1
|
Lantz MJ, Roberts AM, Delgado DD, Nichols RA. The neuroprotective N-terminal amyloid-β core hexapeptide reverses reactive gliosis and gliotoxicity in Alzheimer's disease pathology models. J Neuroinflammation 2023; 20:129. [PMID: 37245024 DOI: 10.1186/s12974-023-02807-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 05/16/2023] [Indexed: 05/29/2023] Open
Abstract
BACKGROUND Alzheimer's disease (AD) is a progressive neurodegenerative disorder characterized by accumulation of extracellular amyloid beta (Aβ) and intracellular neurofibrillary tangles, leading to chronic activation of astrocytes and microglia and persistent neuroinflammation. Aβ-linked activation of microglia and astrocytes leads to increased intracellular calcium and production of proinflammatory cytokines, impacting the progression of neurodegeneration. An N-terminal Aβ fragment (Aβ1-15) and a shorter hexapeptide core sequence within the N-Aβ fragment (N-Aβcore: Aβ10-15) have previously been shown to protect against Aβ-induced mitochondrial dysfunction, oxidative stress and apoptosis in neurons and rescue synaptic and spatial memory deficits in an APP/PSEN1 mouse model. Here, we hypothesized that the N-Aβ fragment and N-Aβcore are protective against Aβ-induced gliotoxicity, promoting a neuroprotective environment and potentially alleviating the characteristically persistent neuroinflammation present in AD. METHODS We treated ex vivo organotypic brain slice cultures from an aged familial AD mouse model, 5xFAD, with the N-Aβcore and used immunocytochemistry to assess the impact on astrogliosis and microgliosis and alterations in synaptophysin-positive puncta engulfed by microglia. Isolated neuron/glia cultures, mixed glial cultures or a microglial cell line were treated with oligomeric human Aβ at concentrations mimicking the pathogenic concentrations (μM) observed in AD in the absence or presence of the non-toxic N-terminal Aβ fragments. Resultant changes in synaptic density, gliosis, oxidative stress, mitochondrial dysfunction, apoptosis, and the expression and release of proinflammatory markers were then determined. RESULTS We demonstrate that the N-terminal Aβ fragments mitigated the phenotypic switch leading to astrogliosis and microgliosis induced by pathological concentrations of Aβ in mixed glial cultures and organotypic brain slice cultures from the transgenic 5xFAD mouse model, while protecting against Aβ-induced oxidative stress, mitochondrial dysfunction and apoptosis in isolated astrocytes and microglia. Moreover, the addition of the N-Aβcore attenuated the expression and release of proinflammatory mediators in microglial cells activated by Aβ and rescued microglia-mediated loss of synaptic elements induced by pathological levels of Aβ. CONCLUSIONS Together, these findings indicate the protective functions of the N-terminal Aβ fragments extend to reactive gliosis and gliotoxicity induced by Aβ, by preventing or reversing glial reactive states indicative of neuroinflammation and synaptic loss central to AD pathogenesis.
Collapse
Affiliation(s)
- Megan J Lantz
- Department of Cell and Molecular Biology, University of Hawai'i at Mānoa, Honolulu, HI, USA
| | - Alyssa M Roberts
- Department of Cell and Molecular Biology, University of Hawai'i at Mānoa, Honolulu, HI, USA
| | - Donovan D Delgado
- Department of Cell and Molecular Biology, University of Hawai'i at Mānoa, Honolulu, HI, USA
| | - Robert A Nichols
- Department of Cell and Molecular Biology, University of Hawai'i at Mānoa, Honolulu, HI, USA.
| |
Collapse
|
2
|
Viejo L, Noori A, Merrill E, Das S, Hyman BT, Serrano-Pozo A. Systematic review of human post-mortem immunohistochemical studies and bioinformatics analyses unveil the complexity of astrocyte reaction in Alzheimer's disease. Neuropathol Appl Neurobiol 2021; 48:e12753. [PMID: 34297416 PMCID: PMC8766893 DOI: 10.1111/nan.12753] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 06/29/2021] [Accepted: 07/12/2021] [Indexed: 12/24/2022]
Abstract
AIMS Reactive astrocytes in Alzheimer's disease (AD) have traditionally been demonstrated by increased glial fibrillary acidic protein (GFAP) immunoreactivity; however, astrocyte reaction is a complex and heterogeneous phenomenon involving multiple astrocyte functions beyond cytoskeletal remodelling. To better understand astrocyte reaction in AD, we conducted a systematic review of astrocyte immunohistochemical studies in post-mortem AD brains followed by bioinformatics analyses on the extracted reactive astrocyte markers. METHODS NCBI PubMed, APA PsycInfo and WoS-SCIE databases were interrogated for original English research articles with the search terms 'Alzheimer's disease' AND 'astrocytes.' Bioinformatics analyses included protein-protein interaction network analysis, pathway enrichment, and transcription factor enrichment, as well as comparison with public human -omics datasets. RESULTS A total of 306 articles meeting eligibility criteria rendered 196 proteins, most of which were reported to be upregulated in AD vs control brains. Besides cytoskeletal remodelling (e.g., GFAP), bioinformatics analyses revealed a wide range of functional alterations including neuroinflammation (e.g., IL6, MAPK1/3/8 and TNF), oxidative stress and antioxidant defence (e.g., MT1A/2A, NFE2L2, NOS1/2/3, PRDX6 and SOD1/2), lipid metabolism (e.g., APOE, CLU and LRP1), proteostasis (e.g., cathepsins, CRYAB and HSPB1/2/6/8), extracellular matrix organisation (e.g., CD44, MMP1/3 and SERPINA3), and neurotransmission (e.g., CHRNA7, GABA, GLUL, GRM5, MAOB and SLC1A2), among others. CTCF and ESR1 emerged as potential transcription factors driving these changes. Comparison with published -omics datasets validated our results, demonstrating a significant overlap with reported transcriptomic and proteomic changes in AD brains and/or CSF. CONCLUSIONS Our systematic review of the neuropathological literature reveals the complexity of AD reactive astrogliosis. We have shared these findings as an online resource available at www.astrocyteatlas.org.
