1
|
Deng W, Yi P, Xiong Y, Ying J, Lin Y, Dong Y, Wei G, Wang X, Hua F. Gut Metabolites Acting on the Gut-Brain Axis: Regulating the Functional State of Microglia. Aging Dis 2024; 15:480-502. [PMID: 37548933 PMCID: PMC10917527 DOI: 10.14336/ad.2023.0727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 07/27/2023] [Indexed: 08/08/2023] Open
Abstract
The gut-brain axis is a communication channel that mediates a complex interplay of intestinal flora with the neural, endocrine, and immune systems, linking gut and brain functions. Gut metabolites, a group of small molecules produced or consumed by biochemical processes in the gut, are involved in central nervous system regulation via the highly interconnected gut-brain axis affecting microglia indirectly by influencing the structure of the gut-brain axis or directly affecting microglia function and activity. Accordingly, pathological changes in the central nervous system are connected with changes in intestinal metabolite levels as well as altered microglia function and activity, which may contribute to the pathological process of each neuroinflammatory condition. Here, we discuss the mechanisms by which gut metabolites, for instance, the bile acids, short-chain fatty acids, and tryptophan metabolites, regulate the structure of each component of the gut-brain axis, and explore the important roles of gut metabolites in the central nervous system from the perspective of microglia. At the same time, we highlight the roles of gut metabolites affecting microglia in the pathogenesis of neurodegenerative diseases and neurodevelopmental disorders. Understanding the relationship between microglia, gut microbiota, neuroinflammation, and neurodevelopmental disorders will help us identify new strategies for treating neuropsychiatric disorders.
Collapse
Affiliation(s)
- Wenze Deng
- Department of Anesthesiology, the Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China.
- Key Laboratory of Anesthesiology of Jiangxi Province, Nanchang City, Jiangxi, China.
| | - Pengcheng Yi
- Department of Anesthesiology, the Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China.
- Key Laboratory of Anesthesiology of Jiangxi Province, Nanchang City, Jiangxi, China.
| | - Yanhong Xiong
- Department of Anesthesiology, the Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China.
- Key Laboratory of Anesthesiology of Jiangxi Province, Nanchang City, Jiangxi, China.
| | - Jun Ying
- Department of Anesthesiology, the Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China.
- Key Laboratory of Anesthesiology of Jiangxi Province, Nanchang City, Jiangxi, China.
| | - Yue Lin
- Department of Anesthesiology, the Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China.
- Key Laboratory of Anesthesiology of Jiangxi Province, Nanchang City, Jiangxi, China.
| | - Yao Dong
- Department of Anesthesiology, the Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China.
- Key Laboratory of Anesthesiology of Jiangxi Province, Nanchang City, Jiangxi, China.
| | - Gen Wei
- Department of Anesthesiology, the Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China.
- Key Laboratory of Anesthesiology of Jiangxi Province, Nanchang City, Jiangxi, China.
| | - Xifeng Wang
- Department of Anesthesiology, the First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China.
| | - Fuzhou Hua
- Department of Anesthesiology, the Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China.
- Key Laboratory of Anesthesiology of Jiangxi Province, Nanchang City, Jiangxi, China.
| |
Collapse
|
2
|
Sun HZ, Li CY, Shi Y, Li JJ, Wang YY, Han LN, Zhu LJ, Zhang YF. Effect of exogenous hydrogen sulfide in the nucleus tractus solitarius on gastric motility in rats. World J Gastroenterol 2023; 29:4557-4570. [PMID: 37621756 PMCID: PMC10445002 DOI: 10.3748/wjg.v29.i29.4557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/29/2023] [Accepted: 07/19/2023] [Indexed: 08/02/2023] Open
Abstract
BACKGROUND Hydrogen sulfide (H2S) is a recently discovered gaseous neurotransmitter in the nervous and gastrointestinal systems. It exerts its effects through multiple signaling pathways, impacting various physiological activities. The nucleus tractus solitarius (NTS), a vital nucleus involved in visceral sensation, was investigated in this study to understand the role of H2S in regulating gastric function in rats. AIM To examine whether H2S affects the nuclear factor kappa-B (NF-κB) and transient receptor potential vanilloid 1 pathways and the neurokinin 1 (NK1) receptor in the NTS. METHODS Immunohistochemical and fluorescent double-labeling techniques were employed to identify cystathionine beta-synthase (CBS) and c-Fos co-expressed positive neurons in the NTS during rat stress. Gastric motility curves were recorded by inserting a pressure-sensing balloon into the pylorus through the stomach fundus. Changes in gastric motility were observed before and after injecting different doses of NaHS (4 nmol and 8 nmol), physiological saline, Capsazepine (4 nmol) + NaHS (4 nmol), pyrrolidine dithiocarbamate (PDTC, 4 nmol) + NaHS (4 nmol), and L703606 (4 nmol) + NaHS (4 nmol). RESULTS We identified a significant increase in the co-expression of c-Fos and CBS positive neurons in the NTS after 1 h and 3 h of restraint water-immersion stress compared to the expressions observed in the control group. Intra-NTS injection of NaHS at different doses significantly inhibited gastric motility in rats (P < 0.01). However, injection of saline, first injection NF-κB inhibitor PDTC or transient receptor potential vanilloid 1 (TRPV1) antagonist Capsazepine or NK1 receptor blockers L703606 and then injection NaHS did not produce significant changes (P > 0.05). CONCLUSION NTS contains neurons co-expressing CBS and c-Fos, and the injection of NaHS into the NTS can suppress gastric motility in rats. This effect may be mediated by activating TRPV1 and NK1 receptors via the NF-κB channel.
Collapse
Affiliation(s)
- Hong-Zhao Sun
- College of Life Science, Qi Lu Normal University, Zhangqiu 250200, Shandong Province, China
| | - Chen-Yu Li
- College of Life Science, Qi Lu Normal University, Zhangqiu 250200, Shandong Province, China
| | - Yuan Shi
- College of Life Science, Qi Lu Normal University, Zhangqiu 250200, Shandong Province, China
| | - Jin-Jin Li
- College of Life Science, Qi Lu Normal University, Zhangqiu 250200, Shandong Province, China
| | - Yi-Ya Wang
- College of Life Science, Qi Lu Normal University, Zhangqiu 250200, Shandong Province, China
| | - Li-Na Han
- College of Life Science, Qi Lu Normal University, Zhangqiu 250200, Shandong Province, China
| | - Lu-Jie Zhu
- College of Life Science, Qi Lu Normal University, Zhangqiu 250200, Shandong Province, China
| | - Ya-Fei Zhang
- College of Life Science, Qi Lu Normal University, Zhangqiu 250200, Shandong Province, China
| |
Collapse
|
3
|
Spalloni A, de Stefano S, Gimenez J, Greco V, Mercuri NB, Chiurchiù V, Longone P. The Ying and Yang of Hydrogen Sulfide as a Paracrine/Autocrine Agent in Neurodegeneration: Focus on Amyotrophic Lateral Sclerosis. Cells 2023; 12:1691. [PMID: 37443723 PMCID: PMC10341301 DOI: 10.3390/cells12131691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 06/14/2023] [Accepted: 06/20/2023] [Indexed: 07/15/2023] Open
Abstract
Ever since its presence was reported in the brain, the nature and role of hydrogen sulfide (H2S) in the Central Nervous System (CNS) have changed. Consequently, H2S has been elected as the third gas transmitter, along with carbon monoxide and nitric oxide, and a number of studies have focused on its neuromodulatory and protectant functions in physiological conditions. The research on H2S has highlighted its many facets in the periphery and in the CNS, and its role as a double-faced compound, switching from protective to toxic depending on its concentration. In this review, we will focus on the bell-shaped nature of H2S as an angiogenic factor and as a molecule released by glial cells (mainly astrocytes) and non-neuronal cells acting on the surrounding environment (paracrine) or on the releasing cells themselves (autocrine). Finally, we will discuss its role in Amyotrophic Lateral Sclerosis, a paradigm of a neurodegenerative disease.
Collapse
Affiliation(s)
- Alida Spalloni
- Laboratory of Molecular Neurobiology, Experimental Neurosciences, IRCCS Fondazione Santa Lucia, 00179 Rome, Italy; (S.d.S.); (J.G.); (P.L.)
| | - Susanna de Stefano
- Laboratory of Molecular Neurobiology, Experimental Neurosciences, IRCCS Fondazione Santa Lucia, 00179 Rome, Italy; (S.d.S.); (J.G.); (P.L.)
- Department of Systems Medicine, Università di Roma Tor Vergata, 00133 Rome, Italy;
| | - Juliette Gimenez
- Laboratory of Molecular Neurobiology, Experimental Neurosciences, IRCCS Fondazione Santa Lucia, 00179 Rome, Italy; (S.d.S.); (J.G.); (P.L.)
| | - Viviana Greco
- Department of Basic Biotechnological Sciences, Intensivological and Perioperative Clinics, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
- Unity of Chemistry, Biochemistry and Clinical Molecular Biology, Department of Diagnostic and Laboratory Medicine, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Nicola B. Mercuri
- Department of Systems Medicine, Università di Roma Tor Vergata, 00133 Rome, Italy;
- Laboratory of Experimental Neurology, Experimental Neurosciences, IRCCS Fondazione Santa Lucia, 00179 Rome, Italy
| | - Valerio Chiurchiù
- Institute of Translational Pharmacology, National Research Council (CNR), 00185 Rome, Italy;
- Laboratory of Resolution of Neuroinflammation, Experimental Neurosciences, IRCCS Fondazione Santa Lucia, 00179 Rome, Italy
| | - Patrizia Longone
- Laboratory of Molecular Neurobiology, Experimental Neurosciences, IRCCS Fondazione Santa Lucia, 00179 Rome, Italy; (S.d.S.); (J.G.); (P.L.)
| |
Collapse
|
4
|
Ni SJ, Yao ZY, Wei X, Heng X, Qu SY, Zhao X, Qi YY, Ge PY, Xu CP, Yang NY, Cao Y, Zhu HX, Guo R, Zhang QC. Vagus nerve stimulated by microbiota-derived hydrogen sulfide mediates the regulation of berberine on microglia in transient middle cerebral artery occlusion rats. Phytother Res 2022; 36:2964-2981. [PMID: 35583808 DOI: 10.1002/ptr.7490] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 03/08/2022] [Accepted: 04/19/2022] [Indexed: 11/05/2022]
Abstract
Amelioration of neuroinflammation via modulating microglia is a promising approach for cerebral ischemia therapy. The aim of the present study was to explore gut-brain axis signals in berberine-modulating microglia polarization following cerebral ischemia. The potential pathway was determined through analyzing the activation of the vagus nerve, hydrogen sulfide (H2 S) metabolism, and cysteine persulfides of transient receptor potential vanilloid 1 (TRPV1) receptor. The cerebral microenvironment feature was explored with a metabolomics assay. The data indicated that berberine ameliorated behavioral deficiency in transient middle cerebral artery occlusion rats through modulating microglia polarization and neuroinflammation depending on microbiota. Enhanced vagus nerve activity following berberine treatment was blocked by antibiotic cocktails, capsazepine, or sodium molybdate, respectively. Berberine-induced H2 S production was responsible for vagus nerve stimulation achieved through assimilatory and dissimilatory sulfate reduction with increased synthetic enzymes. Sulfation of the TRPV1 receptor resulted in vagus nerve activation and promoted the c-fos and ChAT in the nucleus tractus solitaries with berberine. Sphingolipid metabolism is the primary metabolic characteristic with berberine in the cerebral cortex, hippocampus, and cerebral spinal fluid disrupted by antibiotics. Berberine, in conclusion, modulates microglia polarization in a microbiota-dependent manner. H2 S stimulates the vagus nerve through TRPV1 is responsible for the berberine-induced gut-brain axis signal transmission. Sphingolipid metabolism might mediate the neuroinflammation amelioration following vagus afferent fiber activation.
