1
|
Hoogerwerf MA, Janse JJ, Kuiper VP, van Schuijlenburg R, Kruize YC, Sijtsma JC, Nosoh BA, Koopman JPR, Verbeek-Menken PH, Westra IM, Meij P, Brienen EA, Visser LG, van Lieshout L, Jochems SP, Yazdanbakhsh M, Roestenberg M. Protective efficacy of short-term infection with Necator americanus hookworm larvae in healthy volunteers in the Netherlands: a single-centre, placebo-controlled, randomised, controlled, phase 1 trial. THE LANCET. MICROBE 2023; 4:e1024-e1034. [PMID: 38042152 DOI: 10.1016/s2666-5247(23)00218-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 06/24/2023] [Accepted: 07/11/2023] [Indexed: 12/04/2023]
Abstract
BACKGROUND Vaccine development against hookworm is hampered by the absence of the development of protective immunity in populations repeatedly exposed to hookworm, limiting identification of mechanisms of protective immunity and new vaccine targets. Immunisation with attenuated larvae has proven effective in dogs and partial immunity has been achieved using an irradiated larvae model in healthy volunteers. We aimed to investigate the protective efficacy of immunisation with short-term larval infection against hookworm challenge. METHODS We did a single-centre, placebo-controlled, randomised, controlled, phase 1 trial at Leiden University Medical Center (Leiden, Netherlands). Healthy volunteers (aged 18-45 years) were recruited using advertisements on social media and in publicly accessible areas. Volunteers were randomly assigned (2:1) to receive three short-term infections with 50 infectious Necator americanus third-stage filariform larvae (50L3) or placebo. Infection was abrogated with a 3-day course of albendazole 400 mg, 2 weeks after each exposure. Subsequently all volunteers were challenged with two doses of 50L3 at a 2-week interval. The primary endpoint was egg load (geometric mean per g faeces) measured weekly between weeks 12 and 16 after first challenge, assessed in the per-protocol population, which included all randomly assigned volunteers with available data on egg counts at week 12-16 after challenge. This study is registered with ClinicalTrials.gov, NCT03702530. FINDINGS Between Nov 8 and Dec 14, 2018, 26 volunteers were screened, of whom 23 enrolled in the trial. The first immunisation was conducted on Dec 18, 2018. 23 volunteers were randomly assigned (15 to the intervention group and eight to the placebo group). Egg load after challenge was lower in the intervention group than the placebo group (geometric mean 571 eggs per g [range 372-992] vs 873 eggs per g [268-1484]); however, this difference was not statistically significant (p=0·10). Five volunteers in the intervention group developed a severe skin rash, which was associated with 40% reduction in egg counts after challenge (geometric mean 742 eggs per g [range 268-1484] vs 441 eggs per g [range 380-520] after challenge; p=0·0025) and associated with higher peak IgG1 titres. INTERPRETATION To our knowledge, this is the first study to describe a protective effect of short-term exposure to hookworm larvae and show an association with skin response, eosinophilic response, and IgG1. These findings could inform future hookworm vaccine development. FUNDING Dioraphte Foundation.
Collapse
Affiliation(s)
- Marie-Astrid Hoogerwerf
- Department of Parasitology, Leiden University Medical Center, Leiden, Netherlands; Department of Infectious Diseases, Leiden University Medical Center, Leiden, Netherlands
| | - Jacqueline J Janse
- Department of Parasitology, Leiden University Medical Center, Leiden, Netherlands
| | - Vincent P Kuiper
- Department of Parasitology, Leiden University Medical Center, Leiden, Netherlands
| | | | - Yvonne Cm Kruize
- Department of Parasitology, Leiden University Medical Center, Leiden, Netherlands
| | - Jeroen C Sijtsma
- Department of Parasitology, Leiden University Medical Center, Leiden, Netherlands
| | - Beckley A Nosoh
- Department of Parasitology, Leiden University Medical Center, Leiden, Netherlands
| | - Jan-Pieter R Koopman
- Department of Parasitology, Leiden University Medical Center, Leiden, Netherlands
| | - Petra H Verbeek-Menken
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, Netherlands
| | - Inge M Westra
- Leiden University Center for Infectious Diseases, and Department of Clinical Pharmacy and Toxicology, Leiden University Medical Center, Leiden, Netherlands
| | - Pauline Meij
- Leiden University Center for Infectious Diseases, and Department of Clinical Pharmacy and Toxicology, Leiden University Medical Center, Leiden, Netherlands
| | - Eric At Brienen
- Department of Parasitology, Leiden University Medical Center, Leiden, Netherlands
| | - Leo G Visser
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, Netherlands
| | - Lisette van Lieshout
- Department of Parasitology, Leiden University Medical Center, Leiden, Netherlands
| | - Simon P Jochems
- Department of Parasitology, Leiden University Medical Center, Leiden, Netherlands
| | - Maria Yazdanbakhsh
- Department of Parasitology, Leiden University Medical Center, Leiden, Netherlands
| | - Meta Roestenberg
- Department of Parasitology, Leiden University Medical Center, Leiden, Netherlands; Department of Infectious Diseases, Leiden University Medical Center, Leiden, Netherlands.
| |
Collapse
|
2
|
Characterization of interferon gamma gene in relation to immunological responses in Haemonchus contortus resistant and susceptible Garole sheep. Vet Res Commun 2022; 47:599-614. [PMID: 36229724 DOI: 10.1007/s11259-022-10015-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Accepted: 10/04/2022] [Indexed: 10/17/2022]
Abstract
Garole sheep exhibits within-breed difference in resistance to natural gastrointestinal nematode infection predominated by Haemonchus contortus. In the present study, interferon gamma gene (IFN-γ) was characterized in relation to parasitological, haematological, and immune response against H. contortus in resistant and susceptible Garole sheep. Resistant and susceptible Garole sheep were selected from the field based on consistent low faecal egg counts (FEC) for one year and single nucleotide polymorphisms (SNPs) in the IFN-γ gene. The partial amplification of IFN-γ gene (1282 bp) revealed 4 SNPs exclusively in resistant sheep and 3 SNPs were shared between resistant and susceptible Garole sheep. The selected resistant and susceptible Garole sheep were challenged with H. contortus infection. The parasitological, haematological, immunological responses, and expression of IFN-γ gene were compared between the resistant and susceptible Garole sheep. The FEC of resistant sheep was significantly (P < 0.05) lower than the susceptible sheep infected with H. contortus. There was spontaneous elimination of H. contortus from 28 to 33 days post infection (DPI) in resistant sheep. Haemoglobin and packed cell volume were significantly (P < 0.05) higher in resistant sheep than the susceptible sheep. The serum concentration of immunoglobulin (Ig)G1 and IgA and cytokine IFN-γ activity and also the expression of IFN-γ gene were significantly (P < 0.05) higher in the infected resistant sheep from 14 to 28 DPI compared to the susceptible sheep. In resistant sheep, IgA and IgG1 and cytokine IFN-γ positively correlated with expression of IFN-γ gene, and the SNPs recorded in the resistant sheep only might play an important role in conferring resistance against H. contortus. Further studies are required to elucidate the role of IFN-γ gene in H. contortus resistance in Garole sheep.
