1
|
Wei X, Han L, Xu N, Sun M, Yang X. Nitrate nitrogen enhances the efficiency of photoprotection in Leymus chinensis under drought stress. FRONTIERS IN PLANT SCIENCE 2024; 15:1348925. [PMID: 38419774 PMCID: PMC10899514 DOI: 10.3389/fpls.2024.1348925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Accepted: 01/30/2024] [Indexed: 03/02/2024]
Abstract
Introduction Global climate change exerts a significant impact on the nitrogen supply and photosynthesis ability in land-based plants. The photosynthetic capacity of dominant grassland species is important if we are to understand carbon cycling under climate change. Drought stress is one of the major factors limiting plant photosynthesis, and nitrogen (N) is an essential nutrient involved in the photosynthetic activity of leaves. The regulatory mechanisms responsible for the effects of ammonium (NH4 +) and nitrate (NO3 -) on the drought-induced photoinhibition of photosystem II (PSII) in plants have yet to be fully elucidated. Therefore, there is a significant need to gain a better understanding of the role of electron transport in the photoinhibition of PSII. Methods In the present study, we conducted experiments with normal watering (LD), severe drought (MD), and extreme drought (HD) treatments, along with no nitrogen (N0), ammonium (NH4), nitrate (NO3), and mixed nitrogen (NH4NO3) treatments. We analyzed pigment accumulation, reactive oxygen species (ROS) accumulation, photosynthetic enzyme activity, photosystem activity, electron transport, and O-J-I-P kinetics. Results Analysis showed that increased nitrate application significantly increased the leaf chlorophyll content per unit area (Chlarea) and nitrogen content per unit area (Narea) (p< 0.05). Under HD treatment, ROS levels were lower in NO3-treated plants than in N0 plants, and there was no significant difference in photosynthetic enzyme activity between plants treated with NO3 and NH4NO3. Under drought stress, the maximum photochemical efficiency of PSII (Fv/Fm), PSII electron transport rate (ETR), and effective quantum yield of PSII (φPSII) were significant higher in NO3-treated plants (p< 0.05). Importantly, the K-band and G-band were higher in NO3-treated plants. Discussion These results suggest that drought stress hindered the formation of NADPH and ATP in N0 and NH4-treated L. chinensis plants, thus damaging the donor side of the PSII oxygen-evolving complex (OEC). After applying nitrate, higher photosynthetic enzyme and antioxidant enzyme activity not only protected PSII from photodamage under drought stress but also reduced the rate of damage in PSII during the growth of L. chinensis growth under drought stress.
Collapse
Affiliation(s)
- Xiaowei Wei
- Jilin Provincial Key Laboratory for Plant Resources Science and Green Production, Jilin Normal University, Siping, China
| | - Lin Han
- Jilin Provincial Key Laboratory for Plant Resources Science and Green Production, Jilin Normal University, Siping, China
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, Heilongjiang, China
| | - Nan Xu
- Key Laboratory of Heilongjiang Province for Cold-Regions Wetlands Ecology and Environment Research, and School of Geography and Tourism, Harbin University, Harbin, China
| | - Mingyue Sun
- Jilin Provincial Key Laboratory for Plant Resources Science and Green Production, Jilin Normal University, Siping, China
| | - Xuechen Yang
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, Heilongjiang, China
| |
Collapse
|
2
|
Hu J, Zheng Q, Neuhäuser B, Dong C, Tian Z, Dai T. Superior glucose metabolism supports NH 4+ assimilation in wheat to improve ammonium tolerance. FRONTIERS IN PLANT SCIENCE 2024; 15:1339105. [PMID: 38318495 PMCID: PMC10839024 DOI: 10.3389/fpls.2024.1339105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 01/05/2024] [Indexed: 02/07/2024]
Abstract
The use of slow-release fertilizers and seed-fertilizers cause localized high-ammonium (NH4 +) environments in agricultural fields, adversely affecting wheat growth and development and delaying its yield. Thus, it is important to investigate the physiological responses of wheat and its tolerance to NH4 + stress to improve the adaptation of wheat to high NH4 + environments. In this study, the physiological mechanisms of ammonium tolerance in wheat (Triticum aestivum) were investigated in depth by comparative analysis of two cultivars: NH4 +-tolerant Xumai25 and NH4 +-sensitive Yangmai20. Cultivation under hydroponic conditions with high NH4 + (5 mM NH4 +, AN) and nitrate (5 mM NO3 -, NN), as control, provided insights into the nuanced responses of both cultivars. Compared to Yangmai20, Xumai25 displayed a comparatively lesser sensitivity to NH4 + stress, as evident by a less pronounced reduction in dry plant biomass and a milder adverse impact on root morphology. Despite similarities in NH4 + efflux and the expression levels of TaAMT1.1 and TaAMT1.2 between the two cultivars, Xumai25 exhibited higher NH4 + influx, while maintaining a lower free NH4 + concentration in the roots. Furthermore, Xumai25 showed a more pronounced increase in the levels of free amino acids, including asparagine, glutamine, and aspartate, suggesting a superior NH4 + assimilation capacity under NH4 + stress compared to Yangmai20. Additionally, the enhanced transcriptional regulation of vacuolar glucose transporter and glucose metabolism under NH4 + stress in Xumai25 contributed to an enhanced carbon skeleton supply, particularly of 2-oxoglutarate and pyruvate. Taken together, our results demonstrate that the NH4 + tolerance of Xumai25 is intricately linked to enhanced glucose metabolism and optimized glucose transport, which contributes to the robust NH4 + assimilation capacity.
Collapse
Affiliation(s)
- Jinling Hu
- Key Laboratory of Crop Physiology Ecology and Production Management of Ministry of Agriculture, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Qiaomei Zheng
- Key Laboratory of Crop Physiology Ecology and Production Management of Ministry of Agriculture, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Benjamin Neuhäuser
- Institute of Crop Science, Nutritional Crop Physiology, University of Hohenheim, Stuttgart, Germany
| | - Chaofeng Dong
- Key Laboratory of Crop Physiology Ecology and Production Management of Ministry of Agriculture, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Zhongwei Tian
- Key Laboratory of Crop Physiology Ecology and Production Management of Ministry of Agriculture, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Tingbo Dai
- Key Laboratory of Crop Physiology Ecology and Production Management of Ministry of Agriculture, Nanjing Agricultural University, Nanjing, Jiangsu, China
| |
Collapse
|
3
|
Li C, Aluko OO, Shi S, Mo Z, Nong T, Shi C, Li Z, Wang Q, Liu H. Determination of optimal NH 4+/K + concentration and corresponding ratio critical for growth of tobacco seedlings in a hydroponic system. FRONTIERS IN PLANT SCIENCE 2023; 14:1152817. [PMID: 37496856 PMCID: PMC10368480 DOI: 10.3389/fpls.2023.1152817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Accepted: 05/19/2023] [Indexed: 07/28/2023]
Abstract
Inherently, ammonium (NH4 +) is critical for plant growth; however, its toxicity suppresses potassium (K+) uptake and vice-versa. Hence, attaining a nutritional balance between these two ions (NH4 + and K+) becomes imperative for the growth of tobacco seedlings. Therefore, we conducted a 15-day experimental study on tobacco seedlings exposed to different concentrations (47 treatments) of NH4 +/K+ at different corresponding 12 ratios simultaneously in a hydroponic system. Our study aimed at establishing the optimal NH4 +-K+ concentration and the corresponding ratio required for optimal growth of different tobacco plant organs during the seedling stage. The controls were the baseline for comparison in this study. Plants with low or excessive NH4 +-K+ concentration had leaf chlorosis or dark greenish colouration, stunted whole plant part biomass, and thin roots. We found that adequate K+ supply is a pragmatic way to mitigate NH4 +-induced toxicity in tobacco plants. The optimal growth for tobacco leaf and root was attained at NH4 +-K+ concentrations 2-2 mM (ratio 1:1), whereas stem growth was optimal at NH4 +-K+ 1-2 mM (1:2). The study provided an insight into the right combination of NH4 +/K+ that could mitigate or prevent NH4 + or K+ stress in the tobacco seedlings.
Collapse
Affiliation(s)
- Chuanzong Li
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, China
| | - Oluwaseun Olayemi Aluko
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, China
- State Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, Kaifeng, China
| | - Sujuan Shi
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, China
- Technology Center, Shanghai Tobacco Company, Ltd, Beijing, China
| | - Zhijie Mo
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, China
- Yichang City Company, Hubei Tobacco Company, Yichang, China
| | - Tongjia Nong
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, China
| | - Chuhan Shi
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, China
| | - Zhihao Li
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, China
- Yichang City Company, Hubei Tobacco Company, Yichang, China
| | - Qian Wang
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, China
| | - Haobao Liu
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, China
| |
Collapse
|
4
|
Xiao C, Fang Y, Wang S, He K. The alleviation of ammonium toxicity in plants. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2023. [PMID: 36790049 DOI: 10.1111/jipb.13467] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 02/14/2023] [Indexed: 06/18/2023]
Abstract
Nitrogen (N) is an essential macronutrient for plants and profoundly affects crop yields and qualities. Ammonium (NH4 + ) and nitrate (NO3 - ) are major inorganic N forms absorbed by plants from the surrounding environments. Intriguingly, NH4 + is usually toxic to plants when it serves as the sole or dominant N source. It is thus important for plants to coordinate the utilization of NH4 + and the alleviation of NH4 + toxicity. To fully decipher the molecular mechanisms underlying how plants minimize NH4 + toxicity may broadly benefit agricultural practice. In the current minireview, we attempt to discuss recent discoveries in the strategies for mitigating NH4 + toxicity in plants, which may provide potential solutions for improving the nitrogen use efficiency (NUE) and stress adaptions in crops.
Collapse
Affiliation(s)
- Chengbin Xiao
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
- State Key Laboratory of Grassland Agro-Ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730000, China
| | - Yuan Fang
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Suomin Wang
- State Key Laboratory of Grassland Agro-Ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730000, China
| | - Kai He
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| |
Collapse
|
5
|
Chen X, Mao Y, Chai W, Yan K, Liang Z, Xia P. Genome-wide identification and expression analysis of MYB gene family under nitrogen stress in Panax notoginseng. PROTOPLASMA 2023; 260:189-205. [PMID: 35524823 DOI: 10.1007/s00709-022-01770-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 04/25/2022] [Indexed: 06/14/2023]
Abstract
The myeloblastosis (MYB) gene family, involved in regulating many important physiological and biochemical processes, is one of the largest transcript factor superfamilies in plants. Since the identification of genome sequencing of Panax notoginseng has been completed, there was little known about the whole genome of its specific MYB gene family and the response to abiotic stresses, in consideration of the excessive application of nitrogen fertilizers in P. notoginseng. In this study, 123 PnMYB genes (MYB genes of P. notoginseng) have been identified and divided into 3 subfamilies by the phylogenetic analysis. These PnMYB genes were unevenly located on 12 chromosomes. Meanwhile, the gene structure and protein conserved domain were established by MEME Suite. The analysis of collinear relationships reflected that there were 121 homologous genes between P. notoginseng and Arabidopsis and 30 between P. notoginseng and rice. Moreover, cis-acting elements of PnMYB gene promoters were predicted which indicated that PnMYBs are involved in biotic, abiotic stress, and hormone induction. The expressions of PnMYB transcription factors in its roots, flowers, and leaves were detected by qRT-PCR and they had tissue-specific expressions and related to the growth of different tissues. Under nitrogen stress, MYB transcription factors had great feedback. Ten R2R3-MYB subfamily genes were significantly induced and indicated the possible function of protecting P. notoginseng from excess nitrogen. With further knowledge on identification of PnMYB gene related to tissue selectivity and abiotic stresses, this study laid the foundation for the functional development of PnMYB gene family and improved the cultivation of P. notoginseng.
