1
|
Ulucesme MC, Ozubek S, Aktas M. Experimental infection of purebred Saanen goats high pathogenicity and virulence of Babesia aktasi. PLoS Negl Trop Dis 2024; 18:e0012705. [PMID: 39621802 PMCID: PMC11637318 DOI: 10.1371/journal.pntd.0012705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 12/12/2024] [Accepted: 11/18/2024] [Indexed: 12/14/2024] Open
Abstract
Small ruminant babesiosis remains a neglected disease despite causing significant economic losses to sheep and goat herds in many regions around the world. The pathogenesis and clinical manifestations of ovine babesiosis are well-known, but there is a lack of information regarding caprine babesiosis. Since the discovery of the first Babesia spp. in 1888, several species/subspecies/genotypes, including Babesia aktasi, have been described. Our recent molecular survey revealed that the parasite is highly prevalent (22.5%) in indigenous goats from Mediterranean region of Türkiye. The aim of this experimental study was to determine the pathogenicity and virulence of B. aktasi in immunosuppressed (n = 5) and immunocompetent (n = 7) purebred Saanen goats. The goats were experimentally infected with fresh B. aktasi infected blood, and examined for clinical, parasitological, hematological, and serum biochemical findings throughout the infection. Following the parasite inoculation, intra-erythrocytic parasites were detected from the 1st day post-infection, followed by an increase in rectal temperature and parasitemia. The parasitemia was detected ranging from 4.3% to 33.5% in the immunosuppressed group, while it was 2.1% to 7.6% in the immunocompetent. Severe clinical symptoms characterized by anemia, jaundice, and hemoglobinuria developed in both groups. A statistically significant inverse correlation was observed between the increase in parasitemia and RBC, WBC, HCT, and Hb values in the goats compared to pre-infection levels. Values of AST, ALT, GGT, Total bilirubin, and Albumin showed a significant increase, with all the immunosuppressed goats dying on the 4th and 7th days post-infection, while four out of seven immunocompetent goats died on between 6-8th days. Severe edema in the lungs, frothy fluid in the trachea, jaundice in the subcutaneous and mesenteric fat, and dark red urine were detected in necropsy. The results obtained in this study demonstrated that B. aktasi was highly pathogenic to purebred Saanen goats. Current work assures valuable insights into the pathogenesis and virulence of B. aktasi and serves as a foundation for future studies to develop effective control strategies against caprine babesiosis.
Collapse
Affiliation(s)
- Mehmet Can Ulucesme
- Department of Parasitology, Faculty of Veterinary Medicine, University of Fırat, Elazig, Turkey
| | - Sezayi Ozubek
- Department of Parasitology, Faculty of Veterinary Medicine, University of Fırat, Elazig, Turkey
| | - Munir Aktas
- Department of Parasitology, Faculty of Veterinary Medicine, University of Fırat, Elazig, Turkey
| |
Collapse
|
2
|
Ozubek S, Ulucesme MC, Bastos RG, Alzan HF, Laughery JM, Suarez CE, Aktas M. Experimental infection of non-immunosuppressed and immunosuppressed goats reveals differential pathogenesis of Babesia aktasi n. sp. Front Cell Infect Microbiol 2023; 13:1277956. [PMID: 38029260 PMCID: PMC10651745 DOI: 10.3389/fcimb.2023.1277956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 10/18/2023] [Indexed: 12/01/2023] Open
Abstract
Babesiosis is an acute and persistent tick-borne disease caused by protozoan parasites of the genus Babesia. These hemoparasites affect vertebrates globally, resulting in symptoms such as high fever, anemia, jaundice, and even death. Advancements in molecular parasitology revealed new Babesia species/genotypes affecting sheep and goats, including Babesia aktasi n. sp., which is highly prevalent in goats from Turkiye's Mediterranean region. The objective of this study was to investigate the pathogenesis of B. aktasi infection in immunosuppressed (n=7) and non-immunosuppressed (n=6) goats. These animals were experimentally infected with fresh B. aktasi infected blood, and their clinical signs, hematological and serum biochemical parameters were monitored throughout the infection. The presence of parasites in the blood of immunosuppressed goats was detected by microscopic examination between 4 and 6 days after infection, accompanied by fever and increasing parasitemia. Goats that succumbed acute disease exhibited severe clinical signs, such as anemia, hemoglobinuria, and loss of appetite. However, the goats that survived showed milder clinical signs. In the non-immunosuppressed group, piroplasm forms of B. aktasi were observed in the blood within 2-5 days after inoculation, but with low (0.01-0.2%) parasitemia. Although these goats showed loss of appetite, typical signs of babesiosis were absent except for increased body temperature. Hematological analysis revealed significant decreases in the levels of red blood cells, leukocytes and platelet values post-infection in immunosuppressed goats, while no significant hematological changes were observed in non-immunosuppressed goats. In addition, serum biochemical analysis showed elevated transaminase liver enzymes levels, decreased glucose, and lower total protein values in the immunosuppressed group post-infection. Babesia aktasi, caused mild disease with minor clinical symptoms in non-immunosuppressed goats. However, in immunosuppressed goats, it exhibited remarkable pathogenicity, leading to severe clinical infections and death. In conclusion, this study provides valuable insights into the pathogenicity of the parasite and will serve as a foundation for future research aimed at developing effective prevention and control strategies against babesiosis in small ruminants. Further research is required to investigate the pathogenicity of B. aktasi in various goat breeds, other potential hosts, the vector ticks involved, and its presence in natural reservoirs.
