1
|
CCT196969 effectively inhibits growth and survival of melanoma brain metastasis cells. PLoS One 2022; 17:e0273711. [PMID: 36084109 PMCID: PMC9462752 DOI: 10.1371/journal.pone.0273711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 08/11/2022] [Indexed: 11/19/2022] Open
Abstract
Melanomas frequently metastasize to the brain. Despite recent progress in the treatment of melanoma brain metastasis, therapy resistance and relapse of disease remain unsolved challenges. CCT196969 is a SRC family kinase (SFK) and Raf proto-oncogene, serine/threonine kinase (RAF) inhibitor with documented effects in primary melanoma cell lines in vitro and in vivo. Using in vitro cell line assays, we studied the effects of CCT196969 in multiple melanoma brain metastasis cell lines. The drug effectively inhibited proliferation, migration, and survival in all examined cell lines, with viability IC50 doses in the range of 0.18–2.6 μM. Western blot analysis showed decreased expression of p-ERK, p-MEK, p-STAT3 and STAT3 upon CCT196969 treatment. Furthermore, CCT196969 inhibited viability in two B-Raf Proto-Oncogene (BRAF) inhibitor resistant metastatic melanoma cell lines. Further in vivo studies should be performed to determine the treatment potential of CCT196969 in patients with treatment-naïve and resistant melanoma brain metastasis.
Collapse
|
2
|
Riedesel AK, Bach-Hagemann A, Abdulbaki A, Talbot SR, Tolba R, Schwabe K, Lindauer U. Burrowing behaviour of rats: Strain differences and applicability as well-being parameter after intracranial surgery. Lab Anim 2022; 56:356-369. [PMID: 35144494 DOI: 10.1177/00236772211072977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In mice, burrowing is considered a species-typical parameter for assessing well-being, while this is less clear in rats. This exploratory study evaluated burrowing behaviour in three rat strains during training and in the direct postoperative phase after complex intracranial surgery in different neuroscience rat models established at Hannover Medical School or Aachen University Hospital. Male Crl:CD (SD; n = 18), BDIX/UlmHanZtm (BDIX; n = 8) and RjHan:WI (Wistar; n = 35) rats were individually trained to burrow gravel out of a tube on four consecutive days. Thereafter, BDIX rats were subjected to intracranial injection of BT4Ca cells and tumour resection (rat glioma model), SD rats to injection of 6-hydroxydopamine (6-OHDA) or vehicle (rat Parkinson's disease model) and Wistar rats to endovascular perforation or sham surgery (rat subarachnoid haemorrhage (SAH) model). Burrowing was retested on the day after surgery. During training, BDIX rats burrowed large amounts (mean of 2370 g on the fourth day), while SD and Wistar rats burrowed less gravel (means of 846 and 520 g, respectively). Burrowing increased significantly during training only in Wistar rats. Complex surgery, that is, tumour resection (BDIX), 6-OHDA injection (SD) and endovascular perforation or sham surgery for SAH (Wistar) significantly reduced burrowing and body weight, while simple stereotactic injection of tumour cells or vehicle did not affect burrowing. Despite the training, burrowing differed between the strains. In the direct postoperative phase, burrowing was reduced after complex surgery, indicating reduced well-being. Reduced burrowing was accompanied with postoperative weight loss, a validated and recognised quantitative measure for severity assessment.
Collapse
Affiliation(s)
| | - Annika Bach-Hagemann
- Translational Neurosurgery and Neurobiology, Department of Neurosurgery, 9165RWTH Aachen University, Medical Faculty, RWTH Aachen University, Germany
| | - Arif Abdulbaki
- Department of Neurosurgery, Hannover Medical School, Germany
| | - Steven R Talbot
- Institute for Laboratory Animal Science, Hannover Medical School, Germany
| | - René Tolba
- Institute for Laboratory Animal Science & Experimental Surgery, Medical Faculty, RWTH Aachen University, Germany
| | - Kerstin Schwabe
- Department of Neurosurgery, Hannover Medical School, Germany
| | - Ute Lindauer
- Translational Neurosurgery and Neurobiology, Department of Neurosurgery, 9165RWTH Aachen University, Medical Faculty, RWTH Aachen University, Germany
| |
Collapse
|
3
|
Tehranian C, Fankhauser L, Harter PN, Ratcliffe CDH, Zeiner PS, Messmer JM, Hoffmann DC, Frey K, Westphal D, Ronellenfitsch MW, Sahai E, Wick W, Karreman MA, Winkler F. The PI3K/Akt/mTOR pathway as a preventive target in melanoma brain metastasis. Neuro Oncol 2022; 24:213-225. [PMID: 34216217 PMCID: PMC8804893 DOI: 10.1093/neuonc/noab159] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Brain metastases (BM) are a frequent complication of malignant melanoma (MM), with limited treatment options and poor survival. Prevention of BM could be more effective and better tolerated than treating established BM in various conditions. METHODS To investigate the temporospatial dynamics of PI3K/Akt/mTOR (PAM) pathway activation during BM formation and the preventive potential of its inhibition, in vivo molecular imaging with an Akt biosensor was performed, and long-term intravital multiphoton microscopy through a chronic cranial window in mice. RESULTS In vivo molecular imaging revealed invariable PAM pathway activation during the earliest steps of brain colonization. In order to perform a long-term intravascular arrest and to extravasate, circulating MM cells needed to activate their PAM pathway during this process. However, the PAM pathway was quite heterogeneously activated in established human brain metastases, and its inhibition with the brain-penetrant PAM inhibitor GNE-317 resulted in only modest therapeutic effects in mice. In contrast, giving GNE-317 in preventive schedules that included very low doses effectively reduced the growth rate and number of BM in two MM mouse models over time, and led to an overall survival benefit. Longitudinal intravital multiphoton microscopy found that the first, rate-limiting steps of BM formation-permanent intravascular arrest, extravasation, and initial perivascular growth-are most vulnerable to dual PI3K/mTOR inhibition. CONCLUSION These findings establish a key role of PAM pathway activation for critical steps of early metastatic brain colonization and reveal its pharmacological inhibition as a potent avenue to prevent the formation of clinically relevant BM.
Collapse
Affiliation(s)
- Cedric Tehranian
- Clinical Cooperation Unit Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Laura Fankhauser
- Clinical Cooperation Unit Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Patrick N Harter
- Edinger Institute, Institute of Neurology, University of Frankfurt am Main, Frankfurt am Main, Germany
- German Cancer Research Center DKFZ Heidelberg, Germany and German Cancer Consortium DKTK partner site, Frankfurt/Mainz Germany
- Frankfurt Cancer Institute (FCI), Frankfurt am Main, Germany
| | | | - Pia S Zeiner
- Edinger Institute, Institute of Neurology, University of Frankfurt am Main, Frankfurt am Main, Germany
- Senckenberg Institute of Neurooncology, University of Frankfurt am Main, Frankfurt am Main, Germany
- Frankfurt Cancer Institute (FCI), Frankfurt am Main, Germany
| | - Julia M Messmer
- Clinical Cooperation Unit Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
- Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Dirk C Hoffmann
- Clinical Cooperation Unit Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
- Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Katharina Frey
- Clinical Cooperation Unit Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Dana Westphal
- Department of Dermatology, Medical Faculty and University Hospital Carl Gustav Carus, TU Dresden, Dresden, Germany
| | - Michael W Ronellenfitsch
- Senckenberg Institute of Neurooncology, University of Frankfurt am Main, Frankfurt am Main, Germany
- Frankfurt Cancer Institute (FCI), Frankfurt am Main, Germany
| | - Erik Sahai
- Tumour Cell Biology Laboratory, The Francis Crick Institute, London, UK
| | - Wolfgang Wick
- Clinical Cooperation Unit Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
- Neurology Clinic and National Center for Tumor Diseases, University Hospital Heidelberg, Heidelberg, Germany
| | - Matthia A Karreman
- Clinical Cooperation Unit Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
- Neurology Clinic and National Center for Tumor Diseases, University Hospital Heidelberg, Heidelberg, Germany
| | - Frank Winkler
- Clinical Cooperation Unit Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
- Neurology Clinic and National Center for Tumor Diseases, University Hospital Heidelberg, Heidelberg, Germany
| |
Collapse
|
4
|
Local blood coagulation drives cancer cell arrest and brain metastasis in a mouse model. Blood 2021; 137:1219-1232. [PMID: 33270819 DOI: 10.1182/blood.2020005710] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 11/16/2020] [Indexed: 12/23/2022] Open
Abstract
Clinically relevant brain metastases (BMs) frequently form in cancer patients, with limited options for effective treatment. Circulating cancer cells must first permanently arrest in brain microvessels to colonize the brain, but the critical factors in this process are not well understood. Here, in vivo multiphoton laser-scanning microscopy of the entire brain metastatic cascade allowed unprecedented insights into how blood clot formation and von Willebrand factor (VWF) deposition determine the arrest of circulating cancer cells and subsequent brain colonization in mice. Clot formation in brain microvessels occurred frequently (>95%) and specifically at intravascularly arrested cancer cells, allowing their long-term arrest. An extensive clot embedded ∼20% of brain-arrested cancer cells, and those were more likely to successfully extravasate and form a macrometastasis. Mechanistically, the generation of tissue factor-mediated thrombin by cancer cells accounted for local activation of plasmatic coagulation in the brain. Thrombin inhibition by treatment with low molecular weight heparin or dabigatran and an anti-VWF antibody prevented clot formation, cancer cell arrest, extravasation, and the formation of brain macrometastases. In contrast, tumor cells were not able to directly activate platelets, and antiplatelet treatments did reduce platelet dispositions at intravascular cancer cells but did not reduce overall formation of BMs. In conclusion, our data show that plasmatic coagulation is activated early by intravascular tumor cells in the brain with subsequent clot formation, which led us to discover a novel and specific mechanism that is crucial for brain colonization. Direct or indirect thrombin and VWF inhibitors emerge as promising drug candidates for trials on prevention of BMs.
Collapse
|
5
|
Aasen SN, Espedal H, Keunen O, Adamsen TCH, Bjerkvig R, Thorsen F. Current landscape and future perspectives in preclinical MR and PET imaging of brain metastasis. Neurooncol Adv 2021; 3:vdab151. [PMID: 34988446 PMCID: PMC8704384 DOI: 10.1093/noajnl/vdab151] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Brain metastasis (BM) is a major cause of cancer patient morbidity. Clinical magnetic resonance imaging (MRI) and positron emission tomography (PET) represent important resources to assess tumor progression and treatment responses. In preclinical research, anatomical MRI and to some extent functional MRI have frequently been used to assess tumor progression. In contrast, PET has only to a limited extent been used in animal BM research. A considerable culprit is that results from most preclinical studies have shown little impact on the implementation of new treatment strategies in the clinic. This emphasizes the need for the development of robust, high-quality preclinical imaging strategies with potential for clinical translation. This review focuses on advanced preclinical MRI and PET imaging methods for BM, describing their applications in the context of what has been done in the clinic. The strengths and shortcomings of each technology are presented, and recommendations for future directions in the development of the individual imaging modalities are suggested. Finally, we highlight recent developments in quantitative MRI and PET, the use of radiomics and multimodal imaging, and the need for a standardization of imaging technologies and protocols between preclinical centers.