Collapse
Affiliation(s)
- Xiang Chen
- Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Yucheng Mao
- Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Weiguo Chai
- Institute of Biotechnology, Hangzhou Academy of Agricultural Sciences, Hangzhou, 310024, Zhejiang Province, China
| | - Kaijing Yan
- Tasly Pharmaceutical Group Co., Ltd, Tianjin, 300410, China
| | - Zongsuo Liang
- Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Pengguo Xia
- Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China.
| |
Collapse
|
6
|
Yu B, Wang L, Guan Q, Xue X, Gao W, Nie P. Exogenous 24-epibrassinolide promoted growth and nitrogen absorption and assimilation efficiency of apple seedlings under salt stress. FRONTIERS IN PLANT SCIENCE 2023; 14:1178085. [PMID: 37123869 PMCID: PMC10140579 DOI: 10.3389/fpls.2023.1178085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 03/24/2023] [Indexed: 05/03/2023]
Abstract
Introduction High salinity significantly hampers global agricultural productivity. Plants typically undergo lower nitrogen utilization efficiency (NUE) under salt stress. As an active byproduct from brassinolide biosynthesis, 24-epibrassinolide (EBR) is involved in regulating the stress-treated plant N absorption and assimilation. However, the exogenous EBR application effects' on N absorption and assimilation in apple exposed to the salt-stressed condition remains unclear. Methods We sprayed exogenous EBR (0.2 mg L-1) on apple dwarf rootstock (M9T337) seedlings (growing hydroponically) under salt (NaCl) stress in a growth chamber. We analyzed the seedling development, photosynthesis and its-mediated C fixation, N ( NO 3 - ) absorption and assimilation in reponse to exogenous EBR application under salt stress. Results The findings demonstrated that NaCl stress greatly hampered seedlings' root growth and that exogenous EBR application obviously alleviated this growth suppression. Exogenous EBR-treated plants under NaCl stress displayed the more ideal root morphology and root activity, stronger salt stress tolerance and photosynthetic capacity as well as higher C- and N-assimilation enzyme activities, NO 3 - ion flow rate and nitrate transporter gene expression level than did untreated plants. Furthermore, the results of isotope labeling noted that exogenous EBR application also enhanced 13C-photoassimilate transport from leaves to roots and 15 NO 3 - transport from roots to leaves under NaCl stress. Conclusion Our findings imply that exogenous EBR application, through strengthening photosynthesis, C- and N-assimilation enzyme activities, nitrate absorption and transport as well as synchronized optimizing the distribution of seedlings' C and N, has a fundamental role in improving NUE in apple rootstock seedlings under salt stress.
Collapse
Affiliation(s)
- Bo Yu
- Shandong Institute of Pomology, Shandong Key Laboratory of Fruit Biotechnology Breeding, Taian, China
- College of Horticulture, Shenyang Agricultural University, Shenyang, China
| | - Laiping Wang
- Shandong Institute of Pomology, Shandong Key Laboratory of Fruit Biotechnology Breeding, Taian, China
| | - Qiuzhu Guan
- Shandong Institute of Pomology, Shandong Key Laboratory of Fruit Biotechnology Breeding, Taian, China
| | - Xiaomin Xue
- Shandong Institute of Pomology, Shandong Key Laboratory of Fruit Biotechnology Breeding, Taian, China
| | - Wensheng Gao
- Shandong Provincial Department of Agriculture and Rural Affairs, Shandong Agricultural Technology Extension Center, Jinan, China
| | - Peixian Nie
- Shandong Institute of Pomology, Shandong Key Laboratory of Fruit Biotechnology Breeding, Taian, China
- *Correspondence: Peixian Nie,
| |
Collapse
|
7
|
Tian T, Wang J, Wang H, Cui J, Shi X, Song J, Li W, Zhong M, Qiu Y, Xu T. Nitrogen application alleviates salt stress by enhancing osmotic balance, ROS scavenging, and photosynthesis of rapeseed seedlings ( Brassica napus). PLANT SIGNALING & BEHAVIOR 2022; 17:2081419. [PMID: 35621189 PMCID: PMC9154800 DOI: 10.1080/15592324.2022.2081419] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 05/18/2022] [Accepted: 05/20/2022] [Indexed: 06/02/2023]
Abstract
Nitrogen application could alleviate salt stress on crops, but the specific physiological mechanism is still unclear. Therefore, in this study, a pot experiment was conducted to explore the effects of different application rates of nitrogen (0, 0.15, 0.30, and 0.45 g·kg-1) on the growth parameters, osmotic adjustment, reactive oxygen species scavenging, and photosynthesis of rapeseed seedlings planted in the soils with different concentrations of sodium chloride (1.5, 3.5, 5.5, and 7.5 g·kg-1). The results showed that nitrogen could alleviate the inhibition of salt on rapeseed growth, and improve the antioxidant enzyme activities and the contents of non-enzymatic substances, K+, soluble protein (SP), soluble sugar (SS), and proline. Besides, there was a significant correlation between the indexes of active oxygen scavenging system, osmoregulation system, and photosynthesis. Therefore, applying appropriate amount of nitrogen can promote the growth and development of rapeseed seedlings under salt stress, accelerate the scavenging of reactive oxygen species, maintain osmotic balance, and promote photosynthesis. This study will improve our understanding on the mechanism by which nitrogen application alleviates salt stress to crops.
Collapse
Affiliation(s)
- Tian Tian
- College of Agriculture, Shihezi University, Xinjiang, China
- The Key Laboratory of Oasis Ecological Agriculture of Xinjiang Production and Construction Group, Shihezi University, Xinjiang, China
| | - Jingang Wang
- College of Agriculture, Shihezi University, Xinjiang, China
- The Key Laboratory of Oasis Ecological Agriculture of Xinjiang Production and Construction Group, Shihezi University, Xinjiang, China
| | - Haijiang Wang
- College of Agriculture, Shihezi University, Xinjiang, China
- The Key Laboratory of Oasis Ecological Agriculture of Xinjiang Production and Construction Group, Shihezi University, Xinjiang, China
| | - Jing Cui
- College of Agriculture, Shihezi University, Xinjiang, China
- The Key Laboratory of Oasis Ecological Agriculture of Xinjiang Production and Construction Group, Shihezi University, Xinjiang, China
| | - Xiaoyan Shi
- College of Agriculture, Shihezi University, Xinjiang, China
- The Key Laboratory of Oasis Ecological Agriculture of Xinjiang Production and Construction Group, Shihezi University, Xinjiang, China
| | - Jianghui Song
- College of Agriculture, Shihezi University, Xinjiang, China
- The Key Laboratory of Oasis Ecological Agriculture of Xinjiang Production and Construction Group, Shihezi University, Xinjiang, China
| | - Weidi Li
- College of Agriculture, Shihezi University, Xinjiang, China
- The Key Laboratory of Oasis Ecological Agriculture of Xinjiang Production and Construction Group, Shihezi University, Xinjiang, China
| | - Mingtao Zhong
- College of Agriculture, Shihezi University, Xinjiang, China
- The Key Laboratory of Oasis Ecological Agriculture of Xinjiang Production and Construction Group, Shihezi University, Xinjiang, China
| | - Yue Qiu
- College of Agriculture, Shihezi University, Xinjiang, China
- The Key Laboratory of Oasis Ecological Agriculture of Xinjiang Production and Construction Group, Shihezi University, Xinjiang, China
| | - Ting Xu
- College of Agriculture, Shihezi University, Xinjiang, China
- The Key Laboratory of Oasis Ecological Agriculture of Xinjiang Production and Construction Group, Shihezi University, Xinjiang, China
| |
Collapse
|
8
|
Li Y, Yin M, Li L, Zheng J, Yuan X, Wen Y. Optimized potassium application rate increases foxtail millet grain yield by improving photosynthetic carbohydrate metabolism. FRONTIERS IN PLANT SCIENCE 2022; 13:1044065. [PMID: 36531412 PMCID: PMC9748707 DOI: 10.3389/fpls.2022.1044065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 11/15/2022] [Indexed: 06/17/2023]
Abstract
Photosynthetic carbohydrate metabolism is an important biochemical process related to crop production and quality traits. Potassium (K) critically contributes to the process of photosynthetic carbon assimilation and carbohydrate metabolism. We explored the effects of potassium fertilization on physiological mechanisms including carbohydrate metabolism in foxtail millet and its yield. Field experiments were performed using two foxtail millet (Setaria italica L.) cultivars: 1) Jingu 21 (low-K sensitive); and 2) Zhangza 10 (low-K tolerant). Effect of five different potassium fertilizer (K2O) rates (0, 60, 120, 180, and 240 kg·hm-2) were tested in two consecutive years, 2020 and 2021. We found that potassium application significantly increases the K content, dry matter accumulation and yield. Jingu 21 and Zhangza 10 had maximum yields at 180 kg·hm-2 K application, which were 29.91% and 31.51% larger than without K application, respectively. Excessive K application (K240) did not further improve their yields. The suitable K fertilizer application of Jingu 21 and Zhangza 10 are 195.25-204.27 and 173.95-175.87 kg·K2O·hm-2, respectively. The net photosynthetic rate (Pn), ribulose-1,5-bisphosphate carboxylase-oxygenase (Rubisco), phosphoenolpyruvate carboxylase (PEPC), and fructose-1,6-bisphosphatase (FBPase) were positively correlated with the potassium content. Potassium application improved the availability of carbon sources for carbohydrate synthesis. Compared with the K0 treatment, variations in the activities of sucrose phosphate synthase (SPS) and sucrose synthase (SuSy) in potassium-treated Jingu 21 (K60, K120, K180, and K240) were 17.94%-89.93% and 22.48%-182.10%, respectively, which were greater than those of Zhangza 10 (11.34%-71.12% and 16.18%-109.13%, respectively) and indicate that Jingu 21 is more sensitive to potassium application. The sucrose contents in the Jingu 21 and Zhangza 10 grains were 0.97%-1.15% and 1.04%-1.23%, respectively. The starch contents were 28.99%-37.75% and 24.81%-34.62%, respectively. The sucrose: ratio of Jingu 21 was smaller than that of Zhangza 10, indicating that Jingu 21 utilized nutrients better than Zhangza 10. Stepwise regression and path analysis showed that leaf and grain SuSy activity, by coordinating the source-sink relationship, have the greatest direct effect on Jingu 21 yield, whereas leaf SuSy activity, by promoting the generation of photosynthates at the source leaf, plays a leading role in Zhangza 10 yield increase. In conclusion, optimized K application can increase foxtail millet grain yield by improving photosynthesis and promoting carbohydrate accumulation and distribution.