Collapse
Affiliation(s)
- Lucía Viejo
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA.,MassGeneral Institute for Neurodegenerative Disease (MIND), Charlestown, MA, USA.,Departamento de Farmacología y Terapéutica, Universidad Autónoma de Madrid, Madrid, Spain
| | - Ayush Noori
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA.,MassGeneral Institute for Neurodegenerative Disease (MIND), Charlestown, MA, USA.,Harvard College, Cambridge, MA, USA.,MIND Data Science Lab, Cambridge, MA, USA.,Massachusetts Alzheimer's Disease Research Center, Charlestown, MA, USA
| | - Emily Merrill
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA.,MassGeneral Institute for Neurodegenerative Disease (MIND), Charlestown, MA, USA.,MIND Data Science Lab, Cambridge, MA, USA
| | - Sudeshna Das
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA.,MassGeneral Institute for Neurodegenerative Disease (MIND), Charlestown, MA, USA.,MIND Data Science Lab, Cambridge, MA, USA.,Massachusetts Alzheimer's Disease Research Center, Charlestown, MA, USA.,Harvard Medical School, Harvard University, Boston, MA, USA
| | - Bradley T Hyman
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA.,MassGeneral Institute for Neurodegenerative Disease (MIND), Charlestown, MA, USA.,Massachusetts Alzheimer's Disease Research Center, Charlestown, MA, USA.,Harvard Medical School, Harvard University, Boston, MA, USA
| | - Alberto Serrano-Pozo
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA.,MassGeneral Institute for Neurodegenerative Disease (MIND), Charlestown, MA, USA.,Massachusetts Alzheimer's Disease Research Center, Charlestown, MA, USA.,Harvard Medical School, Harvard University, Boston, MA, USA
| |
Collapse
|
3
|
Vergallo A, Lista S, Lemercier P, Chiesa PA, Zetterberg H, Blennow K, Potier MC, Habert MO, Baldacci F, Cavedo E, Caraci F, Dubois B, Hampel H. Association of plasma YKL-40 with brain amyloid-β levels, memory performance, and sex in subjective memory complainers. Neurobiol Aging 2020; 96:22-32. [PMID: 32920471 DOI: 10.1016/j.neurobiolaging.2020.07.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 06/28/2020] [Accepted: 07/09/2020] [Indexed: 02/08/2023]
Abstract
Neuroinflammation, a key early pathomechanistic alteration of Alzheimer's disease, may represent either a detrimental or a compensatory mechanism or both (according to the disease stage). YKL-40, a glycoprotein highly expressed in differentiated glial cells, is a candidate biomarker for in vivo tracking neuroinflammation in humans. We performed a longitudinal study in a monocentric cohort of cognitively healthy individuals at risk for Alzheimer's disease exploring whether age, sex, and the apolipoprotein E ε4 allele affect plasma YKL-40 concentrations. We investigated whether YKL-40 is associated with brain amyloid-β (Aβ) deposition, neuronal activity, and neurodegeneration as assessed via neuroimaging biomarkers. Finally, we investigated whether YKL-40 may predict cognitive performance. We found an age-associated increase of YKL-40 and observed that men display higher concentrations than women, indicating a potential sexual dimorphism. Moreover, YKL-40 was positively associated with memory performance and negatively associated with brain Aβ deposition (but not with metabolic signal). Consistent with translational studies, our results suggest a potentially protective effect of glia on incipient brain Aβ accumulation and neuronal homeostasis.
Collapse
Affiliation(s)
- Andrea Vergallo
- Sorbonne University, GRC no 21, Alzheimer Precision Medicine (APM), AP-HP, Pitié-Salpêtrière Hospital, Paris, France; Brain & Spine Institute (ICM), INSERM U1127, CNRS UMR 7225, Paris, France; Department of Neurology, Institute of Memory and Alzheimer's Disease (IM2A), Pitié-Salpêtrière Hospital, AP-HP, Paris, France.
| | - Simone Lista
- Sorbonne University, GRC no 21, Alzheimer Precision Medicine (APM), AP-HP, Pitié-Salpêtrière Hospital, Paris, France; Brain & Spine Institute (ICM), INSERM U1127, CNRS UMR 7225, Paris, France; Department of Neurology, Institute of Memory and Alzheimer's Disease (IM2A), Pitié-Salpêtrière Hospital, AP-HP, Paris, France
| | - Pablo Lemercier
- Sorbonne University, GRC no 21, Alzheimer Precision Medicine (APM), AP-HP, Pitié-Salpêtrière Hospital, Paris, France; Brain & Spine Institute (ICM), INSERM U1127, CNRS UMR 7225, Paris, France; Department of Neurology, Institute of Memory and Alzheimer's Disease (IM2A), Pitié-Salpêtrière Hospital, AP-HP, Paris, France
| | - Patrizia A Chiesa
- Sorbonne University, GRC no 21, Alzheimer Precision Medicine (APM), AP-HP, Pitié-Salpêtrière Hospital, Paris, France; Brain & Spine Institute (ICM), INSERM U1127, CNRS UMR 7225, Paris, France; Department of Neurology, Institute of Memory and Alzheimer's Disease (IM2A), Pitié-Salpêtrière Hospital, AP-HP, Paris, France
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden; Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden; Department of Neurodegenerative Disease, UCL Institute of Neurology, London, UK; UK Dementia Research Institute, London, UK
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden; Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Marie-Claude Potier
- ICM Institut du Cerveau et de la Moelle épinière, CNRS UMR7225, INSERM U1127, UPMC, Hôpital de la Pitié-Salpêtrière, Paris, France
| | - Marie-Odile Habert
- Sorbonne Université, CNRS, INSERM, Laboratoire d'Imagerie Biomédicale, Paris, France; Centre pour l'Acquisition et le Traitement des Images, Paris, France; Département de Médecine Nucléaire, AP-HP, Hôpital Pitié-Salpêtrière, Paris, France
| | - Filippo Baldacci
- Sorbonne University, GRC no 21, Alzheimer Precision Medicine (APM), AP-HP, Pitié-Salpêtrière Hospital, Paris, France; Brain & Spine Institute (ICM), INSERM U1127, CNRS UMR 7225, Paris, France; Department of Neurology, Institute of Memory and Alzheimer's Disease (IM2A), Pitié-Salpêtrière Hospital, AP-HP, Paris, France; Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Enrica Cavedo
- Sorbonne University, GRC no 21, Alzheimer Precision Medicine (APM), AP-HP, Pitié-Salpêtrière Hospital, Paris, France; Brain & Spine Institute (ICM), INSERM U1127, CNRS UMR 7225, Paris, France; Department of Neurology, Institute of Memory and Alzheimer's Disease (IM2A), Pitié-Salpêtrière Hospital, AP-HP, Paris, France
| | - Filippo Caraci
- Department of Drug Sciences, University of Catania, Catania, Italy; Oasi Research Institute - IRCCS, Troina, Italy
| | - Bruno Dubois