Collapse
|
3
|
Shalash AO, Becker L, Yang J, Giacomin P, Pearson M, Hussein WM, Loukas A, Toth I, Skwarczynski M. Development of a Peptide Vaccine against Hookworm Infection: Immunogenicity, Efficacy, and Immune Correlates of Protection. J Allergy Clin Immunol 2022; 150:157-169.e10. [DOI: 10.1016/j.jaci.2022.02.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/14/2022] [Accepted: 02/21/2022] [Indexed: 10/18/2022]
|
4
|
Bungiro RD, Harrison LM, Dondji B, Cappello M. Comparison of percutaneous vs oral infection of hamsters with the hookworm Ancylostoma ceylanicum: Parasite development, pathology and primary immune response. PLoS Negl Trop Dis 2022; 16:e0010098. [PMID: 34986139 PMCID: PMC8765627 DOI: 10.1371/journal.pntd.0010098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 01/18/2022] [Accepted: 12/15/2021] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Hundreds of millions of people in poor countries continue to suffer from disease caused by bloodfeeding hookworms. While mice and rats are not reliably permissive hosts for any human hookworm species, adult Golden Syrian hamsters are fully permissive for the human and animal pathogen Ancylostoma ceylanicum. Similar to humans, hamsters may be infected with A. ceylanicum third-stage larvae orally or percutaneously. Oral infection typically leads to consistent worm yields in hamsters but may not accurately reflect the clinical and immunological manifestations of human infection resulting from skin penetration. METHODOLOGY/PRINCIPAL FINDINGS In this study we compared host responses following percutaneous infection to those utilizing an established oral infection protocol. Infected hamsters exhibited a dose-dependent pathology, with 1000 percutaneous larvae (L3) causing anemia and adult worm recovery comparable to that of 50 orally administered L3. A delayed arrival and maturity of worms in the intestine was observed, as was variation in measured cellular immune responses. A long-term study found that the decline in blood hemoglobin was more gradual and did not reach levels as low, with the nadir of disease coming later in percutaneously infected hamsters. Both groups exhibited moderate growth delay, an effect that was more persistent in the percutaneously infected group. Fecal egg output also peaked later and at lower levels in the percutaneously infected animals. In contrast to orally infected hamsters, antibody titers to larval antigens continued to increase throughout the course of the experiment in the percutaneous group. CONCLUSIONS/SIGNIFICANCE These results demonstrate that the route of infection with A. ceylanicum impacts disease pathogenesis, as well as humoral and cellular immune responses in an experimental setting. These data further validate the utility of the Golden Syrian hamster as a model of both oral and percutaneous infection with human hookworms.
Collapse
Affiliation(s)
- Richard D. Bungiro
- Department of Pediatrics, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Lisa M. Harrison
- Department of Pediatrics, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Blaise Dondji
- Laboratory of Cellular Immunology and Parasitology, Department of Biological Sciences, Central Washington University, Ellensburg, Washington, United States of America
| | - Michael Cappello
- Department of Pediatrics, Yale University School of Medicine, New Haven, Connecticut, United States of America
| |
Collapse
|
5
|
Shalash AO, Hussein WM, Skwarczynski M, Toth I. Hookworm infection: Toward development of safe and effective peptide vaccines. J Allergy Clin Immunol 2021; 148:1394-1419.e6. [PMID: 34872650 DOI: 10.1016/j.jaci.2021.10.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 10/07/2021] [Accepted: 10/18/2021] [Indexed: 11/28/2022]
Abstract
Hookworms are hematophagous nematode parasites that have infected a billion people worldwide. Anthelmintic drugs have limited efficacy and do not prevent reinfection. Therefore, prophylactic vaccines are in high demand. Whole parasite vaccines are allergic and unsafe; thus, research into subunit vaccines has been warranted. A comprehensive overview of protein or peptide subunit vaccines' safety, protective efficacy, and associated immune responses is provided herein. The differences between the immune responses against hookworm infection by patients from epidemic versus nonepidemic areas are discussed in detail. Moreover, the different immunologic mechanisms of protection are discussed, including those that rely on allergic and nonallergic humoral and antibody-dependent cellular responses. The allergic and autoimmune potential of hookworm antigens is also explored, as are the immunoregulatory responses induced by the hookworm secretome. The potential of oral mucosal immunizations has been overlooked. Oral immunity against hookworms is a long-lived and safer immune response that is associated with elimination of infection and protective against reinfections. However, the harsh conditions of the gastrointestinal environment necessitates special oral delivery systems to unlock vaccines' protective potential. The potential for development of safer and more effective peptide- and protein-based anthelmintic vaccines is explored herein.
Collapse
Affiliation(s)
- Ahmed O Shalash
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Queensland, Australia
| | - Waleed M Hussein
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Queensland, Australia
| | - Mariusz Skwarczynski
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Queensland, Australia.
| | - Istvan Toth
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Queensland, Australia; School of Pharmacy, The University of Queensland, Woolloongabba, Queensland, Australia.
| |
Collapse
|
6
|
Ferreira SCM, Veiga MM, Hofer H, East ML, Czirják GÁ. Noninvasively measured immune responses reflect current parasite infections in a wild carnivore and are linked to longevity. Ecol Evol 2021; 11:7685-7699. [PMID: 34188844 PMCID: PMC8216923 DOI: 10.1002/ece3.7602] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 04/02/2021] [Accepted: 04/06/2021] [Indexed: 01/03/2023] Open
Abstract
Host immune defenses are important components of host-parasite interactions that affect the outcome of infection and may have fitness consequences for hosts when increased allocation of resources to immune responses undermines other essential life processes. Research on host-parasite interactions in large free-ranging wild mammals is currently hampered by a lack of verified noninvasive assays. We successfully adapted existing assays to measure innate and adaptive immune responses produced by the gastrointestinal mucosa in spotted hyena (Crocuta crocuta) feces, including enzyme-linked immunosorbent assays (ELISAs), to quantify fecal immunoglobulins (total IgA, total IgG) and total fecal O-linked oligosaccharides (mucin). We investigated the effect of infection load by an energetically costly hookworm (Ancylostoma), parasite richness, host age, sex, year of sampling, and clan membership on immune responses and asked whether high investment in immune responses during early life affects longevity in individually known spotted hyenas in the Serengeti National Park, Tanzania. Fecal concentrations of IgA, IgG, and mucin increased with Ancylostoma egg load and were higher in juveniles than in adults. Females had higher mucin concentrations than males. Juvenile females had higher IgG concentrations than juvenile males, whereas adult females had lower IgG concentrations than adult males. High IgA concentrations during the first year of life were linked to reduced longevity after controlling for age at sampling and Ancylostoma egg load. Our study demonstrates that the use of noninvasive methods can increase knowledge on the complex relationship between gastrointestinal parasites and host local immune responses in wild large mammals and reveal fitness-relevant effects of these responses.