Collapse
Affiliation(s)
- Sai-Jia Ni
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Zeng-Ying Yao
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xiaotong Wei
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xia Heng
- Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing, China
| | - Shu-Yue Qu
- Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xin Zhao
- Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yi-Yu Qi
- Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing, China
| | - Ping-Yuan Ge
- Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing, China
| | - Cai-Ping Xu
- Nanjing Sinolife Bio-tech Co., Ltd, Nanjing, China
| | - Nian-Yun Yang
- Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yi Cao
- Institute of Literature in Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Hua-Xu Zhu
- Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing, China
| | - Rui Guo
- School of Medicine and Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Qi-Chun Zhang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
5
|
The Role of H 2S in the Gastrointestinal Tract and Microbiota. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1315:67-98. [PMID: 34302689 DOI: 10.1007/978-981-16-0991-6_4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The pathways and mechanisms of the production of H2S in the gastrointestinal tract are briefly described, including endogenous H2S produced by the organism and H2S from microorganisms in the gastrointestinal tract. In addition, the physiological regulatory functions of H2S on gastrointestinal motility, sensation, secretion and absorption, endocrine system, proliferation and differentiation of stem cells, and the possible mechanisms involved are introduced. In view of the complexity of biosynthesis, physiological roles, and the mechanism of H2S, this chapter focuses on the interactions and dynamic balance among H2S, gastrointestinal microorganisms, and the host. Finally, we focus on some clinical gastrointestinal diseases, such as inflammatory bowel disease, colorectal cancer, functional gastrointestinal disease, which might occur or develop when the above balance is broken. Pharmacological regulation of H2S or the intestinal microorganisms related to H2S might provide new therapeutic approaches for some gastrointestinal diseases.
Collapse
|
6
|
Zhao DQ, Xue H, Sun HJ. Nervous mechanisms of restraint water-immersion stress-induced gastric mucosal lesion. World J Gastroenterol 2020; 26:2533-2549. [PMID: 32523309 PMCID: PMC7265141 DOI: 10.3748/wjg.v26.i20.2533] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 04/07/2020] [Accepted: 04/28/2020] [Indexed: 02/06/2023] Open
Abstract
Stress-induced gastric mucosal lesion (SGML) is one of the most common visceral complications after trauma. Exploring the nervous mechanisms of SGML has become a research hotspot. Restraint water-immersion stress (RWIS) can induce GML and has been widely used to elucidate the nervous mechanisms of SGML. It is believed that RWIS-induced GML is mainly caused by the enhanced activity of vagal parasympathetic nerves. Many central nuclei, such as the dorsal motor nucleus of the vagus, nucleus of the solitary tract, supraoptic nucleus and paraventricular nucleus of the hypothalamus, mediodorsal nucleus of the thalamus, central nucleus of the amygdala and medial prefrontal cortex, are involved in the formation of SGML in varying degrees. Neurotransmitters/neuromodulators, such as nitric oxide, hydrogen sulfide, vasoactive intestinal peptide, calcitonin gene-related peptide, substance P, enkephalin, 5-hydroxytryptamine, acetylcholine, catecholamine, glutamate, γ-aminobutyric acid, oxytocin and arginine vasopressin, can participate in the regulation of stress. However, inconsistent and even contradictory results have been obtained regarding the actual roles of each nucleus in the nervous mechanism of RWIS-induced GML, such as the involvement of different nuclei with the time of RWIS, the different levels of involvement of the sub-regions of the same nucleus, and the diverse signalling molecules, remain to be further elucidated.
Collapse
Affiliation(s)
- Dong-Qin Zhao
- Key Laboratory of Animal Resistance of Shandong Province, College of Life Sciences, Shandong Normal University, Jinan 250014, Shandong Province, China
| | - Hua Xue
- Key Laboratory of Animal Resistance of Shandong Province, College of Life Sciences, Shandong Normal University, Jinan 250014, Shandong Province, China
| | - Hai-Ji Sun
- Key Laboratory of Animal Resistance of Shandong Province, College of Life Sciences, Shandong Normal University, Jinan 250014, Shandong Province, China
| |
Collapse
|
7
|
Tian JJ, Tan CY, Chen QY, Zhou Y, Qu ZW, Zhang M, Ma KT, Shi WY, Li L, Si JQ. Upregulation of Nav1.7 by endogenous hydrogen sulfide contributes to maintenance of neuropathic pain. Int J Mol Med 2020; 46:782-794. [PMID: 32468069 PMCID: PMC7307826 DOI: 10.3892/ijmm.2020.4611] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 05/06/2020] [Indexed: 01/26/2023] Open
Abstract
Nav1.7 is closely associated with neuropathic pain. Hydrogen sulfide (H2S) has recently been reported to be involved in numerous biological functions, and it has been shown that H2S can enhance the sodium current density, and inhibiting the endogenous production of H2S mediated by cystathionine β-synthetase (CBS) using O-(carboxymethyl) hydroxylamine hemihydrochloride (AOAA) can significantly reduce the expression of Nav1.7 and thus the sodium current density in rat dorsal root ganglion (DRG) neurons. In the present study, it was shown that the fluorescence intensity of H2S was increased in a spared nerve injury (SNI) model and AOAA inhibited this increase. Nav1.7 is expressed in DRG neurons, and the expression of CBS and Nav1.7 were increased in DRG neurons 7, 14 and 21 days post-operation. AOAA inhibited the increase in the expression of CBS, phosphorylated (p)-MEK1/2, p-ERK1/2 and Nav1.7 induced by SNI, and U0126 (a MEK blocker) was able to inhibit the increase in p-MEK1/2, p-ERK1/2 and Nav1.7 expression. However, PF-04856264 did not inhibit the increase in CBS, p-MEK1/2, p-ERK1/2 or Nav1.7 expression induced by SNI surgery. The current density of Nav1.7 was significantly increased in the SNI model and administration of AOAA and U0126 both significantly decreased the density. In addition, AOAA, U0126 and PF-04856264 inhibited the decrease in rheobase, and the increase in action potential induced by SNI in DRG neurons. There was no significant difference in thermal withdrawal latency among each group. However, the time the animals spent with their paw lifted increased significantly following SNI, and the time the animals spent with their paw lifted decreased significantly following the administration of AOAA, U0126 and PF-04856264. In conclusion, these data show that Nav1.7 expression in DRG neurons is upregulated by CBS-derived endogenous H2S in an SNI model, contributing to the maintenance of neuropathic pain.
Collapse
Affiliation(s)
- Jun-Jie Tian
- Department of Physiology, Shihezi University Medical College, Shihezi, Xinjiang 832002, P.R. China
| | - Chao-Yang Tan
- Department of Physiology, Shihezi University Medical College, Shihezi, Xinjiang 832002, P.R. China
| | - Qin-Yi Chen
- Department of Physiology, Shihezi University Medical College, Shihezi, Xinjiang 832002, P.R. China
| | - Ying Zhou
- Department of Physiology, Shihezi University Medical College, Shihezi, Xinjiang 832002, P.R. China
| | - Zu-Wei Qu
- Department of Pharmacology, Shihezi University Pharmaceutical College, Shihezi, Xinjiang 832002, P.R. China
| | - Meng Zhang
- First Affiliated Hospital of Shihezi University, Shihezi, Xinjiang 832002, P.R. China
| | - Ke-Tao Ma
- Department of Physiology, Shihezi University Medical College, Shihezi, Xinjiang 832002, P.R. China
| | - Wen-Yan Shi
- Department of Physiology, Shihezi University Medical College, Shihezi, Xinjiang 832002, P.R. China
| | - Li Li
- Department of Physiology, Jiaxing University Medical College, Jiaxing, Zhejiang 314001, P.R. China
| | - Jun-Qiang Si
- Department of Physiology, Shihezi University Medical College, Shihezi, Xinjiang 832002, P.R. China
| |
Collapse
|
8
|
Xu X, Li S, Shi Y, Tang Y, Lu W, Han T, Xue B, Li J, Liu C. Hydrogen sulfide downregulates colonic afferent sensitivity by a nitric oxide synthase-dependent mechanism in mice. Neurogastroenterol Motil 2019; 31:e13471. [PMID: 30230133 DOI: 10.1111/nmo.13471] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2018] [Revised: 08/04/2018] [Accepted: 08/24/2018] [Indexed: 02/01/2023]
Abstract
BACKGROUND The effect of hydrogen sulfide (H2 S) on visceral nociception is elusive. The conflicting evidence of its pro- and antinociceptive effects raises a series of questions with respect to the effect of H2 S on colonic afferent activity and the underlying mechanism, which was further elucidated in this study. METHODS Colonic mesenteric afferent nerve spikes of normal male C57BL/6J mice, Cbs+/- mice, and Wistar rats were recorded in vitro. The abdominal withdrawal reflex (AWR) induced by colorectal distension (CRD) was evaluated in Cbs+/- mice and WT littermates. KEY RESULTS Sodium hydrosulfide (NaHS) significantly decreased colonic afferent spontaneous discharge, chemosensitivity to bradykinin, mechanosensitivity to ramp distention, and intraluminal pressure in mice. Reducing the relaxant action of NaHS on intestinal smooth muscle using the nonspecific K+ channel blocker TEA (10 mmol/L) did not block the inhibition of NaHS on afferent nerve activity. The inhibitory effects of NaHS (0.5 mmol/L) on colonic afferent sensitivity were largely eliminated by the pretreatment with nonspecific NOS inhibitor NG -Methyl-l-arginine acetate salt (1 mmol/L), the specific nNOS inhibitor NPLA (1 μmol/L), or N-type Ca2+ channel blocker ω-conotoxin GVIA (1 μmol/L). Compared with WT mice, Cbs+/- mice showed increased mesenteric afferent sensitivity to colonic distention and enhanced hyperalgesic response to CRD. Intraperitoneal administration of NaHS (60 μmol/kg) alleviated the nociception response to CRD in both Cbs+/- and WT mice. CONCLUSIONS AND INFERENCES H2 S downregulates colonic mesenteric afferent sensitivity by a nNOS-dependent mechanism in mice. Our findings may demonstrate a new mechanism for the antinociceptive effect of H2 S in colon.
Collapse
Affiliation(s)
- Xiaomeng Xu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Shandong University Cheeloo Medical College, Shandong, China
| | - Shuang Li
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Shandong University Cheeloo Medical College, Shandong, China
| | - Yao Shi
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Shandong University Cheeloo Medical College, Shandong, China
| | - Yan Tang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Shandong University Cheeloo Medical College, Shandong, China
| | - Wen Lu
- College of Agricultural and Biological Engineering, Heze University, Shandong, China
| | - Ting Han
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Shandong University Cheeloo Medical College, Shandong, China
| | - Bing Xue
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Shandong University Cheeloo Medical College, Shandong, China
| | - Jingxin Li
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Shandong University Cheeloo Medical College, Shandong, China
| | - Chuanyong Liu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Shandong University Cheeloo Medical College, Shandong, China.,Provincial Key Lab of Mental Disorder, School of Basic Medical Sciences, Shandong University Cheeloo Medical College, Shandong, China
| |
Collapse
|
9
|
Feng Y, Stams AJM, de Vos WM, Sánchez-Andrea I. Enrichment of sulfidogenic bacteria from the human intestinal tract. FEMS Microbiol Lett 2017; 364:2966324. [PMID: 28158432 DOI: 10.1093/femsle/fnx028] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Accepted: 01/30/2017] [Indexed: 01/16/2023] Open
Abstract
Hydrogen sulfide is formed in the human intestinal tract as the end product of the anaerobic microbial degradation of sulfur compounds present in mucus, bile or proteins. Since human gut microbial sulfur metabolism has been poorly characterized, we aimed to identify and isolate the microorganisms involved in sulfide formation. Fresh fecal samples from one healthy donor and one diagnosed with irritable bowel syndrome were used as inocula for enrichments that were supplemented with sulfate or sulfite as electron acceptors in combination with different electron donors. After two transfers, cultures with high sulfide production were selected and the phylogenetic composition of the enriched microbial communities was determined. Sulfite respiration and cysteine degradation were the dominant sulfidogenic processes, and the most abundant bacteria enriched belonged to Bilophila and Clostridium cluster XIVa. Different isolates were obtained and remarkably included a novel sulfite reducer, designated strain 2C. Strain 2C belongs to the Veillonellaceae family of Firmicutes phylum and showed limited (91%) 16S rRNA gene sequence similarity with that of known Sporomusa species and hence may represent a novel genus. This study indicates that bacteria that utilize sulfite and organic sulfur compounds rather than merely sulfate are relevant for human intestinal sulfur metabolism.