- Sorbonne University, GRC no 21, Alzheimer Precision Medicine (APM), AP-HP, Pitié-Salpêtrière Hospital, Paris, France; Brain & Spine Institute (ICM), INSERM U1127, CNRS UMR 7225, Paris, France; Department of Neurology, Institute of Memory and Alzheimer's Disease (IM2A), Pitié-Salpêtrière Hospital, AP-HP, Paris, France
| | - Harald Hampel
- Sorbonne University, GRC no 21, Alzheimer Precision Medicine (APM), AP-HP, Pitié-Salpêtrière Hospital, Paris, France
| | | | | | | |
Collapse
|
4
|
Paasila PJ, Davies DS, Sutherland GT, Goldsbury C. Clustering of activated microglia occurs before the formation of dystrophic neurites in the evolution of Aβ plaques in Alzheimer's disease. FREE NEUROPATHOLOGY 2020; 1. [PMID: 34396367 DOI: 10.17879/freeneuropathology-2020-2845] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Alzheimer's disease (AD) is a late-onset disease that has proved difficult to model. Microglia are implicated in AD, but reports vary on precisely when and how in the sequence of pathological changes they become involved. Here, post-mortem human tissue from two differentially affected regions of the AD brain and from non-demented individuals with a high load of AD-type pathology (high pathology controls) was used to model the disease time course in order to determine how microglial activation relates temporally to the deposition of hallmark amyloid-β (Aβ) and hyperphosphorylated microtubule associated protein tau pathology. Immunofluorescence against the pan-microglial marker, ionised calcium-binding adapter molecule 1 (IBA1), Aβ and tau, was performed in the primary motor cortex (PMC), a region relatively spared of AD pathological changes, and compared to the severely affected inferior temporal cortex (ITC) in the same cases. Unlike the ITC, the PMC in the AD cases was spared of any degenerative changes in cortical thickness and the density of Betz cells and total neurons. The clustering of activated microglia was greatest in the PMC of AD cases and high pathology controls compared to the ITC. This suggests microglial activation is most prominent in the early phases of AD pathophysiology. Nascent tau inclusions were found in neuritic plaques in the PMC but were more numerous in the ITC of the same case. This shows that tau positive neuritic plaques begin early in AD which is likely of pathogenic importance, however major tau deposition follows the accumulation of Aβ and clustering of activated microglia. Importantly, findings presented here demonstrate that different states of microglial activation, corresponding to regional accumulations of Aβ and tau, are present simultaneously in the same individual; an important factor for consideration if targeting these cells for therapeutic intervention.
Collapse
Affiliation(s)
- Patrick Jarmo Paasila
- Discipline of Pathology, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, NSW 2006, Australia
| | - Danielle Suzanne Davies
- Discipline of Anatomy and Histology, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, NSW 2006, Australia
| | - Greg Trevor Sutherland
- Discipline of Pathology, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, NSW 2006, Australia
| | - Claire Goldsbury
- Discipline of Anatomy and Histology, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, NSW 2006, Australia
| |
Collapse
|
5
|
Jellinger KA. Neuropathological assessment of the Alzheimer spectrum. J Neural Transm (Vienna) 2020; 127:1229-1256. [PMID: 32740684 DOI: 10.1007/s00702-020-02232-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 07/14/2020] [Indexed: 12/12/2022]
Abstract
Alzheimer disease (AD), the most common form of dementia globally, classically defined a clinicopathological entity, is a heterogenous disorder with various pathobiological subtypes, currently referred to as Alzheimer continuum. Its morphological hallmarks are extracellular parenchymal β-amyloid (amyloid plaques) and intraneuronal (tau aggregates forming neurofibrillary tangles) lesions accompanied by synaptic loss and vascular amyloid deposits, that are essential for the pathological diagnosis of AD. In addition to "classical" AD, several subtypes with characteristic regional patterns of tau pathology have been described that show distinct clinical features, differences in age, sex distribution, biomarker levels, and patterns of key network destructions responsible for cognitive decline. AD is a mixed proteinopathy (amyloid and tau), frequently associated with other age-related co-pathologies, such as cerebrovascular lesions, Lewy and TDP-43 pathologies, hippocampal sclerosis, or argyrophilic grain disease. These and other co-pathologies essentially influence the clinical picture of AD and may accelerate disease progression. The purpose of this review is to provide a critical overview of AD pathology, its defining pathological substrates, and the heterogeneity among the Alzheimer spectrum entities that may provide a broader diagnostic coverage of this devastating disorder as a basis for implementing precision medicine approaches and for ultimate development of successful disease-modifying drugs for AD.
Collapse
Affiliation(s)
- Kurt A Jellinger
- Institute of Clinical Neurobiology, Alberichgasse 5/13, 1150, Vienna, Austria.
| |
Collapse
|
6
|
Kim SH, Yang JW, Kim KH, Kim JU, Yook TH. A Review on Studies of Marijuana for Alzheimer's Disease - Focusing on CBD, THC. J Pharmacopuncture 2019; 22:225-230. [PMID: 31970019 PMCID: PMC6970569 DOI: 10.3831/kpi.2019.22.030] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Revised: 06/11/2019] [Accepted: 11/25/2019] [Indexed: 12/20/2022] Open
Abstract
Objectives This study was to discuss the research trend of dementia treatment using cannabis for the purpose of providing the basis of cannabis use for medical purposes in the future. Methods This study searched publications, which were registered to databases or published by Aug 22, 2019, and targeted the full-text or abstracts of these publications. We selected the final nine studies met all selection criteria. Results These results implied that the CBD components of cannabis might be useful to treat and prevent AD because CBD components could suppress the main causal factors of AD. Moreover, it was suggested that using CBD and THC together could be more useful than using CBD or THC alone. Conclusion We hope that there will be a solid foundation to use cannabis for medical use by continuously evaluating the possibility of using cannabis for clinical purposes as a dementia treatment substance and cannabis can be used as a positive tool.