Collapse
Affiliation(s)
- Susana C. M. Ferreira
- Department of Ecological DynamicsLeibniz Institute for Zoo and Wildlife ResearchBerlinGermany
- Present address:
Division of Computational Systems BiologyCentre for Microbiology and Environmental Systems ScienceViennaAustria
| | - Miguel M. Veiga
- Department of Ecological DynamicsLeibniz Institute for Zoo and Wildlife ResearchBerlinGermany
| | - Heribert Hofer
- Department of Ecological DynamicsLeibniz Institute for Zoo and Wildlife ResearchBerlinGermany
- Department of Veterinary MedicineFreie Universität BerlinBerlinGermany
- Department of Biology, Chemistry and PharmacyFreie Universität BerlinBerlinGermany
| | - Marion L. East
- Department of Ecological DynamicsLeibniz Institute for Zoo and Wildlife ResearchBerlinGermany
| | - Gábor Á. Czirják
- Department of Wildlife DiseasesLeibniz Institute for Zoo and Wildlife ResearchBerlinGermany
| |
Collapse
|
7
|
Montaño KJ, Cuéllar C, Sotillo J. Rodent Models for the Study of Soil-Transmitted Helminths: A Proteomics Approach. Front Cell Infect Microbiol 2021; 11:639573. [PMID: 33968800 PMCID: PMC8100317 DOI: 10.3389/fcimb.2021.639573] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 03/29/2021] [Indexed: 12/30/2022] Open
Abstract
Soil-transmitted helminths (STH) affect hundreds of millions worldwide and are some of the most important neglected tropical diseases in terms of morbidity. Due to the difficulty in studying STH human infections, rodent models have become increasingly used, mainly because of their similarities in life cycle. Ascaris suum and Trichuris muris have been proven appropriate and low maintenance models for the study of ascariasis and trichuriasis. In the case of hookworms, despite most of the murine models do not fully reproduce the life cycle of Necator americanus, their proteomic similarity makes them highly suitable for the development of novel vaccine candidates and for the study of hookworm biological features. Furthermore, these models have been helpful in elucidating some basic aspects of our immune system, and are currently being used by numerous researchers to develop novel molecules with immunomodulatory proteins. Herein we review the similarities in the proteomic composition between Nippostrongylus brasiliensis, Heligmosomoides polygyrus bakeri and Trichuris muris and their respective human counterpart with a focus on the vaccine candidates and immunomodulatory proteins being currently studied.
Collapse
Affiliation(s)
- Karen J Montaño
- Centro Nacional de Microbiología, Instituto de Salud Carlos III, Madrid, Spain
| | - Carmen Cuéllar
- Departamento de Microbiología y Parasitología, Facultad de Farmacia, Universidad Complutense, Madrid, Spain
| | - Javier Sotillo
- Centro Nacional de Microbiología, Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
8
|
Zawawi A, Else KJ. Soil-Transmitted Helminth Vaccines: Are We Getting Closer? Front Immunol 2020; 11:576748. [PMID: 33133094 PMCID: PMC7565266 DOI: 10.3389/fimmu.2020.576748] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 09/02/2020] [Indexed: 01/07/2023] Open
Abstract
Parasitic helminths infect over one-fourth of the human population resulting in significant morbidity, and in some cases, death in endemic countries. Despite mass drug administration (MDA) to school-aged children and other control measures, helminth infections are spreading into new areas. Thus, there is a strong rationale for developing anthelminthic vaccines as cost-effective, long-term immunological control strategies, which, unlike MDA, are not haunted by the threat of emerging drug-resistant helminths nor limited by reinfection risk. Advances in vaccinology, immunology, and immunomics include the development of new tools that improve the safety, immunogenicity, and efficacy of vaccines; and some of these tools have been used in the development of helminth vaccines. The development of anthelminthic vaccines is fraught with difficulty. Multiple lifecycle stages exist each presenting stage-specific antigens. Further, helminth parasites are notorious for their ability to dampen down and regulate host immunity. One of the first significant challenges in developing any vaccine is identifying suitable candidate protective antigens. This review explores our current knowledge in lead antigen identification and reports on recent pre-clinical and clinical trials in the context of the soil-transmitted helminths Trichuris, the hookworms and Ascaris. Ultimately, a multivalent anthelminthic vaccine could become an essential tool for achieving the medium-to long-term goal of controlling, or even eliminating helminth infections.
Collapse
Affiliation(s)
- Ayat Zawawi
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia,*Correspondence: Ayat Zawawi
| | - Kathryn J. Else
- Manchester Academic Health Science Centre, Faculty of Biology, Medicine, and Health, School of Biological Sciences, Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, United Kingdom,Kathryn J. Else
| |
Collapse
|
9
|
Cognitive and Microbiome Impacts of Experimental Ancylostoma ceylanicum Hookworm Infections in Hamsters. Sci Rep 2019; 9:7868. [PMID: 31133690 PMCID: PMC6536493 DOI: 10.1038/s41598-019-44301-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 05/13/2019] [Indexed: 12/13/2022] Open
Abstract
Hookworms are one of the most prevalent and important parasites, infecting ~500 million people worldwide. Hookworm disease is among the leading causes of iron-deficiency anemia in the developing world and is associated with significant growth stunting and malnutrition. In humans, hookworms appear to impair memory and other forms of cognition, although definitive data are hard to come by. Here we study the impact of a human hookworm parasite, Ancylostoma ceylanicum, on cognition in hamsters in a controlled laboratory setting. We developed tests that measure long-term memory in hamsters. We find that hookworm-infected hamsters were fully capable of detecting a novel object. However, hookworm-infected hamsters were impaired in detecting a displaced object. Defects could be discerned at even at low levels of infection, whereas at higher levels of infection, hamsters were statistically unable to distinguish between displaced and non-displaced objects. These spatial memory deficiencies could not be attributed to defects in infected hamster mobility or to lack of interest. We also found that hookworm infection resulted in reproducible reductions in diversity and changes in specific taxanomic groups in the hamster gut microbiome. These data demonstrate that human hookworm infection in a laboratory mammal results in a specific, rapid, acute, and measurable deficit in spatial memory, and we speculate that gut alterations could play some role in these cognitive deficits. Our findings highlight the importance of hookworm elimination and suggest that finer tuned spatial memory studies be carried out in humans.
Collapse
|
10
|
Noon JB, Schwarz EM, Ostroff GR, Aroian RV. A highly expressed intestinal cysteine protease of Ancylostoma ceylanicum protects vaccinated hamsters from hookworm infection. PLoS Negl Trop Dis 2019; 13:e0007345. [PMID: 31009474 PMCID: PMC6497320 DOI: 10.1371/journal.pntd.0007345] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 05/02/2019] [Accepted: 03/28/2019] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Human hookworms (Necator americanus, Ancylostoma duodenale, and Ancylostoma ceylanicum) are intestinal blood-feeding parasites that infect ~500 million people worldwide and are among the leading causes of iron-deficiency anemia in the developing world. Drugs are useful against hookworm infections, but hookworms rapidly reinfect people, and the parasites can develop drug resistance. Therefore, having a hookworm vaccine would be of tremendous benefit. METHODOLOGY/PRINCIPAL FINDINGS We investigated the vaccine efficacy in outbred Syrian hamsters of three A. ceylanicum hookworm antigen candidates from two classes of proteins previously identified as promising vaccine candidates. These include two intestinally-enriched, putatively secreted cathepsin B cysteine proteases (AceyCP1, AceyCPL) and one small Kunitz-type protease inhibitor (AceySKPI3). Recombinant proteins were produced in Pichia pastoris, and adsorbed to Alhydrogel. Recombinant AceyCPL (rAceyCPL)/Alhydrogel and rAceySKPI3/Alhydrogel induced high serum immunoglobulin G (IgG) titers in 8/8 vaccinates, but were not protective. rAceyCP1/Alhydrogel induced intermediate serum IgG titers in ~60% of vaccinates in two different trials. rAceyCP1 serum IgG responders had highly significantly decreased hookworm burdens, fecal egg counts and clinical pathology compared to Alhydrogel controls and nonresponders. Protection was highly correlated with rAceyCP1 serum IgG titer. Antisera from rAceyCP1 serum IgG responders, but not nonresponders or rAceyCPL/Alhydrogel vaccinates, significantly reduced adult A. ceylanicum motility in vitro. Furthermore, rAceyCP1 serum IgG responders had canonical Th2-specific recall responses (IL4, IL5, IL13) in splenocytes stimulated ex vivo. CONCLUSIONS/SIGNIFICANCE These findings indicate that rAceyCP1 is a promising vaccine candidate and validates a genomic/transcriptomic approach to human hookworm vaccine discovery.