Collapse
Affiliation(s)
- Synnøve Nymark Aasen
- Department of Biomedicine, University of Bergen, Bergen, Norway
- Department of Health and Functioning, Western Norway University of Applied Sciences, Bergen, Norway
| | - Heidi Espedal
- The Molecular Imaging Center, Department of Biomedicine, University of Bergen, Bergen, Norway
- Mohn Medical Imaging and Visualization Centre, Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - Olivier Keunen
- Translational Radiomics, Department of Oncology, Luxembourg Institute of Health, Luxembourg, Luxembourg
| | - Tom Christian Holm Adamsen
- Centre for Nuclear Medicine, Department of Radiology, Haukeland University Hospital, Bergen, Norway
- 180 °N – Bergen Tracer Development Centre, Department of Radiology, Haukeland University Hospital, Bergen, Norway
- Department of Chemistry, University of Bergen, Bergen, Norway
| | - Rolf Bjerkvig
- Department of Biomedicine, University of Bergen, Bergen, Norway
- NorLux Neuro-Oncology Laboratory, Department of Oncology, Luxembourg Institute of Health, Luxembourg, Luxembourg
| | - Frits Thorsen
- Department of Biomedicine, University of Bergen, Bergen, Norway
- The Molecular Imaging Center, Department of Biomedicine, University of Bergen, Bergen, Norway
- Department of Neurosurgery, Qilu Hospital of Shandong University and Brain Science Research Institute, Shandong University, Key Laboratory of Brain Functional Remodeling, Shandong, Jinan, P.R. China
| |
Collapse
|
6
|
Klein E, Hau AC, Oudin A, Golebiewska A, Niclou SP. Glioblastoma Organoids: Pre-Clinical Applications and Challenges in the Context of Immunotherapy. Front Oncol 2020; 10:604121. [PMID: 33364198 PMCID: PMC7753120 DOI: 10.3389/fonc.2020.604121] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 11/09/2020] [Indexed: 12/13/2022] Open
Abstract
Malignant brain tumors remain uniformly fatal, even with the best-to-date treatment. For Glioblastoma (GBM), the most severe form of brain cancer in adults, the median overall survival is roughly over a year. New therapeutic options are urgently needed, yet recent clinical trials in the field have been largely disappointing. This is partially due to inappropriate preclinical model systems, which do not reflect the complexity of patient tumors. Furthermore, clinically relevant patient-derived models recapitulating the immune compartment are lacking, which represents a bottleneck for adequate immunotherapy testing. Emerging 3D organoid cultures offer innovative possibilities for cancer modeling. Here, we review available GBM organoid models amenable to a large variety of pre-clinical applications including functional bioassays such as proliferation and invasion, drug screening, and the generation of patient-derived orthotopic xenografts (PDOX) for validation of biological responses in vivo. We emphasize advantages and technical challenges in establishing immunocompetent ex vivo models based on co-cultures of GBM organoids and human immune cells. The latter can be isolated either from the tumor or from patient or donor blood as peripheral blood mononuclear cells (PBMCs). We also discuss the challenges to generate GBM PDOXs based on humanized mouse models to validate efficacy of immunotherapies in vivo. A detailed characterization of such models at the cellular and molecular level is needed to understand the potential and limitations for various immune activating strategies. Increasing the availability of immunocompetent GBM models will improve research on emerging immune therapeutic approaches against aggressive brain cancer.
Collapse
Affiliation(s)
- Eliane Klein
- NORLUX Neuro-Oncology Laboratory, Department of Oncology, Luxembourg Institute of Health, Luxembourg, Luxembourg
| | - Ann-Christin Hau
- NORLUX Neuro-Oncology Laboratory, Department of Oncology, Luxembourg Institute of Health, Luxembourg, Luxembourg
| | - Anaïs Oudin
- NORLUX Neuro-Oncology Laboratory, Department of Oncology, Luxembourg Institute of Health, Luxembourg, Luxembourg
| | - Anna Golebiewska
- NORLUX Neuro-Oncology Laboratory, Department of Oncology, Luxembourg Institute of Health, Luxembourg, Luxembourg
| | - Simone P. Niclou
- NORLUX Neuro-Oncology Laboratory, Department of Oncology, Luxembourg Institute of Health, Luxembourg, Luxembourg
- Department of Biomedicine, University of Bergen, Bergen, Norway
| |
Collapse
|
7
|
Valiente M, Van Swearingen AED, Anders CK, Bairoch A, Boire A, Bos PD, Cittelly DM, Erez N, Ferraro GB, Fukumura D, Gril B, Herlyn M, Holmen SL, Jain RK, Joyce JA, Lorger M, Massague J, Neman J, Sibson NR, Steeg PS, Thorsen F, Young LS, Varešlija D, Vultur A, Weis-Garcia F, Winkler F. Brain Metastasis Cell Lines Panel: A Public Resource of Organotropic Cell Lines. Cancer Res 2020; 80:4314-4323. [PMID: 32641416 PMCID: PMC7572582 DOI: 10.1158/0008-5472.can-20-0291] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Revised: 04/27/2020] [Accepted: 06/30/2020] [Indexed: 12/12/2022]
Abstract
Spread of cancer to the brain remains an unmet clinical need in spite of the increasing number of cases among patients with lung, breast cancer, and melanoma most notably. Although research on brain metastasis was considered a minor aspect in the past due to its untreatable nature and invariable lethality, nowadays, limited but encouraging examples have questioned this statement, making it more attractive for basic and clinical researchers. Evidences of its own biological identity (i.e., specific microenvironment) and particular therapeutic requirements (i.e., presence of blood-brain barrier, blood-tumor barrier, molecular differences with the primary tumor) are thought to be critical aspects that must be functionally exploited using preclinical models. We present the coordinated effort of 19 laboratories to compile comprehensive information related to brain metastasis experimental models. Each laboratory has provided details on the cancer cell lines they have generated or characterized as being capable of forming metastatic colonies in the brain, as well as principle methodologies of brain metastasis research. The Brain Metastasis Cell Lines Panel (BrMPanel) represents the first of its class and includes information about the cell line, how tropism to the brain was established, and the behavior of each model in vivo. These and other aspects described are intended to assist investigators in choosing the most suitable cell line for research on brain metastasis. The main goal of this effort is to facilitate research on this unmet clinical need, to improve models through a collaborative environment, and to promote the exchange of information on these valuable resources.
Collapse
Affiliation(s)
- Manuel Valiente
- Brain Metastasis Group, Spanish National Cancer Research Centre (CNIO), Madrid, Spain.
| | | | - Carey K Anders
- Duke Center for Brain and Spine Metastasis, Duke Cancer Institute, Durham, North Carolina
| | - Amos Bairoch
- CALIPHO group, Swiss Institute of Bioinformatics, Geneva, Switzerland
| | - Adrienne Boire
- Human Oncology and Pathogenesis Program, Department of Neurology, Brain Tumor Center, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Paula D Bos
- Department of Pathology, and Massey Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, Virginia
| | - Diana M Cittelly
- Department of Pathology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Neta Erez
- Department of Pathology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Gino B Ferraro
- E.L. Steele Laboratories, Department of Radiation Oncology, Harvard Medical School and Massachusetts General Hospital, Boston, Massachusetts
| | - Dai Fukumura
- E.L. Steele Laboratories, Department of Radiation Oncology, Harvard Medical School and Massachusetts General Hospital, Boston, Massachusetts
| | | | - Meenhard Herlyn
- Molecular & Cellular Oncogenesis Program, The Wistar Institute, Philadelphia, Pennsylvania
| | - Sheri L Holmen
- Huntsman Cancer Institute and Department of Surgery, University of Utah Health Sciences Center, Salt Lake City, Utah
| | - Rakesh K Jain
- E.L. Steele Laboratories, Department of Radiation Oncology, Harvard Medical School and Massachusetts General Hospital, Boston, Massachusetts
| | - Johanna A Joyce
- Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, Switzerland
| | - Mihaela Lorger
- Brain Metastasis Research Group, School of Medicine, University of Leeds, Leeds, United Kingdom
| | - Joan Massague
- Cancer Cell Biology Program, Brain Tumor Center, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Josh Neman
- Departments of Neurological Surgery, Physiology & Neuroscience, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Nicola R Sibson
- Cancer Research UK and Medical Research Council Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, United Kingdom
| | | | - Frits Thorsen
- The Molecular Imaging Center, Department of Biomedicine, University of Bergen, Bergen, Norway
- Department of Neurosurgery, Qilu Hospital of Shandong University and Brain Science Research Institute, Shandong University, Key Laboratory of Brain Functional Remodeling, Shandong, Jinan, P.R. China
| | - Leonie S Young
- Endocrine Oncology Research Group, Department of Surgery, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Damir Varešlija
- Endocrine Oncology Research Group, Department of Surgery, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Adina Vultur
- Molecular & Cellular Oncogenesis Program, The Wistar Institute, Philadelphia, Pennsylvania
- Molecular Physiology, Institute of Cardiovascular Physiology, University Medical Center, Georg-August-University, Göttingen, Germany
| | - Frances Weis-Garcia
- Antibody & Bioresource Core Facility, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Frank Winkler
- Neurology Clinic and National Center for Tumor Diseases, University Hospital Heidelberg, and Clinical Cooperation Unit Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
8
|
Human melanoma brain metastases cell line MUG-Mel1, isolated clones and their detailed characterization. Sci Rep 2019; 9:4096. [PMID: 30858407 PMCID: PMC6411871 DOI: 10.1038/s41598-019-40570-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 02/15/2019] [Indexed: 01/25/2023] Open
Abstract
Melanoma is a leading cause of high mortality that frequently spreads to the brain and is associated with deterioration in quality and quantity of life. Treatment opportunities have been restricted until now and new therapy options are urgently required. Our focus was to reveal the potential heterogeneity of melanoma brain metastasis. We succeeded to establish a brain melanoma metastasis cell line, namely MUG-Mel1 and two resulting clones D5 and C8 by morphological variety, differences in lipidome, growth behavior, surface, and stem cell markers. Mutation analysis by next-generation sequencing, copy number profiling, and cytogenetics demonstrated the different genetic profile of MUG-Mel1 and clones. Tumorigenicity was unsuccessfully tested in various mouse systems and finally established in a zebra fish model. As innovative treatment option, with high potential to pass the blood-brain barrier a peptide isolated from lactoferricin was studied in potential toxicity. Brain metastases are a major clinical challenge, therefore the development of relevant in vitro and in vivo models derived from brain melanoma metastases provides valuable information about tumor biology and offers great potential to screen for new innovative therapies.