Collapse
Affiliation(s)
- Yuan Feng
- Laboratory of Microbiology, Wageningen University, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| | - Alfons J M Stams
- Laboratory of Microbiology, Wageningen University, Stippeneng 4, 6708 WE Wageningen, The Netherlands.,IBB - Institute for Biotechnology and Bioengineering, Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal
| | - Willem M de Vos
- Laboratory of Microbiology, Wageningen University, Stippeneng 4, 6708 WE Wageningen, The Netherlands.,Department of Bacteriology and Immunology, Faculty of Medicine University of Helsinki, 00014 Helsinki, Finland
| | - Irene Sánchez-Andrea
- Laboratory of Microbiology, Wageningen University, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| |
Collapse
|
10
|
H 2S is a key antisecretory molecule against cholera toxin-induced diarrhoea in mice: Evidence for non-involvement of the AC/cAMP/PKA pathway and AMPK. Nitric Oxide 2017; 76:152-163. [PMID: 28943473 DOI: 10.1016/j.niox.2017.09.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 09/18/2017] [Accepted: 09/20/2017] [Indexed: 01/18/2023]
Abstract
Hydrogen sulphide (H2S) is a gasotransmitter that participates in various physiological and pathophysiological processes within the gastrointestinal tract. We studied the effects and possible mechanism of action of H2S in secretory diarrhoea caused by cholera toxin (CT). The possible mechanisms of action of H2S were investigated using an intestinal fluid secretion model in isolated intestinal loops on anaesthetized mice treated with CT. NaHS and Lawesson's reagent and l-cysteine showed antisecretory activity through reduction of intestinal fluid secretion and loss of Cl- induced by CT. Pretreatment with an inhibitor of cystathionine-γ-lyase (CSE), dl-propargylglycine (PAG), reversed the effect of l-cysteine and caused severe intestinal secretion. Co-treatment with PAG and a submaximal dose of CT increased intestinal fluid secretion, thus supporting the role of H2S in the pathophysiology of cholera. CT increased the expression of CSE and the production of H2S. Pretreatment with PAG did not reverse the effect of SQ 22536 (an AC inhibitor), bupivacaine (inhibitor of cAMP production), KT-5720 (a PKA inhibitor), and AICAR (an AMPK activator). The treatment with Forskolin does not reverse the effects of the H2S donors. Co-treatment with either NaHS or Lawesson's reagent and dorsomorphin (an AMPK inhibitor) did not reverse the effect of the H2S donors. H2S has antisecretory activity and is an essential molecule for protection against the intestinal secretion induced by CT. Thus, H2S donor drugs are promising candidates for cholera therapy. However, more studies are needed to elucidate the possible mechanism of action.
Collapse
|
11
|
Jimenez M, Gil V, Martinez‐Cutillas M, Mañé N, Gallego D. Hydrogen sulphide as a signalling molecule regulating physiopathological processes in gastrointestinal motility. Br J Pharmacol 2017; 174. [PMID: 28631296 PMCID: PMC5554320 DOI: 10.1111/bph.13918] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The biology of H2 S is a still developing area of research and several biological functions have been recently attributed to this gaseous molecule in many physiological systems, including the cardiovascular, urogenital, respiratory, digestive and central nervous system (CNS). H2 S exerts anti-inflammatory effects and can be considered an endogenous mediator with potential effects on gastrointestinal motility. During the last few years, we have investigated the role of H2 S as a regulator of gastrointestinal motility using both animal and human tissues. The aim of the present work is to review published data regarding the potential role of H2 S as a signalling molecule regulating physiopathological processes in gastrointestinal motor function. H2 S is endogenously produced by defined enzymic pathways in different cell types of the intestinal wall including neurons and smooth muscle. Inhibition of H2 S biosynthesis increases motility and H2 S donors cause smooth muscle relaxation and inhibition of propulsive motor patterns. Impaired H2 S production has been described in animal models with gastrointestinal motor dysfunction. The mechanism(s) of action underlying these effects may include several ion channels, although no specific receptor has been identified. At this time, even though there is much experimental evidence for H2 S as a modulator of gastrointestinal motility, we still do not have conclusive experimental evidence to definitively propose H2 S as an inhibitory neurotransmitter in the gastrointestinal tract, causing nerve-mediated relaxation.
Collapse
Affiliation(s)
- M Jimenez
- Department of Cell Biology, Physiology and Immunology and Neuroscience InstituteUniversitat Autònoma de BarcelonaBarcelonaSpain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd)Instituto de Salud Carlos IIIBarcelonaSpain
| | - V Gil
- Department of Cell Biology, Physiology and Immunology and Neuroscience InstituteUniversitat Autònoma de BarcelonaBarcelonaSpain
| | - M Martinez‐Cutillas
- Department of Cell Biology, Physiology and Immunology and Neuroscience InstituteUniversitat Autònoma de BarcelonaBarcelonaSpain
| | - N Mañé
- Department of Cell Biology, Physiology and Immunology and Neuroscience InstituteUniversitat Autònoma de BarcelonaBarcelonaSpain
| | - D Gallego
- Department of Cell Biology, Physiology and Immunology and Neuroscience InstituteUniversitat Autònoma de BarcelonaBarcelonaSpain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd)Instituto de Salud Carlos IIIBarcelonaSpain
| |
Collapse
|
12
|
Abstract
SIGNIFICANCE The family of gasotransmitter molecules, nitric oxide (NO), carbon monoxide (CO), and hydrogen sulfide (H2S), has emerged as an important mediator of numerous cellular signal transduction and pathophysiological responses. As such, these molecules have been reported to influence a diverse array of biochemical, molecular, and cell biology events often impacting one another. Recent Advances: Discrete regulation of gasotransmitter molecule formation, movement, and reaction is critical to their biological function. Due to the chemical nature of these molecules, they can move rapidly throughout cells and tissues acting on targets through reactions with metal groups, reactive chemical species, and protein amino acids. CRITICAL ISSUES Given the breadth and complexity of gasotransmitter reactions, this field of research is expanding into exciting, yet sometimes confusing, areas of study with significant promise for understanding health and disease. The precise amounts of tissue and cellular gasotransmitter levels and where they are formed, as well as how they react with molecular targets or themselves, all remain poorly understood. FUTURE DIRECTIONS Elucidation of specific molecular targets, characteristics of gasotransmitter molecule heterotypic interactions, and spatiotemporal formation and metabolism are all important to better understand their true pathophysiological importance in various organ systems. Antioxid. Redox Signal. 26, 936-960.
Collapse
Affiliation(s)
- Gopi K Kolluru
- 1 Department of Pathology, LSU Health Sciences Center-Shreveport , Shreveport, Louisiana
| | - Xinggui Shen
- 1 Department of Pathology, LSU Health Sciences Center-Shreveport , Shreveport, Louisiana
| | - Shuai Yuan
- 2 Department of Cellular Biology and Anatomy, LSU Health Sciences Center-Shreveport , Shreveport, Louisiana
| | - Christopher G Kevil
- 1 Department of Pathology, LSU Health Sciences Center-Shreveport , Shreveport, Louisiana.,2 Department of Cellular Biology and Anatomy, LSU Health Sciences Center-Shreveport , Shreveport, Louisiana.,3 Department of Molecular and Cellular Physiology, LSU Health Sciences Center-Shreveport , Shreveport, Louisiana
| |
Collapse
|
13
|
Inhibition of cystathionine β-synthetase suppresses sodium channel activities of dorsal root ganglion neurons of rats with lumbar disc herniation. Sci Rep 2016; 6:38188. [PMID: 27905525 PMCID: PMC5131276 DOI: 10.1038/srep38188] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Accepted: 11/07/2016] [Indexed: 12/01/2022] Open
Abstract
The pathogenesis of pain in lumbar disc herniation (LDH) remains poorly understood. We have recently demonstrated that voltage-gated sodium channels (VGSCs) in dorsal root ganglion (DRG) neurons were sensitized in a rat model of LDH. However, the detailed molecular mechanism for sensitization of VGSCs remains largely unknown. This study was designed to examine roles of the endogenous hydrogen sulfide synthesizing enzyme cystathionine β-synthetase (CBS) in sensitization of VGSCs in a previously validated rat model of LDH. Here we showed that inhibition of CBS activity by O-(Carboxymethyl) hydroxylamine hemihydrochloride (AOAA) significantly attenuated pain hypersensitivity in LDH rats. Administration of AOAA also reduced neuronal hyperexcitability, suppressed the sodium current density, and right-shifted the V1/2 of the inactivation curve, of hindpaw innervating DRG neurons, which is retrogradely labeled by DiI. In vitro incubation of AOAA did not alter the excitability of acutely isolated DRG neurons. Furthermore, CBS was colocalized with NaV1.7 and NaV1.8 in hindpaw-innervating DRG neurons. Treatment of AOAA markedly suppressed expression of NaV1.7 and NaV1.8 in DRGs of LDH rats. These data suggest that targeting the CBS-H2S signaling at the DRG level might represent a novel therapeutic strategy for chronic pain relief in patients with LDH.
Collapse
|
14
|
Abstract
In recent years, it has become apparent that the gaseous pollutant, hydrogen sulphide (H2S) can be synthesised in the body and has a multitude of biological actions. This review summarizes some of the actions of this 'gasotransmitter' in influencing the smooth muscle that is responsible for controlling muscular activity of hollow organs. In the vasculature, while H2S can cause vasoconstriction by complex interactions with other biologically important gases, such as nitric oxide, the prevailing response is vasorelaxation. While most vasorelaxation responses occur by a direct action of H2S on smooth muscle cells, it has recently been proposed to be an endothelium-derived hyperpolarizing factor. H2S also promotes relaxation in other smooth muscle preparations including bronchioles, the bladder, gastrointestinal tract and myometrium, opening up the opportunity of exploiting the pharmacology of H2S in the treatment of conditions where smooth muscle tone is excessive. The original concept, that H2S caused smooth muscle relaxation by activating ATP-sensitive K(+) channels, has been supplemented with observations that H2S can also modify the activity of other potassium channels, intracellular pH, phosphodiesterase activity and transient receptor potential channels on sensory nerves. While the enzymes responsible for generating endogenous H2S are widely expressed in smooth muscle preparations, it is much less clear what the physiological role of H2S is in determining smooth muscle contractility. Clarification of this requires the development of potent and selective inhibitors of H2S-generating enzymes.
Collapse
Affiliation(s)
- William R Dunn
- Pharmacology Research Group, School of Life Sciences, University of Nottingham, Nottingham NG7 2UH, United Kingdom.
| | - Stephen P H Alexander
- Pharmacology Research Group, School of Life Sciences, University of Nottingham, Nottingham NG7 2UH, United Kingdom
| | - Vera Ralevic
- Pharmacology Research Group, School of Life Sciences, University of Nottingham, Nottingham NG7 2UH, United Kingdom
| | - Richard E Roberts
- Pharmacology Research Group, School of Life Sciences, University of Nottingham, Nottingham NG7 2UH, United Kingdom
| |
Collapse
|
15
|
Epithelial Electrolyte Transport Physiology and the Gasotransmitter Hydrogen Sulfide. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:4723416. [PMID: 26904165 PMCID: PMC4745330 DOI: 10.1155/2016/4723416] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Accepted: 12/17/2015] [Indexed: 11/18/2022]
Abstract
Hydrogen sulfide (H2S) is a well-known environmental chemical threat with an unpleasant smell of rotten eggs. Aside from the established toxic effects of high-dose H2S, research over the past decade revealed that cells endogenously produce small amounts of H2S with physiological functions. H2S has therefore been classified as a "gasotransmitter." A major challenge for cells and tissues is the maintenance of low physiological concentrations of H2S in order to prevent potential toxicity. Epithelia of the respiratory and gastrointestinal tract are especially faced with this problem, since these barriers are predominantly exposed to exogenous H2S from environmental sources or sulfur-metabolising microbiota. In this paper, we review the cellular mechanisms by which epithelial cells maintain physiological, endogenous H2S concentrations. Furthermore, we suggest a concept by which epithelia use their electrolyte and liquid transport machinery as defence mechanisms in order to eliminate exogenous sources for potentially harmful H2S concentrations.