Collapse
Affiliation(s)
- Jason B. Noon
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Erich M. Schwarz
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, United States of America
| | - Gary R. Ostroff
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Raffi V. Aroian
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| |
Collapse
|
11
|
Wu X, Guo J, Niu M, An M, Liu L, Wang H, Jin X, Zhang Q, Lam KS, Wu T, Wang H, Wang Q, Du Y, Li J, Cheng L, Tang HY, Shang H, Zhang L, Zhou P, Chen Z. Tandem bispecific neutralizing antibody eliminates HIV-1 infection in humanized mice. J Clin Invest 2018; 128:2239-2251. [PMID: 29461979 DOI: 10.1172/jci96764] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 02/16/2018] [Indexed: 01/01/2023] Open
Abstract
The discovery of an HIV-1 cure remains a medical challenge because the virus rebounds quickly after the cessation of combination antiretroviral therapy (cART). Here, we investigate the potential of an engineered tandem bispecific broadly neutralizing antibody (bs-bnAb) as an innovative product for HIV-1 prophylactic and therapeutic interventions. We discovered that by preserving 2 single-chain variable fragment (scFv) binding domains of each parental bnAb, a single gene-encoded tandem bs-bnAb, BiIA-SG, displayed substantially improved breadth and potency. BiIA-SG neutralized all 124 HIV-1-pseudotyped viruses tested, including global subtypes/recombinant forms, transmitted/founder viruses, variants not susceptible to parental bnAbs and to many other bnAbs with an average IC50 value of 0.073 μg/ml (range < 0.001-1.03 μg/ml). In humanized mice, an injection of BiIA-SG conferred sterile protection when administered prior to challenges with diverse live HIV-1 stains. Moreover, whereas BiIA-SG delayed viral rebound in a short-term therapeutic setting when combined with cART, a single injection of adeno-associated virus-transferred (AAV-transferred) BiIA-SG gene resulted dose-dependently in prolonged in vivo expression of BiIA-SG, which was associated with complete viremia control and subsequent elimination of infected cells in humanized mice. These results warrant the clinical development of BiIA-SG as a promising bs-bnAb-based biomedical intervention for the prevention and treatment of HIV-1 infection.
Collapse
Affiliation(s)
- Xilin Wu
- AIDS Institute and Department of Microbiology, State Key Laboratory of Emerging Infectious Diseases, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, People's Republic of China.,The University of Hong Kong AIDS Institute Shenzhen Research Laboratory, Guangdong Key Laboratory of Emerging Infectious Diseases and Shenzhen Key Laboratory of Infection and Immunity, Shenzhen Third People's Hospital, Shenzhen, Guangdong Province, People's Republic of China
| | - Jia Guo
- AIDS Institute and Department of Microbiology, State Key Laboratory of Emerging Infectious Diseases, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, People's Republic of China
| | - Mengyue Niu
- AIDS Institute and Department of Microbiology, State Key Laboratory of Emerging Infectious Diseases, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, People's Republic of China.,The University of Hong Kong AIDS Institute Shenzhen Research Laboratory, Guangdong Key Laboratory of Emerging Infectious Diseases and Shenzhen Key Laboratory of Infection and Immunity, Shenzhen Third People's Hospital, Shenzhen, Guangdong Province, People's Republic of China
| | - Minghui An
- AIDS Institute and Department of Microbiology, State Key Laboratory of Emerging Infectious Diseases, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, People's Republic of China.,Key Laboratory of AIDS Immunology of National Health and Family Planning Commission, Department of Laboratory Medicine, The First Affiliated Hospital, China Medical University, Shenyang, Liaoning Province, People's Republic of China
| | - Li Liu
- AIDS Institute and Department of Microbiology, State Key Laboratory of Emerging Infectious Diseases, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, People's Republic of China.,The University of Hong Kong AIDS Institute Shenzhen Research Laboratory, Guangdong Key Laboratory of Emerging Infectious Diseases and Shenzhen Key Laboratory of Infection and Immunity, Shenzhen Third People's Hospital, Shenzhen, Guangdong Province, People's Republic of China
| | - Hui Wang
- The University of Hong Kong AIDS Institute Shenzhen Research Laboratory, Guangdong Key Laboratory of Emerging Infectious Diseases and Shenzhen Key Laboratory of Infection and Immunity, Shenzhen Third People's Hospital, Shenzhen, Guangdong Province, People's Republic of China
| | - Xia Jin
- Unit of Antiviral Immunity and Genetic Therapy, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, People's Republic of China
| | - Qi Zhang
- Comprehensive AIDS Research Center and Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, School of Medicine, Tsinghua University, Beijing, People's Republic of China
| | - Ka Shing Lam
- AIDS Institute and Department of Microbiology, State Key Laboratory of Emerging Infectious Diseases, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, People's Republic of China
| | - Tongjin Wu
- AIDS Institute and Department of Microbiology, State Key Laboratory of Emerging Infectious Diseases, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, People's Republic of China
| | - Hua Wang
- Comprehensive AIDS Research Center and Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, School of Medicine, Tsinghua University, Beijing, People's Republic of China
| | - Qian Wang
- Comprehensive AIDS Research Center and Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, School of Medicine, Tsinghua University, Beijing, People's Republic of China
| | - Yanhua Du
- AIDS Institute and Department of Microbiology, State Key Laboratory of Emerging Infectious Diseases, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, People's Republic of China
| | - Jingjing Li
- AIDS Institute and Department of Microbiology, State Key Laboratory of Emerging Infectious Diseases, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, People's Republic of China
| | - Lin Cheng
- The University of Hong Kong AIDS Institute Shenzhen Research Laboratory, Guangdong Key Laboratory of Emerging Infectious Diseases and Shenzhen Key Laboratory of Infection and Immunity, Shenzhen Third People's Hospital, Shenzhen, Guangdong Province, People's Republic of China
| | - Hang Ying Tang
- AIDS Institute and Department of Microbiology, State Key Laboratory of Emerging Infectious Diseases, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, People's Republic of China
| | - Hong Shang
- Key Laboratory of AIDS Immunology of National Health and Family Planning Commission, Department of Laboratory Medicine, The First Affiliated Hospital, China Medical University, Shenyang, Liaoning Province, People's Republic of China
| | - Linqi Zhang
- Comprehensive AIDS Research Center and Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, School of Medicine, Tsinghua University, Beijing, People's Republic of China
| | - Paul Zhou
- Unit of Antiviral Immunity and Genetic Therapy, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, People's Republic of China
| | - Zhiwei Chen
- AIDS Institute and Department of Microbiology, State Key Laboratory of Emerging Infectious Diseases, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, People's Republic of China.,The University of Hong Kong AIDS Institute Shenzhen Research Laboratory, Guangdong Key Laboratory of Emerging Infectious Diseases and Shenzhen Key Laboratory of Infection and Immunity, Shenzhen Third People's Hospital, Shenzhen, Guangdong Province, People's Republic of China
| |
Collapse
|
12
|
Diliani N, Dondji B. Hookworm excretory/secretory products modulate immune responses to heterologous and species-specific antigens. Parasite Immunol 2018; 39. [PMID: 28796897 DOI: 10.1111/pim.12459] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Accepted: 08/05/2017] [Indexed: 12/27/2022]
Abstract
Approximately one billion people are currently infected with hookworm. Despite its high prevalence and the concomitant immune suppression seen in infected individuals, little research has been performed on the mechanism of immunosuppression by hookworm. Our study focused on characterizing mechanisms utilized by hookworm to suppress the host immune response. Splenocytes and draining lymph node cells from mice injected with hookworm excretory/secretory (ES) proteins showed decreased proliferation in response to both heterologous and species-specific antigens while also having increased nitric oxide secretion. Analysis by fluorescence-activated cell sorting revealed that mice injected with ES had reduced percentages of CD4+ T cells indicating potential effects of ES proteins on lymphocyte homeostasis. Antibody and cytokine response analyses demonstrated that immunization with ES proteins decreased IgG and IgG1 levels, also decreased interleukin (IL-)-4 and increased IL-12 and interferon-gamma (IFN-γ) cytokine production suggesting impairment of B-cell activation and a shift towards a nonhealing IL-12 directed T helper-1 immune response. Together, these data demonstrate for the first time that host immunosuppression by hookworms is orchestrated by ES proteins and provide mechanisms underlying the shift towards a nonhealing Th-1 profile as seen in humans suffering from hookworm infection.