Collapse
|
9
|
Zeiner PS, Zinke J, Kowalewski DJ, Bernatz S, Tichy J, Ronellenfitsch MW, Thorsen F, Berger A, Forster MT, Muller A, Steinbach JP, Beschorner R, Wischhusen J, Kvasnicka HM, Plate KH, Stefanović S, Weide B, Mittelbronn M, Harter PN. CD74 regulates complexity of tumor cell HLA class II peptidome in brain metastasis and is a positive prognostic marker for patient survival. Acta Neuropathol Commun 2018; 6:18. [PMID: 29490700 PMCID: PMC5831742 DOI: 10.1186/s40478-018-0521-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2018] [Accepted: 02/18/2018] [Indexed: 12/30/2022] Open
Abstract
Despite multidisciplinary local and systemic therapeutic approaches, the prognosis for most patients with brain metastases is still dismal. The role of adaptive and innate anti-tumor response including the Human Leukocyte Antigen (HLA) machinery of antigen presentation is still unclear. We present data on the HLA class II-chaperone molecule CD74 in brain metastases and its impact on the HLA peptidome complexity.We analyzed CD74 and HLA class II expression on tumor cells in a subset of 236 human brain metastases, primary tumors and peripheral metastases of different entities in association with clinical data including overall survival. Additionally, we assessed whole DNA methylome profiles including CD74 promoter methylation and differential methylation in 21 brain metastases. We analyzed the effects of a siRNA mediated CD74 knockdown on HLA-expression and HLA peptidome composition in a brain metastatic melanoma cell line.We observed that CD74 expression on tumor cells is a strong positive prognostic marker in brain metastasis patients and positively associated with tumor-infiltrating T-lymphocytes (TILs). Whole DNA methylome analysis suggested that CD74 tumor cell expression might be regulated epigenetically via CD74 promoter methylation. CD74high and TILhigh tumors displayed a differential DNA methylation pattern with highest enrichment scores for antigen processing and presentation. Furthermore, CD74 knockdown in vitro lead to a reduction of HLA class II peptidome complexity, while HLA class I peptidome remained unaffected.In summary, our results demonstrate that a functional HLA class II processing machinery in brain metastatic tumor cells, reflected by a high expression of CD74 and a complex tumor cell HLA peptidome, seems to be crucial for better patient prognosis.
Collapse
Affiliation(s)
- P S Zeiner
- Edinger Institute (Institute of Neurology), Goethe-University, Heinrich-Hoffmann-Str. 7, D-60528, Frankfurt am Main, Germany
- Dr. Senckenberg Institute of Neurooncology, Goethe-University, Frankfurt am Main, Germany
| | - J Zinke
- Edinger Institute (Institute of Neurology), Goethe-University, Heinrich-Hoffmann-Str. 7, D-60528, Frankfurt am Main, Germany
| | - D J Kowalewski
- Department of Immunology, Institute for Cell Biology, University of Tuebingen, Tuebingen, Germany
- Immatics Biotechnologies GmbH, Tübingen, Germany
| | - S Bernatz
- Edinger Institute (Institute of Neurology), Goethe-University, Heinrich-Hoffmann-Str. 7, D-60528, Frankfurt am Main, Germany
| | - J Tichy
- Dr. Senckenberg Institute of Neurooncology, Goethe-University, Frankfurt am Main, Germany
| | - M W Ronellenfitsch
- Dr. Senckenberg Institute of Neurooncology, Goethe-University, Frankfurt am Main, Germany
| | - F Thorsen
- Department of Biomedicine, The Kristian Gerhard Jebsen Brain Tumour Research Center and The Molecular Imaging Center, University of Bergen, Bergen, Norway
| | - A Berger
- Institute for Virology, Goethe-University, Frankfurt am Main, Germany
| | - M T Forster
- Department of Neurosurgery, Goethe-University, Frankfurt am Main, Germany
| | - A Muller
- Department of Oncology, Luxembourg Institute of Health, Luxembourg, Luxembourg
| | - J P Steinbach
- Dr. Senckenberg Institute of Neurooncology, Goethe-University, Frankfurt am Main, Germany
- German Cancer Research Center DKFZ Heidelberg, Germany and German Cancer Consortium DKTK partner site, Frankfurt/Mainz, Germany
| | - R Beschorner
- Department of Pathology and Neuropathology, University of Tuebingen, Tuebingen, Germany
| | - J Wischhusen
- Department of Gynecology, University of Wuerzburg, Wuerzburg, Germany
| | - H M Kvasnicka
- Goethe-University, Dr. Senckenberg Institute for Pathology, Frankfurt am Main, Germany
| | - K H Plate
- Edinger Institute (Institute of Neurology), Goethe-University, Heinrich-Hoffmann-Str. 7, D-60528, Frankfurt am Main, Germany
- German Cancer Research Center DKFZ Heidelberg, Germany and German Cancer Consortium DKTK partner site, Frankfurt/Mainz, Germany
| | - S Stefanović
- Department of Immunology, Institute for Cell Biology, University of Tuebingen, Tuebingen, Germany
| | - B Weide
- Department of Dermatology, University of Tuebingen, Tuebingen, Germany
| | - M Mittelbronn
- Edinger Institute (Institute of Neurology), Goethe-University, Heinrich-Hoffmann-Str. 7, D-60528, Frankfurt am Main, Germany
- German Cancer Research Center DKFZ Heidelberg, Germany and German Cancer Consortium DKTK partner site, Frankfurt/Mainz, Germany
- Luxembourg Centre of Neuropathology (LCNP), 3555, Dudelange, Luxembourg
- Laboratoire National de Santé, Department of Pathology, 3555, Dudelange, Luxembourg
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 4361, Esch-sur-Alzette, Luxembourg
- NORLUX Neuro-Oncology Laboratory, Department of Oncology, Luxembourg Institute of Health (L.I.H.), 1526, Luxembourg, Luxembourg
| | - P N Harter
- Edinger Institute (Institute of Neurology), Goethe-University, Heinrich-Hoffmann-Str. 7, D-60528, Frankfurt am Main, Germany.
- German Cancer Research Center DKFZ Heidelberg, Germany and German Cancer Consortium DKTK partner site, Frankfurt/Mainz, Germany.
| |
Collapse
|
10
|
Baghirov H, Snipstad S, Sulheim E, Berg S, Hansen R, Thorsen F, Mørch Y, Davies CDL, Åslund AKO. Ultrasound-mediated delivery and distribution of polymeric nanoparticles in the normal brain parenchyma of a metastatic brain tumour model. PLoS One 2018; 13:e0191102. [PMID: 29338016 PMCID: PMC5770053 DOI: 10.1371/journal.pone.0191102] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Accepted: 12/28/2017] [Indexed: 01/12/2023] Open
Abstract
The treatment of brain diseases is hindered by the blood-brain barrier (BBB) preventing most drugs from entering the brain. Focused ultrasound (FUS) with microbubbles can open the BBB safely and reversibly. Systemic drug injection might induce toxicity, but encapsulation into nanoparticles reduces accumulation in normal tissue. Here we used a novel platform based on poly(2-ethyl-butyl cyanoacrylate) nanoparticle-stabilized microbubbles to permeabilize the BBB in a melanoma brain metastasis model. With a dual-frequency ultrasound transducer generating FUS at 1.1 MHz and 7.8 MHz, we opened the BBB using nanoparticle-microbubbles and low-frequency FUS, and applied high-frequency FUS to generate acoustic radiation force and push nanoparticles through the extracellular matrix. Using confocal microscopy and image analysis, we quantified nanoparticle extravasation and distribution in the brain parenchyma. We also evaluated haemorrhage, as well as the expression of P-glycoprotein, a key BBB component. FUS and microbubbles distributed nanoparticles in the brain parenchyma, and the distribution depended on the extent of BBB opening. The results from acoustic radiation force were not conclusive, but in a few animals some effect could be detected. P-glycoprotein was not significantly altered immediately after sonication. In summary, FUS with our nanoparticle-stabilized microbubbles can achieve accumulation and displacement of nanoparticles in the brain parenchyma.
Collapse
Affiliation(s)
- Habib Baghirov
- Department of Physics, The Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Sofie Snipstad
- Department of Physics, The Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Einar Sulheim
- Department of Physics, The Norwegian University of Science and Technology (NTNU), Trondheim, Norway
- SINTEF Materials and Chemistry, Trondheim, Norway
| | - Sigrid Berg
- SINTEF Medical Technology, Trondheim, Norway
- Department of Circulation and Medical Imaging, The Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Rune Hansen
- SINTEF Medical Technology, Trondheim, Norway
- Department of Circulation and Medical Imaging, The Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Frits Thorsen
- Molecular Imaging Center and Kristian Gerhard Jebsen Brain Tumour Research Centre, Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Yrr Mørch
- SINTEF Materials and Chemistry, Trondheim, Norway
| | - Catharina de Lange Davies
- Department of Physics, The Norwegian University of Science and Technology (NTNU), Trondheim, Norway
- * E-mail:
| | - Andreas K. O. Åslund
- Department of Physics, The Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| |
Collapse
|
11
|
Contreras-Zárate MJ, Ormond DR, Gillen AE, Hanna C, Day NL, Serkova NJ, Jacobsen BM, Edgerton SM, Thor AD, Borges VF, Lillehei KO, Graner MW, Kabos P, Cittelly DM. Development of Novel Patient-Derived Xenografts from Breast Cancer Brain Metastases. Front Oncol 2017; 7:252. [PMID: 29164052 PMCID: PMC5673842 DOI: 10.3389/fonc.2017.00252] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Accepted: 10/09/2017] [Indexed: 12/21/2022] Open
Abstract
Brain metastases are an increasing burden among breast cancer patients, particularly for those with HER2+ and triple negative (TN) subtypes. Mechanistic insight into the pathophysiology of brain metastases and preclinical validation of therapies has relied almost exclusively on intracardiac injection of brain-homing cells derived from highly aggressive TN MDA-MB-231 and HER2+ BT474 breast cancer cell lines. Yet, these well characterized models are far from representing the tumor heterogeneity observed clinically and, due to their fast progression in vivo, their suitability to validate therapies for established brain metastasis remains limited. The goal of this study was to develop and characterize novel human brain metastasis breast cancer patient-derived xenografts (BM-PDXs) to study the biology of brain metastasis and to serve as tools for testing novel therapeutic approaches. We obtained freshly resected brain metastases from consenting donors with breast cancer. Tissue was immediately implanted in the mammary fat pad of female immunocompromised mice and expanded as BM-PDXs. Brain metastases from 3/4 (75%) TN, 1/1 (100%) estrogen receptor positive (ER+), and 5/9 (55.5%) HER2+ clinical subtypes were established as transplantable BM-PDXs. To facilitate tracking of metastatic dissemination using BM-PDXs, we labeled PDX-dissociated cells with EGFP-luciferase followed by reimplantation in mice, and generated a BM-derived cell line (F2-7). Immunohistologic analyses demonstrated that parental and labeled BM-PDXs retained expression of critical clinical markers such as ER, progesterone receptor, epidermal growth factor receptor, HER2, and the basal cell marker cytokeratin 5. Similarly, RNA sequencing analysis showed clustering of parental, labeled BM-PDXs and their corresponding cell line derivative. Intracardiac injection of dissociated cells from BM-E22-1, resulted in magnetic resonance imaging-detectable macrometastases in 4/8 (50%) and micrometastases (8/8) (100%) mice, suggesting that BM-PDXs remain capable of colonizing the brain at high frequencies. Brain metastases developed 8-12 weeks after ic injection, located to the brain parenchyma, grew around blood vessels, and elicited astroglia activation characteristic of breast cancer brain metastasis. These novel BM-PDXs represent heterogeneous and clinically relevant models to study mechanisms of brain metastatic colonization, with the added benefit of a slower progression rate that makes them suitable for preclinical testing of drugs in therapeutic settings.