Collapse
Affiliation(s)
| | | | | | | | | | - Yinyuan Wen
- *Correspondence: Yinyuan Wen, ; Xiangyang Yuan,
| |
Collapse
|
9
|
Aluko OO, Li C, Yuan G, Nong T, Xiang H, Wang Q, Li X, Liu H. Differential Effects of Ammonium (NH 4+) and Potassium (K +) Nutrition on Photoassimilate Partitioning and Growth of Tobacco Seedlings. PLANTS (BASEL, SWITZERLAND) 2022; 11:3295. [PMID: 36501338 PMCID: PMC9736971 DOI: 10.3390/plants11233295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 11/17/2022] [Accepted: 11/20/2022] [Indexed: 06/17/2023]
Abstract
Plants utilize carbohydrates as the main energy source, but much focus has been on the impact of N and K on plant growth. Less is known about the combined impact of NH4+ and K+ nutrition on photoassimilate distribution among plant organs, and the resultant effect of such distribution on growth of tobacco seedlings, hence this study. Here, we investigated the synergetic effect of NH4+ and K+ nutrition on photoassimilate distribution, and their resultant effect on growth of tobacco seedlings. Soluble sugar and starch content peaks under moderate NH4+ and moderate K+ (2-2 mM), leading to improved plant growth, as evidenced by the increase in tobacco weight and root activity. Whereas, a drastic reduction in the above indicators was observed in plants under high NH4+ and low K+ (20-0.2 mM), due to low carbohydrate synthesis and poor photoassimilate distribution. A strong positive linear relationship also exists between carbohydrate (soluble sugar and starch) and the activities of these enzymes but not for invertase. Our findings demonstrated that NH4+ and K+-induced ion imbalance influences plant growth and is critical for photoassimilate distribution among organs of tobacco seedlings.
Collapse
Affiliation(s)
- Oluwaseun Olayemi Aluko
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China
- Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, 85 Minglun Street, Kaifeng 475001, China
| | - Chuanzong Li
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China
| | - Guang Yuan
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China
| | - Tongjia Nong
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China
| | - Haiying Xiang
- Yunnan Academy of Tobacco Science, Kunming 650106, China
| | - Qian Wang
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China
| | - Xuemei Li
- Yunnan Academy of Tobacco Science, Kunming 650106, China
| | - Haobao Liu
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China
| |
Collapse
|
10
|
Wang F, Wang Q, Yu Q, Ye J, Gao J, Liu H, Yong JWH, Yu Y, Liu X, Kong H, He X, Ma J. Is the NH 4 +-induced growth inhibition caused by the NH 4 + form of the nitrogen source or by soil acidification? FRONTIERS IN PLANT SCIENCE 2022; 13:968707. [PMID: 36160982 PMCID: PMC9505920 DOI: 10.3389/fpls.2022.968707] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 08/15/2022] [Indexed: 06/16/2023]
Abstract
Soil acidification often occurs when the concentration of ammonium (NH4 +) in soil rises, such as that observed in farmland. Both soil acidification and excess NH4 + have serious adverse effects on crop growth and food production. However, we still do not know which of these two inhibitors has a greater impact on the growth of crops, and the degree of their inhibitory effect on crop growth have not been accurately evaluated. 31 wheat cultivars originating in various areas of China were planted under 5 mM sole NH4 + (ammonium nitrogen, AN) or nitrate nitrogen in combined with two pH levels resembling acidified conditions (5.0 and 6.5). The results showed that the shoots and roots biomass were severely reduced by AN in both and these reduction effects were strengthened by a low medium pH. The concentration of free NH4 + and amino acids, the glutamine synthetase activity were significantly higher, but the total soluble sugar content was reduced under NH4 + conditions, and the glutamine synthetase activity was reduced by a low medium pH. Cultivar variance was responsible for the largest proportion of the total variance in plant dry weight, leaf area, nodal root number, total root length and root volume; the nitrogen (N) form explains most of the variation in N and C metabolism; the effects of pH were the greatest for plant height and root average diameter. So, soil acidification and excess NH4 + would cause different degrees of inhibition effects on different plant tissues. The findings are expected to be useful for applying effective strategies for reducing NH4 + stress in the field.
Collapse
Affiliation(s)
- Feng Wang
- Institute of Environmental Resources and Soil Fertilizers, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Qiang Wang
- Institute of Environmental Resources and Soil Fertilizers, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Qiaogang Yu
- Institute of Environmental Resources and Soil Fertilizers, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Jing Ye
- Institute of Environmental Resources and Soil Fertilizers, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Jingwen Gao
- Institute of Environmental Resources and Soil Fertilizers, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Haitian Liu
- Institute of Environmental Resources and Soil Fertilizers, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Jean W. H. Yong
- Department of Biosystems and Technology, Swedish University of Agricultural Sciences, Alnarp, Sweden
- School of Biological Sciences, The University of Western Australia, Perth, WA, Australia
| | - Yijun Yu
- Arable Soil Quality and Fertilizer Administration Station of Zhejiang Province, Hangzhou, China
| | - Xiaoxia Liu
- Arable Soil Quality and Fertilizer Administration Station of Zhejiang Province, Hangzhou, China
| | - Haimin Kong
- Arable Soil Quality and Fertilizer Administration Station of Zhejiang Province, Hangzhou, China
| | - Xinhua He
- School of Biological Sciences, The University of Western Australia, Perth, WA, Australia
- Centre of Excellence for Soil Biology, College of Resources and Environment, Southwest University, Chongqing, China
| | - Junwei Ma
- Institute of Environmental Resources and Soil Fertilizers, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| |
Collapse
|
11
|
Song J, Yang J, Jeong BR. Silicon Mitigates Ammonium Toxicity in Cabbage (Brassica campestris L. ssp. pekinensis) ‘Ssamchu’. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2022. [DOI: 10.3389/fsufs.2022.922666] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Ammonium (NH4+) toxicity hinders the cabbage yield because most subspecies or varieties exhibit extreme sensitivity to NH4+. Current knowledge indicates that silicon (Si) can alleviate or reverse the ammonium toxicity severity. However, few investigations have been conducted on NH4+-stressed cabbage to elucidate the mechanism underlying the Si alleviation. The study described herein analyzes induced physio-chemical changes to explore how Si helps mitigate NH4+ toxicity. We applied one of three NH4+:NO3- ratios (0:100, 50:50, and 100:0) at a constant N (13 meq·L−1) to the cabbage plants, corresponding with two Si treatment levels (0 and 1.0 meq·L−1). Chlorosis and foliage necrosis along with stunted roots occurred following 100% NH4+ application were ameliorated in the presence of Si. The NH4+ toxicity ratio was reduced accordingly. Similarly, inhibition on the uptake of K and Ca, restricted photosynthesis (chlorophyll, stomatal conductance, and Fv/Fm), and accumulation of reactive oxygen species (ROS, O2·-, and H2O2), as well as lipid peroxidation (MDA, malondialdehyde) in NH4+-stressed cabbages were mitigated with added Si. The lower observed oxidative stresses in solely NH4+-treated plants were conferred by the boosted antioxidant enzymes (SOD, superoxide dismutase; CAT, catalase). Concomitantly, Si-treated plants showed higher activities of key NH4+ assimilation enzymes (GS, glutamine synthetase; GOGAT, glutamate synthase; NADH-GDH, glutamate dehydrogenase) and NH4+ content in leaves. However, excessive NH4+ assimilations cause the acidic stress, which has been demonstrated to be the primary cause of NH4+ toxicity. Therefore, further investigation regarding the Si effects on H+ regulation and distribution should be warranted.
Collapse
|
12
|
Li G, Zhang L, Wu J, Yue X, Wang M, Sun L, Di D, Kronzucker HJ, Shi W. OsEIL1 protects rice growth under NH 4+ nutrition by regulating OsVTC1-3-dependent N-glycosylation and root NH 4+ efflux. PLANT, CELL & ENVIRONMENT 2022; 45:1537-1553. [PMID: 35133011 DOI: 10.1111/pce.14283] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 01/10/2022] [Indexed: 06/14/2023]
Abstract
Rice is known for its superior adaptation to ammonium (NH4+ ) as a nitrogen source. Compared to many other cereals, it displays lower NH4+ efflux in roots and higher nitrogen-use efficiency on NH4+ . A critical role for GDP-mannose pyrophosphorylase (VTC1) in controlling root NH4+ fluxes was previously documented in Arabidopsis, but the molecular pathways involved in regulating VTC1-dependent NH4+ efflux remain unclear. Here, we report that ETHYLENE-INSENSITIVE3-LIKE1 (OsEIL1) acts as a key transcription factor regulating OsVTC1-3-dependent NH4+ efflux and protein N-glycosylation in rice grown under NH4+ nutrition. We show that OsEIL1 in rice plays a contrasting role to Arabidopsis-homologous ETHYLENE-INSENSITIVE3 (AtEIN3) and maintains rice growth under NH4+ by stabilizing protein N-glycosylation and reducing root NH4+ efflux. OsEIL1 constrains NH4+ efflux by activation of OsVTC1-3, but not OsVTC1-1 or OsVTC1-8. OsEIL1 binds directly to the promoter EIN3-binding site (EBS) of OsVTC1-3 in vitro and in vivo and acts to increase the transcription of OsVTC1-3. Our work demonstrates an important link between excessive root NH4+ efflux and OsVTC1-3-mediated protein N-glycosylation in rice grown under NH4+ nutrition and identifies OsEIL1 as a direct genetic regulator of OsVTC1-3 expression.
Collapse
Affiliation(s)
- Guangjie Li
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
| | - Lin Zhang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
| | - Jinlin Wu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
- University of the Chinese Academy of Sciences, Beijing, China
| | - Xiaowei Yue
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
| | - Meng Wang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
| | - Li Sun
- School of BioSciences, The University of Melbourne, Parkville, Victoria, Australia
| | - Dongwei Di
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
| | - Herbert J Kronzucker
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Cytogenetics Institute, Nanjing Agricultural University/Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing, Jiangsu, China
- Faculty of Land and Food Systems, University of British Columbia, Vancouver, British Columbia, Canada
| | - Weiming Shi
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
| |
Collapse
|
13
|
Zhang ZS, Xia JQ, Alfatih A, Song Y, Huang YJ, Sun LQ, Wan GY, Wang SM, Wang YP, Hu BH, Zhang GH, Qin P, Li SG, Yu LH, Wu J, Xiang CB. Rice NIN-LIKE PROTEIN 3 modulates nitrogen use efficiency and grain yield under nitrate-sufficient conditions. PLANT, CELL & ENVIRONMENT 2022; 45:1520-1536. [PMID: 35150141 DOI: 10.1111/pce.14294] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/27/2022] [Accepted: 01/31/2022] [Indexed: 06/14/2023]
Abstract
Nitrogen (N) is an essential macronutrient for crop growth and yield. Improving the N use efficiency (NUE) of crops is important to agriculture. However, the molecular mechanisms underlying NUE regulation remain largely elusive. Here we report that the OsNLP3 (NIN-like protein 3) regulates NUE and grain yield in rice under N sufficient conditions. OsNLP3 transcript level is significantly induced by N starvation and its protein nucleocytosolic shuttling is specifically regulated by nitrate. Loss-of-function of OsNLP3 reduces plant growth, grain yield, and NUE under sufficient nitrate conditions, whereas under low nitrate or different ammonium conditions, osnlp3 mutants show no clear difference from the wild type. Importantly, under sufficient N conditions in the field, OsNLP3 overexpression lines display improved grain yield and NUE compared with the wild type. OsNLP3 orchestrates the expression of multiple N uptake and assimilation genes by directly binding to the nitrate-responsive cis-elements in their promoters. Overall, our study demonstrates that OsNLP3, together with OsNLP1 and OsNLP4, plays overlapping and differential roles in N acquisition and NUE, and modulates NUE and the grain yield increase promoted by N fertilizer. Therefore, OsNLP3 is a promising candidate gene for the genetic improvement of grain yield and NUE in rice.