Collapse
|
16
|
Inhibitory action of hydrogen sulfide on esophageal striated muscle motility in rats. Eur J Pharmacol 2016; 771:123-9. [PMID: 26687631 DOI: 10.1016/j.ejphar.2015.12.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Revised: 11/24/2015] [Accepted: 12/09/2015] [Indexed: 02/08/2023]
Abstract
Hydrogen sulfide (H2S) is recognized as a gaseous transmitter and has many functions including regulation of gastrointestinal motility. The aim of the present study was to clarify the effects of H2S on the motility of esophageal striated muscle in rats. An isolated segment of the rat esophagus was placed in an organ bath and mechanical responses were recorded using a force transducer. Electrical stimulation of the vagus nerve evoked contractile response in the esophageal segment. The vagally mediated contraction was inhibited by application of an H2S donor. The H2S donor did not affect the contraction induced by electrical field stimulation, which can excite the striated muscle directly, not via vagus nerves. These results show that H2S has an inhibitory effect on esophageal motility not by directly attenuating striated muscle contractility but by blocking vagal motor nerve activity and/or neuromuscular transmissions. The inhibitory actions of H2S were not affected by pretreatment with the transient receptor potential vanniloid-1 blocker, transient receptor potential ankyrin-1 blocker, nitric oxide synthase inhibitor, blockers of potassium channels, and ganglionic blocker. RT-PCR and Western blot analysis revealed the expression of H2S-producing enzymes in esophageal tissue, whereas application of inhibitors of H2S-producing enzymes did not change vagally evoked contractions in the esophageal striated muscle. These findings suggest that H2S, which might be produced in the esophageal tissue endogenously, can regulate the motor activity of esophageal striated muscle via a novel inhibitory neural pathway.
Collapse
|
17
|
Hatakeyama Y, Takahashi K, Tominaga M, Kimura H, Ohta T. Polysulfide evokes acute pain through the activation of nociceptive TRPA1 in mouse sensory neurons. Mol Pain 2015; 11:24. [PMID: 25934637 PMCID: PMC4428232 DOI: 10.1186/s12990-015-0023-4] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Accepted: 04/23/2015] [Indexed: 11/18/2022] Open
Abstract
Background Hydrogen sulfide (H2S) is oxidized to polysulfide. Recent reports show that this sulfur compound modulates various biological functions. We have reported that H2S is involved in inflammatory pain in mice. On the other hand, little is known about the functional role of polysulfide in sensory neurons. Here we show that polysulfide selectively stimulates nociceptive TRPA1 and evokes acute pain, using TRPA1-gene deficient mice (TRPA1(−/−)), a heterologous expression system and a TRPA1-expressing cell line. Results In wild-type mouse sensory neurons, polysulfide elevated the intracellular Ca concentration ([Ca2+]i) in a dose-dependent manner. The half maximal effective concentration (EC50) of polysulfide was less than one-tenth that of H2S. The [Ca2+]i responses to polysulfide were observed in neurons responsive to TRPA1 agonist and were inhibited by blockers of TRPA1 but not of TRPV1. Polysulfide failed to evoke [Ca2+]i increases in neurons from TRPA1(−/−) mice. In RIN-14B cells, constitutively expressing rat TRPA1, polysulfide evoked [Ca2+]i increases with the same EC50 value as in sensory neurons. Heterologously expressed mouse TRPA1 was activated by polysulfide and that was suppressed by dithiothreitol. Analyses of the TRPA1 mutant channel revealed that cysteine residues located in the internal domain were related to the sensitivity to polysulfide. Intraplantar injection of polysulfide into the mouse hind paw induced acute pain and edema which were significantly less than in TRPA1(−/−) mice. Conclusions The present data suggest that polysulfide functions as pronociceptive substance through the activation of TRPA1 in sensory neurons. Since the potency of polysulfide is higher than parental H2S and this sulfur compound is generated under pathophysiological conditions, it is suggested that polysulfide acts as endogenous ligand for TRPA1. Therefore, TRPA1 may be a promising therapeutic target for endogenous sulfur compound-related algesic action.
Collapse
Affiliation(s)
- Yukari Hatakeyama
- Department of Veterinary Pharmacology, Faculty of Agriculture, Tottori University, Tottori, 680-8553, Japan.
| | - Kenji Takahashi
- Department of Veterinary Pharmacology, Faculty of Agriculture, Tottori University, Tottori, 680-8553, Japan.
| | - Makoto Tominaga
- Division of Cell Signaling, Okazaki Institute for Integrative Bioscience (National Institute for Physiological Sciences), National Institutes of Natural Sciences, Okazaki, 444-8787, Japan.
| | - Hideo Kimura
- Natinal Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, 187-8551, Japan.
| | - Toshio Ohta
- Department of Veterinary Pharmacology, Faculty of Agriculture, Tottori University, Tottori, 680-8553, Japan.
| |
Collapse
|
18
|
Gil V, Parsons S, Gallego D, Huizinga J, Jimenez M. Effects of hydrogen sulphide on motility patterns in the rat colon. Br J Pharmacol 2014; 169:34-50. [PMID: 23297830 DOI: 10.1111/bph.12100] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2012] [Revised: 11/26/2012] [Accepted: 12/17/2012] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND AND PURPOSE Hydrogen sulphide (H2 S) is an endogenous gaseous signalling molecule with putative functions in gastrointestinal motility regulation. Characterization of H2 S effects on colonic motility is crucial to establish its potential use as therapeutic agent in the treatment of colonic disorders. EXPERIMENTAL APPROACH H2 S effects on colonic motility were characterized using video recordings and construction of spatio-temporal maps. Microelectrode and muscle bath studies were performed to investigate the mechanisms underlying H2 S effects. NaHS was used as the source of H2 S. KEY RESULTS Rhythmic propulsive motor complexes (RPMCs) and ripples were observed in colonic spatio-temporal maps. Serosal addition of NaHS concentration-dependently inhibited RPMCs. In contrast, NaHS increased amplitude of the ripples without changing their frequency. Therefore, ripples became the predominant motor pattern. Neuronal blockade with lidocaine inhibited RPMCs, which were restored after administration of carbachol. Subsequent addition of NaHS inhibited RPMCs. Luminal addition of NaHS did not modify motility patterns. NaHS inhibited cholinergic excitatory junction potentials, carbachol-induced contractions and hyperpolarized smooth muscle cells, but did not modify slow wave activity. CONCLUSIONS AND IMPLICATIONS H2 S modulated colonic motility inhibiting propulsive contractile activity and enhancing the amplitude of ripples, promoting mixing. Muscle hyperpolarization and inhibition of neurally mediated cholinergic responses contributed to the inhibitory effect on propulsive activity. H2 S effects were not related to changes in the frequency of slow wave activity originating in the network of interstitial cells of Cajal located near the submuscular plexus. Luminal H2 S did not modify colonic motility probably because of epithelial detoxification.
Collapse
Affiliation(s)
- V Gil
- Department of Cell Biology, Physiology and Immunology/Neuroscience Institute, Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
| | | | | | | | | |
Collapse
|
19
|
Farrugia G, Szurszewski JH. Carbon monoxide, hydrogen sulfide, and nitric oxide as signaling molecules in the gastrointestinal tract. Gastroenterology 2014; 147:303-13. [PMID: 24798417 PMCID: PMC4106980 DOI: 10.1053/j.gastro.2014.04.041] [Citation(s) in RCA: 134] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Revised: 04/16/2014] [Accepted: 04/24/2014] [Indexed: 12/24/2022]
Abstract
Carbon monoxide (CO) and hydrogen sulfide (H2S) used to be thought of simply as lethal and (for H2S) smelly gaseous molecules; now they are known to have important signaling functions in the gastrointestinal tract. CO and H2S, which are produced in the gastrointestinal tract by different enzymes, regulate smooth muscle membrane potential and tone, transmit signals from enteric nerves, and can regulate the immune system. The pathways that produce nitric oxide, H2S, and CO interact; each can inhibit and potentiate the level and activity of the other. However, there are significant differences between these molecules, such as in half-lives; CO is more stable and therefore able to have effects distal to the site of production, whereas nitric oxide and H2S are short lived and act only close to sites of production. We review their signaling functions in the luminal gastrointestinal tract and discuss how their pathways interact. We also describe other physiological functions of CO and H2S and how they might be used as therapeutic agents.
Collapse
Affiliation(s)
- Gianrico Farrugia
- Enteric NeuroScience Program, Division of Gastroenterology and Hepatology and Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota.
| | | |
Collapse
|
20
|
Eberhardt M, Dux M, Namer B, Miljkovic J, Cordasic N, Will C, Kichko TI, de la Roche J, Fischer M, Suárez SA, Bikiel D, Dorsch K, Leffler A, Babes A, Lampert A, Lennerz JK, Jacobi J, Martí MA, Doctorovich F, Högestätt ED, Zygmunt PM, Ivanovic-Burmazovic I, Messlinger K, Reeh P, Filipovic MR. H2S and NO cooperatively regulate vascular tone by activating a neuroendocrine HNO-TRPA1-CGRP signalling pathway. Nat Commun 2014; 5:4381. [PMID: 25023795 PMCID: PMC4104458 DOI: 10.1038/ncomms5381] [Citation(s) in RCA: 299] [Impact Index Per Article: 27.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Accepted: 06/12/2014] [Indexed: 02/08/2023] Open
Abstract
Nitroxyl (HNO) is a redox sibling of nitric oxide (NO) that targets distinct signalling pathways with pharmacological endpoints of high significance in the treatment of heart failure. Beneficial HNO effects depend, in part, on its ability to release calcitonin gene-related peptide (CGRP) through an unidentified mechanism. Here we propose that HNO is generated as a result of the reaction of the two gasotransmitters NO and H2S. We show that H2S and NO production colocalizes with transient receptor potential channel A1 (TRPA1), and that HNO activates the sensory chemoreceptor channel TRPA1 via formation of amino-terminal disulphide bonds, which results in sustained calcium influx. As a consequence, CGRP is released, which induces local and systemic vasodilation. H2S-evoked vasodilatatory effects largely depend on NO production and activation of HNO–TRPA1–CGRP pathway. We propose that this neuroendocrine HNO–TRPA1–CGRP signalling pathway constitutes an essential element for the control of vascular tone throughout the cardiovascular system. Nitric oxide (NO) and hydrogen sulphide (H2S) are two gaseous signalling molecules produced in tissues. Here the authors propose that NO and H2S react with each other to form nitroxyl (HNO), which activates the TRPA1 channel in nerve cells and triggers the release of the vasoactive peptide CGRP.