Collapse
Affiliation(s)
| | - D. Ryan Ormond
- Department of Neurosurgery, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Austin E. Gillen
- RNA Bioscience Initiative, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Colton Hanna
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Nicole L. Day
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Natalie J. Serkova
- Department of Anesthesiology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Britta M. Jacobsen
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Susan M. Edgerton
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Ann D. Thor
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Virginia F. Borges
- Department of Medicine, Division of Medical Oncology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Kevin O. Lillehei
- Department of Neurosurgery, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Michael W. Graner
- Department of Neurosurgery, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Peter Kabos
- Department of Medicine, Division of Medical Oncology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Diana M. Cittelly
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| |
Collapse
|
12
|
Kheirolomoom A, Ingham ES, Commisso J, Abushaban N, Ferrara KW. Intracellular trafficking of a pH-responsive drug metal complex. J Control Release 2016; 243:232-242. [PMID: 27746275 DOI: 10.1016/j.jconrel.2016.10.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2016] [Revised: 09/23/2016] [Accepted: 10/11/2016] [Indexed: 01/18/2023]
Abstract
We previously developed a pH-responsive copper-doxorubicin (CuDox) cargo in lysolipid-based temperature-sensitive liposomes (LTSLs). The CuDox complex is released from the particle by elevated temperature; however, full release of doxorubicin from CuDox requires a reduced pH, such as that expected in lysosomes. The primary goal of this study is to evaluate the cellular uptake and intracellular trafficking of the drug-metal complex in comparison with intact liposomes and free drug. We found that the CuDox complex was efficiently internalized by mammary carcinoma cells after release from LTSLs. Intracellular doxorubicin and copper were 6-fold and 5-fold greater, respectively, after a 0.5h incubation with the released CuDox complex, as compared to incubation with intact liposomes containing the complex. Total cellular doxorubicin fluorescence was similar following CuDox and free doxorubicin incubation. Imaging and mass spectrometry assays indicated that the CuDox complex was initially internalized intact but breaks down over time within cells, with intracellular copper decreasing more rapidly than intracellular doxorubicin. Doxorubicin fluorescence was reduced when complexed with copper, and nuclear fluorescence was reduced when cells were incubated with the CuDox complex as compared with free doxorubicin. Therapeutic efficacy, which typically results from intercalation of doxorubicin with DNA, was equivalent for the CuDox complex and free doxorubicin and was superior to that of liposomal doxorubicin formulations. Taken together, the results suggest that quenched CuDox reaches the nucleus and remains efficacious. In order to design protocols for the use of these temperature-sensitive particles in cancer treatment, the timing of hyperthermia relative to drug administration must be examined. When cells were heated to 42°C prior to the addition of free doxorubicin, nuclear drug accumulation increased by 1.8-fold in cancer cells after 5h, and cytotoxicity increased 1.4-fold in both cancer and endothelial cells. Endothelial cytotoxicity was similarly augmented with mild hyperthermia applied prior to treatment with released CuDox. In summary, we find that the drug-metal complex formed in temperature-sensitive particles can be internalized by cancer and endothelial cells resulting in therapeutic efficacy that is similar to free doxorubicin, and this efficacy can be enhanced by elevated temperature.
Collapse
Affiliation(s)
- Azadeh Kheirolomoom
- University of California, Davis, Department of Biomedical Engineering, 451 East Health Sciences Drive, Davis, CA 95616, USA
| | - Elizabeth S Ingham
- University of California, Davis, Department of Biomedical Engineering, 451 East Health Sciences Drive, Davis, CA 95616, USA
| | - Joel Commisso
- University of California, Davis, Interdisciplinary Center for Plasma Mass Spectrometry, Davis, CA 95616, USA
| | - Neveen Abushaban
- University of California, Davis, Department of Biomedical Engineering, 451 East Health Sciences Drive, Davis, CA 95616, USA
| | - Katherine W Ferrara
- University of California, Davis, Department of Biomedical Engineering, 451 East Health Sciences Drive, Davis, CA 95616, USA
| |
Collapse
|
13
|
Aasen SN, Pospisilova A, Eichler TW, Panek J, Hruby M, Stepanek P, Spriet E, Jirak D, Skaftnesmo KO, Thorsen F. A Novel Nanoprobe for Multimodal Imaging Is Effectively Incorporated into Human Melanoma Metastatic Cell Lines. Int J Mol Sci 2015; 16:21658-80. [PMID: 26370983 PMCID: PMC4613273 DOI: 10.3390/ijms160921658] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Revised: 08/07/2015] [Accepted: 08/25/2015] [Indexed: 02/04/2023] Open
Abstract
To facilitate efficient drug delivery to tumor tissue, several nanomaterials have been designed, with combined diagnostic and therapeutic properties. In this work, we carried out fundamental in vitro and in vivo experiments to assess the labeling efficacy of our novel theranostic nanoprobe, consisting of glycogen conjugated with a red fluorescent probe and gadolinium. Microscopy and resazurin viability assays were used to study cell labeling and cell viability in human metastatic melanoma cell lines. Fluorescence lifetime correlation spectroscopy (FLCS) was done to investigate nanoprobe stability. Magnetic resonance imaging (MRI) was performed to study T1 relaxivity in vitro, and contrast enhancement in a subcutaneous in vivo tumor model. Efficient cell labeling was demonstrated, while cell viability, cell migration, and cell growth was not affected. FLCS showed that the nanoprobe did not degrade in blood plasma. MRI demonstrated that down to 750 cells/μL of labeled cells in agar phantoms could be detected. In vivo MRI showed that contrast enhancement in tumors was comparable between Omniscan contrast agent and the nanoprobe. In conclusion, we demonstrate for the first time that a non-toxic glycogen-based nanoprobe may effectively visualize tumor cells and tissue, and, in future experiments, we will investigate its therapeutic potential by conjugating therapeutic compounds to the nanoprobe.
Collapse
Affiliation(s)
- Synnøve Nymark Aasen
- NorLux Neuro-Oncology Laboratory, Department of Biomedicine, University of Bergen, 5020 Bergen, Norway.
| | - Aneta Pospisilova
- Institute of Macromolecular Chemistry, Academy of Sciences of the Czech Republic, 162 06 Prague, Czech Republic.
| | - Tilo Wolf Eichler
- Department of Clinical Medicine, University of Bergen, 5020 Bergen, Norway.
| | - Jiri Panek
- Institute of Macromolecular Chemistry, Academy of Sciences of the Czech Republic, 162 06 Prague, Czech Republic.
| | - Martin Hruby
- Institute of Macromolecular Chemistry, Academy of Sciences of the Czech Republic, 162 06 Prague, Czech Republic.
| | - Petr Stepanek
- Institute of Macromolecular Chemistry, Academy of Sciences of the Czech Republic, 162 06 Prague, Czech Republic.
| | - Endy Spriet
- Molecular Imaging Center, Department of Biomedicine, University of Bergen, 5020 Bergen, Norway.
| | - Daniel Jirak
- Department of Diagnostic and Interventional Radiology, Institute for Clinical and Experimental Medicine, 140 21 Prague, Czech Republic.
- Institute of Biophysics and Informatics, 1st Medicine Faculty, Charles University, 120 00 Prague, Czech Republic.
| | - Kai Ove Skaftnesmo
- NorLux Neuro-Oncology Laboratory, Department of Biomedicine, University of Bergen, 5020 Bergen, Norway.
| | - Frits Thorsen
- NorLux Neuro-Oncology Laboratory, Department of Biomedicine, University of Bergen, 5020 Bergen, Norway.
- Molecular Imaging Center, Department of Biomedicine, University of Bergen, 5020 Bergen, Norway.
- Kristian Gerhard Jebsen Brain Tumour Research Centre, Department of Biomedicine, University of Bergen, 5020 Bergen, Norway.
| |
Collapse
|
14
|
Puhalla S, Elmquist W, Freyer D, Kleinberg L, Adkins C, Lockman P, McGregor J, Muldoon L, Nesbit G, Peereboom D, Smith Q, Walker S, Neuwelt E. Unsanctifying the sanctuary: challenges and opportunities with brain metastases. Neuro Oncol 2015; 17:639-51. [PMID: 25846288 PMCID: PMC4482864 DOI: 10.1093/neuonc/nov023] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Accepted: 01/18/2015] [Indexed: 12/22/2022] Open
Abstract
While the use of targeted therapies, particularly radiosurgery, has broadened therapeutic options for CNS metastases, patients respond minimally and prognosis remains poor. The inability of many systemic chemotherapeutic agents to penetrate the blood-brain barrier (BBB) has limited their use and allowed brain metastases to become a burgeoning clinical challenge. Adequate preclinical models that appropriately mimic the metastatic process, the BBB, and blood-tumor barriers (BTB) are needed to better evaluate therapies that have the ability to enhance delivery through or penetrate into these barriers and to understand the mechanisms of resistance to therapy. The heterogeneity among and within different solid tumors and subtypes of solid tumors further adds to the difficulties in determining the most appropriate treatment approaches and methods of laboratory and clinical studies. This review article discusses therapies focused on prevention and treatment of CNS metastases, particularly regarding the BBB, and the challenges and opportunities these therapies present.