Collapse
Affiliation(s)
- Zi-Sheng Zhang
- School of Life Sciences, Division of Molecular & Cell Biophysics, Hefei National Science Center for Physical Sciences at the Microscale, MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, The Innovation Academy of Seed Design, Chinese Academy of Sciences, Hefei, China
| | - Jin-Qiu Xia
- School of Life Sciences, Division of Molecular & Cell Biophysics, Hefei National Science Center for Physical Sciences at the Microscale, MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, The Innovation Academy of Seed Design, Chinese Academy of Sciences, Hefei, China
| | - Alamin Alfatih
- School of Life Sciences, Division of Molecular & Cell Biophysics, Hefei National Science Center for Physical Sciences at the Microscale, MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, The Innovation Academy of Seed Design, Chinese Academy of Sciences, Hefei, China
| | - Ying Song
- School of Life Sciences, Division of Molecular & Cell Biophysics, Hefei National Science Center for Physical Sciences at the Microscale, MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, The Innovation Academy of Seed Design, Chinese Academy of Sciences, Hefei, China
| | - Yi-Jie Huang
- School of Life Sciences, Division of Molecular & Cell Biophysics, Hefei National Science Center for Physical Sciences at the Microscale, MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, The Innovation Academy of Seed Design, Chinese Academy of Sciences, Hefei, China
| | - Liang-Qi Sun
- School of Life Sciences, Division of Molecular & Cell Biophysics, Hefei National Science Center for Physical Sciences at the Microscale, MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, The Innovation Academy of Seed Design, Chinese Academy of Sciences, Hefei, China
| | - Guang-Yu Wan
- School of Life Sciences, Division of Molecular & Cell Biophysics, Hefei National Science Center for Physical Sciences at the Microscale, MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, The Innovation Academy of Seed Design, Chinese Academy of Sciences, Hefei, China
| | - Shi-Mei Wang
- Rice Research Institute, Anhui Academy of Agricultural Sciences, Hefei, China
| | - Yu-Ping Wang
- Rice Research Institute, State Key Laboratory of Hybrid Rice, Sichuan Agricultural University, Chengdu, China
| | - Bin-Hua Hu
- Rice Research Institute, State Key Laboratory of Hybrid Rice, Sichuan Agricultural University, Chengdu, China
| | - Guo-Hua Zhang
- Rice Research Institute, State Key Laboratory of Hybrid Rice, Sichuan Agricultural University, Chengdu, China
| | - Peng Qin
- Rice Research Institute, State Key Laboratory of Hybrid Rice, Sichuan Agricultural University, Chengdu, China
| | - Shi-Gui Li
- Rice Research Institute, State Key Laboratory of Hybrid Rice, Sichuan Agricultural University, Chengdu, China
| | - Lin-Hui Yu
- School of Life Sciences, Division of Molecular & Cell Biophysics, Hefei National Science Center for Physical Sciences at the Microscale, MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, The Innovation Academy of Seed Design, Chinese Academy of Sciences, Hefei, China
- State Key Laboratory of Crop Stress Biology for Arid Areas and Institute of Future Agriculture, Northwest A&F University, Yangling, Shanxi, China
| | - Jie Wu
- School of Life Sciences, Division of Molecular & Cell Biophysics, Hefei National Science Center for Physical Sciences at the Microscale, MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, The Innovation Academy of Seed Design, Chinese Academy of Sciences, Hefei, China
| | - Cheng-Bin Xiang
- School of Life Sciences, Division of Molecular & Cell Biophysics, Hefei National Science Center for Physical Sciences at the Microscale, MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, The Innovation Academy of Seed Design, Chinese Academy of Sciences, Hefei, China
| |
Collapse
|
14
|
Sun T, Wang T, Qiang Y, Zhao G, Yang J, Zhong H, Peng X, Yang J, Li Y. CBL-Interacting Protein Kinase OsCIPK18 Regulates the Response of Ammonium Toxicity in Rice Roots. FRONTIERS IN PLANT SCIENCE 2022; 13:863283. [PMID: 35574117 PMCID: PMC9100847 DOI: 10.3389/fpls.2022.863283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 03/29/2022] [Indexed: 06/15/2023]
Abstract
Ammonium ( NH 4 + ) is one of the major nitrogen sources for plants. However, excessive ammonium can cause serious harm to the growth and development of plants, i.e., ammonium toxicity. The primary regulatory mechanisms behind ammonium toxicity are still poorly characterized. In this study, we showed that OsCIPK18, a CBL-interacting protein kinase, plays an important role in response to ammonium toxicity by comparative analysis of the physiological and whole transcriptome of the T-DNA insertion mutant (cipk18) and the wild-type (WT). Root biomass and length of cipk18 are less inhibited by excess NH 4 + compared with WT, indicating increased resistance to ammonium toxicity. Transcriptome analysis reveals that OsCIPK18 affects the NH 4 + uptake by regulating the expression of OsAMT1;2 and other NH 4 + transporters, but does not affect ammonium assimilation. Differentially expressed genes induced by excess NH 4 + in WT and cipk18 were associated with functions, such as ion transport, metabolism, cell wall formation, and phytohormones signaling, suggesting a fundamental role for OsCIPK18 in ammonium toxicity. We further identified a transcriptional regulatory network downstream of OsCIPK18 under NH 4 + stress that is centered on several core transcription factors. Moreover, OsCIPK18 might function as a transmitter in the auxin and abscisic acid (ABA) signaling pathways affected by excess ammonium. These data allowed us to define an OsCIPK18-regulated/dependent transcriptomic network for the response of ammonium toxicity and provide new insights into the mechanisms underlying ammonium toxicity.
Collapse
Affiliation(s)
- Tong Sun
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| | - Ting Wang
- Department of Chemistry, University of Kentucky, Lexington, KY, United States
| | - Yalin Qiang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| | - Gangqing Zhao
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| | - Jian Yang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| | - Hua Zhong
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| | - Xiaojue Peng
- College of Life Sciences, Nanchang University, Nanchang, China
| | - Jing Yang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
- College of Life Sciences, Nanchang University, Nanchang, China
| | - Yangsheng Li
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| |
Collapse
|
15
|
Kirk GJD, Manwaring HR, Ueda Y, Semwal VK, Wissuwa M. Below-ground plant-soil interactions affecting adaptations of rice to iron toxicity. PLANT, CELL & ENVIRONMENT 2022; 45:705-718. [PMID: 34628670 DOI: 10.1111/pce.14199] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 08/11/2021] [Accepted: 08/13/2021] [Indexed: 06/13/2023]
Abstract
Iron toxicity is a major constraint to rice production, particularly in highly weathered soils of inland valleys in sub-Saharan Africa where the rice growing area is rapidly expanding. There is a wide variation in tolerance of iron toxicity in the rice germplasm. However, the introgression of tolerance traits into high-yielding germplasm has been slow owing to the complexity of the tolerance mechanisms and large genotype-by-environment effects. We review current understanding of tolerance mechanisms, particularly those involving below-ground plant-soil interactions. Until now these have been less studied than above-ground mechanisms. We cover processes in the rhizosphere linked to exclusion of toxic ferrous iron by oxidation, and resulting effects on the mobility of nutrient ions. We also cover the molecular physiology of below-ground processes controlling iron retention in roots and root-shoot transport, and also plant iron sensing. We conclude that future breeding programmes should be based on well-characterized molecular markers for iron toxicity tolerance traits. To successfully identify such markers, the complex tolerance response should be broken down into its components based on understanding of tolerance mechanisms, and tailored screening methods should be developed for individual mechanisms.
Collapse
Affiliation(s)
- Guy J D Kirk
- School of Water, Energy and Environment, Cranfield University, Cranfield, UK
| | - Hanna R Manwaring
- School of Water, Energy and Environment, Cranfield University, Cranfield, UK
| | - Yoshiaki Ueda
- Crop, Livestock and Environment Division, Japan International Research Center for Agricultural Sciences, Tsukuba, Japan
| | | | - Matthias Wissuwa
- Crop, Livestock and Environment Division, Japan International Research Center for Agricultural Sciences, Tsukuba, Japan
| |
Collapse
|
16
|
Chen H, Zhang Q, Wang X, Zhang J, Ismail AM, Zhang Z. Nitrogen form-mediated ethylene signal regulates root-to-shoot K + translocation via NRT1.5. PLANT, CELL & ENVIRONMENT 2021; 44:3576-3588. [PMID: 34505300 DOI: 10.1111/pce.14182] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 08/23/2021] [Accepted: 08/28/2021] [Indexed: 05/28/2023]
Abstract
Nitrogen-potassium synergistic and antagonistic interactions are the typical case of nutrient interactions. However, the underlying mechanism for the integration of the external N form into K+ homeostasis remains unclear. Here, we show that opposite effects of NO3- and NH4+ on root-shoot K+ translocation were due to differential regulation of an ethylene signalling pathway targeting the NRT1.5 transporter. NH4+ upregulated the transcriptional activity of EIN3, but repressed the expression of NRT1.5. However, the addition of NO3- strongly suppressed the activity of EIN3, whereas its addition upregulated the expression of AtNRT1.5 and shoot K+ concentration. The 35S:EIN3/ein3eil1 plants, nrt1.5 mutants and nrt1.5/skor double mutants displayed a low K+ chlorosis phenotype, especially under NH4+ conditions with low K+ supply. Ion content analyses indicate that root-to-shoot K+ translocation was significantly reduced in these mutants. A Y1H assay, an EMSA and a transient expression assay confirmed that AtEIN3 protein could directly bind to the promoter of NRT1.5 to repress its expression. Furthermore, grafted plants with the roots of 35S:EIN3 and ein3eil1/nrt1.5 mutants displayed marked leaf chlorosis with a low K+ concentration. Collectively, our findings reveal that the interaction between N form and K+ was achieved by modulating root-derived ethylene signals to regulate root-to-shoot K+ translocation via NRT1.5.
Collapse
Affiliation(s)
- Haifei Chen
- College of Resources and Environmental Sciences, Hunan Agricultural University, Changsha, China
| | - Quan Zhang
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| | - Xueru Wang
- College of Resources and Environmental Sciences, Hunan Agricultural University, Changsha, China
| | - Jianhua Zhang
- Department of Biology, Hong Kong Baptist University, and State Key Laboratory of Agrobiotechnology, Chinese University of Hong Kong, Hong Kong, China
| | - Abdelbagi M Ismail
- Crop Environment Science Division, International Rice Research Institute, Metro Manila, Philippines
| | - Zhenhua Zhang
- College of Resources and Environmental Sciences, Hunan Agricultural University, Changsha, China
- National Center of Oilseed Crops Improvement, Hunan Branch, Hunan Agricultural University, Changsha, China
| |
Collapse
|
17
|
Fang G, Yang J, Sun T, Wang X, Li Y. Evidence that synergism between potassium and nitrate enhances the alleviation of ammonium toxicity in rice seedling roots. PLoS One 2021; 16:e0248796. [PMID: 34499661 PMCID: PMC8428561 DOI: 10.1371/journal.pone.0248796] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 08/23/2021] [Indexed: 11/29/2022] Open
Abstract
Ammonium toxicity in plants is considered a global phenomenon, but the primary mechanisms remain poorly characterized. Here, we show that although the addition of potassium or nitrate partially alleviated the inhibition of rice seedling root growth caused by ammonium toxicity, the combination of potassium and nitrate clearly improved the alleviation, probably via some synergistic mechanisms. The combined treatment with potassium and nitrate led to significantly improved alleviation effects on root biomass, root length, and embryonic crown root number. The aberrant cell morphology and the rhizosphere acidification level caused by ammonium toxicity, recovered only by the combined treatment. RNA sequencing analysis and weighted gene correlation network analysis (WGCNA) revealed that the transcriptional response generated from the combined treatment involved cellulose synthesis, auxin, and gibberellin metabolism. Our results point out that potassium and nitrate combined treatment effectively promotes cell wall formation in rice, and thus, effectively alleviates ammonium toxicity.