Collapse
Affiliation(s)
- N Diliani
- Laboratory of Cellular Immunology & Parasitology, Department of Biological Sciences, Central Washington University, Ellensburg, WA, USA
| | - B Dondji
- Laboratory of Cellular Immunology & Parasitology, Department of Biological Sciences, Central Washington University, Ellensburg, WA, USA
| |
Collapse
|
13
|
Mucosal Antibodies to the C Terminus of Toxin A Prevent Colonization of Clostridium difficile. Infect Immun 2017; 85:IAI.01060-16. [PMID: 28167669 DOI: 10.1128/iai.01060-16] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 01/26/2017] [Indexed: 12/21/2022] Open
Abstract
Mucosal immunity is considered important for protection against Clostridium difficile infection (CDI). We show that in hamsters immunized with Bacillus subtilis spores expressing a carboxy-terminal segment (TcdA26-39) of C. difficile toxin A, no colonization occurs in protected animals when challenged with C. difficile strain 630. In contrast, animals immunized with toxoids showed no protection and remained fully colonized. Along with neutralizing toxins, antibodies to TcdA26-39 (but not to toxoids), whether raised to the recombinant protein or to TcdA26-39 expressed on the B. subtilis spore surface, cross-react with a number of seemingly unrelated proteins expressed on the vegetative cell surface or spore coat of C. difficile These include two dehydrogenases, AdhE1 and LdhA, as well as the CdeC protein that is present on the spore. Anti-TcdA26-39 mucosal antibodies obtained following immunization with recombinant B. subtilis spores were able to reduce the adhesion of C. difficile to mucus-producing intestinal cells. This cross-reaction is intriguing yet important since it illustrates the importance of mucosal immunity for complete protection against CDI.
Collapse
|
14
|
Loukas A, Hotez PJ, Diemert D, Yazdanbakhsh M, McCarthy JS, Correa-Oliveira R, Croese J, Bethony JM. Hookworm infection. Nat Rev Dis Primers 2016; 2:16088. [PMID: 27929101 DOI: 10.1038/nrdp.2016.88] [Citation(s) in RCA: 167] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Hookworms are soil-transmitted nematode parasites that can reside for many years in the small intestine of their human hosts; Necator americanus is the predominant infecting species. Adult worms feed on the blood of a host and can cause iron deficiency anaemia, especially in high-risk populations (children and women of childbearing age). Almost 500 million people in developing tropical countries are infected, and simulation models estimate that hookworm infection is responsible for >4 million disability-adjusted life years lost annually. Humans mount an immune response to hookworms, but it is mostly unsuccessful at removing adult worms from the bowel. Accordingly, the host switches to an immune-tolerant state that enables hookworms to reside in the gut for many years. Although anthelmintic drugs are available and widely used, their efficacy varies and the drugs do not prevent reinfection. Thus, other control strategies aimed at improving water quality, sanitation and hygiene are needed. In addition, efforts are underway to develop a human hookworm vaccine through public-private partnerships. However, hookworms could also be a resource; as hookworms have the capability to regulate the host's inflammation, researchers are experimentally infecting patients to treat some inflammatory diseases as an approach to discover new anti-inflammatory molecules. This area of endeavour might well yield new biotherapeutics for autoimmune and allergic diseases.
Collapse
Affiliation(s)
- Alex Loukas
- Centre for Biodiscovery and Molecular Development of Therapeutics, Australian Institute of Tropical Health and Medicine, Building E4, James Cook University, McGregor Rd, Smithfield, Cairns, Queensland 4878, Australia
| | - Peter J Hotez
- Departments of Pediatrics and Molecular Virology and Microbiology, National School of Tropical Medicine, Baylor College Of Medicine, Houston, Texas, USA.,Sabin Vaccine Institute, Houston, Texas, USA.,Texas Children's Hospital Center for Vaccine Development, Houston, Texas, USA
| | - David Diemert
- Department of Microbiology, Tropical Medicine and Immunology, George Washington University, Washington DC, USA.,Sabin Vaccine Institute, Washington DC, USA
| | - Maria Yazdanbakhsh
- Department of Parasitology, Leiden University Medical Centre, Leiden, The Netherlands
| | - James S McCarthy
- Queensland Institute of Medical Research (QIMR) Berghofer Medical Research Institute, Brisbane, Queensland, Australia.,University of Queensland, Brisbane, Queensland, Australia
| | | | - John Croese
- Centre for Biodiscovery and Molecular Development of Therapeutics, Australian Institute of Tropical Health and Medicine, Building E4, James Cook University, McGregor Rd, Smithfield, Cairns, Queensland 4878, Australia.,Department of Gastroenterology, Prince Charles Hospital, Brisbane, Queensland, Australia
| | - Jeffrey M Bethony
- Department of Microbiology, Tropical Medicine and Immunology, George Washington University, Washington DC, USA
| |
Collapse
|
15
|
Identification and characterization of immunodominant linear epitopes on the antigenic region of a serine protease in newborn Trichinella larvae. J Helminthol 2015; 90:232-7. [PMID: 25989815 DOI: 10.1017/s0022149x15000267] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
An immunodominant serine protease of Trichinella spiralis named NBL1 showed encouraging potential in early diagnosis of trichinellosis in pigs and elicited protective immune responses during infection of animals. To further define serological reagents for diagnostic use, the specific epitopes on NBL protein recognized by the antibody responses of different susceptible hosts need to be defined. The present study described comprehensive mapping of immunodominant linear epitopes in the antigenic region (NBL-C, the C-terminal part of the protein) using various serum samples obtained from three kinds of hosts - pig, wild boar and mice. We identified six peptides which were commonly recognized by sera from pigs experimentally infected with Trichinella and pigs immunized with rNBL1-C; five and four peptides were recognized by sera from wild boars and mice infected with Trichinella, respectively. Three peptides (NBL1-6, -7 and -9) were commonly recognized by antisera in all three hosts, which share the sequence PSSGSRPTYP. We also found that one peptide (NBL1-12) was only recognized by antibodies from pigs immunized with rNBL1-C. The identification of specific epitopes targeted by the host antibody response is important both for understanding the natural response to infection and for the development of subunit vaccines and diagnostic tools for trichinellosis.