Collapse
Affiliation(s)
- Shannon Puhalla
- Division of Hematology/Oncology, University of Pittsburgh, Pittsburgh, Pennsylvania (S.P.); Department of Pharmaceutics, University of Minnesota, Minneapolis, Minnesota (W.E.); Department of Hematology/Oncology, Children's Hospital Los Angeles, Los Angeles, California (D.F.); Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University, Baltimore, Maryland (L.K.); Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, Texas (C.A.); Department of Pharmaceutical Sciences, School of Pharmacy, West Virginia University and the Mary Babb Randolph Cancer Center, Morgantown, West Virginia (P.L.); Department of Neurological Surgery, The Ohio State University Medical Center, Columbus, Ohio (J.M.); Blood Brain-Barrier Program, Oregon Health & Science University, Portland, Oregon (L.M., E.N.); Dotter Radiology/Neuroradiology, Oregon Health & Science University, Portland, Oregon (G.N.); Brain Tumor and Neuro-Oncology Center, Cleveland Clinic Foundation, Cleveland, Ohio (D.P.); School of Pharmacy, Texas Tech University, Health Sciences Center, Amarillo, Texas (Q.S.); Department of Psychiatry, Oregon Health & Science University, Portland, Oregon (S.W.); Portland Veterans Affairs Medical Center, Portland, Oregon (E.N.)
| | - William Elmquist
- Division of Hematology/Oncology, University of Pittsburgh, Pittsburgh, Pennsylvania (S.P.); Department of Pharmaceutics, University of Minnesota, Minneapolis, Minnesota (W.E.); Department of Hematology/Oncology, Children's Hospital Los Angeles, Los Angeles, California (D.F.); Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University, Baltimore, Maryland (L.K.); Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, Texas (C.A.); Department of Pharmaceutical Sciences, School of Pharmacy, West Virginia University and the Mary Babb Randolph Cancer Center, Morgantown, West Virginia (P.L.); Department of Neurological Surgery, The Ohio State University Medical Center, Columbus, Ohio (J.M.); Blood Brain-Barrier Program, Oregon Health & Science University, Portland, Oregon (L.M., E.N.); Dotter Radiology/Neuroradiology, Oregon Health & Science University, Portland, Oregon (G.N.); Brain Tumor and Neuro-Oncology Center, Cleveland Clinic Foundation, Cleveland, Ohio (D.P.); School of Pharmacy, Texas Tech University, Health Sciences Center, Amarillo, Texas (Q.S.); Department of Psychiatry, Oregon Health & Science University, Portland, Oregon (S.W.); Portland Veterans Affairs Medical Center, Portland, Oregon (E.N.)
| | - David Freyer
- Division of Hematology/Oncology, University of Pittsburgh, Pittsburgh, Pennsylvania (S.P.); Department of Pharmaceutics, University of Minnesota, Minneapolis, Minnesota (W.E.); Department of Hematology/Oncology, Children's Hospital Los Angeles, Los Angeles, California (D.F.); Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University, Baltimore, Maryland (L.K.); Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, Texas (C.A.); Department of Pharmaceutical Sciences, School of Pharmacy, West Virginia University and the Mary Babb Randolph Cancer Center, Morgantown, West Virginia (P.L.); Department of Neurological Surgery, The Ohio State University Medical Center, Columbus, Ohio (J.M.); Blood Brain-Barrier Program, Oregon Health & Science University, Portland, Oregon (L.M., E.N.); Dotter Radiology/Neuroradiology, Oregon Health & Science University, Portland, Oregon (G.N.); Brain Tumor and Neuro-Oncology Center, Cleveland Clinic Foundation, Cleveland, Ohio (D.P.); School of Pharmacy, Texas Tech University, Health Sciences Center, Amarillo, Texas (Q.S.); Department of Psychiatry, Oregon Health & Science University, Portland, Oregon (S.W.); Portland Veterans Affairs Medical Center, Portland, Oregon (E.N.)
| | - Lawrence Kleinberg
- Division of Hematology/Oncology, University of Pittsburgh, Pittsburgh, Pennsylvania (S.P.); Department of Pharmaceutics, University of Minnesota, Minneapolis, Minnesota (W.E.); Department of Hematology/Oncology, Children's Hospital Los Angeles, Los Angeles, California (D.F.); Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University, Baltimore, Maryland (L.K.); Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, Texas (C.A.); Department of Pharmaceutical Sciences, School of Pharmacy, West Virginia University and the Mary Babb Randolph Cancer Center, Morgantown, West Virginia (P.L.); Department of Neurological Surgery, The Ohio State University Medical Center, Columbus, Ohio (J.M.); Blood Brain-Barrier Program, Oregon Health & Science University, Portland, Oregon (L.M., E.N.); Dotter Radiology/Neuroradiology, Oregon Health & Science University, Portland, Oregon (G.N.); Brain Tumor and Neuro-Oncology Center, Cleveland Clinic Foundation, Cleveland, Ohio (D.P.); School of Pharmacy, Texas Tech University, Health Sciences Center, Amarillo, Texas (Q.S.); Department of Psychiatry, Oregon Health & Science University, Portland, Oregon (S.W.); Portland Veterans Affairs Medical Center, Portland, Oregon (E.N.)
| | - Chris Adkins
- Division of Hematology/Oncology, University of Pittsburgh, Pittsburgh, Pennsylvania (S.P.); Department of Pharmaceutics, University of Minnesota, Minneapolis, Minnesota (W.E.); Department of Hematology/Oncology, Children's Hospital Los Angeles, Los Angeles, California (D.F.); Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University, Baltimore, Maryland (L.K.); Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, Texas (C.A.); Department of Pharmaceutical Sciences, School of Pharmacy, West Virginia University and the Mary Babb Randolph Cancer Center, Morgantown, West Virginia (P.L.); Department of Neurological Surgery, The Ohio State University Medical Center, Columbus, Ohio (J.M.); Blood Brain-Barrier Program, Oregon Health & Science University, Portland, Oregon (L.M., E.N.); Dotter Radiology/Neuroradiology, Oregon Health & Science University, Portland, Oregon (G.N.); Brain Tumor and Neuro-Oncology Center, Cleveland Clinic Foundation, Cleveland, Ohio (D.P.); School of Pharmacy, Texas Tech University, Health Sciences Center, Amarillo, Texas (Q.S.); Department of Psychiatry, Oregon Health & Science University, Portland, Oregon (S.W.); Portland Veterans Affairs Medical Center, Portland, Oregon (E.N.)
| | - Paul Lockman
- Division of Hematology/Oncology, University of Pittsburgh, Pittsburgh, Pennsylvania (S.P.); Department of Pharmaceutics, University of Minnesota, Minneapolis, Minnesota (W.E.); Department of Hematology/Oncology, Children's Hospital Los Angeles, Los Angeles, California (D.F.); Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University, Baltimore, Maryland (L.K.); Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, Texas (C.A.); Department of Pharmaceutical Sciences, School of Pharmacy, West Virginia University and the Mary Babb Randolph Cancer Center, Morgantown, West Virginia (P.L.); Department of Neurological Surgery, The Ohio State University Medical Center, Columbus, Ohio (J.M.); Blood Brain-Barrier Program, Oregon Health & Science University, Portland, Oregon (L.M., E.N.); Dotter Radiology/Neuroradiology, Oregon Health & Science University, Portland, Oregon (G.N.); Brain Tumor and Neuro-Oncology Center, Cleveland Clinic Foundation, Cleveland, Ohio (D.P.); School of Pharmacy, Texas Tech University, Health Sciences Center, Amarillo, Texas (Q.S.); Department of Psychiatry, Oregon Health & Science University, Portland, Oregon (S.W.); Portland Veterans Affairs Medical Center, Portland, Oregon (E.N.)
| | - John McGregor
- Division of Hematology/Oncology, University of Pittsburgh, Pittsburgh, Pennsylvania (S.P.); Department of Pharmaceutics, University of Minnesota, Minneapolis, Minnesota (W.E.); Department of Hematology/Oncology, Children's Hospital Los Angeles, Los Angeles, California (D.F.); Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University, Baltimore, Maryland (L.K.); Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, Texas (C.A.); Department of Pharmaceutical Sciences, School of Pharmacy, West Virginia University and the Mary Babb Randolph Cancer Center, Morgantown, West Virginia (P.L.); Department of Neurological Surgery, The Ohio State University Medical Center, Columbus, Ohio (J.M.); Blood Brain-Barrier Program, Oregon Health & Science University, Portland, Oregon (L.M., E.N.); Dotter Radiology/Neuroradiology, Oregon Health & Science University, Portland, Oregon (G.N.); Brain Tumor and Neuro-Oncology Center, Cleveland Clinic Foundation, Cleveland, Ohio (D.P.); School of Pharmacy, Texas Tech University, Health Sciences Center, Amarillo, Texas (Q.S.); Department of Psychiatry, Oregon Health & Science University, Portland, Oregon (S.W.); Portland Veterans Affairs Medical Center, Portland, Oregon (E.N.)
| | - Leslie Muldoon
- Division of Hematology/Oncology, University of Pittsburgh, Pittsburgh, Pennsylvania (S.P.); Department of Pharmaceutics, University of Minnesota, Minneapolis, Minnesota (W.E.); Department of Hematology/Oncology, Children's Hospital Los Angeles, Los Angeles, California (D.F.); Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University, Baltimore, Maryland (L.K.); Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, Texas (C.A.); Department of Pharmaceutical Sciences, School of Pharmacy, West Virginia University and the Mary Babb Randolph Cancer Center, Morgantown, West Virginia (P.L.); Department of Neurological Surgery, The Ohio State University Medical Center, Columbus, Ohio (J.M.); Blood Brain-Barrier Program, Oregon Health & Science University, Portland, Oregon (L.M., E.N.); Dotter Radiology/Neuroradiology, Oregon Health & Science University, Portland, Oregon (G.N.); Brain Tumor and Neuro-Oncology Center, Cleveland Clinic Foundation, Cleveland, Ohio (D.P.); School of Pharmacy, Texas Tech University, Health Sciences Center, Amarillo, Texas (Q.S.); Department of Psychiatry, Oregon Health & Science University, Portland, Oregon (S.W.); Portland Veterans Affairs Medical Center, Portland, Oregon (E.N.)