Collapse
Affiliation(s)
- Gen Fang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| | - Jing Yang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| | - Tong Sun
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| | - Xiaoxin Wang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| | - Yangsheng Li
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
- * E-mail:
| |
Collapse
|
18
|
Ye T, Zhang J, Li J, Lu J, Ren T, Cong R, Lu Z, Li X. Nitrogen/potassium interactions increase rice yield by improving canopy performance. Food Energy Secur 2021. [DOI: 10.1002/fes3.295] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Affiliation(s)
- Tinghong Ye
- College of Resources and Environment Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs Huazhong Agricultural University Wuhan China
- Microelement Research Center Huazhong Agricultural University Wuhan China
| | - Jianglin Zhang
- College of Resources and Environment Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs Huazhong Agricultural University Wuhan China
- Microelement Research Center Huazhong Agricultural University Wuhan China
| | - Jing Li
- College of Resources and Environment Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs Huazhong Agricultural University Wuhan China
- Microelement Research Center Huazhong Agricultural University Wuhan China
| | - Jianwei Lu
- College of Resources and Environment Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs Huazhong Agricultural University Wuhan China
- Microelement Research Center Huazhong Agricultural University Wuhan China
| | - Tao Ren
- College of Resources and Environment Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs Huazhong Agricultural University Wuhan China
- Microelement Research Center Huazhong Agricultural University Wuhan China
| | - Rihuan Cong
- College of Resources and Environment Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs Huazhong Agricultural University Wuhan China
- Microelement Research Center Huazhong Agricultural University Wuhan China
| | - Zhifeng Lu
- College of Resources and Environment Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs Huazhong Agricultural University Wuhan China
- Microelement Research Center Huazhong Agricultural University Wuhan China
| | - Xiaokun Li
- College of Resources and Environment Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs Huazhong Agricultural University Wuhan China
- Microelement Research Center Huazhong Agricultural University Wuhan China
- Shuangshui Shuanglv Institute Huazhong Agricultural University Wuhan China
| |
Collapse
|
19
|
Genotypic Difference in the Responses to Nitrogen Fertilizer Form in Tibetan Wild and Cultivated Barley. PLANTS 2021; 10:plants10030595. [PMID: 33809925 PMCID: PMC8004229 DOI: 10.3390/plants10030595] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 03/16/2021] [Accepted: 03/18/2021] [Indexed: 01/10/2023]
Abstract
Nitrogen (N) availability and form have a dramatic effect on N uptake and assimilation in plants, affecting growth and development. In the previous studies, we found great differences in low-N tolerance between Tibetan wild barley accessions and cultivated barley varieties. We hypothesized that there are different responses to N forms between the two kinds of barleys. Accordingly, this study was carried out to determine the response of four barley genotypes (two wild, XZ16 and XZ179; and two cultivated, ZD9 andHua30) under 4Nforms (NO3−, NH4+, urea and glycine). The results showed significant reduction in growth parameters such as root/shoot length and biomass, as well as photosynthesis parameters and total soluble protein content under glycine treatment relative to other N treatments, for both wild and cultivated barley, however, XZ179 was least affected. Similarly, ammonium adversely affected growth parameters in both wild and cultivated barleys, with XZ179 being severely affected. On the other hand, both wild and cultivated genotypes showed higher biomass, net photosynthetic rate, chlorophyll and protein in NO3− treatment relative to other three N treatments. It may be concluded that barley undisputedly grows well under inorganic nitrogen (NO3−), however in response to the organic N wild barley prefer glycine more than cultivated barely.
Collapse
|
20
|
Tang D, Wei F, Khan A, Munsif F, Zhou R. Degradation of mitochondrial structure and deficiency of complex I were associated with the transgenic CMS of rice. Biol Res 2021; 54:6. [PMID: 33612118 PMCID: PMC7898427 DOI: 10.1186/s40659-020-00326-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 12/10/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Mitochondria play a significant role in plant cytoplasmic male sterility (CMS). In our previous study, mitochondrial complex I genes, nad4, nad5, and nad7 showed polymorphisms between the transgenic CMS line M2BS and its wild type M2B. The sterility mechanism of the M2BS at cytological, physiological, biochemical, and molecular level is not clear. RESULTS Cytological observation showed that the anthers were light yellow, fissured, invalid in KI-I2, and full of irregularly typical abortion pollen grains in M2BS. Transmission electron microscopic (TEM) observation revealed no nucleus and degraded mitochondria with obscure cristae in anther cells of M2BS. The results of staining for H2O2 presented a large number of electron dense precipitates (edp) in intercellular space of anther cells of M2BS at anthesis. Moreover, the anther respiration rate and complex I activity of M2BS were significantly lower than those of wild type M2B during pollen development. Furthermore, RNA editing results showed only nad7 presented partially edited at 534th nucleotides. The expression of nad5 and nad7 revealed significant differences between M2B and M2BS. CONCLUSIONS Our data demonstrated that mitochondrial structural degradation and complex I deficiency might be associated with transgenic CMS of rice.
Collapse
Affiliation(s)
- Danfeng Tang
- Guangxi Key Laboratory of Medicinal Resources Protection and Genetic Improvement, Guangxi Botanical Garden of Medicinal Plant, Nanning, 530023 China
- Guangxi Engineering Research Center of TCM Resource Intelligent Creation, Guangxi Botanical Garden of Medicinal Plants, Nanning, 530023 China
| | - Fan Wei
- Guangxi Key Laboratory of Medicinal Resources Protection and Genetic Improvement, Guangxi Botanical Garden of Medicinal Plant, Nanning, 530023 China
- Guangxi Engineering Research Center of TCM Resource Intelligent Creation, Guangxi Botanical Garden of Medicinal Plants, Nanning, 530023 China
| | - Aziz Khan
- College of Agriculture, Guangxi University, Nanning, 530004 China
| | - Fazal Munsif
- College of Agriculture, Guangxi University, Nanning, 530004 China
| | - Ruiyang Zhou
- College of Agriculture, Guangxi University, Nanning, 530004 China
| |
Collapse
|
21
|
Zhang M, Wang Y, Chen X, Xu F, Ding M, Ye W, Kawai Y, Toda Y, Hayashi Y, Suzuki T, Zeng H, Xiao L, Xiao X, Xu J, Guo S, Yan F, Shen Q, Xu G, Kinoshita T, Zhu Y. Plasma membrane H +-ATPase overexpression increases rice yield via simultaneous enhancement of nutrient uptake and photosynthesis. Nat Commun 2021; 12:735. [PMID: 33531490 PMCID: PMC7854686 DOI: 10.1038/s41467-021-20964-4] [Citation(s) in RCA: 71] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 01/04/2021] [Indexed: 01/30/2023] Open
Abstract
Nitrogen (N) and carbon (C) are essential elements for plant growth and crop yield. Thus, improved N and C utilisation contributes to agricultural productivity and reduces the need for fertilisation. In the present study, we find that overexpression of a single rice gene, Oryza sativa plasma membrane (PM) H+-ATPase 1 (OSA1), facilitates ammonium absorption and assimilation in roots and enhanced light-induced stomatal opening with higher photosynthesis rate in leaves. As a result, OSA1 overexpression in rice plants causes a 33% increase in grain yield and a 46% increase in N use efficiency overall. As PM H+-ATPase is highly conserved in plants, these findings indicate that the manipulation of PM H+-ATPase could cooperatively improve N and C utilisation, potentially providing a vital tool for food security and sustainable agriculture.
Collapse
Affiliation(s)
- Maoxing Zhang
- Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, College of Resources and Environment Sciences, Nanjing Agricultural University, Nanjing, China
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Nagoya, Japan
| | - Yin Wang
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Nagoya, Japan
- Institute of Ecology, College of Urban and Environmental Sciences and Key Laboratory for Earth Surface Processes of Ministry of Education, Peking University, Beijing, China
| | - Xi Chen
- College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Feiyun Xu
- Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, College of Resources and Environment Sciences, Nanjing Agricultural University, Nanjing, China
| | - Ming Ding
- Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, College of Resources and Environment Sciences, Nanjing Agricultural University, Nanjing, China
| | - Wenxiu Ye
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Nagoya, Japan
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Yuya Kawai
- Graduate School of Science, Nagoya University, Nagoya, Japan
| | - Yosuke Toda
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Nagoya, Japan
- Japan Science and Technology Agency (JST), PRESTO, Kawaguchi, Japan
| | - Yuki Hayashi
- Graduate School of Science, Nagoya University, Nagoya, Japan
| | - Takamasa Suzuki
- Department of Biological Chemistry, College of Bioscience and Biotechnology, Chubu University, Kasugai, Aichi, Japan
| | - Houqing Zeng
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Liang Xiao
- Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, College of Resources and Environment Sciences, Nanjing Agricultural University, Nanjing, China
| | - Xin Xiao
- College of Resources and Environment, Anhui Science and Technology University, Fengyang, China
| | - Jin Xu
- College of Horticulture, Shanxi Agricultural University, Taigu, China
| | - Shiwei Guo
- Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, College of Resources and Environment Sciences, Nanjing Agricultural University, Nanjing, China
| | - Feng Yan
- Institute of Agronomy and Plant Breeding, Justus Liebig University, Giessen, Germany
| | - Qirong Shen
- Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, College of Resources and Environment Sciences, Nanjing Agricultural University, Nanjing, China
| | - Guohua Xu
- Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, College of Resources and Environment Sciences, Nanjing Agricultural University, Nanjing, China
| | - Toshinori Kinoshita
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Nagoya, Japan.
- Graduate School of Science, Nagoya University, Nagoya, Japan.
| | - Yiyong Zhu
- Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, College of Resources and Environment Sciences, Nanjing Agricultural University, Nanjing, China.
| |
Collapse
|
22
|
Zou N, Huang L, Chen H, Huang X, Song Q, Yang Q, Wang T. Nitrogen form plays an important role in the growth of moso bamboo ( Phyllostachys edulis) seedlings. PeerJ 2020; 8:e9938. [PMID: 32995091 PMCID: PMC7501804 DOI: 10.7717/peerj.9938] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 08/24/2020] [Indexed: 11/29/2022] Open
Abstract
Background This study aimed to gain an understanding of the growth response of Phyllostachys edulis (moso bamboo) seedlings to nitrogen (N) and potassium (K) to benefit nutrient management practices and the design of proper fertilizer in nursery cultivation. Methods An orthogonal array L8(4×24) was used to study the effects of N forms (NH4+, NO3−), N concentrations (8, 32 mmol/L), and K+concentrations (0, 0.5, 1.5, 3 mmol/L) on seedling height, leaf number, chlorophyll content (SPAD value), biomass, root systems, and N content of P. edulis seedlings. Plants were grown in vermiculite under controlled greenhouse conditions. Results Our study showed that N form played a significant role in the overall performance of P. edulis seedlings, followed by the effect of N and K+ concentrations. Among the N forms, NH4+ significantly improved the growth of P. edulis seedlings compared with NO3−. Seedling height, leaf number, chlorophyll SPAD value, biomass, and root system architecture (root length, root surface area, root volume, and root tips) were greater with 8 mmol/L of NH4+ treatments than with 32 mmol/L of NH4+treatments, whereas root diameter and N content of P. edulis seedlings were higher with 32 mmol/L of NH4+ than with 8 mmol/L of NH4+. K displayed inconsistent effects on the growth of P. edulis seedlings. Specifically, seedling height, leaf number, biomass and root volume increased when the K+ concentration was increased from 0 to 0.5 mmol/L, followed by a decrease when the K+ concentration was further increased from 0.5 to 3 mmol/L. Root average diameter of the seedlings was the highest with a K+ concentration of 1.5 mmol/L, and K had some inhibitory effects on the chlorophyll SPAD value of the seedlings. P. edulis seedlings performed well with 8 mmol/L NH4+and further tolerated a higher concentration of both NH4+ and NO3−, although excessive N could inhibit seedling growth. A lower concertation of K (≤ 0.5 mmol/L) promoted seedling growth and increasing K+ concentration in the nutrient solution did not alleviate the inhibitory effect of high N on the growth of P. edulis seedlings. Therefore, NH4+nitrogen as the main form of N fertilizer, together with a low concertation of K+, should be supplied in the cultivation and nutrient management practices of moso bamboo.
