealed a contribution of the vasculature to the initiation and perpetuation of the tissue inflammation and associated injury response.
Collapse
Affiliation(s)
- D Neil Granger
- Department of Molecular and Cellular Physiology, LSU Health Science Center-Shreveport, Shreveport, Louisiana, USA
| | - Lena Holm
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | - Peter Kvietys
- Department of Physiological Sciences, College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| |
Collapse
|
6
|
Mard SA, Veisi A, Ahangarpour A, Gharib-Naseri MK. Gastric acid induces mucosal H2S release in rats by upregulating mRNA and protein expression of cystathionine gamma lyase. J Physiol Sci 2015; 65:545-54. [PMID: 26319795 PMCID: PMC10717216 DOI: 10.1007/s12576-015-0392-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Accepted: 08/18/2015] [Indexed: 10/23/2022]
Abstract
It is well known that hydrogen sulfide (H2S) protects the gastric mucosa against gastric acid and other noxious stimulants by several mechanisms but until now the effect of gastric acid on H2S production has not been evaluated. This study was performed to determine the effect of basal and stimulated gastric acid secretion on mRNA and protein expression of cystathionine gamma lyase (CSE) and cystathionine beta synthase (CBS), and on mucosal release of H2S in rats. Seventy-two male rats were randomly assigned into 9 groups (8 in each)-control, distention, and pentagastrin-induced gastric acid secretion groups. The effects of 15% alcohol solution, propargylglycine (PAG), L-NAME, and pantoprazole were also investigated. Under anesthesia, animals underwent tracheostomy and midline laparotomy. A catheter was inserted into the stomach through the duodenum for gastric washout. At the end of the experiments, the animals were killed and the gastric mucosa was collected to measure H2S concentration and to quantify mRNA expression of CSE and CBS by quantitative real-time PCR, and expression of their proteins by western blot. Basal and stimulated gastric acid secretion increased mucosal levels of H2S, and mRNA and protein expression of CSE. Pantoprazole and L-NAME reversed H2S release and restored protein expression of CSE to the control level. Pantoprazole, but not propargylglycine, pretreatment inhibited the elevated level of protein expression of eNOS in response to distention-induced gastric acid secretion. Our findings indicated that NO mediated the stimulatory effect of gastric acid on H2S release and protein expression of CSE.
Collapse
Affiliation(s)
- Seyyed Ali Mard
- Physiology Research Center (PRC), Research Center for Infectious Diseases of Digestive System, Department of Physiology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| | - Ali Veisi
- Physiology Research Center (PRC), Research Center for Infectious Diseases of Digestive System, Department of Physiology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Akram Ahangarpour
- Physiology Research Center (PRC), Diabetes research center, Department of Physiology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mohammad Kazem Gharib-Naseri
- Physiology Research Center (PRC), Research Center for Infectious Diseases of Digestive System, Department of Physiology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
7
|
Holzer P. Acid-sensing ion channels in gastrointestinal function. Neuropharmacology 2015; 94:72-9. [PMID: 25582294 DOI: 10.1016/j.neuropharm.2014.12.009] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Revised: 11/21/2014] [Accepted: 12/04/2014] [Indexed: 12/15/2022]
Abstract
Gastric acid is of paramount importance for digestion and protection from pathogens but, at the same time, is a threat to the integrity of the mucosa in the upper gastrointestinal tract and may give rise to pain if inflammation or ulceration ensues. Luminal acidity in the colon is determined by lactate production and microbial transformation of carbohydrates to short chain fatty acids as well as formation of ammonia. The pH in the oesophagus, stomach and intestine is surveyed by a network of acid sensors among which acid-sensing ion channels (ASICs) and acid-sensitive members of transient receptor potential ion channels take a special place. In the gut, ASICs (ASIC1, ASIC2, ASIC3) are primarily expressed by the peripheral axons of vagal and spinal afferent neurons and are responsible for distinct proton-gated currents in these neurons. ASICs survey moderate decreases in extracellular pH and through these properties contribute to a protective blood flow increase in the face of mucosal acid challenge. Importantly, experimental studies provide increasing evidence that ASICs contribute to gastric acid hypersensitivity and pain under conditions of gastritis and peptic ulceration but also participate in colonic hypersensitivity to mechanical stimuli (distension) under conditions of irritation that are not necessarily associated with overt inflammation. These functional implications and their upregulation by inflammatory and non-inflammatory pathologies make ASICs potential targets to manage visceral hypersensitivity and pain associated with functional gastrointestinal disorders. This article is part of the Special Issue entitled 'Acid-Sensing Ion Channels in the Nervous System'.
Collapse
Affiliation(s)
- Peter Holzer
- Research Unit of Translational Neurogastroenterology, Institute of Experimental and Clinical Pharmacology, Medical University of Graz, Universitätsplatz 4, A-8010 Graz, Austria.
| |
Collapse
|
8
|
Boillat A, Alijevic O, Kellenberger S. Calcium entry via TRPV1 but not ASICs induces neuropeptide release from sensory neurons. Mol Cell Neurosci 2014; 61:13-22. [DOI: 10.1016/j.mcn.2014.04.007] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2013] [Revised: 03/14/2014] [Accepted: 04/23/2014] [Indexed: 11/25/2022] Open
|
9
|
Kopic S, Geibel JP. Gastric acid, calcium absorption, and their impact on bone health. Physiol Rev 2013; 93:189-268. [PMID: 23303909 DOI: 10.1152/physrev.00015.2012] [Citation(s) in RCA: 107] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Calcium balance is essential for a multitude of physiological processes, ranging from cell signaling to maintenance of bone health. Adequate intestinal absorption of calcium is a major factor for maintaining systemic calcium homeostasis. Recent observations indicate that a reduction of gastric acidity may impair effective calcium uptake through the intestine. This article reviews the physiology of gastric acid secretion, intestinal calcium absorption, and their respective neuroendocrine regulation and explores the physiological basis of a potential link between these individual systems.