Collapse
Affiliation(s)
- Sezayi Ozubek
- Department of Parasitology, Faculty of Veterinary Medicine, University of Firat, Elazig, Türkiye
| | - Mehmet Can Ulucesme
- Department of Parasitology, Faculty of Veterinary Medicine, University of Firat, Elazig, Türkiye
| | - Reginaldo G. Bastos
- Animal Disease Research Unit, United States Department of Agricultural (USDA), Agricultural Research Service, Pullman, WA, United States
- Department of Veterinary Microbiology and Pathology, College of Veterinary Medicine, Washington State University, Pullman, WA, United States
| | - Heba F. Alzan
- Department of Veterinary Microbiology and Pathology, College of Veterinary Medicine, Washington State University, Pullman, WA, United States
- Parasitology and Animal Diseases Department, National Research Center, Giza, Egypt
| | - Jacob M. Laughery
- Department of Veterinary Microbiology and Pathology, College of Veterinary Medicine, Washington State University, Pullman, WA, United States
| | - Carlos E. Suarez
- Animal Disease Research Unit, United States Department of Agricultural (USDA), Agricultural Research Service, Pullman, WA, United States
- Department of Veterinary Microbiology and Pathology, College of Veterinary Medicine, Washington State University, Pullman, WA, United States
| | - Munir Aktas
- Department of Parasitology, Faculty of Veterinary Medicine, University of Firat, Elazig, Türkiye
| |
Collapse
|
3
|
Pathogenesis of Anemia in Canine Babesiosis: Possible Contribution of Pro-Inflammatory Cytokines and Chemokines-A Review. Pathogens 2023; 12:pathogens12020166. [PMID: 36839438 PMCID: PMC9962459 DOI: 10.3390/pathogens12020166] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/15/2023] [Accepted: 01/18/2023] [Indexed: 01/22/2023] Open
Abstract
Canine babesiosis is a tick-borne protozoan disease caused by intraerythrocytic parasites of the genus Babesia. The infection may lead to anemia in infected dogs. However, anemia is not directly caused by the pathogen. The parasite's developmental stages only have a marginal role in contributing to a decreased red blood cell (RBC) count. The main cause of anemia in affected dogs is the immune response to the infection. This response includes antibody production, erythrophagocytosis, oxidative damage of RBCs, complement activation, and antibody-dependent cellular cytotoxicity. Moreover, both infected and uninfected erythrocytes are retained in the spleen and sequestered in micro-vessels. All these actions are driven by pro-inflammatory cytokines and chemokines, especially IFN-γ, TNF-α, IL-6, and IL-8. Additionally, imbalance between the actions of pro- and anti-inflammatory cytokines plays a role in patho-mechanisms leading to anemia in canine babesiosis. This article is a review of the studies on the pathogenesis of anemia in canine babesiosis and related diseases, such as bovine or murine babesiosis and human or murine malaria, and the role of pro-inflammatory cytokines and chemokines in the mechanisms leading to anemia in infected dogs.
Collapse
|
4
|
Bastos RG, Laughery JM, Ozubek S, Alzan HF, Taus NS, Ueti MW, Suarez CE. Identification of novel immune correlates of protection against acute bovine babesiosis by superinfecting cattle with in vitro culture attenuated and virulent Babesia bovis strains. Front Immunol 2022; 13:1045608. [PMID: 36466866 PMCID: PMC9716085 DOI: 10.3389/fimmu.2022.1045608] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 11/02/2022] [Indexed: 08/12/2023] Open
Abstract
The apicomplexan tickborne parasites Babesia bovis and B. bigemina are the major causative agents of bovine babesiosis, a disease that negatively affects the cattle industry and food safety around the world. The absence of correlates of protection represents one major impediment for the development of effective and sustainable vaccines against bovine babesiosis. Herein we superinfected cattle with attenuated and virulent strains of B. bovis to investigate immune correlates of protection against acute bovine babesiosis. Three 6-month-old Holstein calves were infected intravenously (IV) with the in vitro culture attenuated Att-S74-T3Bo B. bovis strain (106 infected bovine red blood cells (iRBC)/calf) while three age-matched Holstein calves were inoculated IV with normal RBC as controls (106 RBC/calf). All Att-S74-T3Bo-infected calves showed a significant increase in temperature early after inoculation but recovered without treatment. Att-S74-T3Bo-infected calves also developed: (a) monocytosis, neutropenia, and CD4+ lymphopenia in peripheral blood on days 3 to 7 post-inoculation; (b) significant levels of TNFα, CXCL10, IFNγ, IL-4, and IL-10 in sera at day 6 after infection; and (c) IgM and IgG against B. bovis antigens, starting at days 10 and 30 post-inoculation, respectively. At 46 days post-Att-S74-T3Bo inoculation, all experimental calves were infected IV with the homologous virulent B. bovis strain Vir-S74-T3Bo (107 iRBC/calf). All Att-S74-T3Bo-infected calves survived superinfection with Vir-S74-T3Bo without displaying signs of acute babesiosis. In contrast, control animals showed signs of acute disease, starting at day 10 post-Vir-S74-T3Bo infection, and two of them were humanely euthanized at days 13 and 14 after inoculation due to the severity of their symptoms. Also, control calves showed higher (P<0.05) parasite load in peripheral blood compared to animals previously exposed to Att-S74-T3Bo. No significant alterations in the profile of leukocytes and cytokines were observed in Att-S74-T3Bo-inoculated after Vir-S74-T3Bo infection. In conclusion, data demonstrate novel changes in the profile of blood immune cells and cytokine expression in peripheral blood that are associated with protection against acute bovine babesiosis. These identified immune correlates of protection may be useful for designing effective and sustainable vaccines against babesiosis in cattle.