Collapse
Affiliation(s)
- Na Zou
- College of Landscape and Art, Jiangxi Agricultural University, Nanchang, Jiangxi, China.,Jiangxi Provincial Key Laboratory for Bamboo Germplasm Resources and Utilization, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Ling Huang
- College of Landscape and Art, Jiangxi Agricultural University, Nanchang, Jiangxi, China.,Jiangxi Provincial Key Laboratory for Bamboo Germplasm Resources and Utilization, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Huijing Chen
- College of Landscape and Art, Jiangxi Agricultural University, Nanchang, Jiangxi, China.,Jiangxi Provincial Key Laboratory for Bamboo Germplasm Resources and Utilization, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Xiaofeng Huang
- College of Landscape and Art, Jiangxi Agricultural University, Nanchang, Jiangxi, China.,Jiangxi Provincial Key Laboratory for Bamboo Germplasm Resources and Utilization, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Qingni Song
- College of Landscape and Art, Jiangxi Agricultural University, Nanchang, Jiangxi, China.,Jiangxi Provincial Key Laboratory for Bamboo Germplasm Resources and Utilization, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Qingpei Yang
- College of Landscape and Art, Jiangxi Agricultural University, Nanchang, Jiangxi, China.,Jiangxi Provincial Key Laboratory for Bamboo Germplasm Resources and Utilization, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Tianchi Wang
- The New Zealand Institute for Plant & Food Research Limited (Plant & Food Research), Auckland, New Zealand
| |
Collapse
|
23
|
NH 4+ Toxicity, Which Is Mainly Determined by the High NH 4+/K + Ratio, Is Alleviated by CIPK23 in Arabidopsis. PLANTS 2020; 9:plants9040501. [PMID: 32295180 PMCID: PMC7238117 DOI: 10.3390/plants9040501] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 04/10/2020] [Accepted: 04/10/2020] [Indexed: 02/01/2023]
Abstract
Ammonium (NH4+) toxicity is always accompanied by ion imbalances, and NH4+ and potassium (K+) exhibit a competitive correlation in their uptake and transport processes. In Arabidopsis thaliana, the typical leaf chlorosis phenotype in the knockout mutant of calcineurin B-like interacting protein kinase 23 (CIPK23) is high-NH4+-dependent under low-K+ condition. However, the correlation of K+ and NH4+ in the occurrence of leaf chlorosis in the cipk23 mutant has not been deeply elucidated. Here, a modified hydroponic experimental system with different gradients of NH4+ and K+ was applied. Comparative treatments showed that NH4+ toxicity, which is triggered mainly by the high ratio of NH4+ to K+ (NH4+/K+ ≥ 10:1 for cipk23) but not by the absolute concentrations of the ions, results in leaf chlorosis. Under high NH4+/K+ ratios, CIPK23 is upregulated abundantly in leaves and roots, which efficiently reduces the leaf chlorosis by regulating the contents of NH4+ and K+ in plant shoots, while promoting the elongation of primary and lateral roots. Physiological data were obtained to further confirm the role CIPK23 in alleviating NH4+ toxicity. Taken all together, CIPK23 might function in different tissues to reduce stress-induced NH4+ toxicity associated with high NH4+/K+ ratios by regulating the NH4+-K+ balance in Arabidopsis.
Collapse
|
24
|
Xu X, Du X, Wang F, Sha J, Chen Q, Tian G, Zhu Z, Ge S, Jiang Y. Effects of Potassium Levels on Plant Growth, Accumulation and Distribution of Carbon, and Nitrate Metabolism in Apple Dwarf Rootstock Seedlings. FRONTIERS IN PLANT SCIENCE 2020; 11:904. [PMID: 32655607 PMCID: PMC7325393 DOI: 10.3389/fpls.2020.00904] [Citation(s) in RCA: 93] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 06/02/2020] [Indexed: 05/05/2023]
Abstract
Nitrogen (N) is one of the most required mineral elements for plant growth, and potassium (K) plays a vital role in nitrogen metabolism, both elements being widely applied as fertilizers in agricultural production. However, the exact relationship between K and nitrogen use efficiency (NUE) remains unclear. Apple dwarf rootstock seedlings (M9T337) were used to study the impacts of different K levels on plant growth, nitrogen metabolism, and carbon (C) assimilation in water culture experiments for 2 years. The results showed that both deficiency and excess K inhibited the growth and root development of M9T337 seedlings. When the K supply concentration was 0 mM and 12 mM, the biomass of each organ, root-shoot ratio, root activity and NO3 - ion flow rate decreased significantly, net photosynthetic rate (P n) and photochemical efficiency (F v/F m) being lower. Meanwhile, seedlings treated with 6 mM K+ had higher N and C metabolizing enzyme activities and higher nitrate transporter gene expression levels (NRT1.1; NRT2.1). 13C and 15N labeling results showed that deficiency and excess K could not only reduce 15N absorption and 13C assimilation accumulation of M9T337 seedlings, but also reduced the 15N distribution ratio in leaves and 13C distribution ratio in roots. These results suggest that appropriate K supply (6 mM) was optimal as it enhanced photoassimilate transport from leaves to roots and increased NUE by influencing photosynthesis, C and N metabolizing enzyme activities, nitrate assimilation gene activities, and nitrate transport.
Collapse
|
25
|
Ou X, Li S, Liao P, Cui X, Zheng B, Yang Y, Liu D, Zheng Y. The transcriptome variations of Panaxnotoginseng roots treated with different forms of nitrogen fertilizers. BMC Genomics 2019; 20:965. [PMID: 31874632 PMCID: PMC6929466 DOI: 10.1186/s12864-019-6340-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 11/26/2019] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND The sensitivity of plants to ammonia is a worldwide problem that limits crop production. Excessive use of ammonium as the sole nitrogen source results in morphological and physiological disorders, and retarded plant growth. RESULTS In this study we found that the root growth of Panax notoginseng was inhibited when only adding ammonium nitrogen fertilizer, but the supplement of nitrate fertilizer recovered the integrity, activity and growth of root. Twelve RNA-seq profiles in four sample groups were produced and analyzed to identify deregulated genes in samples with different treatments. In comparisons to NH[Formula: see text] treated samples, ACLA-3 gene is up-regulated in samples treated with NO[Formula: see text] and with both NH[Formula: see text] and NO[Formula: see text], which is further validated by qRT-PCR in another set of samples. Subsequently, we show that the some key metabolites in the TCA cycle are also significantly enhanced when introducing NO[Formula: see text]. These potentially enhance the integrity and recover the growth of Panax notoginseng roots. CONCLUSION These results suggest that the activated TCA cycle, as demonstrated by up-regulation of ACLA-3 and several key metabolites in this cycle, contributes to the increased Panax notoginseng root yield when applying both ammonium and nitrate fertilizer.
Collapse
Affiliation(s)
- Xiaohong Ou
- Kunming Key Laboratory of Sustainable Development and Utilization of Famous-Region Drug, Key Laboratory of Panax notoginseng Resources Sustainable Development and Utilization of State Administration of Traditional Chinese Medicine, Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, China
- Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, China
| | - Shipeng Li
- Kunming Key Laboratory of Sustainable Development and Utilization of Famous-Region Drug, Key Laboratory of Panax notoginseng Resources Sustainable Development and Utilization of State Administration of Traditional Chinese Medicine, Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, China
- Yunnan Key Lab of Primate Biomedicine Research; Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming University of Science and Technology, Kunming, 650500, China
| | - Peiran Liao
- Kunming Key Laboratory of Sustainable Development and Utilization of Famous-Region Drug, Key Laboratory of Panax notoginseng Resources Sustainable Development and Utilization of State Administration of Traditional Chinese Medicine, Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, China
| | - Xiuming Cui
- Kunming Key Laboratory of Sustainable Development and Utilization of Famous-Region Drug, Key Laboratory of Panax notoginseng Resources Sustainable Development and Utilization of State Administration of Traditional Chinese Medicine, Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, China
| | - Binglian Zheng
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Ye Yang
- Kunming Key Laboratory of Sustainable Development and Utilization of Famous-Region Drug, Key Laboratory of Panax notoginseng Resources Sustainable Development and Utilization of State Administration of Traditional Chinese Medicine, Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, China.
| | - Dahui Liu
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, 430065, China.
| | - Yun Zheng
- Yunnan Key Lab of Primate Biomedicine Research; Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming University of Science and Technology, Kunming, 650500, China.
| |
Collapse
|
26
|
Kirk GJ, Boghi A, Affholder M, Keyes SD, Heppell J, Roose T. Soil carbon dioxide venting through rice roots. PLANT, CELL & ENVIRONMENT 2019; 42:3197-3207. [PMID: 31378945 PMCID: PMC6972674 DOI: 10.1111/pce.13638] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 07/29/2019] [Accepted: 07/31/2019] [Indexed: 05/12/2023]
Abstract
The growth of rice in submerged soils depends on its ability to form continuous gas channels-aerenchyma-through which oxygen (O2 ) diffuses from the shoots to aerate the roots. Less well understood is the extent to which aerenchyma permits venting of respiratory carbon dioxide (CO2 ) in the opposite direction. Large, potentially toxic concentrations of dissolved CO2 develop in submerged rice soils. We show using X-ray computed tomography and image-based mathematical modelling that CO2 venting through rice roots is far greater than thought hitherto. We found rates of venting equivalent to a third of the daily CO2 fixation in photosynthesis. Without this venting through the roots, the concentrations of CO2 and associated bicarbonate (HCO3- ) in root cells would have been well above levels known to be toxic to roots. Removal of CO2 and hence carbonic acid (H2 CO3 ) from the soil was sufficient to increase the pH in the rhizosphere close to the roots by 0.7 units, which is sufficient to solubilize or immobilize various nutrients and toxicants. A sensitivity analysis of the model showed that such changes are expected for a wide range of plant and soil conditions.