Collapse
Affiliation(s)
- Mirjam Eberhardt
- 1] Department of Chemistry and Pharmacy, Friedrich-Alexander University Erlangen-Nuremberg, Egerlandstrasse 1, 91058 Erlangen, Germany [2] Institute of Physiology and Pathophysiology Friedrich-Alexander University Erlangen-Nuremberg, Universitaetsstrasse 17, 91054 Erlangen, Germany [3] Department of Anesthesiology and Intensive Care, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625 Hannover, Germany
| | - Maria Dux
- 1] Institute of Physiology and Pathophysiology Friedrich-Alexander University Erlangen-Nuremberg, Universitaetsstrasse 17, 91054 Erlangen, Germany [2] Department of Physiology, University of Szeged, Dóm tér 10, H-6720 Szeged, Hungary
| | - Barbara Namer
- Institute of Physiology and Pathophysiology Friedrich-Alexander University Erlangen-Nuremberg, Universitaetsstrasse 17, 91054 Erlangen, Germany
| | - Jan Miljkovic
- Department of Chemistry and Pharmacy, Friedrich-Alexander University Erlangen-Nuremberg, Egerlandstrasse 1, 91058 Erlangen, Germany
| | - Nada Cordasic
- Department of Nephrology and Hypertension, University of Erlangen-Nuremberg, Krankenhausstrasse 12, 91054 Erlangen, Germany
| | - Christine Will
- Institute of Physiology and Pathophysiology Friedrich-Alexander University Erlangen-Nuremberg, Universitaetsstrasse 17, 91054 Erlangen, Germany
| | - Tatjana I Kichko
- Institute of Physiology and Pathophysiology Friedrich-Alexander University Erlangen-Nuremberg, Universitaetsstrasse 17, 91054 Erlangen, Germany
| | - Jeanne de la Roche
- Department of Anesthesiology and Intensive Care, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625 Hannover, Germany
| | - Michael Fischer
- 1] Institute of Physiology and Pathophysiology Friedrich-Alexander University Erlangen-Nuremberg, Universitaetsstrasse 17, 91054 Erlangen, Germany [2] Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge CB1 2PD, UK
| | - Sebastián A Suárez
- Departamento de Química Inorgánica, Analítica y Química Física/INQUIMAE-CONICET, Universidad de Buenos Aires, Ciudad Universitaria, Pab. II, C1428EHA, Buenos Aires, Argentina
| | - Damian Bikiel
- Departamento de Química Inorgánica, Analítica y Química Física/INQUIMAE-CONICET, Universidad de Buenos Aires, Ciudad Universitaria, Pab. II, C1428EHA, Buenos Aires, Argentina
| | - Karola Dorsch
- Institute of Pathology, University of Ulm, Albert-Einstein-Allee 23, 89070 Ulm, Germany
| | - Andreas Leffler
- Department of Anesthesiology and Intensive Care, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625 Hannover, Germany
| | - Alexandru Babes
- 1] Institute of Physiology and Pathophysiology Friedrich-Alexander University Erlangen-Nuremberg, Universitaetsstrasse 17, 91054 Erlangen, Germany [2] Department of Anatomy, Physiology and Biophysics, Faculty of Biology, University of Bucharest, Splaiul Independentei 91-95, 050095 Bucharest, Romania
| | - Angelika Lampert
- 1] Institute of Physiology and Pathophysiology Friedrich-Alexander University Erlangen-Nuremberg, Universitaetsstrasse 17, 91054 Erlangen, Germany [2]
| | - Jochen K Lennerz
- Institute of Pathology, University of Ulm, Albert-Einstein-Allee 23, 89070 Ulm, Germany
| | - Johannes Jacobi
- Department of Nephrology and Hypertension, University of Erlangen-Nuremberg, Krankenhausstrasse 12, 91054 Erlangen, Germany
| | - Marcelo A Martí
- 1] Departamento de Química Inorgánica, Analítica y Química Física/INQUIMAE-CONICET, Universidad de Buenos Aires, Ciudad Universitaria, Pab. II, C1428EHA, Buenos Aires, Argentina [2] Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pab. II, C1428EHA, Buenos Aires, Argentina
| | - Fabio Doctorovich
- Departamento de Química Inorgánica, Analítica y Química Física/INQUIMAE-CONICET, Universidad de Buenos Aires, Ciudad Universitaria, Pab. II, C1428EHA, Buenos Aires, Argentina
| | - Edward D Högestätt
- Clinical Chemistry & Pharmacology, Department of Laboratory Medicine, Lund University Hospital, SE-221 85 Lund, Sweden
| | - Peter M Zygmunt
- Clinical Chemistry & Pharmacology, Department of Laboratory Medicine, Lund University Hospital, SE-221 85 Lund, Sweden
| | - Ivana Ivanovic-Burmazovic
- Department of Chemistry and Pharmacy, Friedrich-Alexander University Erlangen-Nuremberg, Egerlandstrasse 1, 91058 Erlangen, Germany
| | - Karl Messlinger
- Institute of Physiology and Pathophysiology Friedrich-Alexander University Erlangen-Nuremberg, Universitaetsstrasse 17, 91054 Erlangen, Germany
| | - Peter Reeh
- 1] Institute of Physiology and Pathophysiology Friedrich-Alexander University Erlangen-Nuremberg, Universitaetsstrasse 17, 91054 Erlangen, Germany [2]
| | - Milos R Filipovic
- 1] Department of Chemistry and Pharmacy, Friedrich-Alexander University Erlangen-Nuremberg, Egerlandstrasse 1, 91058 Erlangen, Germany [2]
| |
Collapse
|
21
|
Sanger GJ, Broad J, Kung V, Knowles CH. Translational neuropharmacology: the use of human isolated gastrointestinal tissues. Br J Pharmacol 2014; 168:28-43. [PMID: 22946540 DOI: 10.1111/j.1476-5381.2012.02198.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2012] [Revised: 08/08/2012] [Accepted: 08/23/2012] [Indexed: 12/22/2022] Open
Abstract
Translational sciences increasingly emphasize the measurement of functions in native human tissues. However, such studies must confront variations in patient age, gender, genetic background and disease. Here, these are discussed with reference to neuromuscular and neurosecretory functions of the human gastrointestinal (GI) tract. Tissues are obtained after informed consent, in collaboration with surgeons (surgical techniques help minimize variables) and pathologists. Given the difficulties of directly recording from human myenteric neurones (embedded between muscle layers), enteric motor nerve functions are studied by measuring muscle contractions/relaxations evoked by electrical stimulation of intrinsic nerves; responses are regionally dependent, often involving cholinergic and nitrergic phenotypes. Enteric sensory functions can be studied by evoking the peristaltic reflex, involving enteric sensory and motor nerves, but this has rarely been achieved. As submucosal neurones are more accessible (after removing the mucosa), direct neuronal recordings are possible. Neurosecretory functions are studied by measuring changes in short-circuit current across the mucosa. For all experiments, basic questions must be addressed. Because tissues are from patients, what are the controls and the influence of disease? How long does it take before function fully recovers? What is the impact of age- and gender-related differences? What is the optimal sample size? Addressing these and other questions minimizes variability and raises the scientific credibility of human tissue research. Such studies also reduce animal use. Further, the many differences between animal and human GI functions also means that human tissue research must question the ethical validity of using strains of animals with unproved translational significance.
Collapse
Affiliation(s)
- G J Sanger
- Neurogastroenterology Group, Blizard Institute, Barts & The London School of Medicine and Dentistry, Queen Mary University of London, UK.
| | | | | | | |
Collapse
|
22
|
Abstract
SIGNIFICANCE The current literature regarding the effects of the gaseous signal molecule hydrogen sulfide (H2S) in the gastrointestinal system is reviewed. Bacterial, host and pharmaceutical-derived H2S are all considered and presented according to the physiological or pathophysiological effects of the gaseous signal molecule. These subjects include the toxicology of intestinal H2S with emphasis on bacterial-derived H2S, especially from sulfate-reducing bacteria, the role of endogenous and exogenous H2S in intestinal inflammation, and the roles of H2S in gastrointestinal motility, secretion and nociception. RECENT ADVANCES While its pro- and anti-inflammatory, smooth muscle relaxant, prosecretory, and pro- and antinociceptive actions continue to remain the major effects of H2S in this system; recent findings have expanded the potential molecular targets for H2S in the gastrointestinal tract. CRITICAL ISSUES Numerous discrepancies remain in the literature, and definitive molecular targets in this system have not been supported by the use of competitive antagonism. FUTURE DIRECTIONS Future work will hopefully resolve discrepancies in the literature and identify molecular targets and mechanisms of action for H2S. It is clear from the current literature that the long-appreciated relationship between H2S and the gastrointestinal tract continues to be strong as we endeavor to unravel its mysteries.
Collapse
Affiliation(s)
- David R Linden
- Enteric NeuroScience Program, Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine , Rochester, Minnesota
| |
Collapse
|
23
|
Hydrogen sulfide selectively potentiates central preganglionic fast nicotinic synaptic input in mouse superior mesenteric ganglion. J Neurosci 2013; 33:12638-46. [PMID: 23904600 DOI: 10.1523/jneurosci.4429-12.2013] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Hydrogen sulfide (H2S) plays important roles in the enteric system in the wall of the gastrointestinal tract. There have been no studies on whether H2S is endogenously generated in peripheral sympathetic ganglia and, if so, its effect on synaptic transmission. In this study, we examined the effect of H2S on cholinergic excitatory fast synaptic transmission in the mouse superior mesenteric ganglion (SMG). Our study revealed that NaHS and endogenously generated H2S selectively potentiated cholinergic fast EPSPs (F-EPSPs) evoked by splanchnic nerve stimulation but not F-EPSPs evoked by colonic nerve stimulation. The H2S-producing enzyme cystathionine-γ-lyase (CSE) was expressed in both neurons and glial cells. The CSE blocker PAG (dl-propargylglycine) significantly reduced the amplitude of F-EPSPs evoked by splanchnic nerve stimulation but not F-EPSPs evoked by colonic nerve stimulation. Inhibiting the breakdown of endogenously generated H2S with stigmatellin potentiated the amplitude of F-EPSPs evoked by splanchnic nerve stimulation but not F-EPSPs evoked by colonic nerve stimulation. Splanchnic F-EPSPs but not colonic F-EPSPs were reduced in CSE knock-out (KO) mice. Functional studies showed that NaHS enhanced the inhibitory effect of splanchnic nerve stimulation on colonic motility. Colonic motility in CSE-KO mice was significantly higher than colonic motility in wild-type mice. We conclude that endogenously generated H2S acted selectively on presynaptic terminals of splanchnic nerves to modulate fast cholinergic synaptic input and that this effect of H2S modulates CNS control of gastrointestinal motility. Our results show for the first time that the facilitatory effect of endogenous H2S in the mouse SMG is pathway specific.
Collapse
|
24
|
White BJO, Smith PA, Dunn WR. Hydrogen sulphide-mediated vasodilatation involves the release of neurotransmitters from sensory nerves in pressurized mesenteric small arteries isolated from rats. Br J Pharmacol 2013; 168:785-93. [PMID: 22928888 DOI: 10.1111/j.1476-5381.2012.02187.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2012] [Revised: 08/15/2012] [Accepted: 08/16/2012] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND AND PURPOSE Hydrogen sulphide (H(2)S) is a gas that has recently been shown to have biological activity. In the majority of blood vessels studied so far, H(2)S has been shown to cause vasorelaxation, although contractile responses have been reported. In the present study, we have made a pharmacological assessment of the effects of H(2)S in mesenteric small arteries isolated from rats. EXPERIMENTAL APPROACH Rat mesenteric small arteries were studied using pressure myography. In pressurised arteries, responses were obtained to the H(2)S donor, sodium hydrogen sulphide (NaHS), in the absence and presence of the NOS inhibitor L-NAME, raised extracellular potassium, the K(ATP) channel inhibitor glibenclamide, the Cl- channel blockers DIDS, NPPB and A9C, the TRPV1 receptor desensitizing agent, capsaicin, the CGRP antagonist, olcegepant, the TRPV1 channel blocker capsazepine and the TRPA1 channel blocker HC-030031. KEY RESULTS NaHS produced a vasodilator response in rat mesenteric small arteries held at 90 mmHg. Responses to NaHS were not reproducible. Neither, glibenclamide nor, L-NAME inhibited responses to NaHS. DIDS abolished vasodilator responses to NaHS, but these were unaffected by the chloride channel blockers, NPPB and A9C. Responses to NaHS were attenuated after capsaicin pre-treatment, by a CGRP receptor antagonist and an inhibitor of TRPA1 channels. CONCLUSIONS AND IMPLICATIONS In small arteries isolated from the rat mesentery, NaHS caused a vasodilatation. This response was not reproducible in vitro, since it was mediated by the release of sensory neurotransmitters in a capsaicin-like action. This release was mediated by a H(2)S-induced activation of TRPA1 channels.