| | - Gary Nesbit
- Division of Hematology/Oncology, University of Pittsburgh, Pittsburgh, Pennsylvania (S.P.); Department of Pharmaceutics, University of Minnesota, Minneapolis, Minnesota (W.E.); Department of Hematology/Oncology, Children's Hospital Los Angeles, Los Angeles, California (D.F.); Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University, Baltimore, Maryland (L.K.); Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, Texas (C.A.); Department of Pharmaceutical Sciences, School of Pharmacy, West Virginia University and the Mary Babb Randolph Cancer Center, Morgantown, West Virginia (P.L.); Department of Neurological Surgery, The Ohio State University Medical Center, Columbus, Ohio (J.M.); Blood Brain-Barrier Program, Oregon Health & Science University, Portland, Oregon (L.M., E.N.); Dotter Radiology/Neuroradiology, Oregon Health & Science University, Portland, Oregon (G.N.); Brain Tumor and Neuro-Oncology Center, Cleveland Clinic Foundation, Cleveland, Ohio (D.P.); School of Pharmacy, Texas Tech University, Health Sciences Center, Amarillo, Texas (Q.S.); Department of Psychiatry, Oregon Health & Science University, Portland, Oregon (S.W.); Portland Veterans Affairs Medical Center, Portland, Oregon (E.N.)
| | - David Peereboom
- Division of Hematology/Oncology, University of Pittsburgh, Pittsburgh, Pennsylvania (S.P.); Department of Pharmaceutics, University of Minnesota, Minneapolis, Minnesota (W.E.); Department of Hematology/Oncology, Children's Hospital Los Angeles, Los Angeles, California (D.F.); Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University, Baltimore, Maryland (L.K.); Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, Texas (C.A.); Department of Pharmaceutical Sciences, School of Pharmacy, West Virginia University and the Mary Babb Randolph Cancer Center, Morgantown, West Virginia (P.L.); Department of Neurological Surgery, The Ohio State University Medical Center, Columbus, Ohio (J.M.); Blood Brain-Barrier Program, Oregon Health & Science University, Portland, Oregon (L.M., E.N.); Dotter Radiology/Neuroradiology, Oregon Health & Science University, Portland, Oregon (G.N.); Brain Tumor and Neuro-Oncology Center, Cleveland Clinic Foundation, Cleveland, Ohio (D.P.); School of Pharmacy, Texas Tech University, Health Sciences Center, Amarillo, Texas (Q.S.); Department of Psychiatry, Oregon Health & Science University, Portland, Oregon (S.W.); Portland Veterans Affairs Medical Center, Portland, Oregon (E.N.)
| | - Quentin Smith
- Division of Hematology/Oncology, University of Pittsburgh, Pittsburgh, Pennsylvania (S.P.); Department of Pharmaceutics, University of Minnesota, Minneapolis, Minnesota (W.E.); Department of Hematology/Oncology, Children's Hospital Los Angeles, Los Angeles, California (D.F.); Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University, Baltimore, Maryland (L.K.); Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, Texas (C.A.); Department of Pharmaceutical Sciences, School of Pharmacy, West Virginia University and the Mary Babb Randolph Cancer Center, Morgantown, West Virginia (P.L.); Department of Neurological Surgery, The Ohio State University Medical Center, Columbus, Ohio (J.M.); Blood Brain-Barrier Program, Oregon Health & Science University, Portland, Oregon (L.M., E.N.); Dotter Radiology/Neuroradiology, Oregon Health & Science University, Portland, Oregon (G.N.); Brain Tumor and Neuro-Oncology Center, Cleveland Clinic Foundation, Cleveland, Ohio (D.P.); School of Pharmacy, Texas Tech University, Health Sciences Center, Amarillo, Texas (Q.S.); Department of Psychiatry, Oregon Health & Science University, Portland, Oregon (S.W.); Portland Veterans Affairs Medical Center, Portland, Oregon (E.N.)
| | - Sara Walker
- Division of Hematology/Oncology, University of Pittsburgh, Pittsburgh, Pennsylvania (S.P.); Department of Pharmaceutics, University of Minnesota, Minneapolis, Minnesota (W.E.); Department of Hematology/Oncology, Children's Hospital Los Angeles, Los Angeles, California (D.F.); Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University, Baltimore, Maryland (L.K.); Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, Texas (C.A.); Department of Pharmaceutical Sciences, School of Pharmacy, West Virginia University and the Mary Babb Randolph Cancer Center, Morgantown, West Virginia (P.L.); Department of Neurological Surgery, The Ohio State University Medical Center, Columbus, Ohio (J.M.); Blood Brain-Barrier Program, Oregon Health & Science University, Portland, Oregon (L.M., E.N.); Dotter Radiology/Neuroradiology, Oregon Health & Science University, Portland, Oregon (G.N.); Brain Tumor and Neuro-Oncology Center, Cleveland Clinic Foundation, Cleveland, Ohio (D.P.); School of Pharmacy, Texas Tech University, Health Sciences Center, Amarillo, Texas (Q.S.); Department of Psychiatry, Oregon Health & Science University, Portland, Oregon (S.W.); Portland Veterans Affairs Medical Center, Portland, Oregon (E.N.)
| | - Edward Neuwelt
- Division of Hematology/Oncology, University of Pittsburgh, Pittsburgh, Pennsylvania (S.P.); Department of Pharmaceutics, University of Minnesota, Minneapolis, Minnesota (W.E.); Department of Hematology/Oncology, Children's Hospital Los Angeles, Los Angeles, California (D.F.); Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University, Baltimore, Maryland (L.K.); Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, Texas (C.A.); Department of Pharmaceutical Sciences, School of Pharmacy, West Virginia University and the Mary Babb Randolph Cancer Center, Morgantown, West Virginia (P.L.); Department of Neurological Surgery, The Ohio State University Medical Center, Columbus, Ohio (J.M.); Blood Brain-Barrier Program, Oregon Health & Science University, Portland, Oregon (L.M., E.N.); Dotter Radiology/Neuroradiology, Oregon Health & Science University, Portland, Oregon (G.N.); Brain Tumor and Neuro-Oncology Center, Cleveland Clinic Foundation, Cleveland, Ohio (D.P.); School of Pharmacy, Texas Tech University, Health Sciences Center, Amarillo, Texas (Q.S.); Department of Psychiatry, Oregon Health & Science University, Portland, Oregon (S.W.); Portland Veterans Affairs Medical Center, Portland, Oregon (E.N.)
| |
Collapse
|
15
|
Functional dynamic contrast-enhanced magnetic resonance imaging in an animal model of brain metastases: a pilot study. PLoS One 2014; 9:e109308. [PMID: 25280000 PMCID: PMC4184857 DOI: 10.1371/journal.pone.0109308] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Accepted: 09/10/2014] [Indexed: 11/19/2022] Open
Abstract
Background Brain metastasis is a common disease with a poor prognosis. The purpose of this study is to test feasibility and safety of the animal models for brain metastases and to use dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) to enhance detection of brain metastases. Methods With approval from the institutional animal ethics committee, 18 New Zealand rabbits were randomly divided into three groups: Group A received an intra-carotid infusion (ICI) of mannitol followed by VX2 cells; group B received successive ICI of mannitol and heparin followed by VX2 cells; and group C received an ICI of normal saline. The survival rate and clinical symptoms were recorded after inoculation. After two weeks, conventional MRI and DCE-MRI were performed using 3.0 Tesla scanner. The number of tumors and detection rate were analyzed. After MRI measurements, the tumors were stained with hematoxylin-eosin. Results No rabbits died during the procedure. The rabbits had common symptoms, including loss of appetite, lassitude and lethargy, etc. at 10.8±1.8 days and 8.4±1.5 days post-inoculation in group A and B, respectively. Each animal in groups A and B re-gained the lost weight within 14 days. Brain metastases could be detected by MRI at 14 days post-inoculation in both groups A and B, with metastases manifesting as nodules in the brain parenchyma and thickening in the meninges. DCE-MRI increased the total detection of tumors compared to non-contrast MRI (P<0.05). The detection rates of T1-weighted image, T2-weighted image and DCE-MRI were 12%, 32% and 100%, respectively (P<0.05). Necropsy revealed nodules or thickening meninges in the gross samples and VX2 tumor cytomorphologic features in the slides, which were consistent with the MRI results. Conclusions The VX2 rabbit model of brain metastases is feasible, as verified by MRI and pathologic findings, and may be a suitable platform for future studies of brain metastases. Functional DCE-MRI can be used to evaluate brain metastases in a rabbit model.
Collapse
|
16
|
In vitro treatment of melanoma brain metastasis by simultaneously targeting the MAPK and PI3K signaling pathways. Int J Mol Sci 2014; 15:8773-94. [PMID: 24840574 PMCID: PMC4057758 DOI: 10.3390/ijms15058773] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Revised: 05/04/2014] [Accepted: 05/06/2014] [Indexed: 01/13/2023] Open
Abstract
Malignant melanoma is the most lethal form of skin cancer, with a high propensity to metastasize to the brain. More than 60% of melanomas have the BRAFV600E mutation, which activates the mitogen-activated protein kinase (MAPK) pathway [1]. In addition, increased PI3K (phosphoinositide 3-kinase) pathway activity has been demonstrated, through the loss of activity of the tumor suppressor gene, PTEN [2]. Here, we treated two melanoma brain metastasis cell lines, H1_DL2, harboring a BRAFV600E mutation and PTEN loss, and H3, harboring WT (wild-type) BRAF and PTEN loss, with the MAPK (BRAF) inhibitor vemurafenib and the PI3K pathway associated mTOR inhibitor temsirolimus. Combined use of the drugs inhibited tumor cell growth and proliferation in vitro in H1_DL2 cells, compared to single drug treatment. Treatment was less effective in the H3 cells. Furthermore, a strong inhibitory effect on the viability of H1_DL2 cells, when grown as 3D multicellular spheroids, was seen. The treatment inhibited the expression of pERK1/2 and reduced the expression of pAKT and p-mTOR in H1_DL2 cells, confirming that the MAPK and PI3K pathways were inhibited after drug treatment. Microarray experiments followed by principal component analysis (PCA) mapping showed distinct gene clustering after treatment, and cell cycle checkpoint regulators were affected. Global gene analysis indicated that functions related to cell survival and invasion were influenced by combined treatment. In conclusion, we demonstrate for the first time that combined therapy with vemurafenib and temsirolimus is effective on melanoma brain metastasis cells in vitro. The presented results highlight the potential of combined treatment to overcome treatment resistance that may develop after vemurafenib treatment of melanomas.