Collapse
Affiliation(s)
- Reginaldo G. Bastos
- Department of Veterinary Microbiology and Pathology, College of Veterinary Medicine, Washington State University, Pullman, WA, United States
| | - Jacob M. Laughery
- Department of Veterinary Microbiology and Pathology, College of Veterinary Medicine, Washington State University, Pullman, WA, United States
| | - Sezayi Ozubek
- Department of Parasitology, Faculty of Veterinary Medicine, University of Firat, Elazig, Turkey
| | - Heba F. Alzan
- Department of Veterinary Microbiology and Pathology, College of Veterinary Medicine, Washington State University, Pullman, WA, United States
- Parasitology and Animal Diseases Department, Veterinary Research Institute, National Research Center, Dokki, Giza, Egypt
| | - Naomi S. Taus
- Animal Disease Research Unit, United States Department of Agricultural - Agricultural Research, Pullman, WA, United States
| | - Massaro W. Ueti
- Department of Veterinary Microbiology and Pathology, College of Veterinary Medicine, Washington State University, Pullman, WA, United States
- Animal Disease Research Unit, United States Department of Agricultural - Agricultural Research, Pullman, WA, United States
| | - Carlos E. Suarez
- Department of Veterinary Microbiology and Pathology, College of Veterinary Medicine, Washington State University, Pullman, WA, United States
- Animal Disease Research Unit, United States Department of Agricultural - Agricultural Research, Pullman, WA, United States
| |
Collapse
|
5
|
Bastos RG, Alzan HF, Rathinasamy VA, Cooke BM, Dellagostin OA, Barletta RG, Suarez CE. Harnessing Mycobacterium bovis BCG Trained Immunity to Control Human and Bovine Babesiosis. Vaccines (Basel) 2022; 10:123. [PMID: 35062784 PMCID: PMC8781211 DOI: 10.3390/vaccines10010123] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 01/07/2022] [Accepted: 01/10/2022] [Indexed: 01/02/2023] Open
Abstract
Babesiosis is a disease caused by tickborne hemoprotozoan apicomplexan parasites of the genus Babesia that negatively impacts public health and food security worldwide. Development of effective and sustainable vaccines against babesiosis is currently hindered in part by the absence of definitive host correlates of protection. Despite that, studies in Babesia microti and Babesia bovis, major causative agents of human and bovine babesiosis, respectively, suggest that early activation of innate immune responses is crucial for vertebrates to survive acute infection. Trained immunity (TI) is defined as the development of memory in vertebrate innate immune cells, allowing more efficient responses to subsequent specific and non-specific challenges. Considering that Mycobacterium bovis bacillus Calmette-Guerin (BCG), a widely used anti-tuberculosis attenuated vaccine, induces strong TI pro-inflammatory responses, we hypothesize that BCG TI may protect vertebrates against acute babesiosis. This premise is supported by early investigations demonstrating that BCG inoculation protects mice against experimental B. microti infection and recent observations that BCG vaccination decreases the severity of malaria in children infected with Plasmodium falciparum, a Babesia-related parasite. We also discuss the potential use of TI in conjunction with recombinant BCG vaccines expressing Babesia immunogens. In conclusion, by concentrating on human and bovine babesiosis, herein we intend to raise awareness of BCG TI as a strategy to efficiently control Babesia infection.
Collapse
Affiliation(s)
- Reginaldo G. Bastos
- Department of Veterinary Microbiology and Pathology, College of Veterinary Medicine, Washington State University, Pullman, WA 99164-7040, USA;
| | - Heba F. Alzan
- Department of Veterinary Microbiology and Pathology, College of Veterinary Medicine, Washington State University, Pullman, WA 99164-7040, USA;
- Parasitology and Animal Diseases Department, Veterinary Research Institute, National Research Center, Giza 12622, Egypt
| | - Vignesh A. Rathinasamy
- Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD 4870, Australia; (V.A.R.); (B.M.C.)
| | - Brian M. Cooke
- Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD 4870, Australia; (V.A.R.); (B.M.C.)
| | - Odir A. Dellagostin
- Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas 96010-900, Rio Grande Do Sul, Brazil;
| | - Raúl G. Barletta
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583-0905, USA;
| | - Carlos E. Suarez
- Animal Disease Research Unit, United States Department of Agriculture-Agricultural Research Service, Pullman, WA 99164-7040, USA
| |
Collapse
|
6
|
Torina A, Villari S, Blanda V, Vullo S, La Manna MP, Shekarkar Azgomi M, Di Liberto D, de la Fuente J, Sireci G. Innate Immune Response to Tick-Borne Pathogens: Cellular and Molecular Mechanisms Induced in the Hosts. Int J Mol Sci 2020; 21:ijms21155437. [PMID: 32751625 PMCID: PMC7432002 DOI: 10.3390/ijms21155437] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 07/28/2020] [Accepted: 07/29/2020] [Indexed: 12/11/2022] Open
Abstract
Many pathogens are transmitted by tick bites, including Anaplasma spp., Ehrlichia spp., Rickettsia spp., Babesia and Theileria sensu stricto species. These pathogens cause infectious diseases both in animals and humans. Different types of immune effector mechanisms could be induced in hosts by these microorganisms, triggered either directly by pathogen-derived antigens or indirectly by molecules released by host cells binding to these antigens. The components of innate immunity, such as natural killer cells, complement proteins, macrophages, dendritic cells and tumor necrosis factor alpha, cause a rapid and intense protection for the acute phase of infectious diseases. Moreover, the onset of a pro-inflammatory state occurs upon the activation of the inflammasome, a protein scaffold with a key-role in host defense mechanism, regulating the action of caspase-1 and the maturation of interleukin-1β and IL-18 into bioactive molecules. During the infection caused by different microbial agents, very similar profiles of the human innate immune response are observed including secretion of IL-1α, IL-8, and IFN-α, and suppression of superoxide dismutase, IL-1Ra and IL-17A release. Innate immunity is activated immediately after the infection and inflammasome-mediated changes in the pro-inflammatory cytokines at systemic and intracellular levels can be detected as early as on days 2–5 after tick bite. The ongoing research field of “inflammasome biology” focuses on the interactions among molecules and cells of innate immune response that could be responsible for triggering a protective adaptive immunity. The knowledge of the innate immunity mechanisms, as well as the new targets of investigation arising by bioinformatics analysis, could lead to the development of new methods of emergency diagnosis and prevention of tick-borne infections.