Collapse
|
16
|
Schafer A, Leal M, Molento M, Aires A, Duarte M, Carvalho F, Tonin A, Schmidt L, Flores E, França R, Grando T, Minho A, Krause A, Antoniazzi A, Lopes S. Immune response of lambs experimentally infected with Haemonchus contortus and parenterally treated with a combination of zinc and copper. Small Rumin Res 2015. [DOI: 10.1016/j.smallrumres.2014.10.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
17
|
The crowding effect in Ancylostoma ceylanicum: density-dependent effects on an experimental model of infection. Parasitol Res 2014; 113:4611-21. [PMID: 25293765 DOI: 10.1007/s00436-014-4151-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Accepted: 09/23/2014] [Indexed: 10/24/2022]
Abstract
This study compared the course of Ancylostoma ceylanicum infection in hamsters infected with different inocula and the consequences for the host and helminth populations. The average of adult worms recovered, according to the number of third stage larva used, were 28.0, 24.8, 24.6, and 24.8% to inocula size of 25 L3, 75 L3, 125 L3, and 250 L3, respectively. The size of the inoculum did not affect the establishment, survival, or fecundity of adult helminths. Reductions in the red blood cell and hemoglobin levels in the infected group were inversely proportional to the number of white blood cells. Moreover, differential cell counting revealed a positive correlation between the worm load and leucocyte numbers. The humoral response against excretion-secretion antigens was more robust and sensitive compared with the response against crude extract, with no direct linear correlation with the number of worms. The effect of the population density was more evident in females.
Collapse
|
18
|
Karrow NA, Goliboski K, Stonos N, Schenkel F, Peregrine A. Review: Genetics of helminth resistance in sheep. CANADIAN JOURNAL OF ANIMAL SCIENCE 2014. [DOI: 10.4141/cjas2013-036] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Karrow, N. A., Goliboski, K., Stonos, N., Schenkel, F. and Peregrine, A. 2014. Review: Genetics of helminth resistance in sheep. Can. J. Anim. Sci. 94: 1–9. Gastrointestinal helminth parasites are an important source of economic loss to sheep producers. A rapid increase in anthelmintic resistance has occurred around the globe; therefore, the industry is exploring alternative strategies such as genetic selection to control losses attributed to helminth infection. Since helminths have co-evolved with sheep for millions of years, natural selection for enhanced helminth resistance has occurred within certain breeds from various parts of the world. These breeds of sheep are being used to better understand the genetic aspects of helminth resistance. If the genetic variants that contribute to this phenotype can be identified, it may be possible to use selection strategies to introduce resistance alleles into other breeds or to increase their frequency within breeds. This review will provide an up-to-date overview of the pathology of helminth disease, the immune response to helminth infection, and the search for genes that confer helminth resistance.
Collapse
Affiliation(s)
- Niel A. Karrow
- Center for the Genetic Improvement of Livestock, Department of Animal & Poultry Science, University of Guelph, Guelph, Ontario, Canada N1G 2W1
| | - Katherine Goliboski
- Center for the Genetic Improvement of Livestock, Department of Animal & Poultry Science, University of Guelph, Guelph, Ontario, Canada N1G 2W1
| | - Nancy Stonos
- Center for the Genetic Improvement of Livestock, Department of Animal & Poultry Science, University of Guelph, Guelph, Ontario, Canada N1G 2W1
| | - Flavio Schenkel
- Center for the Genetic Improvement of Livestock, Department of Animal & Poultry Science, University of Guelph, Guelph, Ontario, Canada N1G 2W1
| | - Andrew Peregrine
- Department of Pathobiology, University of Guelph, Guelph, Ontario, Canada, N1G 2W1
| |
Collapse
|
19
|
Shaw R, Morris C, Wheeler M. Genetic and phenotypic relationships between carbohydrate larval antigen (CarLA) IgA, parasite resistance and productivity in serial samples taken from lambs after weaning. Int J Parasitol 2013; 43:661-7. [DOI: 10.1016/j.ijpara.2013.03.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2013] [Revised: 03/15/2013] [Accepted: 03/18/2013] [Indexed: 12/21/2022]
|
20
|
Prednisolone and cyclosporine A: Effects on an experimental model of ancylostomiasis. Exp Parasitol 2013; 133:80-8. [PMID: 23142084 DOI: 10.1016/j.exppara.2012.10.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2012] [Revised: 09/20/2012] [Accepted: 10/19/2012] [Indexed: 10/27/2022]
|
21
|
Davey D, Manickam N, Simms BT, Harrison LM, Vermeire JJ, Cappello M. Frequency and intensity of exposure mediate resistance to experimental infection with the hookworm, Ancylostoma ceylanicum. Exp Parasitol 2012; 133:243-9. [PMID: 23232252 DOI: 10.1016/j.exppara.2012.11.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2012] [Revised: 10/30/2012] [Accepted: 11/14/2012] [Indexed: 01/28/2023]
Abstract
Hookworms are bloodfeeding intestinal nematodes that are a major cause of anemia in resource-limited countries. Despite repeated exposure beginning in early childhood, humans retain lifelong susceptibility to infection without evidence of sterilizing immunity. In contrast, experimental infection of laboratory animals is typically characterized by varying degrees of resistance following primary infection, although the mechanisms underlying this phenomenon remain unknown. In this study, hamsters subjected to a single drug-terminated infection with 100 third stage hookworm larvae were confirmed to be resistant to pathological effects following a subsequent challenge. In a second experiment, hamsters infected twice-weekly with 10 third stage larvae (low inoculum) exhibited clinical and parasitological evidence of continued susceptibility, while those given 100 L3 (high inoculum) developed apparent resistance within 3 days following the initial exposure. The kinetics of parasite-specific IgA, IgM, and IgG antibody production varied by group, which suggests that the humoral immune response to hookworm infection is stimulated by the nature (frequency and intensity) of larval exposure. These results suggest that intermittent low-inoculum larval exposure, which is characterized by prolonged susceptibility to infection, may serve as a more representative model of human hookworm disease for studies of pathogenesis, as well as drug and vaccine development.