Collapse
Affiliation(s)
- Guy J.D. Kirk
- School of Water, Energy and EnvironmentCranfield UniversityCranfieldUK
| | - Andrea Boghi
- School of Water, Energy and EnvironmentCranfield UniversityCranfieldUK
- Faculty of Engineering and EnvironmentUniversity of SouthamptonSouthamptonUK
| | | | - Samuel D. Keyes
- Faculty of Engineering and EnvironmentUniversity of SouthamptonSouthamptonUK
| | - James Heppell
- Faculty of Engineering and EnvironmentUniversity of SouthamptonSouthamptonUK
| | - Tiina Roose
- Faculty of Engineering and EnvironmentUniversity of SouthamptonSouthamptonUK
| |
Collapse
|
27
|
Sustr M, Soukup A, Tylova E. Potassium in Root Growth and Development. PLANTS (BASEL, SWITZERLAND) 2019; 8:E435. [PMID: 31652570 PMCID: PMC6843428 DOI: 10.3390/plants8100435] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 10/18/2019] [Accepted: 10/19/2019] [Indexed: 02/06/2023]
Abstract
Potassium is an essential macronutrient that has been partly overshadowed in root science by nitrogen and phosphorus. The current boom in potassium-related studies coincides with an emerging awareness of its importance in plant growth, metabolic functions, stress tolerance, and efficient agriculture. In this review, we summarized recent progress in understanding the role of K+ in root growth, development of root system architecture, cellular functions, and specific plant responses to K+ shortage. K+ transport is crucial for its physiological role. A wide range of K+ transport proteins has developed during evolution and acquired specific functions in plants. There is evidence linking K+ transport with cell expansion, membrane trafficking, auxin homeostasis, cell signaling, and phloem transport. This places K+ among important general regulatory factors of root growth. K+ is a rather mobile element in soil, so the absence of systemic and localized root growth response has been accepted. However, recent research confirms both systemic and localized growth response in Arabidopsis thaliana and highlights K+ uptake as a crucial mechanism for plant stress response. K+-related regulatory mechanisms, K+ transporters, K+ acquisition efficiency, and phenotyping for selection of K+ efficient plants/cultivars are highlighted in this review.
Collapse
Affiliation(s)
- Marek Sustr
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Vinicna 5, 128 44 Prague 2, Czech Republic.
| | - Ales Soukup
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Vinicna 5, 128 44 Prague 2, Czech Republic.
| | - Edita Tylova
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Vinicna 5, 128 44 Prague 2, Czech Republic.
| |
Collapse
|
28
|
Cruz-Munoz M, Munoz-Beristain A, Petrone JR, Robinson MA, Triplett EW. Growth parameters of Liberibacter crescens suggest ammonium and phosphate as essential molecules in the Liberibacter-plant host interface. BMC Microbiol 2019; 19:222. [PMID: 31606047 PMCID: PMC6790036 DOI: 10.1186/s12866-019-1599-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2019] [Accepted: 09/20/2019] [Indexed: 12/25/2022] Open
Abstract
Background Liberibacter crescens is the closest cultured relative of four important uncultured crop pathogens. Candidatus. L. asiaticus, L. americanus, L. africanus cause citrus greening disease, while Ca. L. solanacearum causes potato Zebra chip disease. None of the pathogens grows in axenic culture. L. crescens grows in three media: a BM-7, a serum-free Hi® Grace’s Insect Medium (Hi-GI), and a chemically-defined medium called M15. To date, no optimal growth parameters of the model species L. crescens have been reported. Studying the main growth parameters of L. crescens in axenic culture will give us insights into the lifestyle of the Ca. Liberibacter pathogens. Results The evaluation of the growth parameters—pH, aeration, temperature, and buffering capacity—reflects the optimal living conditions of L. crescens. These variables revealed that L. crescens is an aerobic, neutrophilic bacterium, that grows optimally in broth in a pH range of 5.8 to 6.8, in a fully oxygenated environment (250 rpm), at 28 °C, and with monosodium phosphate (10 mM or 11.69 mM) as the preferred buffer for growth. The increase of pH in the external media likely results from the deamination activity within the cell, with the concomitant over-production of ammonium in the external medium. Conclusion L. crescens and the Ca. Liberibacter pathogens are metabolically similar and grow in similar environments—the phloem and the gut of their insect vectors. The evaluation of the growth parameters of L. crescens reveals the lifestyle of Liberibacter, elucidating ammonium and phosphate as essential molecules for colonization within the hosts. Ammonium is the main driver of pH modulation by active deamination of amino acids in the L. crescens amino acid rich media. In plants, excess ammonium induces ionic imbalances, oxidative stress, and pH disturbances across cell membranes, causing stunted root and shoot growth and chlorosis—the common symptoms of HLB-disease. Phosphate, which is also present in Ca. L. asiaticus hosts, is the preferred buffer for the growth of L. crescens. The interplay between ammonium, sucrose, potassium (K+), phosphate, nitrate (NO3−), light and other photosynthates might lead to develop better strategies for disease management.
Collapse
Affiliation(s)
- Maritsa Cruz-Munoz
- Microbiology and Cell Science Department, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL, USA
| | - Alam Munoz-Beristain
- Microbiology and Cell Science Department, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL, USA
| | - Joseph R Petrone
- Microbiology and Cell Science Department, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL, USA
| | - Matthew A Robinson
- Biostatistics Department, College of Health Professions and College of Medicine, University of Florida, Gainesville, FL, USA
| | - Eric W Triplett
- Microbiology and Cell Science Department, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
29
|
Wang F, Gao J, Shi S, He X, Dai T. Impaired electron transfer accounts for the photosynthesis inhibition in wheat seedlings (Triticum aestivum L.) subjected to ammonium stress. PHYSIOLOGIA PLANTARUM 2019; 167:159-172. [PMID: 30430601 DOI: 10.1111/ppl.12878] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 11/08/2018] [Accepted: 11/11/2018] [Indexed: 05/17/2023]
Abstract
No single mechanism can provide an adequate explanation for the inhibition of photosynthesis when plants are supplied with ammonium (NH4 + ) as the sole nitrogen (N) source. We performed a hydroponic experiment using two N sources [5 mM NH4 + and 5 mM nitrate (NO3 - )] to investigate the effects of NH4 + stress on the photosynthetic capacities of two wheat cultivars (NH4 + -sensitive AK58 and NH4 + -tolerant XM25). NH4 + significantly inhibited the growth and light-saturated photosynthesis (Asat ) of both cultivars, but the extent of such inhibition was greater in the NH4 + -sensitive AK58. The CO2 concentration did not limit CO2 assimilation under NH4 + nutrition; though both stomatal and mesophyll conductance were significantly suppressed. Carboxylation efficiency (CE), light-saturated potential rate of electron transport (Jmax ), the quantum efficiency of PSII (ΦPSII ), electron transport rate through PSII [Je(PSII)], and Fv /Fm were significantly reduced by NH4 + . As a result, NH4 + nutrition resulted in a significant increase in the production of hydrogen peroxide (H2 O2 ) and superoxide anion radicals (O2 •- ), but these symptoms were less severe in the NH4 + -tolerant XM25, which had a higher capacity of removing elevated reactive oxygen species (ROS). Thus, NH4 + N sources might decreased electron transport efficiency and increased the production of ROS, exacerbating damage to the electron transport chain, leading to a reduced plant photosynthetic capacity.
Collapse
Affiliation(s)
- Feng Wang
- Centre of Excellence for Soil Biology, College of Resources and Environment, Southwest University, Chongqing, China
- School of Biological Sciences, University of Western Australia, Crawley, WA, Australia
| | - Jingwen Gao
- School of Biological Sciences, University of Western Australia, Crawley, WA, Australia
- Key Laboratory of Crop Physiology and Ecology in Southern China, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, China
| | - Songmei Shi
- Centre of Excellence for Soil Biology, College of Resources and Environment, Southwest University, Chongqing, China
| | - Xinhua He
- Centre of Excellence for Soil Biology, College of Resources and Environment, Southwest University, Chongqing, China
- School of Biological Sciences, University of Western Australia, Crawley, WA, Australia
| | - Tingbo Dai
- Key Laboratory of Crop Physiology and Ecology in Southern China, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
30
|
Alencar VTCB, Lobo AKM, Carvalho FEL, Silveira JAG. High ammonium supply impairs photosynthetic efficiency in rice exposed to excess light. PHOTOSYNTHESIS RESEARCH 2019; 140:321-335. [PMID: 30694432 DOI: 10.1007/s11120-019-00614-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 01/08/2019] [Indexed: 06/09/2023]
Abstract
Mechanisms involving ammonium toxicity, excess light, and photosynthesis are scarcely known in plants. We tested the hypothesis that high NH4+ supply in presence of high light decreases photosynthetic efficiency of rice plants, an allegedly tolerant species. Mature rice plants were previously supplied with 10 mM NH4+ or 10 mM NO3- and subsequently exposed to 400 µmol m-2 s-1 (moderate light-ML) or 2000 µmol m-2 s-1 (high light-HL) for 8 h. HL greatly stimulated NH4+ accumulation in roots and in a minor extent in leaves. These plants displayed significant delay in D1 protein recovery in the dark, compared to nitrate-supplied plants. These responses were related to reduction of both PSII and PSI quantum efficiencies and induction of non-photochemical quenching. These changes were also associated with higher limitation in the donor side and lower restriction in the acceptor side of PSI. This later response was closely related to prominent decrease in stomatal conductance and net CO2 assimilation that could have strongly affected the energy balance in chloroplast, favoring ATP accumulation and NPQ induction. In parallel, NH4+ induced a strong increase in the electron flux to photorespiration and, inversely, it decreased the flux to Rubisco carboxylation. Overall, ammonium supply negatively interacts with excess light, possibly by enhancing ammonium transport towards leaves, causing negative effects on some photosynthetic steps. We propose that high ammonium supply to rice combined with excess light is capable to induce strong delay in D1 protein turnover and restriction in stomatal conductance, which might have contributed to generalized disturbances on photosynthetic efficiency.
Collapse
Affiliation(s)
- V T C B Alencar
- Departamento de Bioquímica e Biologia Molecular, Laboratório de Metabolismo de Plantas, Universidade Federal do Ceará, Av. Humberto Monte 2825, Campus do Pici, Bl. 907, CP 6020, Fortaleza, Ceará, CEP 60451-970, Brazil
| | - A K M Lobo
- Departamento de Bioquímica e Biologia Molecular, Laboratório de Metabolismo de Plantas, Universidade Federal do Ceará, Av. Humberto Monte 2825, Campus do Pici, Bl. 907, CP 6020, Fortaleza, Ceará, CEP 60451-970, Brazil
| | - F E L Carvalho
- Departamento de Bioquímica e Biologia Molecular, Laboratório de Metabolismo de Plantas, Universidade Federal do Ceará, Av. Humberto Monte 2825, Campus do Pici, Bl. 907, CP 6020, Fortaleza, Ceará, CEP 60451-970, Brazil
| | - J A G Silveira
- Departamento de Bioquímica e Biologia Molecular, Laboratório de Metabolismo de Plantas, Universidade Federal do Ceará, Av. Humberto Monte 2825, Campus do Pici, Bl. 907, CP 6020, Fortaleza, Ceará, CEP 60451-970, Brazil.
| |
Collapse
|
31
|
Wang R, Xu S, Sun H, Feng S, Jiang C, Zhou S, Wu S, Zhuang G, Chen B, Bai Z, Zhuang X. Complex regulatory network allows Myriophyllum aquaticum to thrive under high-concentration ammonia toxicity. Sci Rep 2019; 9:4801. [PMID: 30886354 PMCID: PMC6423053 DOI: 10.1038/s41598-019-41236-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 02/05/2019] [Indexed: 01/24/2023] Open
Abstract
Plants easily experience ammonia (NH4+) toxicity, especially aquatic plants. However, a unique wetland plant species, Myriophyllum aquaticum, can survive in livestock wastewater with more than 26 mM NH4+. In this study, the mechanisms of the M. aquaticum response to NH4+ toxicity were analysed with RNA-seq. Preliminary analysis of enzyme activities indicated that key enzymes involved in nitrogen metabolism were activated to assimilate toxic NH4+ into amino acids and proteins. In response to photosystem damage, M. aquaticum seemed to remobilize starch and cellulose for greater carbon and energy supplies to resist NH4+ toxicity. Antioxidative enzyme activity and the secondary metabolite content were significantly elevated for reactive oxygen species removal. Transcriptomic analyses also revealed that genes involved in diverse functions (e.g., nitrogen, carbon and secondary metabolisms) were highly responsive to NH4+ stress. These results suggested that a complex physiological and genetic regulatory network in M. aquaticum contributes to its NH4+ tolerance.