Collapse
Affiliation(s)
- Alessandra Torina
- Istituto Zooprofilattico Sperimentale della Sicilia, Via Gino Marinuzzi 3, 90100 Palermo, Italy; (A.T.); (S.V.); (S.V.)
| | - Sara Villari
- Istituto Zooprofilattico Sperimentale della Sicilia, Via Gino Marinuzzi 3, 90100 Palermo, Italy; (A.T.); (S.V.); (S.V.)
| | - Valeria Blanda
- Istituto Zooprofilattico Sperimentale della Sicilia, Via Gino Marinuzzi 3, 90100 Palermo, Italy; (A.T.); (S.V.); (S.V.)
- Correspondence:
| | - Stefano Vullo
- Istituto Zooprofilattico Sperimentale della Sicilia, Via Gino Marinuzzi 3, 90100 Palermo, Italy; (A.T.); (S.V.); (S.V.)
| | - Marco Pio La Manna
- Central Laboratory of Advanced Diagnostic and Biological Research (CLADIBIOR), BIND, University Hospital “Paolo Giaccone”, Università degli studi di Palermo, Via del Vespro 129, 90100 Palermo, Italy; (M.P.L.M.); (M.S.A.); (D.D.L.); (G.S.)
| | - Mojtaba Shekarkar Azgomi
- Central Laboratory of Advanced Diagnostic and Biological Research (CLADIBIOR), BIND, University Hospital “Paolo Giaccone”, Università degli studi di Palermo, Via del Vespro 129, 90100 Palermo, Italy; (M.P.L.M.); (M.S.A.); (D.D.L.); (G.S.)
| | - Diana Di Liberto
- Central Laboratory of Advanced Diagnostic and Biological Research (CLADIBIOR), BIND, University Hospital “Paolo Giaccone”, Università degli studi di Palermo, Via del Vespro 129, 90100 Palermo, Italy; (M.P.L.M.); (M.S.A.); (D.D.L.); (G.S.)
| | - José de la Fuente
- SaBio, Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM, Ronda de Toledo s/n, 13005 Ciudad Real, Spain;
- Department of Veterinary Pathobiology, Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, OK 74078, USA
| | - Guido Sireci
- Central Laboratory of Advanced Diagnostic and Biological Research (CLADIBIOR), BIND, University Hospital “Paolo Giaccone”, Università degli studi di Palermo, Via del Vespro 129, 90100 Palermo, Italy; (M.P.L.M.); (M.S.A.); (D.D.L.); (G.S.)
| |
Collapse
|
7
|
Henning A, Clift SJ, Leisewitz AL. The pathology of the spleen in lethal canine babesiosis caused by Babesia rossi. Parasite Immunol 2020; 42:e12706. [PMID: 32119124 DOI: 10.1111/pim.12706] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 01/31/2020] [Accepted: 02/11/2020] [Indexed: 12/11/2022]
Abstract
To provide useful information based on the macropathology, histopathology and immunohistochemical investigation in the spleens of dogs with Babesia rossi infection. Control spleens were collected from four healthy dogs euthanized for welfare reasons. Nine dogs that died naturally because of a mono-infection with Babesia rossi were selected for the diseased group. One haematoxylin-and-eosin-stained section of splenic tissue from each of the infected and control dogs was examined under the light microscope. Immunohistochemical markers were applied to characterize different immunocyte populations. The application of analytic software enabled semi-quantitative comparison of leucocyte subpopulations. Routine splenic histopathology revealed diffuse intermingling of white and red pulp from infected dogs with a clear loss of distinction between these zones. Immunohistochemistry revealed an increase in the proportion of tissue resident and bone marrow origin macrophages in the infected spleens. Apart from a few remnant lymphocytes within the peri-arteriolar lymphatic sheaths and follicles, the majority of the immunocytes redistributed to the red pulp, supporting the observation of white and red pulp intermingling. The majority of our findings are in agreement with histomorphological descriptions of the spleen in a variety of noncanid mammalian hosts with lethal malaria or babesiosis.
