Margos G, van Dijk MR, Ramesar J, Janse CJ, Waters AP, Sinden RE. Transgenic expression of a mosquito-stage malarial protein, Pbs21, in blood stages of transformed Plasmodium berghei and induction of an immune response upon infection.
Infect Immun 1998;
66:3884-91. [PMID:
9673276 PMCID:
PMC108443 DOI:
10.1128/iai.66.8.3884-3891.1998]
[Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Pbs21 is a surface protein of the ookinete of Plasmodium berghei, which can induce a potent transmission-blocking immune response. Pbs21 is normally expressed only by parasite stages in the mosquito, i.e., female gametes/zygotes, ookinetes, and oocysts. However, the Pbs21 gene is transcribed in female gametocytes which circulate in the bloodstream of the host, where translation of the resulting mRNA is totally repressed. Episomal transfection has been used to investigate whether expression of Pbs21 protein could be achieved in blood stages of the parasite. By using plasmid pMD221, the complete mRNA-encoding region of Pbs21, flanked only by 218 nucleotides (nt) of its promoter region and 438 nt of its 3' region downstream from the polyadenylation site, was introduced into the blood stages of gametocyte-producing and non-gametocyte-producing clones of P. berghei. In both of these transformed parasite lines, Pbs21 protein was expressed in asexual trophozoites, schizonts, and, when present, in both male and female gametocytes. Hence, the flanking regions present are sufficient to allow transcription but lack the elements that exert natural control of sex- and stage-specific transcription. The mRNA and the protein expressed by transformed blood stages were indistinguishable from the wild-type forms by the criteria tested, and the protein was recognized by both conformation-dependent and conformation-independent monoclonal antibodies raised against native Pbs21. In mice infected with transformed non-gametocyte-producing parasites, a Pbs21-specific immune response was induced and characterized with respect to isotype (IgG2a/IgG2b) and quantity (11. 5 +/- 10 microg/ml) of antibody produced. However, as found in previous studies, these antibody levels were insufficient to inhibit development of the parasites in the mosquito. The ability to express mosquito midgut-stage antigens in blood-stage parasites will facilitate further investigations of molecular and immunological properties of these proteins.
Collapse