Collapse
Affiliation(s)
- Benjamin J O White
- Cardiovascular Research Group, School of Biomedical Sciences, University of Nottingham, Nottingham, UK
| | | | | |
Collapse
|
25
|
Hu S, Xu W, Miao X, Gao Y, Zhu L, Zhou Y, Xiao Y, Xu GY. Sensitization of sodium channels by cystathionine β-synthetase activation in colon sensory neurons in adult rats with neonatal maternal deprivation. Exp Neurol 2013; 248:275-85. [PMID: 23834820 DOI: 10.1016/j.expneurol.2013.06.027] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2013] [Revised: 06/18/2013] [Accepted: 06/26/2013] [Indexed: 12/18/2022]
Abstract
BACKGROUND The pathogenesis of pain in irritable bowel syndrome (IBS) is poorly understood and treatment remains difficult. We have previously reported that TTX-resistant (TTX-R) sodium channels in colon-specific dorsal root ganglion (DRG) neurons were sensitized and the expression of the endogenous hydrogen sulfide producing enzyme cystathionine β-synthetase (CBS) was upregulated in a rat model of visceral hypersensitivity induced by neonatal maternal deprivation (NMD). However, the detailed molecular mechanism for activation of sodium channels remains unknown. This study was designed to examine roles for CBS-H₂S signaling in sensitization of sodium channels in a previously validated rat model of IBS. METHODS Neonatal male rats (postnatal days 2-15) were exposed to a 3 hour period of daily maternal separation with temperature maintained at ~33 °C. Colon-specific dorsal root ganglion (DRG) neurons were labeled with DiI and acutely dissociated for measuring excitability and sodium channel current under whole-cell patch clamp configurations. The expression of Na(V)1.8 was analyzed by Western blot and Immunofluorescence study. The endogenous H₂S producing enzyme CBS antagonist was injected intraperitoneally. RESULTS We showed that CBS was colocalized with Na(V)1.8 in colon-specific DRG neurons pre-labeled with DiI. Pretreatment of O-(Carboxymethyl) hydroxylamine hemihydrochloride (AOAA), an inhibitor of CBS, significantly reduced expression of Na(V)1.8 in NMD rats. AOAA treatment also inhibited the TTX-R sodium current density, right-shifted the V₁/₂ of activation curve, and reversed hyperexcitability of colon-specific DRG neurons in NMD rats. Conversely, addition of NaHS, a donor of H₂S, greatly enhanced TTX-R sodium current density, left shifted the activation curve and enhanced excitability of colon DRG neurons in age-matched healthy rats. Furthermore, application of H-89, an inhibitor of protein kinase A, markedly attenuated the potentiation of TTX-R sodium current density by NaHS. CONCLUSION These data suggest that sensitization of sodium channels of colon DRG neurons in NMD rats is most likely mediated by CBS-H₂S signaling, thus identifying a potential target for treatment for chronic visceral pain in patients with IBS.
Collapse
Affiliation(s)
- Shufen Hu
- Institute of Neuroscience, Laboratory for Translational Pain Medicine, Department of Neurobiology, Soochow University, Suzhou 215123, PR China
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Abstract
This review is focused on the role of the ankyrin (A) transient receptor potential (TRP) channel TRPA1 in vascular regulation. TRPA1 is activated by environmental irritants, pungent compounds found in foods such as garlic, mustard and cinnamon, as well as metabolites produced during oxidative stress. The structure of the channel is distinguished by the ∼14-19 ankyrin repeat (AR) domains present in the intracellular amino terminus. TRPA1 has a large unitary conductance (98 pS) and slight selectivity for Ca(2+) versus Na(+) ions (P(Ca) /P(Na) ≈ 7.9). TRPA1 is involved in numerous important physiological processes, including nociception, mechanotransduction, and thermal and oxygen sensing. TRPA1 agonists cause arterial dilation through two distinctive pathways. TRPA1 channels present in perivascular nerves mediate vasodilatation of peripheral arteries in response to chemical agonists through a mechanism requiring release of calcitonin gene-related peptide. In the cerebral circulation, TRPA1 channels are present in the endothelium, concentrated within myoendothelial junction sites. Activation of TRPA1 channels in this vascular bed causes endothelium-dependent smooth muscle cell hyperpolarization and vasodilatation that requires the activity of small and intermediate conductance Ca(2+) -activated K(+) channels. Systemic administration of TRPA1 agonists causes transient depressor responses, followed by sustained increases in heart rate and blood pressure that may result from elevated sympathetic nervous activity. These findings indicate that TRPA1 activity influences vascular function, but the precise role and significance of the channel in the cardiovascular system remains to be determined.
Collapse
Affiliation(s)
- Scott Earley
- Vascular Physiology Research Group, Department of Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA.
| |
Collapse
|
27
|
Andersson DA, Gentry C, Bevan S. TRPA1 has a key role in the somatic pro-nociceptive actions of hydrogen sulfide. PLoS One 2012; 7:e46917. [PMID: 23071662 PMCID: PMC3469557 DOI: 10.1371/journal.pone.0046917] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2012] [Accepted: 09/06/2012] [Indexed: 12/30/2022] Open
Abstract
Hydrogen sulfide (H2S), which is produced endogenously from L-cysteine, is an irritant with pro-nociceptive actions. We have used measurements of intracellular calcium concentration, electrophysiology and behavioral measurements to show that the somatic pronociceptive actions of H2S require TRPA1. A H2S donor, NaHS, activated TRPA1 expressed in CHO cells and stimulated DRG neurons isolated from Trpa1+/+ but not Trpa1−/− mice. TRPA1 activation by NaHS was pH dependent with increased activity at acidic pH. The midpoint of the relationship between NaHS EC50 values and external pH was pH 7.21, close to the expected dissociation constant for H2S (pKa 7.04). NaHS evoked single channel currents in inside-out and cell-attached membrane patches consistent with an intracellular site of action. In behavioral experiments, intraplantar administration of NaHS and L-cysteine evoked mechanical and cold hypersensitivities in Trpa1+/+ but not in Trpa1−/− mice. The sensitizing effects of L-cysteine in wild-type mice were inhibited by a cystathionine β-synthase inhibitor, D,L-propargylglycine (PAG), which inhibits H2S formation. Mechanical hypersensitivity evoked by intraplantar injections of LPS was prevented by PAG and the TRPA1 antagonist AP-18 and was absent in Trpa1−/− mice, indicating that H2S mediated stimulation of TRPA1 is necessary for the local pronociceptive effects of LPS. The pro-nociceptive effects of intraplantar NaHS were retained in Trpv1−/− mice ruling out TRPV1 as a molecular target. In behavioral studies, NaHS mediated sensitization was also inhibited by a T-type calcium channel inhibitor, mibefradil. In contrast to the effects of NaHS on somatic sensitivity, intracolonic NaHS administration evoked similar nociceptive effects in Trpa1+/+ and Trpa1−/− mice, suggesting that the visceral pro-nociceptive effects of H2S are independent of TRPA1. In electrophysiological studies, the depolarizing actions of H2S on isolated DRG neurons were inhibited by AP-18, but not by mibefradil indicating that the primary excitatory effect of H2S on DRG neurons is TRPA1 mediated depolarization.
Collapse
Affiliation(s)
- David A. Andersson
- Wolfson Centre for Age Related Diseases, King's College London, London, United Kingdom
| | - Clive Gentry
- Wolfson Centre for Age Related Diseases, King's College London, London, United Kingdom
| | - Stuart Bevan
- Wolfson Centre for Age Related Diseases, King's College London, London, United Kingdom
- * E-mail:
| |
Collapse
|
28
|
Linden DR, Furne J, Stoltz GJ, Abdel-Rehim MS, Levitt MD, Szurszewski JH. Sulphide quinone reductase contributes to hydrogen sulphide metabolism in murine peripheral tissues but not in the CNS. Br J Pharmacol 2012; 165:2178-90. [PMID: 21950400 DOI: 10.1111/j.1476-5381.2011.01681.x] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND AND PURPOSE Hydrogen sulphide (H(2) S) is gaining acceptance as a gaseous signal molecule. However, mechanisms regarding signal termination are not understood. We used stigmatellin and antimycin A, inhibitors of sulphide quinone reductase (SQR), to test the hypothesis that the catabolism of H(2) S involves SQR. EXPERIMENTAL APPROACH H(2) S production and consumption were determined in living and intact mouse brain, liver and colonic muscularis externa using gas chromatography and HPLC. Expressions of SQR, ethylmalonic encephalopathy 1 (Ethe1) and thiosulphate transferase (TST; rhodanese) were determined by RT-PCR and immunohistochemistry. KEY RESULTS In the colonic muscularis externa, H(2) (35) S was catabolized to [(35) S]-thiosulphate and [(35) S]-sulphate, and stigmatellin reduced both the consumption of H(2) (35) S and formation of [(35) S]-thiosulphate. Stigmatellin also enhanced H(2) S release by the colonic muscularis externa. In the brain, catabolism of H(2) (35) S to [(35) S]-thiosulphate and [(35) S]-sulphate, which was stigmatellin-insensitive, partially accounted for H(2) (35) S consumption, while the remainder was captured as unidentified (35) S that was probably bound to proteins. Levels of mRNA encoding SQR were higher in the colonic muscularis externa and the liver than in the brain. CONCLUSIONS AND IMPLICATIONS These data support the concept that termination of endogenous H(2) S signalling in the colonic muscularis externa occurs via catabolism to thiosulphate and sulphate partially via a mechanism involving SQR. In the brain, it appears that H(2) S signal termination occurs partially through protein sequestration and partially through catabolism not involving SQR. As H(2) S has beneficial effects in animal models of human disease, we suggest that selective inhibition of SQR is an attractive target for pharmaceutical development.
Collapse
Affiliation(s)
- D R Linden
- Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine, Rochester, MN, USA.
| | | | | | | | | | | |
Collapse
|
29
|
Abstract
Hydrogen sulfide (H(2)S) has recently emerged as a mammalian gaseous messenger molecule, akin to nitric oxide and carbon monoxide. H(2)S is predominantly formed from Cys or its derivatives by the enzymes cystathionine β-synthase and cystathionine γ-lyase. One of the mechanisms by which H(2)S signals is by sulfhydration of reactive Cys residues in target proteins. Although analogous to protein nitrosylation, sulfhydration is substantially more prevalent and usually increases the catalytic activity of targeted proteins. Physiological actions of sulfhydration include the regulation of inflammation and endoplasmic reticulum stress signalling as well as of vascular tension.
Collapse
Affiliation(s)
- Bindu D Paul
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | | |
Collapse
|
30
|
Wang R. Physiological implications of hydrogen sulfide: a whiff exploration that blossomed. Physiol Rev 2012; 92:791-896. [PMID: 22535897 DOI: 10.1152/physrev.00017.2011] [Citation(s) in RCA: 1405] [Impact Index Per Article: 108.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The important life-supporting role of hydrogen sulfide (H(2)S) has evolved from bacteria to plants, invertebrates, vertebrates, and finally to mammals. Over the centuries, however, H(2)S had only been known for its toxicity and environmental hazard. Physiological importance of H(2)S has been appreciated for about a decade. It started by the discovery of endogenous H(2)S production in mammalian cells and gained momentum by typifying this gasotransmitter with a variety of physiological functions. The H(2)S-catalyzing enzymes are differentially expressed in cardiovascular, neuronal, immune, renal, respiratory, gastrointestinal, reproductive, liver, and endocrine systems and affect the functions of these systems through the production of H(2)S. The physiological functions of H(2)S are mediated by different molecular targets, such as different ion channels and signaling proteins. Alternations of H(2)S metabolism lead to an array of pathological disturbances in the form of hypertension, atherosclerosis, heart failure, diabetes, cirrhosis, inflammation, sepsis, neurodegenerative disease, erectile dysfunction, and asthma, to name a few. Many new technologies have been developed to detect endogenous H(2)S production, and novel H(2)S-delivery compounds have been invented to aid therapeutic intervention of diseases related to abnormal H(2)S metabolism. While acknowledging the challenges ahead, research on H(2)S physiology and medicine is entering an exponential exploration era.