Collapse
Affiliation(s)
- Alischa Henning
- Department of Paraclinical Sciences, Faculty of Veterinary Science, University of Pretoria, Onderstepoort, South Africa
| | - Sarah Jane Clift
- Department of Paraclinical Sciences, Faculty of Veterinary Science, University of Pretoria, Onderstepoort, South Africa
| | - Andrew Lambert Leisewitz
- Department of Companion Animal Clinical Studies, Faculty of Veterinary Science, University of Pretoria, Onderstepoort, South Africa
| |
Collapse
|
8
|
Suarez CE, Alzan HF, Silva MG, Rathinasamy V, Poole WA, Cooke BM. Unravelling the cellular and molecular pathogenesis of bovine babesiosis: is the sky the limit? Int J Parasitol 2019; 49:183-197. [PMID: 30690089 PMCID: PMC6988112 DOI: 10.1016/j.ijpara.2018.11.002] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 11/21/2018] [Accepted: 11/21/2018] [Indexed: 11/21/2022]
Abstract
The global impact of bovine babesiosis caused by the tick-borne apicomplexan parasites Babesia bovis, Babesia bigemina and Babesia divergens is vastly underappreciated. These parasites invade and multiply asexually in bovine red blood cells (RBCs), undergo sexual reproduction in their tick vectors (Rhipicephalus spp. for B. bovis and B. bigemina, and Ixodes ricinus for B. divergens) and have a trans-ovarial mode of transmission. Babesia parasites can cause acute and persistent infections to adult naïve cattle that can occur without evident clinical signs, but infections caused by B. bovis are associated with more severe disease and increased mortality, and are considered to be the most virulent agent of bovine babesiosis. In addition, babesiosis caused by B. divergens has an important zoonotic potential. The disease caused by B. bovis and B. bigemina can be controlled, at least in part, using therapeutic agents or vaccines comprising live-attenuated parasites, but these methods are limited in terms of their safety, ease of deployability and long-term efficacy, and improved control measures are urgently needed. In addition, expansion of tick habitats due to climate change and other rapidly changing environmental factors complicate efficient control of these parasites. While the ability to cause persistent infections facilitates transmission and persistence of the parasite in endemic regions, it also highlights their capacity to evade the host immune responses. Currently, the mechanisms of immune responses used by infected bovines to survive acute and chronic infections remain poorly understood, warranting further research. Similarly, molecular details on the processes leading to sexual reproduction and the development of tick-stage parasites are lacking, and such tick-specific molecules can be targets for control using alternative transmission blocking vaccines. In this review, we identify and examine key phases in the life-cycle of Babesia parasites, including dependence on a tick vector for transmission, sexual reproduction of the parasite in the midgut of the tick, parasite-dependent invasion and egression of bovine RBCs, the role of the spleen in the clearance of infected RBCs (IRBCs), and age-related disease resistance in cattle, as opportunities for developing improved control measures. The availability of integrated novel research approaches including "omics" (such as genomics, transcriptomics, and proteomics), gene modification, cytoadhesion assays, RBC invasion assays and methods for in vitro induction of sexual-stage parasites will accelerate our understanding of parasite vulnerabilities. Further, producing new knowledge on these vulnerabilities, as well as taking full advantage of existing knowledge, by filling important research gaps should result in the development of next-generation vaccines to control acute disease and parasite transmission. Creative and effective use of current and future technical and computational resources are needed, in the face of the numerous challenges imposed by these highly evolved parasites, for improving the control of this disease. Overall, bovine babesiosis is recognised as a global disease that imposes a serious burden on livestock production and human livelihood, but it largely remains a poorly controlled disease in many areas of the world. Recently, important progress has been made in our understanding of the basic biology and host-parasite interactions of Babesia parasites, yet a good deal of basic and translational research is still needed to achieve effective control of this important disease and to improve animal and human health.
Collapse
Affiliation(s)
- Carlos E Suarez
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA, United States; Animal Disease Research Unit, Agricultural Research Service, USDA, WSU, Pullman, WA, United States.
| | - Heba F Alzan
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA, United States; Parasitology and Animal Diseases Department, National Research Center, Dokki, Giza, Egypt
| | - Marta G Silva
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA, United States; Animal Disease Research Unit, Agricultural Research Service, USDA, WSU, Pullman, WA, United States
| | - Vignesh Rathinasamy
- Department of Microbiology, Biomedicine Discovery Institute, Monash University, Victoria 3800, Australia
| | - William A Poole
- Department of Microbiology, Biomedicine Discovery Institute, Monash University, Victoria 3800, Australia
| | - Brian M Cooke
- Department of Microbiology, Biomedicine Discovery Institute, Monash University, Victoria 3800, Australia.
| |
Collapse
|
9
|
Hermida MDR, de Melo CVB, Lima IDS, Oliveira GGDS, Dos-Santos WLC. Histological Disorganization of Spleen Compartments and Severe Visceral Leishmaniasis. Front Cell Infect Microbiol 2018; 8:394. [PMID: 30483481 PMCID: PMC6243053 DOI: 10.3389/fcimb.2018.00394] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 10/19/2018] [Indexed: 01/10/2023] Open
Abstract
The spleen is a secondary lymphoid organ responsible for immune surveillance against blood-circulating pathogens. Absence of the spleen is associated with increased susceptibility to systemic spread and fatal infection by different pathogens. Severe forms of visceral leishmaniasis are associated with disorganization of spleen compartments where cell interactions essential for splenic immunological function take place. White pulp atrophies, secondary lymphoid follicles and marginal zones vanish, and the boundaries separating white and red pulp blur. Leukocyte populations are reduced or disappear or are replaced by plasma cells. In this paper, we review the published data on spleen disorganization in severe forms of visceral leishmaniasis and propose a histological classification to help the exchange of information among research groups.