Collapse
Affiliation(s)
- Dylan Davey
- Program in International Child Health, Department of Pediatrics, Yale School of Medicine, New Haven, CT 06520, USA
| | | | | | | | | | | |
Collapse
|
22
|
Leon-Cabrera S, Cruz-Rivera M, Mendlovic F, Romero-Valdovinos M, Vaughan G, Salazar AM, Avila G, Flisser A. Immunological mechanisms involved in the protection against intestinal taeniosis elicited by oral immunization with Taenia solium calreticulin. Exp Parasitol 2012; 132:334-40. [PMID: 22921496 DOI: 10.1016/j.exppara.2012.08.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2012] [Revised: 07/05/2012] [Accepted: 08/01/2012] [Indexed: 10/28/2022]
Abstract
Oral immunization with functional recombinant Taenia solium calreticulin (rTsCRT) induces 37% reduction in tapeworm burden in the experimental model of intestinal taeniosis in hamsters. Furthermore, tapeworms recovered from vaccinated animals exhibit diminished length, being frequently found in more posterior parts of the small intestine. The aim of this study was to analyze the immunological mechanisms involved in protection in response to rTsCRT oral immunization. Hamsters were orally immunized with rTsCRT using cholera toxin (CT) as adjuvant, weekly for 4 weeks. Fifteen days after the last boost animals were challenged with four T. solium cysticerci. Reduction in the adult worm recovery and increased transcription of mRNA for IL-4 and IFN-γ in the mucosa of rTsCRT+CT immunized animals were observed. Immunization also induced goblet cell hyperplasia in the mucosa surrounding the implantation site of the parasite. Specific IgG and IgA antibodies in serum and fecal supernatants were detected after the second immunization, being more pronounced after challenge. Our data suggest that oral vaccination with rTsCRT+CT regulates a local expression of IL-4 and IFN-γ, stimulating secretion of IgA that, together with the increase of goblet cells and mucin production, could result in an unfavorable environment for T. solium promoting an impaired tapeworm development.
Collapse
Affiliation(s)
- Sonia Leon-Cabrera
- Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México, Av. Universidad 3000, Colonia Copilco-Universidad, DF 04510, México, Mexico
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Twenty-first century progress toward the global control of human hookworm infection. Curr Infect Dis Rep 2011; 13:210-7. [PMID: 21462001 DOI: 10.1007/s11908-011-0182-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Hookworms are bloodsucking nematodes that afflict up to 740 million persons in tropical and subtropical regions, with Asia and sub-Saharan Africa exhibiting particularly high infection rates. Prevalence, intensity, and pathology often vary considerably at both the regional and local level, and may be influenced by coinfection with other parasitic infections such as malaria. Immunoepidemiological studies suggest that hookworms manipulate the host immune response and may provide some protection from allergy and asthma. There has been substantial progress in elucidating the molecular pathogenesis of hookworm disease, with anticoagulants, protease inhibitors, digestive proteases, and novel excretory/secretory proteins being of particular interest. Mass chemotherapy remains a mainstay of hookworm control strategies, although continued use of drugs may lead to reduced efficacy and treatment failures have been observed. Consequently, a need exists for innovative approaches, such as vaccination; recent studies have identified and/or evaluated candidate vaccine antigens in human and animal models.
Collapse
|
24
|
Humphries D, Mosites E, Otchere J, Twum WA, Woo L, Jones-Sanpei H, Harrison LM, Bungiro RD, Benham-Pyle B, Bimi L, Edoh D, Bosompem K, Wilson M, Cappello M. Epidemiology of hookworm infection in Kintampo North Municipality, Ghana: patterns of malaria coinfection, anemia, and albendazole treatment failure. Am J Trop Med Hyg 2011; 84:792-800. [PMID: 21540391 DOI: 10.4269/ajtmh.2011.11-0003] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
A cross-sectional pilot study of hookworm infection was carried out among 292 subjects from 62 households in Kintampo North, Ghana. The overall prevalence of hookworm infection was 45%, peaking in those 11-20 years old (58.5%). In children, risk factors for hookworm infection included coinfection with malaria and increased serum immunoglobulin G reactivity to hookworm secretory antigens. Risk factors for infection in adults included poor nutritional status, not using a latrine, not wearing shoes, and occupation (farming). Although albendazole therapy was associated with an overall egg reduction rate of 82%, 37 subjects (39%) remained infected. Among those who failed therapy, treatment was not associated with a significant reduction in egg excretion, and nearly one-third had higher counts on repeat examination. These data confirm a high prevalence of low-intensity hookworm infection in central Ghana and its association with poor nutritional status. The high rate of albendazole failure raises concern about emerging resistance.
Collapse
Affiliation(s)
- Debbie Humphries
- School of Public Health, Yale University, 60 College Street, New Haven, CT 06520, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Wiwanitkit V. Immunoglobulin and Iron Deficiency Anemia. Indian J Hematol Blood Transfus 2011; 27:119. [DOI: 10.1007/s12288-011-0070-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2010] [Accepted: 04/14/2011] [Indexed: 11/28/2022] Open
|
26
|
Kucera K, Harrison LM, Cappello M, Modis Y. Ancylostoma ceylanicum excretory-secretory protein 2 adopts a netrin-like fold and defines a novel family of nematode proteins. J Mol Biol 2011; 408:9-17. [PMID: 21352830 DOI: 10.1016/j.jmb.2011.02.033] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2011] [Revised: 02/12/2011] [Accepted: 02/15/2011] [Indexed: 10/18/2022]
Abstract
Hookworms are human parasites that have devastating effects on global health, particularly in underdeveloped countries. Ancylostoma ceylanicum infects humans and animals, making it a useful model organism to study disease pathogenesis. A. ceylanicum excretory-secretory protein 2 (AceES-2), a highly immunoreactive molecule secreted by adult worms at the site of intestinal attachment, is partially protective when administered as a mucosal vaccine against hookworm anemia. The crystal structure of AceES-2 determined at 1.75 Å resolution shows that it adopts a netrin-like fold similar to that found in tissue inhibitors of matrix metalloproteases (TIMPs) and in complement factors C3 and C5. However, recombinant AceES-2 does not significantly inhibit the 10 most abundant human matrix metalloproteases or complement-mediated cell lysis. The presence of a highly acidic surface on AceES-2 suggests that it may function as a cytokine decoy receptor. Several small nematode proteins that have been annotated as TIMPs or netrin-domain-containing proteins display sequence homology in structurally important regions of AceES-2's netrin-like fold. Together, our results suggest that AceES-2 defines a novel family of nematode netrin-like proteins, which may function to modulate the host immune response to hookworm and other parasites.
Collapse
Affiliation(s)
- Kaury Kucera
- Department of Molecular Biophysics and Biochemistry, Yale University, 266 Whitney Avenue, New Haven, CT 06520, USA
| | | | | | | |
Collapse
|
27
|
Fonseca-Coronado S, Ruiz-Tovar K, Pérez-Tapia M, Mendlovic F, Flisser A. Taenia solium: Immune response against oral or systemic immunization with purified recombinant calreticulin in mice. Exp Parasitol 2011; 127:313-7. [DOI: 10.1016/j.exppara.2010.07.017] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2010] [Revised: 05/28/2010] [Accepted: 07/27/2010] [Indexed: 02/01/2023]
|
28
|
Dondji B, Sun T, Bungiro RD, Vermeire JJ, Harrison LM, Bifulco C, Cappello M. CD4 T cells mediate mucosal and systemic immune responses to experimental hookworm infection. Parasite Immunol 2010; 32:406-13. [PMID: 20500671 DOI: 10.1111/j.1365-3024.2010.01204.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Hookworm infection is associated with anaemia and malnutrition in many resource-limited countries. Ancylostoma hookworms have previously been shown to modulate host cellular immune responses through multiple mechanisms, including reduced mitogen-mediated lymphocyte proliferation, impaired antigen presentation/processing, and relative reductions in CD4(+) T cells in the spleen and mesenteric lymph nodes. Syrian hamsters were depleted of CD4(+) for up to 9 days following intraperitoneal injection (200 microg) of a murine anti-mouse CD4 monoclonal IgG (clone GK1.5). CD4(+) T-cell-depleted hamsters infected with the hookworm Ancylostoma ceylanicum exhibited a threefold higher mean intestinal worm burden and more severe anaemia than animals that received isotype control IgG. In addition, depletion of CD4(+) T cells was associated with impaired cellular and humoral (serum and mucosal) immune responses to hookworm antigens. These data demonstrate an effector role for CD4(+) T cells in hookworm immunity and disease pathogenesis. Ultimately, these studies may yield important insights into the relationship between intestinal nematode infections and diseases that are associated with CD4(+) T-cell depletion, including HIV.