Collapse
Affiliation(s)
- Seok Hee Kim
- Department of Acupuncture & Moxibustion Medicine, Korean Medicine Hospital of Woosuk University, Jeonju, Korea
| | - Jin Won Yang
- Department of Pharmacology, College of Pharmacy, Woosuk University, Wanju, Korea
| | - Kyung Han Kim
- Department of Preventive Medicine, College of Korean Medicine, Woosuk University, Jeonju, Korea
| | - Jong Uk Kim
- Department of Acupuncture & Moxibustion Medicine, Korean Medicine Hospital of Woosuk University, Jeonju, Korea
| | - Tae Han Yook
- Department of Acupuncture & Moxibustion Medicine, Korean Medicine Hospital of Woosuk University, Jeonju, Korea
| |
Collapse
|
7
|
Kovacs GG, Lee VM, Trojanowski JQ. Protein astrogliopathies in human neurodegenerative diseases and aging. Brain Pathol 2018; 27:675-690. [PMID: 28805003 DOI: 10.1111/bpa.12536] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Accepted: 06/26/2017] [Indexed: 02/06/2023] Open
Abstract
Neurodegenerative diseases are characterized by progressive dysfunction and loss of neurons associated with depositions of pathologically altered proteins showing hierarchical involvement of brain regions. The role of astrocytes in the pathogenesis of neurodegenerative diseases is explored as contributors to neuronal degeneration or neuroprotection pathways, and also as potential mediators of the transcellular spreading of disease-associated proteins. Protein astrogliopathy (PAG), including deposition of amyloid-β, prion protein, tau, α-synuclein, and very rarely transactive response DNA-binding protein 43 (TDP-43) is not unprecedented or unusual in neurodegenerative diseases. Morphological characterization of PAG is considered, however, only for the neuropathological diagnosis and classification of tauopathies. Astrocytic tau pathology is seen in primary frontotemporal lobar degeneration (FTLD) associated with tau pathologies (FTLD-Tau), and also in the form of aging-related tau astrogliopathy (ARTAG). Importantly, ARTAG shares common features with primary FTLD-Tau as well as with the astroglial tau pathologies that are thought to be hallmarks of a brain injury-related tauopathy known as chronic traumatic encephalopathy (CTE). Supported by experimental observations, the morphological variability of PAG might reflect distinct pathogenic involvement of different astrocytic populations. PAG might indicate astrocytic contribution to spreading or clearance of disease-associated proteins, however, this might lead to astrocytic dysfunction and eventually contribute to the degeneration of neurons. Here, we review recent advances in understanding ARTAG and other related forms of PAG.
Collapse
Affiliation(s)
- Gabor G Kovacs
- Institute of Neurology, Medical University of Vienna, Vienna, Austria
| | - Virginia M Lee
- Center for Neurodegenerative Disease Research, Institute on Aging and Department of Pathology and Laboratory Medicine of the Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| | - John Q Trojanowski
- Center for Neurodegenerative Disease Research, Institute on Aging and Department of Pathology and Laboratory Medicine of the Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
8
|
Perez-Nievas BG, Serrano-Pozo A. Deciphering the Astrocyte Reaction in Alzheimer's Disease. Front Aging Neurosci 2018; 10:114. [PMID: 29922147 PMCID: PMC5996928 DOI: 10.3389/fnagi.2018.00114] [Citation(s) in RCA: 174] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2018] [Accepted: 04/03/2018] [Indexed: 12/24/2022] Open
Abstract
Reactive astrocytes were identified as a component of senile amyloid plaques in the cortex of Alzheimer's disease (AD) patients several decades ago. However, their role in AD pathophysiology has remained elusive ever since, in part owing to the extrapolation of the literature from primary astrocyte cultures and acute brain injury models to a chronic neurodegenerative scenario. Recent accumulating evidence supports the idea that reactive astrocytes in AD acquire neurotoxic properties, likely due to both a gain of toxic function and a loss of their neurotrophic effects. However, the diversity and complexity of this glial cell is only beginning to be unveiled, anticipating that astrocyte reaction might be heterogeneous as well. Herein we review the evidence from mouse models of AD and human neuropathological studies and attempt to decipher the main conundrums that astrocytes pose to our understanding of AD development and progression. We discuss the morphological features that characterize astrocyte reaction in the AD brain, the consequences of astrocyte reaction for both astrocyte biology and AD pathological hallmarks, and the molecular pathways that have been implicated in this reaction.
Collapse
Affiliation(s)
| | - Alberto Serrano-Pozo
- Alzheimer's Research Unit, MassGeneral Institute for Neurodegenerative Diseases (MIND), Department of Neurology, Massachusetts General Hospital, Boston, MA, United States
| |
Collapse
|
9
|
Kawakatsu S, Kobayashi R, Hayashi H. Typical and atypical appearance of early-onset Alzheimer's disease: A clinical, neuroimaging and neuropathological study. Neuropathology 2017; 37:150-173. [DOI: 10.1111/neup.12364] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Revised: 12/07/2016] [Accepted: 12/08/2016] [Indexed: 11/30/2022]
Affiliation(s)
- Shinobu Kawakatsu
- Department of Neuropsychiatry, Aizu Medical Center; Fukushima Medical University; Aizuwakamatsu Japan
- Department of Psychiatry; Yamagata University Faculty of Medicine; Yamagata Japan
- Medical Center for dementia; Shinoda General Hospital; Yamagata Japan
| | - Ryota Kobayashi
- Department of Psychiatry; Yamagata University Faculty of Medicine; Yamagata Japan
- Medical Center for dementia; Shinoda General Hospital; Yamagata Japan
| | - Hiroshi Hayashi
- Department of Psychiatry; Yamagata University Faculty of Medicine; Yamagata Japan
- Medical Center for dementia; Shinoda General Hospital; Yamagata Japan
| |
Collapse
|
10
|
Ozawa M, Chambers JK, Uchida K, Nakayama H. The Relation between canine cognitive dysfunction and age-related brain lesions. J Vet Med Sci 2016; 78:997-1006. [PMID: 26922972 PMCID: PMC4937160 DOI: 10.1292/jvms.15-0624] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Canine cognitive dysfunction (CCD) is a syndrome that manifests itself in abnormal behaviors, such as
disorientation and wandering. β-amyloid deposition in the brain, including the senile plaque (SP) and cerebral
amyloid angiopathy (CAA), has been suggested as a major cause of the syndrome. However, the pathological
significance of β-amyloid deposition in CCD dogs remains unclear. The present study was conducted using 16
dogs aged 10 years or older to clarify the relationship between the age-related histopathological lesions,
such as β-amyloid deposition, in the brain and the clinical symptoms of CCD as evaluated in a questionnaire
previously established in a large survey. In addition, age-related brain lesions were assessed in 37 dogs. The
pathological lesions were evaluated by the severity of β-amyloid deposition (SP and CAA), the amount of
ubiquitin-positive granules (UBQ), GFAP-positive astrocytes, Iba-1-positive microglia and Nissle
stain-positive nerve cells. The results revealed that there was no significant correlation between the
severities of canine SP and CCD. The SP increased until 14 years old, but decreased thereafter, although the
incidence of CCD is high at these ages. The CAA consistently increased with age, but did not correlate greatly
with the CCD score. In contrast, the increases of UBQ, astrocytes and microglia were significantly correlated
with CCD. Thus, the impairment in the synapse and/or myelin suggested by increased UBQ and glial activation
might be involved in CCD pathogenesis, but β-amyloid deposition, especially SP, is not a direct pathogenic
factor of CCD.