Collapse
Affiliation(s)
- Rui Wang
- Department of Biology, Lakehead University, Thunder Bay, Ontario, Canada.
| |
Collapse
|
31
|
Ogawa H, Takahashi K, Miura S, Imagawa T, Saito S, Tominaga M, Ohta T. H(2)S functions as a nociceptive messenger through transient receptor potential ankyrin 1 (TRPA1) activation. Neuroscience 2012; 218:335-43. [PMID: 22641084 DOI: 10.1016/j.neuroscience.2012.05.044] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2011] [Revised: 05/17/2012] [Accepted: 05/17/2012] [Indexed: 12/29/2022]
Abstract
Hydrogen sulfide (H(2)S), an endogenous gasotransmitter, modulates various biological functions, including nociception. It is known that H(2)S causes neurogenic inflammation and elicits hyperalgesia. Here we show that H(2)S activates mouse transient receptor potential ankyrin 1 (TRPA1) channels and elicits acute pain, using TRPA1-gene deficient mice (TRPA1(-/-)) and heterologous expression system. In wild-type mouse sensory neurons, H(2)S increased the intracellular Ca(2+) concentration ([Ca(2+)](i)), which was inhibited by ruthenium red (a nonselective TRP channel blocker) and HC-030031 (a TRPA1 blocker). H(2)S-responsive neurons highly corresponded to TRPA1 agonist-sensitive ones. [Ca(2+)](i) responses to H(2)S were observed in neurons from transient receptor potential vanilloid 1 (TRPV1(-/-)) mice but not from TRPA1(-/-) mice. Heterologously expressed mouse TRPA1, but not mouse TRPV1, was activated by H(2)S. H(2)S-induced [Ca(2+)](i) responses were inhibited by dithiothreitol, a reducing agent. Analyses of the TRPA1 mutant channel revealed that two cysteine residues located in the N-terminal internal domain were responsible for the activation by H(2)S. Intraplantar injection of H(2)S into the mouse hind paw caused acute pain which was significantly less in TRPA1(-/-) mice. The [Ca(2+)](i) responses to H(2)S in sensory neurons and in heterologously expressed channels, and pain-related behavior induced by H(2)S were enhanced under acidic conditions. These results suggest that H(2)S functions as a nociceptive messenger through the activation of TRPA1 channels. TRPA1 may be a therapeutic target for H(2)S-related algesic action, especially under inflammatory conditions.
Collapse
Affiliation(s)
- H Ogawa
- Department of Veterinary Pharmacology, Faculty of Agriculture, Tottori University, Tottori 680-8553, Japan
| | | | | | | | | | | | | |
Collapse
|
32
|
Gil V, Gallego D, Jiménez M. Effects of inhibitors of hydrogen sulphide synthesis on rat colonic motility. Br J Pharmacol 2012; 164:485-98. [PMID: 21486289 DOI: 10.1111/j.1476-5381.2011.01431.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND AND PURPOSE The role of hydrogen sulphide (H₂S) as a putative endogenous signalling molecule in the gastrointestinal tract has not yet been established. We investigated the effect of D,L-propargylglycine (PAG), an inhibitor of cystathionine γ-lyase (CSE), amino-oxyacetic acid (AOAA) and hydroxylamine (HA), inhibitors of cystathionine β-synthase (CBS) on rat colonic motility. EXPERIMENTAL APPROACH Immunohistochemistry, H₂S production, microelectrode and organ bath recordings were performed on rat colonic samples without mucosa and submucosa to investigate the role of endogenous H₂S in motility. KEY RESULTS CSE and CBS were immunolocalized in the colon. H₂S was endogenously produced (15.6 ± 0.7 nmol·min⁻¹·g⁻¹ tissue) and its production was strongly inhibited by PAG (2 mM) and AOAA (2 mM). PAG (2 mM) caused smooth muscle depolarization and increased spontaneous motility. The effect was still recorded after incubation with tetrodotoxin (TTX, 1 µM) or N(ω) -nitro-L-arginine (L-NNA, 1 mM). AOAA (2 mM) caused a transient (10 min) increase in motility. In contrast, HA (10 µM) caused a 'nitric oxide-like effect', smooth muscle hyperpolarization and relaxation, which were antagonized by 1H-[1,2,4]oxadiazolo[4,3-α]quinoxalin-1-one (ODQ, 10 µM). Neither spontaneous nor induced inhibitory junction potentials were modified by AOAA or PAG. CONCLUSIONS AND IMPLICATIONS We demonstrated that H₂S is endogenously produced in the rat colon. PAG and AOAA effectively blocked H₂S production. Our data suggest that enzymatic production of H₂S regulates colonic motility and therefore H₂S ight be a third gaseous inhibitory signalling molecule in the gastrointestinal tract. However, possible non-specific effects of the inhibitors should be considered.
Collapse
Affiliation(s)
- V Gil
- Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona (UAB), Bellaterra, Spain
| | | | | |
Collapse
|
33
|
Gil V, Gallego D, Jiménez M. Effects of inhibitors of hydrogen sulphide synthesis on rat colonic motility. Br J Pharmacol 2012. [PMID: 21486289 DOI: 10.1111/j.1476-5381.2011.01431.x/pdf] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND AND PURPOSE The role of hydrogen sulphide (H₂S) as a putative endogenous signalling molecule in the gastrointestinal tract has not yet been established. We investigated the effect of D,L-propargylglycine (PAG), an inhibitor of cystathionine γ-lyase (CSE), amino-oxyacetic acid (AOAA) and hydroxylamine (HA), inhibitors of cystathionine β-synthase (CBS) on rat colonic motility. EXPERIMENTAL APPROACH Immunohistochemistry, H₂S production, microelectrode and organ bath recordings were performed on rat colonic samples without mucosa and submucosa to investigate the role of endogenous H₂S in motility. KEY RESULTS CSE and CBS were immunolocalized in the colon. H₂S was endogenously produced (15.6 ± 0.7 nmol·min⁻¹·g⁻¹ tissue) and its production was strongly inhibited by PAG (2 mM) and AOAA (2 mM). PAG (2 mM) caused smooth muscle depolarization and increased spontaneous motility. The effect was still recorded after incubation with tetrodotoxin (TTX, 1 µM) or N(ω) -nitro-L-arginine (L-NNA, 1 mM). AOAA (2 mM) caused a transient (10 min) increase in motility. In contrast, HA (10 µM) caused a 'nitric oxide-like effect', smooth muscle hyperpolarization and relaxation, which were antagonized by 1H-[1,2,4]oxadiazolo[4,3-α]quinoxalin-1-one (ODQ, 10 µM). Neither spontaneous nor induced inhibitory junction potentials were modified by AOAA or PAG. CONCLUSIONS AND IMPLICATIONS We demonstrated that H₂S is endogenously produced in the rat colon. PAG and AOAA effectively blocked H₂S production. Our data suggest that enzymatic production of H₂S regulates colonic motility and therefore H₂S ight be a third gaseous inhibitory signalling molecule in the gastrointestinal tract. However, possible non-specific effects of the inhibitors should be considered.
Collapse
Affiliation(s)
- V Gil
- Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona (UAB), Bellaterra, Spain
| | | | | |
Collapse
|
34
|
Pouokam E, Diener M. Modulation of ion transport across rat distal colon by cysteine. Front Physiol 2012; 3:43. [PMID: 22403551 PMCID: PMC3291876 DOI: 10.3389/fphys.2012.00043] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2012] [Accepted: 02/17/2012] [Indexed: 12/29/2022] Open
Abstract
The aim of this study was to identify the actions of stimulation of endogenous production of H(2)S by cysteine, the substrate for the two H(2)S-producing enzymes, cystathionine-β-synthase and cystathionine-γ-lyase, on ion transport across rat distal colon. Changes in short-circuit current (Isc) induced by cysteine were measured in Ussing chambers. Free cysteine caused a concentration-dependent, transient fall in Isc, which was sensitive to amino-oxyacetate and β-cyano-L-alanine, i.e., inhibitors of H(2)S-producing enzymes. In contrast, Na cysteinate evoked a biphasic change in Isc, i.e., an initial fall followed by a secondary increase, which was also reduced by these enzyme inhibitors. All responses were dependent on the presence of Cl(-) and inhibited by bumetanide, suggesting that free cysteine induces an inhibition of transcellular Cl(-) secretion, whereas Na cysteinate - after a transient inhibitory phase - activates anion secretion. The assumed reason for this discrepancy is a fall in the cytosolic pH induced by free cysteine, but not by Na cysteinate, as observed in isolated colonic crypts loaded with the pH-sensitive dye, BCECF. Intracellular acidification is known to inhibit epithelial K(+) channels. Indeed, after preinhibition of basolateral K(+) channels with tetrapentylammonium or Ba(2+), the negative Isc induced by free cysteine was reduced significantly. In consequence, stimulation of endogenous H(2)S production by Na cysteinate causes, after a short inhibitory response, a delayed activation of anion secretion, which is missing in the case of free cysteine, probably due to the cytosolic acidification. In contrast, diallyl trisulfide, which is intracellularly converted to H(2)S, only evoked a monophasic increase in Isc without the initial fall observed with Na cysteinate. Consequently, time course and amount of produced H(2)S seem to strongly influence the functional response of the colonic epithelium evoked by this gasotransmitter.
Collapse
Affiliation(s)
- Ervice Pouokam
- Institute for Veterinary Physiology and Biochemistry, University Giessen Giessen, Germany
| | | |
Collapse
|
35
|
Mueller K, Michel K, Krueger D, Demir IE, Ceyhan GO, Zeller F, Kreis ME, Schemann M. Activity of protease-activated receptors in the human submucous plexus. Gastroenterology 2011; 141:2088-2097.e1. [PMID: 21875497 DOI: 10.1053/j.gastro.2011.08.034] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2011] [Revised: 07/25/2011] [Accepted: 08/19/2011] [Indexed: 02/08/2023]
Abstract
BACKGROUND & AIMS Protease-activated receptors (PARs) are expressed in the enteric nervous system. Excessive release of proteases has been reported in functional and inflammatory bowel diseases. Studies in several animal models indicate the involvement of neural PARs. We studied the actions of different PAR-activating peptides (AP) in the human submucous plexus and performed comparative studies in guinea pig submucous neurons. METHODS We used voltage- and calcium-sensitive dye recordings to study the effects of PAR1-AP, PAR2-AP, PAR4-AP, the PAR1 activator thrombin, and the PAR2 activator tryptase on neurons and glia in human and guinea pig submucous plexus. Human preparations were derived from surgical resections. Levels of mucosal secretion evoked by PAR-APs were measured in Ussing chambers. RESULTS PAR1-AP and thrombin evoked a prominent spike discharge and intracellular Ca(2+) concentration ([Ca](i)) transients in most human submucous neurons and glia. PAR2-AP, tryptase, and PAR4-AP caused significantly weaker responses in a minor population. In contrast, PAR2-AP evoked much stronger responses in enteric neurons and glia of guinea pigs than did PAR1-AP or PAR4-AP. PAR1-AP, but not PAR2-AP or PAR4-AP, evoked a nerve-mediated secretion in human epithelium. The PAR1 antagonist SCH79797 inhibited the PAR1-AP, and thrombin evoked responses on neurons, glia, and epithelial secretion. In the submucous layer of human intestine, but not guinea pig intestine, PAR2-AP evoked [Ca](i) signals in CD68(+) macrophages. CONCLUSIONS In the human submucous plexus, PAR1, rather than PAR2 or PAR4, activates nerves and glia. These findings indicate that PAR1 should be the focus of future studies on neural PAR-mediated actions in the human intestine; PAR1 might be developed as a therapeutic target for gastrointestinal disorders associated with increased levels of proteases.