Collapse
|
10
|
Rautenbach Y, Goddard A, Thompson PN, Mellanby RJ, Leisewitz AL. A flow cytometric assessment of the lymphocyte immunophenotypes in dogs naturally infected with Babesia rossi. Vet Parasitol 2017; 241:26-34. [PMID: 28579026 DOI: 10.1016/j.vetpar.2017.05.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Revised: 04/20/2017] [Accepted: 05/06/2017] [Indexed: 11/28/2022]
Abstract
Immunity to Babesia infection requires both innate and acquired responses, including cell mediated- and humoral responses. The aims of this study were to investigate the variation in selected peripheral blood lymphocyte phenotypes in dogs with virulent babesiosis at presentation and over time after treatment, and to determine whether these were correlated with the severity of clinical signs. Forty-four dogs naturally infected with B. rossi were studied and 5 healthy dogs were included as controls. Blood samples were collected from the jugular vein at admission, prior to any treatment, and at 24h and 48-72h. Leukocytes were incubated with canine specific, fluorochrome conjugated anti-CD3, anti-CD4, anti-CD8, and anti-B cell markers. Babesia-infected dogs were divided into complicated or uncomplicated groups on clinical grounds and in-house laboratory assays. The percentage CD3+ lymphocytes in the complicated group was lower compared to the controls (P=0.014) and uncomplicated group (P=0.007). The percentage CD4+ T lymphocytes in the complicated group was lower compared to the controls (P=0.027) and uncomplicated group (P=0.014). Both the complicated as well as the uncomplicated groups expressed a lower percentage CD8+ T lymphocytes compared to the control group (P<0.001 and P=0.005, respectively). The percentage B lymphocytes was higher in the complicated group at 48-72h. These findings could indicate the presence of a functional immune suppression secondary to increased apoptosis or redistribution of effector lymphocytes and/or a combination of other immune modulatory mechanisms induced by B. rossi infection.
Collapse
Affiliation(s)
- Yolandi Rautenbach
- Department of Companion Animal Clinical Studies, Faculty of Veterinary Science, University of Pretoria, Pretoria, South Africa.
| | - Amelia Goddard
- Department of Companion Animal Clinical Studies, Faculty of Veterinary Science, University of Pretoria, Pretoria, South Africa
| | - Peter N Thompson
- Production Animal Studies, Faculty of Veterinary Science, University of Pretoria, Pretoria, South Africa
| | - Richard J Mellanby
- The Royal (Dick) School of Veterinary Studies and The Roslin Institute, Department of Veterinary Clinical Sciences, University of Edinburgh, Roslin, Midlothian, Scotland, United Kingdom
| | - Andrew L Leisewitz
- Department of Companion Animal Clinical Studies, Faculty of Veterinary Science, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
11
|
Movilla R, Altet L, Serrano L, Tabar MD, Roura X. Molecular detection of vector-borne pathogens in blood and splenic samples from dogs with splenic disease. Parasit Vectors 2017; 10:131. [PMID: 28285583 PMCID: PMC5346854 DOI: 10.1186/s13071-017-2074-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Accepted: 03/02/2017] [Indexed: 01/14/2023] Open
Abstract
Background The spleen is a highly perfused organ involved in the immunological control and elimination of vector-borne pathogens (VBP), which could have a fundamental role in the pathogenesis of splenic disease. This study aimed to evaluate certain VBP in samples from dogs with splenic lesions. Methods Seventy-seven EDTA-blood and 64 splenic tissue samples were collected from 78 dogs with splenic disease in a Mediterranean area. Babesia spp., Bartonella spp., Ehrlichia/Anaplasma spp., Hepatozoon canis, Leishmania infantum, hemotropic Mycoplasma spp. and Rickettsia spp. were targeted using PCR assays. Sixty EDTA-blood samples from dogs without evidence of splenic lesions were included as a control group. Results More than half (51.56%) of the biopsies (33/64) were consistent with benign lesions and 48.43% (31/64) with malignancy, mostly hemangiosarcoma (25/31). PCR yielded positive results in 13 dogs with spleen alterations (16.67%), for Babesia canis (n = 3), Babesia gibsoni (n = 2), hemotropic Mycoplasma spp. (n = 2), Rickettsia massiliae (n = 1) and “Babesia vulpes” (n = 1), in blood; and for B. canis, B. gibsoni, Ehrlichia canis and L. infantum (n = 1 each), in spleen. Two control dogs (3.3%) were positive for B. gibsoni and H. canis (n = 1 each). Benign lesions were detected in the 61.54% of infected dogs (8/13); the remaining 38.46% were diagnosed with malignancies (5/13). Infection was significantly associated to the presence of splenic disease (P = 0.013). There was no difference in the prevalence of infection between dogs with benign and malignant splenic lesions (P = 0.69); however B. canis was more prevalent in dogs with hemangiosarcoma (P = 0.006). Conclusions VBP infection could be involved in the pathogenesis of splenic disease. The immunological role of the spleen could predispose to alterations of this organ in infected dogs. Interestingly, all dogs with B. canis infection were diagnosed with hemangiosarcoma in the present survey. As previously reported, results support that VBP diagnosis could be improved by analysis of samples from different tissues. The sample size included here warrants further investigation. Electronic supplementary material The online version of this article (doi:10.1186/s13071-017-2074-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Rebeca Movilla
- Hospital Clínic Veterinari, Universitat Autònoma de Barcelona, Carrer de L'Hospital s/n, 08193 Bellaterra, Cerdanyola del Vallès, Barcelona, Spain
| | - Laura Altet
- Vetgenomics, Edifici Eureka, Parc de Recerca de la Universitat Autònoma de Barcelona, 08193 Bellaterra, Cerdanyola del Vallès, Barcelona, Spain
| | - Lorena Serrano
- Vetgenomics, Edifici Eureka, Parc de Recerca de la Universitat Autònoma de Barcelona, 08193 Bellaterra, Cerdanyola del Vallès, Barcelona, Spain
| | - María-Dolores Tabar
- Hospital Veterinario San Vicente, Calle del Veterinario Manuel Isidro Rodríguez García N°17, 03690 San Vicente del Raspeig, Alicante, Spain
| | - Xavier Roura
- Hospital Clínic Veterinari, Universitat Autònoma de Barcelona, Carrer de L'Hospital s/n, 08193 Bellaterra, Cerdanyola del Vallès, Barcelona, Spain.