Collapse
Affiliation(s)
- Makiko Ozawa
- Department of Veterinary Pathology, the University of Tokyo, Tokyo 113-8657, Japan
| | | | | | | |
Collapse
|
11
|
Wang ZX, Tan L, Liu J, Yu JT. The Essential Role of Soluble Aβ Oligomers in Alzheimer's Disease. Mol Neurobiol 2015; 53:1905-1924. [PMID: 25833098 DOI: 10.1007/s12035-015-9143-0] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Accepted: 03/18/2015] [Indexed: 01/21/2023]
Abstract
Alzheimer's disease (AD) is a common neurodegenerative disease characterized by amyloid plaque and neurofibrillary tangles (NFT). With the finding that soluble nonfibrillar Aβ levels actually correlate strongly with the severity of the disease, the initial focus on amyloid plaques shifted to the contemporary concept that AD memory failure is caused by soluble Aβ oligomers. The soluble Aβ are known to be more neurotoxicthan fibrillar Aβ species. In this paper, we summarize the essential role of soluble Aβ oligomers in AD and discuss therapeutic strategies that target soluble Aβ oligomers.
Collapse
Affiliation(s)
- Zi-Xuan Wang
- Department of Neurology, Qingdao Municipal Hospital, School of Medicine, Qingdao University, Qingdao, China
| | - Lan Tan
- Department of Neurology, Qingdao Municipal Hospital, School of Medicine, Qingdao University, Qingdao, China.
| | - Jinyuan Liu
- Columbia College, Columbia University, New York, NY, USA
| | - Jin-Tai Yu
- Department of Neurology, Qingdao Municipal Hospital, School of Medicine, Qingdao University, Qingdao, China. .,Memory and Aging Center, Department of Neurology, University of California, San Francisco, CA, USA.
| |
Collapse
|
12
|
Proliferation in the Alzheimer hippocampus is due to microglia, not astroglia, and occurs at sites of amyloid deposition. Neural Plast 2014; 2014:693851. [PMID: 25215243 PMCID: PMC4157009 DOI: 10.1155/2014/693851] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Accepted: 06/23/2014] [Indexed: 01/19/2023] Open
Abstract
Microglia and astrocytes contribute to Alzheimer's disease (AD) etiology and may mediate early neuroinflammatory responses. Despite their possible role in disease progression and despite the fact that they can respond to amyloid deposition in model systems, little is known about whether astro- or microglia can undergo proliferation in AD and whether this is related to the clinical symptoms or to local neuropathological changes. Previously, proliferation was found to be increased in glia-rich regions of the presenile hippocampus. Since their phenotype was unknown, we here used two novel triple-immunohistochemical protocols to study proliferation in astro- or microglia in relation to amyloid pathology. We selected different age-matched cohorts to study whether proliferative changes relate to clinical severity or to neuropathological changes. Proliferating cells were found across the hippocampus but never in mature neurons or astrocytes. Almost all proliferating cells were colabeled with Iba1+, indicating that particularly microglia contribute to proliferation in AD. Proliferating Iba1+ cells was specifically seen within the borders of amyloid plaques, indicative of an active involvement in, or response to, plaque accumulation. Thus, consistent with animal studies, proliferation in the AD hippocampus is due to microglia, occurs in close proximity of plaque pathology, and may contribute to the neuroinflammation common in AD.
Collapse
|
13
|
Potential therapeutic strategies for Alzheimer's disease targeting or beyond β-amyloid: insights from clinical trials. BIOMED RESEARCH INTERNATIONAL 2014; 2014:837157. [PMID: 25136630 PMCID: PMC4124758 DOI: 10.1155/2014/837157] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2014] [Revised: 06/23/2014] [Accepted: 06/25/2014] [Indexed: 01/25/2023]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder with two hallmarks: β-amyloid plagues and neurofibrillary tangles. It is one of the most alarming illnesses to elderly people. No effective drugs and therapies have been developed, while mechanism-based explorations of therapeutic approaches have been intensively investigated. Outcomes of clinical trials suggested several pitfalls in the choice of biomarkers, development of drug candidates, and interaction of drug-targeted molecules; however, they also aroused concerns on the potential deficiency in our understanding of pathogenesis of AD, and ultimately stimulated the advent of novel drug targets tests. The anticipated increase of AD patients in next few decades makes development of better therapy an urgent issue. Here we attempt to summarize and compare putative therapeutic strategies that have completed clinical trials or are currently being tested from various perspectives to provide insights for treatments of Alzheimer's disease.
Collapse
|
14
|
Rosenblum WI. Why Alzheimer trials fail: removing soluble oligomeric beta amyloid is essential, inconsistent, and difficult. Neurobiol Aging 2014; 35:969-74. [DOI: 10.1016/j.neurobiolaging.2013.10.085] [Citation(s) in RCA: 104] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Revised: 10/14/2013] [Accepted: 10/16/2013] [Indexed: 01/08/2023]
|
15
|
Doorn KJ, Goudriaan A, Blits‐Huizinga C, Bol JG, Rozemuller AJ, Hoogland PV, Lucassen PJ, Drukarch B, van de Berg WD, van Dam A. Increased amoeboid microglial density in the olfactory bulb of Parkinson's and Alzheimer's patients. Brain Pathol 2014; 24:152-65. [PMID: 24033473 PMCID: PMC8029318 DOI: 10.1111/bpa.12088] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Accepted: 08/12/2013] [Indexed: 12/31/2022] Open
Abstract
The olfactory bulb (OB) is affected early in both Parkinson's (PD) and Alzheimer's disease (AD), evidenced by the presence of disease-specific protein aggregates and an early loss of olfaction. Whereas previous studies showed amoeboid microglia in the classically affected brain regions of PD and AD patients, little was known about such changes in the OB. Using a morphometric approach, a significant increase in amoeboid microglia density within the anterior olfactory nucleus (AON) of AD and PD patients was observed. These amoeboid microglia cells were in close apposition to β-amyloid, hyperphosphorylated tau or α-synuclein deposits, but no uptake of pathological proteins by microglia could be visualized. Subsequent analysis showed (i) no correlation between microglia and α-synuclein (PD), (ii) a positive correlation with β-amyloid (AD), and (iii) a negative correlation with hyperphosphorylated tau (AD). Furthermore, despite the observed pathological alterations in neurite morphology, neuronal loss was not apparent in the AON of both patient groups. Thus, we hypothesize that, in contrast to the classically affected brain regions of AD and PD patients, within the AON rather than neuronal loss, the increased density in amoeboid microglial cells, possibly in combination with neurite pathology, may contribute to functional deficits.