Collapse
Affiliation(s)
- Kerstin Mueller
- Human Biology, Technische Universität München, Freising, Germany
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Pouokam E, Diener M. Mechanisms of actions of hydrogen sulphide on rat distal colonic epithelium. Br J Pharmacol 2011; 162:392-404. [PMID: 20840536 DOI: 10.1111/j.1476-5381.2010.01026.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND AND PURPOSE The aim of this study was to clarify the mechanisms by which hydrogen sulphide (H₂S) affects ion secretion across rat distal colonic epithelium. EXPERIMENTAL APPROACH Changes in short-circuit current induced by the H₂S-donor, sodium hydrosulphide (NaHS; 10 mmol·L⁻¹), were measured in Ussing chambers after permeabilization of the apical membrane with nystatin. Cytosolic Ca²(+) concentration ([Ca²(+)](i)) and Ca²(+) in intracellular stores were measured with fluorescent dyes. Changes in mitochondrial membrane potential were estimated with rhodamine 123. KEY RESULTS NaHS had a biphasic effect on overall currents across the basolateral membrane: an initial inhibition followed by a secondary stimulation. Both a scilliroside-sensitive action on the Na(+) -K(+)-ATPase and modulation of glibenclamide-sensitive and tetrapentylammonium-sensitive (i.e. ATP-sensitive and Ca²(+)-dependent) basolateral K(+) channels were involved in this action. Experiments with rhodamine 123 revealed that NaHS induced a hyperpolarization of the mitochondrial membrane. NaHS evoked a biphasic change in [Ca²(+)](i) , an initial decrease followed by a secondary increase, known to be mediated by the release of stored Ca²(+). Initial falls in [Ca²(+)](i) were not mediated by a sequestration of Ca²(+) in intracellular Ca²(+) storing organelles, as the Mag-Fura-2 signal was unaffected by NaHS. Falls in [Ca²(+)](i) were inhibited by 2',4'-dichlorobenzamil, an inhibitor of the Na(+)-Ca²(+)-exchanger, and attenuated in Na(+)-free buffer, suggesting a transient stimulation of Ca²(+) outflow by this transporter, directly demonstrated by Mn²(+) quenching experiments. CONCLUSIONS AND IMPLICATIONS ATP-sensitive and Ca²(+)-dependent basolateral K(+) conductances, the basolateral Na(+)-K(+)-pump as well as Ca²(+) transporters were involved in the action of H₂S in regulating colonic ion secretion.
Collapse
Affiliation(s)
- E Pouokam
- Institute for Veterinary Physiology, Justus-Liebig-University Giessen, Germany
| | | |
Collapse
|
37
|
Miyamoto R, Otsuguro KI, Ito S. Time- and concentration-dependent activation of TRPA1 by hydrogen sulfide in rat DRG neurons. Neurosci Lett 2011; 499:137-42. [PMID: 21658433 DOI: 10.1016/j.neulet.2011.05.057] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2011] [Revised: 05/18/2011] [Accepted: 05/23/2011] [Indexed: 01/31/2023]
Abstract
Hydrogen sulfide (H(2)S) is considered as a gasotransmitter. Although several reports have shown that H(2)S stimulates sensory neurons, the primary targets of H(2)S remain controversial. We investigated the effects of H(2)S on cultured sensory neurons isolated from rat dorsal root ganglion (DRG) using Ca(2+) imaging and whole-cell voltage-clamp techniques. Brief (2 min) application of NaHS (1mM), a donor of H(2)S, evoked marked increases in intracellular Ca(2+) concentration ([Ca(2+)](i)) in a subset of DRG neurons. These neurons also responded to both capsaicin and mustard oil (MO), transient receptor potential vanilloid 1 (TRPV1) and ankyrin 1 (TRPA1) agonists, respectively. The NaHS-evoked [Ca(2+)](i) increases were inhibited by a removal of external Ca(2+) and antagonists for TRPA1, but not for TRPV1 or voltage-dependent Ca(2+) channels. At -80 mV, NaHS evoked inward currents in MO-sensitive neurons, which were also inhibited by a TRPA1 antagonist. Even at lower concentration (≤1 μM), the 10-min application of NaHS increased [Ca(2+)](i) in a time- and concentration-dependent manner. These results suggest that H(2)S stimulates sensory neurons via activation of TRPA1. Endogenous H(2)S may be involved in physiological processes through TRPA1.
Collapse
Affiliation(s)
- Ryo Miyamoto
- Laboratory of Pharmacology, Graduate School of Veterinary Medicine, Hokkaido University, Kita 18, Nishi 9, Sapporo 060-0818, Japan
| | | | | |
Collapse
|
38
|
Olson KR. The therapeutic potential of hydrogen sulfide: separating hype from hope. Am J Physiol Regul Integr Comp Physiol 2011; 301:R297-312. [PMID: 21543637 DOI: 10.1152/ajpregu.00045.2011] [Citation(s) in RCA: 134] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Hydrogen sulfide (H(2)S) has become the hot new signaling molecule that seemingly affects all organ systems and biological processes in which it has been investigated. It has also been shown to have both proinflammatory and anti-inflammatory actions and proapoptotic and anti-apoptotic effects and has even been reported to induce a hypometabolic state (suspended animation) in a few vertebrates. The exuberance over potential clinical applications of natural and synthetic H(2)S-"donating" compounds is understandable and a number of these function-targeted drugs have been developed and show clinical promise. However, the concentration of H(2)S in tissues and blood, as well as the intrinsic factors that affect these levels, has not been resolved, and it is imperative to address these points to distinguish between the physiological, pharmacological, and toxicological effects of this molecule. This review will provide an overview of H(2)S metabolism, a summary of many of its reported "physiological" actions, and it will discuss the recent development of a number of H(2)S-donating drugs that show clinical potential. It will also examine some of the misconceptions of H(2)S chemistry that have appeared in the literature and attempt to realign the definition of "physiological" H(2)S concentrations upon which much of this exuberance has been established.
Collapse
Affiliation(s)
- Kenneth R Olson
- Indiana University School of Medicine-South Bend, South Bend, Indiana 46617, USA.
| |
Collapse
|
39
|
Reichardt F, Krueger D, Schemann M. Leptin excites enteric neurons of guinea-pig submucous and myenteric plexus. Neurogastroenterol Motil 2011; 23:e165-70. [PMID: 21223453 DOI: 10.1111/j.1365-2982.2010.01665.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND Leptin, one of the most prominent mediators released from adipocytes, influences neuronal activity in the central nervous system. The enteric nervous system (ENS) expresses leptin receptors but consequence of activation of these receptors on enteric neuron activity has not been systematically studied. An adipocyte-ENS axis is suggested by close apposition between enteric nerves and adipocytes. The aim of this study was to investigate the effects of leptin on guinea-pig submucous and myenteric neurons. METHODS Using voltage sensitive dye imaging, we recorded neural responses to application of leptin (0.0625 nmol L(-1)) in myenteric and submucous neurons, nicotine (10 μmol L(-1)) served as a reference for neuronal excitation. Mucosal ion secretion and muscle activity were measured in vitro with Ussing and organ bath techniques, respectively. KEY RESULTS Leptin induced spike discharge in 13.6% of submucous neurons and in 8.2% of myenteric neurons (1.1 ± 0.9 and 1.2 ± 1.0 Hz, respectively). Although there was an overlap of nicotine and leptin responses, 38.5% of submucous and 25% of myenteric neurons activated by leptin did not respond to nicotine. Leptin did not inhibit ongoing spike discharge or fast excitatory postsynaptic potentials. Leptin (0.0625 nmol L(-1)) did not affect mucosal secretion or muscle activity suggesting a subtle modulatory action of leptin at the level of the ENS. CONCLUSIONS & INFERENCES Leptin activates submucous and myenteric neurons indicating relevance for adipocyte-ENS signaling. These results set the basis for further studies to reveal the functional correlate of the neural action of leptin in the ENS.
Collapse
Affiliation(s)
- F Reichardt
- Lehrstuhl für Humanbiologie, Technische Universität München, Liesel-Beckmann-Strasse 4, 85350 Freising-Weihenstephan, Germany
| | | | | |
Collapse
|
40
|
Holzer P. Transient receptor potential (TRP) channels as drug targets for diseases of the digestive system. Pharmacol Ther 2011; 131:142-70. [PMID: 21420431 PMCID: PMC3107431 DOI: 10.1016/j.pharmthera.2011.03.006] [Citation(s) in RCA: 181] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2011] [Accepted: 03/01/2011] [Indexed: 12/12/2022]
Abstract
Approximately 20 of the 30 mammalian transient receptor potential (TRP) channel subunits are expressed by specific neurons and cells within the alimentary canal. They subserve important roles in taste, chemesthesis, mechanosensation, pain and hyperalgesia and contribute to the regulation of gastrointestinal motility, absorptive and secretory processes, blood flow, and mucosal homeostasis. In a cellular perspective, TRP channels operate either as primary detectors of chemical and physical stimuli, as secondary transducers of ionotropic or metabotropic receptors, or as ion transport channels. The polymodal sensory function of TRPA1, TRPM5, TRPM8, TRPP2, TRPV1, TRPV3 and TRPV4 enables the digestive system to survey its physical and chemical environment, which is relevant to all processes of digestion. TRPV5 and TRPV6 as well as TRPM6 and TRPM7 contribute to the absorption of Ca²⁺ and Mg²⁺, respectively. TRPM7 participates in intestinal pacemaker activity, and TRPC4 transduces muscarinic acetylcholine receptor activation to smooth muscle contraction. Changes in TRP channel expression or function are associated with a variety of diseases/disorders of the digestive system, notably gastro-esophageal reflux disease, inflammatory bowel disease, pain and hyperalgesia in heartburn, functional dyspepsia and irritable bowel syndrome, cholera, hypomagnesemia with secondary hypocalcemia, infantile hypertrophic pyloric stenosis, esophageal, gastrointestinal and pancreatic cancer, and polycystic liver disease. These implications identify TRP channels as promising drug targets for the management of a number of gastrointestinal pathologies. As a result, major efforts are put into the development of selective TRP channel agonists and antagonists and the assessment of their therapeutic potential.
Collapse
Affiliation(s)
- Peter Holzer
- Research Unit of Translational Neurogastroenterology, Institute of Experimental and Clinical Pharmacology, Medical University of Graz, Universitätsplatz 4, A-8010 Graz, Austria.
| |
Collapse
|
41
|
Abstract
Hydrogen sulfide (H₂S) is produced by sulfate-reducing bacteria present in the colon. Recently, it has been demonstrated that mammals have enzymatic pathways to produce H₂S. As H₂S was added to the list of gaseous signaling molecules, the number of papers related to H₂S biology has increased exponentially. However, the physiological role of H₂S in the gastrointestinal tract is still unknown. Endogenous production in different cell types indicates that H₂S might participate in various functions such as pain, motility and secretion. Nevertheless, experimental protocols to demonstrate a physiological role for H₂S are not easy to perform due to the lack of specific antagonists. Genetically modified animals lacking a specific route of H₂S synthesis are useful biological tools although whether they alter gastrointestinal function are still unknown. In this issue of Neurogastroenterology and Motility, Krueger et al. examine the role of H₂S in secretion and in afferent neuronal activation using sodium hydrosulfide as a source of H2S. Interestingly, sodium hydrosulfide causes secretion and increased spike activity in afferent neurons. The mechanism partly involves transient receptor potential vanilloid type I located on afferent neurons, causing local release of substance P, which in turn activates cholinergic secretomotor neurons. These novel observations extend our understanding of the function of H₂S in the gastrointestinal tract.
Collapse
Affiliation(s)
- M Jimenez
- Department of Cell Biology, Physiology and Immunology, Universitat Auto`noma de Barcelona, Barcelona, Spain.
| |
Collapse
|