| |
Collapse
|
12
|
Shekhar S, Yang X. Natural killer cells in host defense against veterinary pathogens. Vet Immunol Immunopathol 2015; 168:30-4. [PMID: 26553564 PMCID: PMC7112915 DOI: 10.1016/j.vetimm.2015.10.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Revised: 08/03/2015] [Accepted: 10/01/2015] [Indexed: 12/18/2022]
Abstract
Natural Killer (NK) cells constitute a major subset of innate lymphoid cells that do not express the T- and B-cell receptors and play an important role in antimicrobial defense. NK cells not only induce early and rapid innate immune responses, but also communicate with dendritic cells to shape the adaptive immunity, thus bridging innate and adaptive immunity. Although the functional biology of NK cells is well-documented in a variety of infections in humans and mice, their role in protecting domestic animals from infectious agents is only beginning to be understood. In this article, we summarize the current state of knowledge about the contribution of NK cells in pathogen defense in domestic animals, especially cattle and pigs. Understanding the immunobiology of NK cells will translate into strategies to manipulate these cells for preventive and therapeutic purposes.
Collapse
Affiliation(s)
- Sudhanshu Shekhar
- Departments of Medical Microbiology and Immunology, Faculty of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada.
| | - Xi Yang
- Departments of Medical Microbiology and Immunology, Faculty of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| |
Collapse
|
13
|
Zulfiqar S, Shahnawaz S, Ali M, Bhutta AM, Iqbal S, Hayat S, Qadir S, Latif M, Kiran N, Saeed A, Ali M, Iqbal F. Detection of Babesia bovis in blood samples and its effect on the hematological and serum biochemical profile in large ruminants from Southern Punjab. Asian Pac J Trop Biomed 2015; 2:104-8. [PMID: 23569878 DOI: 10.1016/s2221-1691(11)60202-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2011] [Revised: 08/05/2011] [Accepted: 08/21/2011] [Indexed: 11/25/2022] Open
Abstract
OBJECTIVE To determine the presence of Babesia bovis (B. bovis) in large ruminants in southern Punjab and its effect on hematological and serum biochemical profile of host animals. METHODS Blood samples were collected from 144 large ruminants, including 105 cattle and 39 buffaloes, from six districts in southern Punjab including Multan, Layyah, Muzaffar Garh, Bhakar, Bahawalnagar and Vehari. Data on the characteristics of animals and herds were collected through questionnaires. Different blood (hemoglobin, glucose) and serum (ALT, AST, LDH, cholesterol) parameters of calves and cattle were measured and compared between parasite positive and negative samples to demonstrate the effect of B. bovis on the blood and serological profile of infected animals. RESULTS 27 out of 144 animals, from 5 out of 6 sampling districts, produced the 541-bp fragment specific for B. bovis. Age of animals (P=0.02), presence of ticks on animals (P=0.04) and presence of ticks on dogs associated with herds (P=0.5) were among the major risk factors involved in the spread of bovine babesiosis in the study area. ALT concentrations were the only serum biochemical values that significantly varied between parasite positive and negative cattle. CONCLUSIONS : This study has reported for the first time the presence of B. bovis in large ruminant and the results can lead to the prevention of babesiosis in the region to increase the livestock output.
Collapse
Affiliation(s)
- Samreen Zulfiqar
- Institute of Pure and Applied Biology, Zoology Division, Bahauddin Zakariya University, Multan 60800, Pakistan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Florin-Christensen M, Suarez CE, Rodriguez AE, Flores DA, Schnittger L. Vaccines against bovine babesiosis: where we are now and possible roads ahead. Parasitology 2014; 141:1563-1592. [PMID: 25068315 DOI: 10.1017/s0031182014000961] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Bovine babesiosis caused by the tick-transmitted haemoprotozoans Babesia bovis, Babesia bigemina and Babesia divergens commonly results in substantial cattle morbidity and mortality in vast world areas. Although existing live vaccines confer protection, they have considerable disadvantages. Therefore, particularly in countries where large numbers of cattle are at risk, important research is directed towards improved vaccination strategies. Here a comprehensive overview of currently used live vaccines and of the status quo of experimental vaccine trials is presented. In addition, pertinent research fields potentially contributing to the development of novel non-live and/or live vaccines are discussed, including parasite antigens involved in host cell invasion and in pathogen-tick interactions, as well as the protective immunity against infection. The mining of available parasite genomes is continuously enlarging the array of potential vaccine candidates and, additionally, the recent development of a transfection tool for Babesia can significantly contribute to vaccine design. However, the complication and high cost of vaccination trials hinder Babesia vaccine research, and have so far seriously limited the systematic examination of antigen candidates and prevented an in-depth testing of formulations using different immunomodulators and antigen delivery systems.