Collapse
Affiliation(s)
- Karlijn J. Doorn
- Swammerdam Institute for Life SciencesCenter for NeuroscienceUniversity of AmsterdamAmsterdamThe Netherlands
- Department of Anatomy and NeurosciencesVU University Medical Center, Neuroscience Campus AmsterdamAmsterdamThe Netherlands
| | - Andrea Goudriaan
- Department of Anatomy and NeurosciencesVU University Medical Center, Neuroscience Campus AmsterdamAmsterdamThe Netherlands
- Present address:
VU UniversityFaculty of Earth and Life Sciences, Department of Molecular and Cellular NeurobiologyAmsterdamThe Netherlands
| | - Carla Blits‐Huizinga
- Department of Anatomy and NeurosciencesVU University Medical Center, Neuroscience Campus AmsterdamAmsterdamThe Netherlands
| | - John G.J.M. Bol
- Department of Anatomy and NeurosciencesVU University Medical Center, Neuroscience Campus AmsterdamAmsterdamThe Netherlands
| | - Annemieke J. Rozemuller
- Department of PathologyVU University Medical Center, Neuroscience Campus AmsterdamAmsterdamThe Netherlands
| | - Piet V.J.M. Hoogland
- Department of Anatomy and NeurosciencesVU University Medical Center, Neuroscience Campus AmsterdamAmsterdamThe Netherlands
| | - Paul J. Lucassen
- Swammerdam Institute for Life SciencesCenter for NeuroscienceUniversity of AmsterdamAmsterdamThe Netherlands
| | - Benjamin Drukarch
- Department of Anatomy and NeurosciencesVU University Medical Center, Neuroscience Campus AmsterdamAmsterdamThe Netherlands
| | - Wilma D.J. van de Berg
- Department of Anatomy and NeurosciencesVU University Medical Center, Neuroscience Campus AmsterdamAmsterdamThe Netherlands
| | - Anne‐Marie van Dam
- Department of Anatomy and NeurosciencesVU University Medical Center, Neuroscience Campus AmsterdamAmsterdamThe Netherlands
| |
Collapse
|
16
|
Stable size distribution of amyloid plaques over the course of Alzheimer disease. J Neuropathol Exp Neurol 2012; 71:694-701. [PMID: 22805771 DOI: 10.1097/nen.0b013e31825e77de] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Amyloid β plaques are a key pathologic feature of Alzheimer disease (AD), but whether plaque sizes increase or stabilize over the course of AD is unknown. We measured the size distribution of total immunoreactive (10D5-positive) and dense-core (Thioflavin S-positive) plaques in the temporal neocortex of a large group of subjects with AD and age-matched plaque-bearing subjects without dementia to test the hypothesis that amyloid plaques continue to grow along with the progression of the disease. The size of amyloid β (10D5)-positive plaques did not differ between groups, whereas dense-core plaques from the group with AD were slightly larger than those from the group without dementia (∼25%-30%, p = 0.01). Within the group with AD, dense-core plaque size did not independently correlate with duration of clinical disease (from 4 to 21 years, p = 0.68), whereas 10D5-positive plaque size correlated negatively with disease duration (p = 0.01). By contrast, an earlier age of symptom onset strongly predicted a larger postmortem plaque size; this effect was independent of disease duration and the presence of the APOE[Latin Small Letter Open E]4 allele (p = 0.0001). We conclude that plaques vary in size among patients, with larger size distributions correlating with an earlier age of onset, but plaques do not substantially increase in size over the clinical course of the disease.
Collapse
|
17
|
Abstract
Alzheimer's disease (AD) is a chronic neurodegenerative disease with well-defined pathophysiological mechanisms, mostly affecting medial temporal lobe and associative neocortical structures. Neuritic plaques and neurofibrillary tangles represent the pathological hallmarks of AD, and are respectively related to the accumulation of the amyloid-beta peptide (Aβ) in brain tissues, and to cytoskeletal changes that arise from the hyperphosphorylation of microtubule-associated Tau protein in neurons. According to the amyloid hypothesis of AD, the overproduction of Aβ is a consequence of the disruption of homeostatic processes that regulate the proteolytic cleavage of the amyloid precursor protein (APP). Genetic, age-related and environmental factors contribute to a metabolic shift favoring the amyloidogenic processing of APP in detriment of the physiological, secretory pathway. Aβ peptides are generated by the successive cleavage of APP by beta-secretase (BACE-1) and gamma-secretase, which has been recently characterized as part of the presenilin complex. Among several beta-amyloid isoforms that bear subtle differences depending on the number of C-terminal amino acids, Aβ (1-42) plays a pivotal role in the pathogenesis of AD. The neurotoxic potential of the Aβ peptide results from its biochemical properties that favor aggregation into insoluble oligomers and protofibrils. These further originate fibrillary Aβ species that accumulate into senile and neuritic plaques. These processes, along with a reduction of Aβ clearance from the brain, leads to the extracellular accumulation of Aβ, and the subsequent activation of neurotoxic cascades that ultimately lead to cytoskeletal changes, neuronal dysfunction and cellular death. Intracerebral amyloidosis develops in AD patients in an age-dependent manner, but recent evidence indicate that it may be observed in some subjects as early as in the third or fourth decades of life, with increasing magnitude in late middle age, and highest estimates in old age. According to recent propositions, three clinical phases of Alzheimer's disease may be defined: (i) pre-symptomatic (or pre-clinical) AD, which may last for several years or decades until the overproduction and accumulation of Aβ in the brain reaches a critical level that triggers the amyloid cascade; (ii) pre-dementia phase of AD (compatible with the definition of progressive, amnestic mild cognitive impairment), in which early-stage pathology is present, ranging from mild neuronal dystrophy to early-stage Braak pathology, and may last for several years according to individual resilience and brain reserve; (iii) clinically defined dementia phase of AD, in which cognitive and functional impairment is severe enough to surmount the dementia threshold; at this stage there is significant accumulation of neuritic plaques and neurofibrillary tangles in affected brain areas, bearing relationship with the magnitude of global impairment. New technologies based on structural and functional neuroimaging, and on the biochemical analysis of cerebrospinal fluid may depict correlates of intracerebral amyloidosis in individuals with mild, pre-dementia symptoms. These methods are commonly referred to as AD-related biomarkers, and the combination of clinical and biological information yields good diagnostic accuracy to identify individuals at high risk of AD. In other words, the characterization of pathogenic Aβ by means of biochemical analysis of biological fluids or by molecular neuroimaging are presented as diagnostic tools to help identify AD cases at the earliest stages of the disease process. The relevance of this early diagnosis of AD relies on the hypothesis that pharmacological interventions with disease-modifying compounds are more likely to produce clinically relevant benefits if started early enough in the continuum towards dementia. Therapies targeting the modification of amyloid-related cascades may be viewed as promising strategies to attenuate or even to prevent dementia. Therefore, the cumulative knowledge on the pathogenesis of AD derived from basic science models will hopefully be translated into clinical practice in the forthcoming years.