Collapse
Affiliation(s)
- Sascha Kopic
- Department of Surgery and Cellular and Molecular Physiology, Yale School of Medicine, New Haven, Connecticut, USA
| | | |
Collapse
|
10
|
Holzer P. Transient receptor potential (TRP) channels as drug targets for diseases of the digestive system. Pharmacol Ther 2011; 131:142-70. [PMID: 21420431 PMCID: PMC3107431 DOI: 10.1016/j.pharmthera.2011.03.006] [Citation(s) in RCA: 172] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2011] [Accepted: 03/01/2011] [Indexed: 12/12/2022]
Abstract
Approximately 20 of the 30 mammalian transient receptor potential (TRP) channel subunits are expressed by specific neurons and cells within the alimentary canal. They subserve important roles in taste, chemesthesis, mechanosensation, pain and hyperalgesia and contribute to the regulation of gastrointestinal motility, absorptive and secretory processes, blood flow, and mucosal homeostasis. In a cellular perspective, TRP channels operate either as primary detectors of chemical and physical stimuli, as secondary transducers of ionotropic or metabotropic receptors, or as ion transport channels. The polymodal sensory function of TRPA1, TRPM5, TRPM8, TRPP2, TRPV1, TRPV3 and TRPV4 enables the digestive system to survey its physical and chemical environment, which is relevant to all processes of digestion. TRPV5 and TRPV6 as well as TRPM6 and TRPM7 contribute to the absorption of Ca²⁺ and Mg²⁺, respectively. TRPM7 participates in intestinal pacemaker activity, and TRPC4 transduces muscarinic acetylcholine receptor activation to smooth muscle contraction. Changes in TRP channel expression or function are associated with a variety of diseases/disorders of the digestive system, notably gastro-esophageal reflux disease, inflammatory bowel disease, pain and hyperalgesia in heartburn, functional dyspepsia and irritable bowel syndrome, cholera, hypomagnesemia with secondary hypocalcemia, infantile hypertrophic pyloric stenosis, esophageal, gastrointestinal and pancreatic cancer, and polycystic liver disease. These implications identify TRP channels as promising drug targets for the management of a number of gastrointestinal pathologies. As a result, major efforts are put into the development of selective TRP channel agonists and antagonists and the assessment of their therapeutic potential.
Collapse
Affiliation(s)
- Peter Holzer
- Research Unit of Translational Neurogastroenterology, Institute of Experimental and Clinical Pharmacology, Medical University of Graz, Universitätsplatz 4, A-8010 Graz, Austria.
| |
Collapse
|
11
|
Abstract
Luminal amino acids and lack of luminal acidity as a result of acid neutralization by intragastric foodstuffs are powerful signals for acid secretion. Although the hormonal and neural pathways underlying this regulatory mechanism are well understood, the nature of the gastric luminal pH sensor has been enigmatic. In clinical studies, high pH, tryptic peptides, and luminal divalent metals (Ca2+ and Mg2+) increase gastrin release and acid production. The calcium-sensing receptor (CaSR), first described in the parathyroid gland but expressed on gastric G cells, is a logical candidate for the gastric acid sensor. Because CaSR ligands include amino acids and divalent metals, and because extracellular pH affects ligand binding in the pH range of the gastric content, its pH, metal, and nutrient-sensing functions are consistent with physiologic observations. The CaSR is thus an attractive candidate for the gastric luminal sensor that is part of the neuroendocrine negative regulatory loop for acid secretion.
Collapse
Affiliation(s)
- Tyralee Goo
- Greater Los Angeles Veteran Affairs Healthcare System, West Los Angeles VA Medical Center, Los Angeles, CA 90073, USA
| | | | | |
Collapse
|
12
|
Abstract
The upper gastrointestinal (GI) mucosa is exposed to endogenous and exogenous chemicals, including gastric acid, CO₂ and nutrients. Mucosal chemical sensors are necessary to exert physiological responses such as secretion, digestion, absorption and motility. We propose the mucosal chemosensing system by which luminal chemicals are sensed to trigger mucosal defence mechanisms via mucosal acid sensors and taste receptors. Luminal acid/CO₂ is sensed via ecto- and cytosolic carbonic anhydrases and ion transporters in the epithelial cells and via acid sensors on the afferent nerves in the duodenum and the oesophagus. Gastric acid sensing is differentially mediated via endocrine cell acid sensors and afferent nerves. Furthermore, a luminal l-glutamate signal is mediated via epithelial l-glutamate receptors, including metabotropic glutamate receptors and taste receptor 1 family heterodimers, with activation of afferent nerves and cyclooxygenase, whereas luminal Ca²(+) is differently sensed via the calcium-sensing receptor in the duodenum. These luminal chemosensors help to activate mucosal defence mechanisms in order to maintain the mucosal integrity and physiological responses of the upper GI tract. Stimulation of luminal chemosensing in the upper GI mucosa may prevent mucosal injury, affect nutrient metabolism and modulate sensory nerve activity.
Collapse
Affiliation(s)
- Y Akiba
- Department of Medicine, University of California Los Angeles, Brentwood Biomedical Research Institute, USA.
| | | |
Collapse
|