Collapse
Affiliation(s)
- Monica Florin-Christensen
- Instituto de Patobiologia, CICVyA, INTA-Castelar, 1686 Hurlingham, Argentina
- CONICET, C1033AAJ Ciudad Autonoma de Buenos Aires, Argentina
| | - Carlos E Suarez
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA 99164-7040, USA
- ADRU-ARS, United States Department of Agriculture, Pullman, WA 99164-6630, USA
| | - Anabel E Rodriguez
- Instituto de Patobiologia, CICVyA, INTA-Castelar, 1686 Hurlingham, Argentina
| | - Daniela A Flores
- Instituto de Patobiologia, CICVyA, INTA-Castelar, 1686 Hurlingham, Argentina
- ANPCyT, C1425FQD Ciudad Autonoma de Buenos Aires, Argentina
| | - Leonhard Schnittger
- Instituto de Patobiologia, CICVyA, INTA-Castelar, 1686 Hurlingham, Argentina
- CONICET, C1033AAJ Ciudad Autonoma de Buenos Aires, Argentina
| |
Collapse
|
15
|
Brake DK, Pérez de León AA. Immunoregulation of bovine macrophages by factors in the salivary glands of Rhipicephalus microplus. Parasit Vectors 2012; 5:38. [PMID: 22333193 PMCID: PMC3320552 DOI: 10.1186/1756-3305-5-38] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2011] [Accepted: 02/14/2012] [Indexed: 11/13/2022] Open
Abstract
Background Alternative strategies are required to control the southern cattle tick, Rhipicephalus microplus, due to evolving resistance to commercially available acaricides. This invasive ectoparasite is a vector of economically important diseases of cattle such as bovine babesiosis and anaplasmosis. An understanding of the biological intricacies underlying vector-host-pathogen interactions is required to innovate sustainable tick management strategies that can ultimately mitigate the impact of animal and zoonotic tick-borne diseases. Tick saliva contains molecules evolved to impair host innate and adaptive immune responses, which facilitates blood feeding and pathogen transmission. Antigen presenting cells are central to the development of robust T cell responses including Th1 and Th2 determination. In this study we examined changes in co-stimulatory molecule expression and cytokine response of bovine macrophages exposed to salivary gland extracts (SGE) obtained from 2-3 day fed, pathogen-free adult R. microplus. Methods Peripheral blood-derived macrophages were treated for 1 hr with 1, 5, or 10 μg/mL of SGE followed by 1, 6, 24 hr of 1 μg/mL of lipopolysaccharide (LPS). Real-time PCR and cytokine ELISA were used to measure changes in co-stimulatory molecule expression and cytokine response. Results Changes were observed in co-stimulatory molecule expression of bovine macrophages in response to R. microplus SGE exposure. After 6 hrs, CD86, but not CD80, was preferentially up-regulated on bovine macrophages when treated with 1 μg/ml SGE and then LPS, but not SGE alone. At 24 hrs CD80, CD86, and CD69 expression was increased with LPS, but was inhibited by the addition of SGE. SGE also inhibited LPS induced upregulation of TNFα, IFNγ and IL-12 cytokines, but did not alter IL-4 or CD40 mRNA expression. Conclusions Molecules from the salivary glands of adult R. microplus showed bimodal concentration-, and time-dependent effects on differential up-regulation of CD86 in bovine macrophages activated by the TLR4-ligand, LPS. Up regulation of proinflammatory cytokines and IL-12, a Th1 promoting cytokine, were inhibited in a dose-dependent manner. The co-stimulatory molecules CD80, as well as the cell activation marker, CD69, were also suppressed in macrophages exposed to SGE. Continued investigation of the immunomodulatory factors will provide the knowledge base to research and develop therapeutic or prophylactic interventions targeting R. microplus-cattle interactions at the blood-feeding interface.
Collapse
Affiliation(s)
- Danett K Brake
- USDA-ARS Knipling, Livestock Insects Research Laboratory, Kerrville, TX 78028, USA.
| | | |
Collapse
|
16
|
Goff WL, Bastos RG, Brown WC, Johnson WC, Schneider DA. The bovine spleen: interactions among splenic cell populations in the innate immunologic control of hemoparasitic infections. Vet Immunol Immunopathol 2010; 138:1-14. [PMID: 20692048 DOI: 10.1016/j.vetimm.2010.07.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2010] [Revised: 07/08/2010] [Accepted: 07/12/2010] [Indexed: 11/17/2022]
Abstract
Over the past several years, innate immunity has been recognized as having an important role as a front-line defense mechanism and as an integral part of the adaptive immune response. Innate immunity in cattle exposed to hemoparasites is spleen-dependent and age-related. In this review, we discuss general aspects of innate immunity and the cells involved in this aspect of the response to infection. We also provide examples of specific splenic regulatory and effector mechanisms involved in the response to Babesia bovis, an important tick-borne hemoparasitic disease of cattle. Evidence for the regulatory and effector role of bovine splenic monocytes and DC both in directing a type-1 response through interaction with splenic NK cells and γδT-cells will be presented.
Collapse
Affiliation(s)
- W L Goff
- Animal Disease Research Unit, USDA-ARS, 3003 ADBF/WSU, Pullman, WA 99164-6630, USA
| | | | | | | | | |
Collapse
|