Collapse
Affiliation(s)
- Vanessa J De-Paula
- Laboratory of Neuroscience (LIM 27), Department and Institute of Psychiatry, Faculty of Medicine, University of Sao Paulo, Rua Dr. Ovídio Pires de Campos 785, Terceiro Andar-Ala Norte, 05403-010, São Paulo-SP, Brazil,
| | | | | | | |
Collapse
|
18
|
Ooi YY, Ramasamy R, Rahmat Z, Subramaiam H, Tan SW, Abdullah M, Israf DA, Vidyadaran S. Bone marrow-derived mesenchymal stem cells modulate BV2 microglia responses to lipopolysaccharide. Int Immunopharmacol 2010; 10:1532-40. [PMID: 20850581 DOI: 10.1016/j.intimp.2010.09.001] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2010] [Revised: 09/01/2010] [Accepted: 09/01/2010] [Indexed: 12/20/2022]
Abstract
The immunoregulatory properties of mesenchymal stem cells (MSC) have been demonstrated on a wide range of cells. Here, we describe the modulatory effects of mouse bone marrow-derived MSC on BV2 microglia proliferation rate, nitric oxide (NO) production and CD40 expression. Mouse bone marrow MSC were co-cultured with BV2 cells at various seeding density ratios and activated with lipopolysaccharide (LPS). We show that MSC exert an anti-proliferative effect on microglia and are potent producers of NO when stimulated by soluble factors released by LPS-activated BV2. MSC suppressed proliferation of both untreated and LPS-treated microglia in a dose-dependent manner, significantly reducing BV2 proliferation at seeding density ratios of 1:0.2 and 1:0.1 (p<.05). Co-culturing MSC with BV2 cells at different ratios revealed interesting dynamics in NO production. A high number of MSC significantly increases NO in co-cultures whilst a lower number reduces NO. The increased NO levels in co-cultures may be MSC-derived, as we also show that activated BV2 cells stimulate MSC to produce NO. Cell-cell interaction is not a requirement for this effect as soluble factors released by activated BV2 cells alone do stimulate MSC to produce high levels of NO. Although NO is implicated as a mediator for T cell proliferation, it does not appear to play a major role in the suppression of microglia proliferation. Additionally, MSC reduced the expression of the microglial co-stimulator molecule, CD40. Collectively, these regulatory effects of MSC on microglia offer insight into the potential moderating properties of MSC on inflammatory responses within the CNS.
Collapse
Affiliation(s)
- Yin Yin Ooi
- Immunology Laboratory, Department of Pathology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400UPM Serdang, Selangor, Malaysia.
| | | | | | | | | | | | | | | |
Collapse
|
19
|
de Paula VDJR, Guimarães FM, Diniz BS, Forlenza OV. Neurobiological pathways to Alzheimer's disease: Amyloid-beta, TAU protein or both? Dement Neuropsychol 2009; 3:188-194. [PMID: 29213627 PMCID: PMC5618972 DOI: 10.1590/s1980-57642009dn30300003] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Alzheimer’s disease (AD) is a neurodegenerative disease characterized by
progressive cognitive decline, including memory loss, behavioral and
psychological symptoms and personality changes. The neuropathological hallmarks
of AD are the presence of neuritic (senile) plaques (NP) and neurofibrillary
tangles (NFT), along with neuronal loss, dystrophic neurites, and gliosis.
Neuritic plaques are extracellular lesions and their main constituent is the
amyloid-β42 peptide (Aβ42).
Neurofibrillary tangles are intracellular lesions that are mainly composed of
hyperphosphorylated Tau protein. In this article, we review the major hypotheses
concerning the physiopathology of AD, focusing on the β-amyloid cascade
as primary events (supported by the “βaptists”) and cytoskeletal
abnormalities secondary to the hyperphosphorylation of protein Tau (as advocated
by the “Tauists”). We further provide an integrative view of the physiopathology
of AD.
Collapse
Affiliation(s)
- Vanessa de Jesus R de Paula
- Laboratory of Neuroscience LIM-27, Department and Institute of Psychiatry, Faculty of Medicine, University of São Paulo, SP, Brazil
| | - Fabiana Meira Guimarães
- Laboratory of Neuroscience LIM-27, Department and Institute of Psychiatry, Faculty of Medicine, University of São Paulo, SP, Brazil
| | - Breno Satler Diniz
- Laboratory of Neuroscience LIM-27, Department and Institute of Psychiatry, Faculty of Medicine, University of São Paulo, SP, Brazil
| | - Orestes Vicente Forlenza
- Laboratory of Neuroscience LIM-27, Department and Institute of Psychiatry, Faculty of Medicine, University of São Paulo, SP, Brazil
| |
Collapse
|
20
|
Classification and basic pathology of Alzheimer disease. Acta Neuropathol 2009; 118:5-36. [PMID: 19381658 DOI: 10.1007/s00401-009-0532-1] [Citation(s) in RCA: 674] [Impact Index Per Article: 44.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2009] [Revised: 03/30/2009] [Accepted: 03/30/2009] [Indexed: 11/26/2022]
Abstract
The lesions of Alzheimer disease include accumulation of proteins, losses of neurons and synapses, and alterations related to reactive processes. Extracellular Abeta accumulation occurs in the parenchyma as diffuse, focal or stellate deposits. It may involve the vessel walls of arteries, veins and capillaries. The cases in which the capillary vessel walls are affected have a higher probability of having one or two apoepsilon 4 alleles. Parenchymal as well as vascular Abeta deposition follows a stepwise progression. Tau accumulation, probably the best histopathological correlate of the clinical symptoms, takes three aspects: in the cell body of the neuron as neurofibrillary tangle, in the dendrites as neuropil threads, and in the axons forming the senile plaque neuritic corona. The progression of tau pathology is stepwise and stereotyped from the entorhinal cortex, through the hippocampus, to the isocortex. The neuronal loss is heterogeneous and area-specific. Its mechanism is still discussed. The timing of the synaptic loss, probably linked to Abeta peptide itself, maybe as oligomers, is also controversial. Various clinico-pathological types of Alzheimer disease have been described, according to the type of the lesions (plaque only and tangle predominant), the type of onset (focal onset), the cause (genetic or sporadic) and the associated lesions (Lewy bodies, vascular lesions, hippocampal sclerosis, TDP-43 inclusions and argyrophilic grain disease).