Collapse
|
17
|
First in-mouse development and application of a surgically relevant xenograft model of ovarian carcinoma. PLoS One 2014; 9:e89527. [PMID: 24594904 PMCID: PMC3942384 DOI: 10.1371/journal.pone.0089527] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2013] [Accepted: 01/21/2014] [Indexed: 01/26/2023] Open
Abstract
Purpose Preclinical models of epithelial ovarian cancer have not been exploited to evaluate the clinical standard combination therapy of surgical debulking with follow-up chemotherapy. As surgery is critical to patient survival, here we establish a combined surgical/chemotherapy xenograft model of epithelial ovarian cancer and demonstrate its translational relevance. Experimental Design SKOV-3luc+ ovary cancer cells were injected topically into the ovaries of immunodeficient mice. Disease development and effect of clinical standard treatment including hysterectomy, bilateral salpingoophorectomy and removal of metastasis with follow up chemotherapy (carboplatin 12 mg/kg + paclitaxel 15 mg/kg) was evaluated by clinical parameters. Tumor burden was quantified by bioluminescence imaging (BLI). Results The xenograft ovarian tumors developed were poorly differentiated and multicystic and the disease disseminated into the peritoneal cavity. When compared to the controls with a mean survival time of 4.9 weeks, mice treated with surgery and chemotherapy, surgery or chemotherapy demonstrated significantly improved mean survival of 16.1 weeks (p = 0.0008), 12.7 weeks (p = 0.0008), or 10.4 weeks (p = 0.008), respectively. Conclusion Combined surgical intervention and adjuvant chemotherapy was demonstrated for the first time in an orthotopic xenograft model of ovarian cancer. Similar to observation in human studies the combined approach resulted in the longest medial survival time, advocating application of this strategy in future preclinical therapeutic development for this disease.
Collapse
|
18
|
Serres S, Martin CJ, Sarmiento Soto M, Bristow C, O'Brien ER, Connell JJ, Khrapitchev AA, Sibson NR. Structural and functional effects of metastases in rat brain determined by multimodal MRI. Int J Cancer 2014; 134:885-96. [PMID: 23913394 DOI: 10.1002/ijc.28406] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Revised: 07/10/2013] [Accepted: 07/18/2013] [Indexed: 01/04/2023]
Abstract
Metastasis to the brain results in significant impairment of brain function and poor patient survival. Currently, magnetic resonance imaging (MRI) is under-utilised in monitoring brain metastases and their effects on brain function. Here, we sought to establish a model of focal brain metastasis in the rat that enables serial multimodal structural and functional MRI studies, and to assess the sensitivity of these approaches to metastatic growth. Female Berlin-Druckrey-IX rats were injected intracerebrally with metastatic ENU1564 cells in the ventroposterior medial nucleus (VPM) of the thalamus, a relay node of the whisker-to-barrel cortex pathway. Animals underwent multimodal structural and vascular MRI, as well as functional MRI of the cortical blood oxygenation level dependent (BOLD) responses to whisker pad stimulation. T2 , diffusion, magnetisation transfer and perfusion weighted MRI enabled differentiation between a central area of more advanced metastatic growth and penumbral regions of co-optive perivascular micrometastatic growth, with magnetisation transfer MRI being the most sensitive to micrometastatic growth. Areas of cortical BOLD activation in response to whisker pad stimulation were significantly reduced in the hemisphere containing metastases in the VPM. The reduction in BOLD response correlated with metastatic burden in the thalamus, and was sensitive to the presence of smaller metastases than currently detectable clinically. Our findings suggest that multimodal MRI provides greater sensitivity to tumour heterogeneity and micrometastatic growth than single modality contrast-enhanced MRI. Understanding the relationships between these MRI parameters and the underlying pathology may greatly enhance the utility of MRI in diagnosis, staging and monitoring of brain metastasis.
Collapse
Affiliation(s)
- Sébastien Serres
- CR-UK/MRC Gray Institute for Radiation Oncology and Biology, Department of Oncology, University of Oxford, Churchill Hospital, Oxford, OX3 7LJ, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Talasila KM, Brekka N, Mangseth K, Stieber D, Evensen L, Rosland GV, Torsvik A, Wagner M, Niclou SP, Mahesparan R, Vintermyr OK, Bjerkvig R, Nigro JM, Miletic H. Tumor versus stromal cells in culture--survival of the fittest? PLoS One 2013; 8:e81183. [PMID: 24349039 PMCID: PMC3857854 DOI: 10.1371/journal.pone.0081183] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2013] [Accepted: 10/09/2013] [Indexed: 12/22/2022] Open
Abstract
Two of the signature genetic events that occur in human gliomas, EGFR amplification and IDH mutation, are poorly represented in experimental models in vitro. EGFR amplification, for example, occurs in 40 to 50% of GBM, and yet, EGFR amplification is rarely preserved in cell cultures derived from human tumors. To analyze the fate of EGFR amplified and IDH mutated cells in culture, we followed the development over time of cultures derived from human xenografts in nude rats enriched for tumor cells with EGFR amplification and of cultures derived from patient samples with IDH mutations, in serum monolayer and spheroid suspension culture, under serum and serum free conditions. We observed under serum monolayer conditions, that nestin positive or nestin and SMA double positive rat stromal cells outgrew EGFR amplified tumor cells, while serum spheroid cultures preserved tumor cells with EGFR amplification. Serum free suspension culture exhibited a more variable cell composition in that the resultant cell populations were either predominantly nestin/SOX2 co-expressing rat stromal cells or human tumor cells, or a mixture of both. The selection for nestin/SMA positive stromal cells under serum monolayer conditions was also consistently observed in human oligodendrogliomas and oligoastrocytomas with IDH mutations. Our results highlight for the first time that serum monolayer conditions can select for stromal cells instead of tumor cells in certain brain tumor subtypes. This result has an important impact on the establishment of new tumor cell cultures from brain tumors and raises the question of the proper conditions for the growth of the tumor cell populations of interest.
Collapse
Affiliation(s)
| | - Narve Brekka
- Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Kjersti Mangseth
- Department of Pathology, Haukeland University Hospital, Bergen, Norway
| | - Daniel Stieber
- NorLux Neuro-Oncology Laboratory, Department of Oncology, Centre de Recherche Public de la Santé (CRP-Santé), Luxembourg, Luxembourg
| | - Lasse Evensen
- Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Gro V. Rosland
- Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Anja Torsvik
- Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Marek Wagner
- Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Simone P. Niclou
- NorLux Neuro-Oncology Laboratory, Department of Oncology, Centre de Recherche Public de la Santé (CRP-Santé), Luxembourg, Luxembourg
| | | | - Olav K. Vintermyr
- Department of Pathology, Haukeland University Hospital, Bergen, Norway
| | - Rolf Bjerkvig
- Department of Biomedicine, University of Bergen, Bergen, Norway
- NorLux Neuro-Oncology Laboratory, Department of Oncology, Centre de Recherche Public de la Santé (CRP-Santé), Luxembourg, Luxembourg
| | - Janice M. Nigro
- Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Hrvoje Miletic
- Department of Biomedicine, University of Bergen, Bergen, Norway
- Department of Pathology, Haukeland University Hospital, Bergen, Norway
- * E-mail:
| |
Collapse
|
20
|
Thorsen F, Fite B, Mahakian LM, Seo JW, Qin S, Harrison V, Johnson S, Ingham E, Caskey C, Sundstrøm T, Meade TJ, Harter PN, Skaftnesmo KO, Ferrara KW. Multimodal imaging enables early detection and characterization of changes in tumor permeability of brain metastases. J Control Release 2013; 172:812-22. [PMID: 24161382 DOI: 10.1016/j.jconrel.2013.10.019] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Revised: 10/14/2013] [Accepted: 10/15/2013] [Indexed: 12/31/2022]
Abstract
Our goal was to develop strategies to quantify the accumulation of model therapeutics in small brain metastases using multimodal imaging, in order to enhance the potential for successful treatment. Human melanoma cells were injected into the left cardiac ventricle of immunodeficient mice. Bioluminescent, MR and PET imaging were applied to evaluate the limits of detection and potential for contrast agent extravasation in small brain metastases. A pharmacokinetic model was applied to estimate vascular permeability. Bioluminescent imaging after injecting d-luciferin (molecular weight (MW) 320 D) suggested that tumor cell extravasation had already occurred at week 1, which was confirmed by histology. 7T T1w MRI at week 4 was able to detect non-leaky 100 μm sized lesions and leaky tumors with diameters down to 200 μm after contrast injection at week 5. PET imaging showed that (18)F-FLT (MW 244 Da) accumulated in the brain at week 4. Gadolinium-based MRI tracers (MW 559 Da and 2.066 kDa) extravasated after 5 weeks (tumor diameter 600 μm), and the lower MW agent cleared more rapidly from the tumor (mean apparent permeabilities 2.27 × 10(-5)cm/s versus 1.12 × 10(-5)cm/s). PET imaging further demonstrated tumor permeability to (64)Cu-BSA (MW 65.55 kDa) at week 6 (tumor diameter 700 μm). In conclusion, high field T1w MRI without contrast may improve the detection limit of small brain metastases, allowing for earlier diagnosis of patients, although the smallest lesions detected with T1w MRI were permeable only to d-luciferin and the amphipathic small molecule (18)F-FLT. Different-sized MR and PET contrast agents demonstrated the gradual increase in leakiness of the blood tumor barrier during metastatic progression, which could guide clinicians in choosing tailored treatment strategies.
Collapse
Affiliation(s)
- Frits Thorsen
- Department of Biomedicine, University of Bergen, Bergen, Norway.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Talasila KM, Soentgerath A, Euskirchen P, Rosland GV, Wang J, Huszthy PC, Prestegarden L, Skaftnesmo KO, Sakariassen PØ, Eskilsson E, Stieber D, Keunen O, Brekka N, Moen I, Nigro JM, Vintermyr OK, Lund-Johansen M, Niclou S, Mørk SJ, Enger PØ, Bjerkvig R, Miletic H. EGFR wild-type amplification and activation promote invasion and development of glioblastoma independent of angiogenesis. Acta Neuropathol 2013; 125:683-98. [PMID: 23429996 PMCID: PMC3631314 DOI: 10.1007/s00401-013-1101-1] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2012] [Revised: 01/24/2013] [Accepted: 02/09/2013] [Indexed: 11/15/2022]
Abstract
Angiogenesis is regarded as a hallmark of cancer progression and it has been postulated that solid tumor growth depends on angiogenesis. At present, however, it is clear that tumor cell invasion can occur without angiogenesis, a phenomenon that is particularly evident by the infiltrative growth of malignant brain tumors, such as glioblastomas (GBMs). In these tumors, amplification or overexpression of wild-type (wt) or truncated and constitutively activated epidermal growth factor receptor (EGFR) are regarded as important events in GBM development, where the complex downstream signaling events have been implicated in tumor cell invasion, angiogenesis and proliferation. Here, we show that amplification and in particular activation of wild-type EGFR represents an underlying mechanism for non-angiogenic, invasive tumor growth. Using a clinically relevant human GBM xenograft model, we show that tumor cells with EGFR gene amplification and activation diffusely infiltrate normal brain tissue independent of angiogenesis and that transient inhibition of EGFR activity by cetuximab inhibits the invasive tumor growth. Moreover, stable, long-term expression of a dominant-negative EGFR leads to a mesenchymal to epithelial-like transition and induction of angiogenic tumor growth. Analysis of human GBM biopsies confirmed that EGFR activation correlated with invasive/non-angiogenic tumor growth. In conclusion, our results indicate that activation of wild-type EGFR promotes invasion and glioblastoma development independent of angiogenesis, whereas loss of its activity results in angiogenic tumor growth.