Collapse
Affiliation(s)
- B Dondji
- Program in International Child Health, Department of Pediatrics, Yale University School of Medicine, New Haven CT, USA
| | | | | | | | | | | | | |
Collapse
|
29
|
The mucosal response of hamsters to a low-intensity superimposed secondary infection with the hookworm Ancylostoma ceylanicum. J Helminthol 2010; 85:56-65. [DOI: 10.1017/s0022149x10000283] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
AbstractAn experiment was conducted to assess the mucosal response to low-dose superimposed challenge with Ancylostoma ceylanicum. Hamsters were assigned to five treatment groups (1–5 respectively): naïve controls; primary immunizing infection controls; challenge controls; immunized, anthelmintic–treated, challenged group; immunized, superimposed challenge group. Group 4 hamsters were resistant to challenge, whereas most of the challenge inoculum larvae established in Group 5. Villus height and crypt depth measurements were initially markedly divergent between these two groups but over time post-challenge (pc) values for both parameters drew nearer and by day 31 pc they were indistinguishable. The greatest change was experienced by Group 4 which showed increasing inflammation and gut pathology during the challenge infection. Mitotic activity in crypts and mast cell counts in the mucosa were highest in Group 5 on day 10 pc, but there was little to distinguish between Groups 4 and 5 by day 31 pc. Goblet cell, eosinophil and Paneth cell counts were very similar throughout in both groups but, in the case of Paneth cells, they were consistent with a possible role in protective immunity to challenge. Some adult worms survived throughout the period of intense inflammation, emphasizing their tremendous resilience and resistance to mucosal host protective responses.
Collapse
|
30
|
Alkazmi L, Behnke JM. The mucosal response to secondary infection with Ancylostoma ceylanicum in hamsters immunized by abbreviated primary infection. Parasite Immunol 2010; 32:47-56. [PMID: 20042007 DOI: 10.1111/j.1365-3024.2009.01158.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
We assessed the mucosal response of previously infected hamsters to low-dose challenge with the hookworm, Ancylostoma ceylanicum. Hamsters were assigned to five treatment groups (Groups 1-5, respectively): naïve, controls; uninterrupted primary infection from day 0; infected, but treated with anthelmintic on day 35 p.i.; challenge control group given only the second infection on day 63; infected initially, cleared of worms and then challenged. Animals were culled on days 73 and 94 (10 and 31 days after challenge), but additional animals were culled from Group 5 on days 80 and 87. The results showed that villus height declined markedly and progressively over time after challenge in Group 5, whilst depth of the Crypts of Lieberkühn and number of mitotic figures in the crypts increased. Mucosal mast cell numbers were only marginally higher than those in naïve controls and not as high as those in mice with uninterrupted infections. Goblet cell counts showed a major increase, as did eosinophils in relation to naïve controls. Paneth cells were also elevated, but did not change over the course of the experiment. The results also drew attention to the tremendous resilience of hookworms, some adult worms surviving throughout, despite highly inflamed intestines.
Collapse
Affiliation(s)
- L Alkazmi
- School of Biology, University of Nottingham, Nottingham, UK
| | | |
Collapse
|
31
|
Fairfax KC, Vermeire JJ, Harrison LM, Bungiro RD, Grant W, Husain SZ, Cappello M. Characterisation of a fatty acid and retinol binding protein orthologue from the hookworm Ancylostoma ceylanicum. Int J Parasitol 2009; 39:1561-71. [PMID: 19591834 DOI: 10.1016/j.ijpara.2009.06.005] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2009] [Revised: 06/04/2009] [Accepted: 06/09/2009] [Indexed: 01/08/2023]
Abstract
Hookworms, bloodfeeding intestinal nematodes, infect nearly one billion people in resource limited countries and are a leading cause of anaemia and malnutrition. Like other nematodes, hookworms lack the capacity to synthesise essential fatty acids de novo and therefore must acquire those from exogenous sources. The cDNA corresponding to a putative Ancylostoma ceylanicum fatty acid and retinol binding protein-1 (AceFAR-1) was amplified from adult hookworm mRNA. Studies using quantitative reverse transcriptase real-time PCR demonstrate that AceFAR-1 transcripts are most abundant in the earliest developmental stages of the parasite, and greater in females than males. Using in vitro assays, the recombinant AceFAR-1 (rAceFAR-1) was shown to bind individual fatty acids with equilibrium dissociation constants in the low micromolar range. The pattern of fatty acid uptake by live adult worms cultured ex vivo was similar to the in vitro binding profile of rAceFAR-1, raising the possibility that the native protein may be involved in acquisition of fatty acids by A. ceylanicum. Animals vaccinated orally with rAceFAR-1 and the mucosal adjuvant cholera toxin exhibited a statistically significant (40-47%) reduction in intestinal worm burden compared with controls immunized with antigen or adjuvant alone. Together, these data suggest a potential role for AceFAR-1 in hookworm biology, making it a potentially valuable target for drug and vaccine development.
Collapse
Affiliation(s)
- Keke C Fairfax
- Infectious Diseases Section and Program in International Child Health, Department of Pediatrics, Yale School of Medicine, New Haven, CT 06520, USA
| | | | | | | | | | | | | |
Collapse
|
32
|
AdultBrugia malayimitochondrial and nuclear fractions impart Th1-associated sizeable protection against infective larval challenges inMastomys coucha. J Helminthol 2009; 83:83-95. [DOI: 10.1017/s0022149x08133582] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
AbstractProtective immunity to the subperiodic human filariid,Brugia malayi, was explored in the rodent host,Mastomys couchaafter vaccination with subcellular fractions derived from the adult stage of the parasite. The highest level of protection was conferred in animals vaccinated with the ‘mitochondria rich’ (MT) fraction, in which microfilaraemia and worm burden were markedly reduced by 67.2 and 65.9%, respectively, followed by the ‘nucleus rich’ (NR) fraction, showing reductions of 62 and 52.3%, respectively, over the non-immunized control group. Mastomys vaccinated with MT and NR, displayed a significant increase in the level of antigen-specific serum immunoglobulin G (IgG). The levels of IgG2a, IgG2b and IgM antibody isotypes were remarkably elevated in both the MT and NR immunized groups, while IgG1 and IgG3 levels were low. Apart from antibodies, both these fractions also led to marked antigen-specific lymphoproliferationin vitro, along with enhanced release of nitric oxide by peritoneal macrophages. There was an increased population of CD4+ and CD8a+T-cells in MT immunized animals, as measured by flow cytometry, accompanied by elevated levels of proinflammatory cytokines; interferon gamma (IFN-γ), tumour necrosis factor alpha (TNF-α) and interleukin-1 beta (IL-1β) in the culture supernatants of the activated splenocytes. The results suggest that both NR and MT contain proinflammatory molecules which evoke a protective Th1 type of immune response.
Collapse
|