Collapse
|
21
|
Pathological and biochemical alterations of astrocytes in ovariectomized rats injected with d-galactose: A potential contribution to Alzheimer's disease processes. Exp Neurol 2008; 210:709-18. [DOI: 10.1016/j.expneurol.2008.01.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2007] [Revised: 12/27/2007] [Accepted: 01/07/2008] [Indexed: 01/06/2023]
|
22
|
Fiala JC. Mechanisms of amyloid plaque pathogenesis. Acta Neuropathol 2007; 114:551-71. [PMID: 17805553 DOI: 10.1007/s00401-007-0284-8] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2007] [Revised: 08/12/2007] [Accepted: 08/13/2007] [Indexed: 12/25/2022]
Abstract
The first ultrastructural investigations of Alzheimer's disease noted the prominence of degenerating mitochondria in the dystrophic neurites of amyloid plaques, and speculated that this degeneration might be a major contributor to plaque pathogenesis. However, the fate of these organelles has received scant consideration in the intervening decades. A number of hypotheses for the formation and progression of amyloid plaques have since been suggested, including glial secretion of amyloid, somal and synaptic secretion of amyloid-beta protein from neurons, and endosomal-lysosomal aggregation of amyloid-beta protein in the cell bodies of neurons, but none of these hypotheses fully account for the focal accumulation of amyloid in plaques. In addition to Alzheimer's disease, amyloid plaques occur in a variety of conditions, and these conditions are all accompanied by dystrophic neurites characteristic of disrupted axonal transport. The disruption of axonal transport results in the autophagocytosis of mitochondria without normal lysosomal degradation, and recent evidence from aging, traumatic injury, Alzheimer's disease and transgenic mice models of Alzheimer's disease, suggests that the degeneration of these autophagosomes may lead to amyloid production within dystrophic neurites. The theory of amyloid plaque pathogenesis has thus come full circle, back to the intuitions of the very first researchers in the field.
Collapse
Affiliation(s)
- John C Fiala
- Department of Health Sciences, Boston University, Boston, MA 02215, USA.
| |
Collapse
|
23
|
Shankle WR, Hara J, Bjornsen L, Gade GF, Leport PC, Ali MB, Kim J, Raimo M, Reyes L, Amen D, Rudy L, O'Heany T. Omentum transposition surgery for patients with Alzheimer's disease: a case series. Neurol Res 2007; 30:313-25. [PMID: 17767812 DOI: 10.1179/016164107x230126] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
OBJECTIVE To examine effect of omentum transposition surgery (OT) in Alzheimer's disease (AD). METHODS Within-subjects design, also known as repeated-measures design, was used. OT was performed on six biopsy-confirmed AD patients (three to the left and right hemispheres each). Follow-up was conducted over 16-50 months. Outcome measures included the sum of the sub-scores of the clinical dementia rating scale (CDRSS), dementia severity rating scale (DSRS), mini-mental status exam (MMSE) and neuropsychiatric inventory (NPI), all normalized to 0-1.0. Outcomes were compared to baseline values and to expected decline with and without cholinesterase inhibitors therapy (ChEI). RESULTS Compared to baseline and to expected decline with ChEI, CDRSS scores were 22 and 39% less impaired at means of 14 and 25 months post-OT, and DSRS scores were 12 and 22% less impaired at means of 14 and 19 months post-OT (p<0.0001). Compared to baseline and expected course with and without ChEI, the MMSE scores of the left hemisphere OT patients were not significantly different for 11, 17 and 22 months respectively (p>0.49), while those of the right hemisphere OT patients more rapidly declined. The two patients with significant pre-operative behavioral problems markedly improved; NPI severity scores decreased by 23 (16%) and 78 (54%) points and were sustained for 22 and 42 months. DISCUSSION OT yielded cognitive, functional or behavioral improvement for up to 3.5 years in these AD patients. Compared to randomized ChEI clinical trials, OT was 34 times more likely to produce clinically significant improvement. Basic research to identify the mechanisms underlying the therapeutic effect of omentum is warranted.
Collapse
Affiliation(s)
- William R Shankle
- Fountain Valley Regional Hospital and Medical Center, Fountain Valley, CA 92708, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Li M, Chen L, Lee DHS, Yu LC, Zhang Y. The role of intracellular amyloid beta in Alzheimer's disease. Prog Neurobiol 2007; 83:131-9. [PMID: 17889422 DOI: 10.1016/j.pneurobio.2007.08.002] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2007] [Revised: 06/16/2007] [Accepted: 08/03/2007] [Indexed: 01/05/2023]
Abstract
Extracellular amyloid beta (Abeta) that confers neurotoxicity and modulates synaptic plasticity and memory function has been central to the amyloid hypothesis of Alzheimer's disease (AD) pathology. Like many other misfolded proteins identified in neurodegenerative disorders, Abeta also accumulates inside the AD neurons. This intracellular Abeta affects a variety of cellular physiology from protein degradation, axonal transport, autophagy to apoptosis, further documenting the role of Abeta in AD. Therapeutics targeting intracellular Abeta could be effective treatment for AD.
Collapse
Affiliation(s)
- Meng Li
- Laboratory of Neurobiology and State Key Laboratory of Biomembrane and Membrane Biotechnology, College of Life Sciences, Peking University, Beijing 100871, China
| | | | | | | | | |
Collapse
|