Collapse
Affiliation(s)
- Krishna M. Talasila
- Department of Biomedicine, University of Bergen, Jonas Lies vei 91, 5009 Bergen, Norway
| | - Anke Soentgerath
- Department of Biomedicine, University of Bergen, Jonas Lies vei 91, 5009 Bergen, Norway
- Department of Neurosurgery, Hospital Cologne Merheim, 51109 Cologne, Germany
| | - Philipp Euskirchen
- Department of Biomedicine, University of Bergen, Jonas Lies vei 91, 5009 Bergen, Norway
| | - Gro V. Rosland
- Department of Biomedicine, University of Bergen, Jonas Lies vei 91, 5009 Bergen, Norway
| | - Jian Wang
- Department of Biomedicine, University of Bergen, Jonas Lies vei 91, 5009 Bergen, Norway
| | - Peter C. Huszthy
- Department of Biomedicine, University of Bergen, Jonas Lies vei 91, 5009 Bergen, Norway
| | - Lars Prestegarden
- Department of Biomedicine, University of Bergen, Jonas Lies vei 91, 5009 Bergen, Norway
- Department of Dermatology, Haukeland University Hospital, 5021 Bergen, Norway
| | - Kai Ove Skaftnesmo
- Department of Biomedicine, University of Bergen, Jonas Lies vei 91, 5009 Bergen, Norway
| | | | - Eskil Eskilsson
- Department of Biomedicine, University of Bergen, Jonas Lies vei 91, 5009 Bergen, Norway
| | - Daniel Stieber
- NorLux Neuro-Oncology Laboratory, CRP-Santé, 1526 Luxembourg, Luxembourg
| | - Olivier Keunen
- Department of Biomedicine, University of Bergen, Jonas Lies vei 91, 5009 Bergen, Norway
- NorLux Neuro-Oncology Laboratory, CRP-Santé, 1526 Luxembourg, Luxembourg
| | - Narve Brekka
- Department of Biomedicine, University of Bergen, Jonas Lies vei 91, 5009 Bergen, Norway
| | - Ingrid Moen
- Department of Biomedicine, University of Bergen, Jonas Lies vei 91, 5009 Bergen, Norway
| | - Janice M. Nigro
- Department of Biomedicine, University of Bergen, Jonas Lies vei 91, 5009 Bergen, Norway
| | - Olav K. Vintermyr
- Department of Pathology, The Gade Institute, Haukeland University Hospital, Jonas Lies vei 65, 5021 Bergen, Norway
| | - Morten Lund-Johansen
- Department of Neurosurgery, Haukeland University Hospital, 5021 Bergen, Norway
- Institute of Surgical Science, University of Bergen, Jonas Lies vei 91, 5009 Bergen, Norway
| | - Simone Niclou
- NorLux Neuro-Oncology Laboratory, CRP-Santé, 1526 Luxembourg, Luxembourg
| | - Sverre J. Mørk
- Department of Pathology, The Gade Institute, Haukeland University Hospital, Jonas Lies vei 65, 5021 Bergen, Norway
| | - Per Øyvind Enger
- Department of Biomedicine, University of Bergen, Jonas Lies vei 91, 5009 Bergen, Norway
- Department of Neurosurgery, Haukeland University Hospital, 5021 Bergen, Norway
| | - Rolf Bjerkvig
- Department of Biomedicine, University of Bergen, Jonas Lies vei 91, 5009 Bergen, Norway
- NorLux Neuro-Oncology Laboratory, CRP-Santé, 1526 Luxembourg, Luxembourg
| | - Hrvoje Miletic
- Department of Biomedicine, University of Bergen, Jonas Lies vei 91, 5009 Bergen, Norway
- Department of Pathology, The Gade Institute, Haukeland University Hospital, Jonas Lies vei 65, 5021 Bergen, Norway
| |
Collapse
|
22
|
Sundstrøm T, Daphu I, Wendelbo I, Hodneland E, Lundervold A, Immervoll H, Skaftnesmo KO, Babic M, Jendelova P, Sykova E, Lund-Johansen M, Bjerkvig R, Thorsen F. Automated Tracking of Nanoparticle-labeled Melanoma Cells Improves the Predictive Power of a Brain Metastasis Model. Cancer Res 2013; 73:2445-56. [DOI: 10.1158/0008-5472.can-12-3514] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
23
|
Xie BW, Park D, Van Beek ER, Blankevoort V, Orabi Y, Que I, Kaijzel EL, Chan A, Hogg PJ, Löwik CWGM. Optical imaging of cell death in traumatic brain injury using a heat shock protein-90 alkylator. Cell Death Dis 2013; 4:e473. [PMID: 23348587 PMCID: PMC3563995 DOI: 10.1038/cddis.2012.207] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Traumatic brain injury is a major public health concern and is characterised by both apoptotic and necrotic cell death in the lesion. Anatomical imaging is usually used to assess traumatic brain injuries and there is a need for imaging modalities that provide complementary cellular information. We sought to non-invasively image cell death in a mouse model of traumatic brain injury using a near-infrared fluorescent conjugate of a synthetic heat shock protein-90 alkylator, 4-(N-(S-glutathionylacetyl) amino) phenylarsonous acid (GSAO). GSAO labels both apoptotic and necrotic cells coincident with loss of plasma membrane integrity. The optical GSAO specifically labelled apoptotic and necrotic cells in culture and did not accumulate in healthy organs or tissues in the living mouse body. The conjugate is a very effective imager of cell death in brain lesions. The optical GSAO was detected by fluorescence intensity and GSAO bound to dying/dead cells was detected from prolongation of the fluorescence lifetime. An optimal signal-to-background ratio was achieved as early as 3 h after injection of the probe and the signal intensity positively correlated with both lesion size and probe concentration. This optical GSAO offers a convenient and robust means to non-invasively image apoptotic and necrotic cell death in brain and other lesions.
Collapse
Affiliation(s)
- B-W Xie
- Experimental Molecular Imaging, Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Daphu I, Sundstrøm T, Horn S, Huszthy PC, Niclou SP, Sakariassen PØ, Immervoll H, Miletic H, Bjerkvig R, Thorsen F. In vivo animal models for studying brain metastasis: value and limitations. Clin Exp Metastasis 2013; 30:695-710. [DOI: 10.1007/s10585-013-9566-9] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2012] [Accepted: 01/07/2013] [Indexed: 01/16/2023]
|
25
|
Zang YW, Gu XD, Xiang JB, Chen ZY. Brain metastases from colorectal cancer: microenvironment and molecular mechanisms. Int J Mol Sci 2012; 13:15784-800. [PMID: 23443093 PMCID: PMC3546661 DOI: 10.3390/ijms131215784] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2012] [Revised: 11/05/2012] [Accepted: 11/12/2012] [Indexed: 01/02/2023] Open
Abstract
Colorectal cancer is one of the most common digestive tract malignancies in the world. Owing to the newer and more effective systemic therapies, the life of colorectal cancer patients can be remarkably prolonged, and the incidence of brain metastases is increasing. However, little is known about the underlying mechanisms of brain metastasis from colorectal cancer. Here we review the tumor microenvironment and metastasis associated molecules in brain metastases from colorectal cancer. A further understanding of these mechanisms will help us to propose better strategies for colorectal cancer patients with brain metastasis and improve their life quality.
Collapse
Affiliation(s)
| | | | - Jian-Bin Xiang
- Department of General Surgery, Huashan Hospital, Fudan University, 12 Middle Wulumiqi Road, Shanghai 200040, China; E-Mails: (Y.-W.Z.); (X.-D.G.); (J.-B.X.)
| | - Zong-You Chen
- Department of General Surgery, Huashan Hospital, Fudan University, 12 Middle Wulumiqi Road, Shanghai 200040, China; E-Mails: (Y.-W.Z.); (X.-D.G.); (J.-B.X.)
| |
Collapse
|
26
|
Characterization of the Tumor-Microenvironment in Patient-Derived Cervix Xenografts (OCICx). Cancers (Basel) 2012; 4:821-45. [PMID: 24213469 PMCID: PMC3712708 DOI: 10.3390/cancers4030821] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2012] [Revised: 08/17/2012] [Accepted: 08/21/2012] [Indexed: 02/07/2023] Open
Abstract
Rationale: The tumor microenvironment (TME) is heterogeneous including both malignant and host cell components as well as regions of hypoxia, elevated interstitial fluid pressure (IFP) and poor nutrient supply. The quantitative extent to which the microenvironmental properties of primary tumors are recapitulated in xenograft models is not well characterized. Methods: Xenografts were generated by implanting tumor biopsies directly into the cervix of mice to create a panel of orthotopically-passaged xenografts (OCICx). Tumors were grown to ~1 cm (diameter) and IFP measurements recorded prior to sacrifice. Enlarged para-aortic lymph nodes (>1–2 mm) were excised for histologic confirmation of metastatic disease. Quantitative histological analysis was used to evaluate hypoxia, proliferation, lymphatic and blood vessels in the epithelial and stromal regions of the xenografts and original patient tumour. Results: IFP and nodal disease were not correlated with tumor engraftment. IFP measurements in the xenografts were generally lower than those in the patient’s tumor. Lymphatic metastasis increased with passage number as did levels of hypoxia in the epithelial component of the xenografts. The blood vessel density in the stromal component of the xenografts increased in parallel. When all the markers were compared between the biopsy and the respective 3rd generation xenograft 10 of 11 tumors showed a good correlation. Conclusions: This ongoing study provides characterization about tumoral and stromal heterogeneity in a unique orthotopic xenograft model.
Collapse
|
27
|
Current World Literature. Curr Opin Support Palliat Care 2012; 6:109-25. [DOI: 10.1097/spc.0b013e328350f70c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
28
|
Seol HJ, Jin J, Seong DH, Joo KM, Kang W, Yang H, Kim J, Shin CS, Kim Y, Kim KH, Kong DS, Lee JII, Aboody KS, Lee HJ, Kim SU, Nam DH. Genetically engineered human neural stem cells with rabbit carboxyl esterase can target brain metastasis from breast cancer. Cancer Lett 2011; 311:152-9. [DOI: 10.1016/j.canlet.2011.07.001] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2011] [Revised: 06/08/2011] [Accepted: 07/02/2011] [Indexed: 12/01/2022]
|