Collapse
Affiliation(s)
- Rui Wang
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shengjun Xu
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Haishu Sun
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shugeng Feng
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Cancan Jiang
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Sining Zhou
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shimin Wu
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Guoqiang Zhuang
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Baodong Chen
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Zhihui Bai
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xuliang Zhuang
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China.
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
32
|
Zhang W, Zhang X, Wang Y, Zhang N, Guo Y, Ren X, Zhao Z. Potassium fertilization arrests malate accumulation and alters soluble sugar metabolism in apple fruit. Biol Open 2018; 7:bio024745. [PMID: 30404903 PMCID: PMC6310881 DOI: 10.1242/bio.024745] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Accepted: 10/31/2018] [Indexed: 12/28/2022] Open
Abstract
Effects of different potassium (K) levels, which were K0 (no fertilizer), K1 (71.5 g KCl plant-1 year-1), K2 (286.7 g KCl plant-1 year-1), and K3 (434 g KCl plant-1 year-1), were evaluated based on sugar and organic acid metabolism levels from 70-126 days after bloom (DAB) in the developing fruit of potted five-year-old apple (Malus domestica, Borkh.) trees. The results indicate that K fertilization promoted greater fruit mass, higher Ca2+ and soluble solid levels, and lower titratable acid levels, as well as increased pH values at harvest. With the application of different levels of K fertilizer, fructose, sorbitol, glucose and sucrose accumulation rates significantly changed during fruit development. Fruit in the K2 group had higher fructose, sucrose and glucose levels than those in other treatment groups at 126 DAB. These changes in soluble sugar are related to the activity of metabolic enzymes. Sucrose synthase (SS) and sorbitol dehydrogenase (SDH) activity in the K2 treated fruit was significantly higher than those in other treatment groups from 70-126 DAB. Malate levels in K-supplemented fruit were notably lower than those in non K-supplemented fruit, and K3 treated fruit had the lowest malate levels during fruit development. Cytosolic malic enzyme (ME) and phosphoenolpyruvate carboxykinase (PEPCK) activity significantly increased in fruit under the K2 treatment during 112-126 DAB and 98-126 DAB, respectively. In addition, Ca2+ concentration increased with increasing K fertilization levels, which promoted a maximum of 11.72 mg g-1 dry weight in apple fruit. These results show that K levels can alter soluble sugar and malate levels due to the interaction between sugars and acid-metabolic enzymes in fruit.
Collapse
Affiliation(s)
- Wen Zhang
- College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Xian Zhang
- College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Yufei Wang
- College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Nishang Zhang
- Key Laboratory of Horticulture Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Yanping Guo
- College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
- Key Laboratory of Horticulture Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Xiaolin Ren
- College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Zhengyang Zhao
- Shaanxi Engineering Research Center for Apple, Northwest A&F University, Yangling 712100, Shaanxi, China
| |
Collapse
|
33
|
Hou W, Yan J, Jákli B, Lu J, Ren T, Cong R, Li X. Synergistic Effects of Nitrogen and Potassium on Quantitative Limitations to Photosynthesis in Rice ( Oryza sativa L.). JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:5125-5132. [PMID: 29715025 DOI: 10.1021/acs.jafc.8b01135] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
The inhibition of the net CO2 assimilation ( A) during photosynthesis is one of the major physiological effects of both nitrogen (N) and potassium (K) deficiencies on rice growth. Whether the reduction in A arises from a limitation in either the diffusion and biochemical fixation of CO2 or photochemical energy conversion is still debated in relation to N and K deficiencies. In this study, the gas exchange parameters of rice under different N and K levels were evaluated and limitations within the photosynthetic carbon capture process were quantified. A was increased by 17.3 and 12.1% for the supply of N and K, respectively. The suitable N/K ratio should be maintained from 1.42 to 1.50. The limitation results indicated that A is primarily limited by the biochemical process. The stomatal conductance ( LS), mesophyll conductance ( LM), and biochemical ( LB) limitations were regulated by 26.6-79.9, 24.4-54.1, and 44.1-75.2%, respectively, with the N and K supply.
Collapse
Affiliation(s)
- Wenfeng Hou
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture/Microelement Research Center/College of Resources and Environment , Huazhong Agricultural University , Wuhan , Hubei 430070 , People's Republic of China
| | - Jinyao Yan
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture/Microelement Research Center/College of Resources and Environment , Huazhong Agricultural University , Wuhan , Hubei 430070 , People's Republic of China
| | - Bálint Jákli
- Institute of Applied Plant Nutrition , University of Göttingen , Carl-Sprengel-Weg 1 , 37075 Göttingen , Germany
| | - Jianwei Lu
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture/Microelement Research Center/College of Resources and Environment , Huazhong Agricultural University , Wuhan , Hubei 430070 , People's Republic of China
| | - Tao Ren
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture/Microelement Research Center/College of Resources and Environment , Huazhong Agricultural University , Wuhan , Hubei 430070 , People's Republic of China
| | - Rihuan Cong
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture/Microelement Research Center/College of Resources and Environment , Huazhong Agricultural University , Wuhan , Hubei 430070 , People's Republic of China
| | - Xiaokun Li
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture/Microelement Research Center/College of Resources and Environment , Huazhong Agricultural University , Wuhan , Hubei 430070 , People's Republic of China
| |
Collapse
|
34
|
Tegeder M, Masclaux-Daubresse C. Source and sink mechanisms of nitrogen transport and use. THE NEW PHYTOLOGIST 2018; 217:35-53. [PMID: 29120059 DOI: 10.1111/nph.14876] [Citation(s) in RCA: 314] [Impact Index Per Article: 52.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Accepted: 09/09/2017] [Indexed: 05/03/2023]
Abstract
Contents Summary 35 I. Introduction 35 II. Nitrogen acquisition and assimilation 36 III. Root-to-shoot transport of nitrogen 38 IV. Nitrogen storage pools in vegetative tissues 39 V. Nitrogen transport from source leaf to sink 40 VI. Nitrogen import into sinks 42 VII. Relationship between source and sink nitrogen transport processes and metabolism 43 VIII. Regulation of nitrogen transport 43 IX. Strategies for crop improvement 44 X. Conclusions 46 Acknowledgements 47 References 47 SUMMARY: Nitrogen is an essential nutrient for plant growth. World-wide, large quantities of nitrogenous fertilizer are applied to ensure maximum crop productivity. However, nitrogen fertilizer application is expensive and negatively affects the environment, and subsequently human health. A strategy to address this problem is the development of crops that are efficient in acquiring and using nitrogen and that can achieve high seed yields with reduced nitrogen input. This review integrates the current knowledge regarding inorganic and organic nitrogen management at the whole-plant level, spanning from nitrogen uptake to remobilization and utilization in source and sink organs. Plant partitioning and transient storage of inorganic and organic nitrogen forms are evaluated, as is how they affect nitrogen availability, metabolism and mobilization. Essential functions of nitrogen transporters in source and sink organs and their importance in regulating nitrogen movement in support of metabolism, and vegetative and reproductive growth are assessed. Finally, we discuss recent advances in plant engineering, demonstrating that nitrogen transporters are effective targets to improve crop productivity and nitrogen use efficiency. While inorganic and organic nitrogen transporters were examined separately in these studies, they provide valuable clues about how to successfully combine approaches for future crop engineering.
Collapse
Affiliation(s)
- Mechthild Tegeder
- School of Biological Sciences, Washington State University, Pullman, WA, 99164-4236, USA
| | - Céline Masclaux-Daubresse
- INRA-AgroParisTech, Institut Jean-Pierre Bourgin, UMR1318, ERL CNRS 3559, Saclay Plant Sciences, Versailles, France
| |
Collapse
|
35
|
Sun L, Lu Y, Yu F, Kronzucker HJ, Shi W. Biological nitrification inhibition by rice root exudates and its relationship with nitrogen-use efficiency. THE NEW PHYTOLOGIST 2016; 212:646-656. [PMID: 27292630 DOI: 10.1111/nph.14057] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2016] [Accepted: 05/12/2016] [Indexed: 05/22/2023]
Abstract
Microbial nitrification in soils is a major contributor to nitrogen (N) loss in agricultural systems. Some plants can secrete organic substances that act as biological nitrification inhibitors (BNIs), and a small number of BNIs have been identified and characterized. However, virtually no research has focused on the important food crop, rice (Oryza sativa). Here, 19 rice varieties were explored for BNI potential on the key nitrifying bacterium Nitrosomonas europaea. Exudates from both indica and japonica genotypes were found to possess strong BNI potential. Older seedlings had higher BNI abilities than younger ones; Zhongjiu25 (ZJ25) and Wuyunjing7 (WYJ7) were the most effective genotypes among indica and japonica varieties, respectively. A new nitrification inhibitor, 1,9-decanediol, was identified, shown to block the ammonia monooxygenase (AMO) pathway of ammonia oxidation and to possess an 80% effective dose (ED80 ) of 90 ng μl-1 . Plant N-use efficiency (NUE) was determined using a 15 N-labeling method. Correlation analyses indicated that both BNI abilities and 1,9-decanediol amounts of root exudates were positively correlated with plant ammonium-use efficiency and ammonium preference. These findings provide important new insights into the plant-bacterial interactions involved in the soil N cycle, and improve our understanding of the BNI capacity of rice in the context of NUE.
Collapse
Affiliation(s)
- Li Sun
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yufang Lu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Fangwei Yu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Herbert J Kronzucker
- Department of Biological Sciences, University of Toronto, 1265 Military Trail, Toronto, ON, M1C 1A4, Canada
| | - Weiming Shi
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China.
| |
Collapse
|
36
|
Li G, Kronzucker HJ, Shi W. Root developmental adaptation to Fe toxicity: Mechanisms and management. PLANT SIGNALING & BEHAVIOR 2016; 11:e1117722. [PMID: 26619064 PMCID: PMC4871668 DOI: 10.1080/15592324.2015.1117722] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Iron (Fe) is an essential microelement but is highly toxic when in excess. To cope with Fe excess, plants have evolved complex adaptive responses that include morphological and physiological modifications. The highly dynamic adjustments in overall root system architecture (RSA) determine root plasticity and allow plants to efficiently adapt to environmental constraints. However, the effects of Fe excess on RSA are poorly understood. Recently, we showed that excess Fe treatment in Arabidopsis not only directly impairs primary root (PR) growth but also arrests lateral root (LR) formation by acting at the tip of the growing primary root. Such a change is believed to help RSA adjust and restrict excessive Fe absorption in the part of the rhizosphere subject to acute toxicity while maintaining the absorption of other nutrients in the less stressed components of the root system. We further showed that the suppression of PR growth and LR formation under excess Fe is alleviated by K(+) addition, providing useful insight into the effectiveness of nutrient management to improve RSA and alleviate Fe toxicity symptoms in the field.
Collapse
Affiliation(s)
- Guangjie Li
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
| | - Herbert J. Kronzucker
- Department of Biological Sciences, University of Toronto, 1265 Military Trail, Toronto, Ontario, Canada
| | - Weiming Shi
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
| |
Collapse
|
37
|
Kong L, Sun M, Wang F, Liu J, Feng B, Si J, Zhang B, Li S, Li H. Effects of high NH(+) 4 on K(+) uptake, culm mechanical strength and grain filling in wheat. FRONTIERS IN PLANT SCIENCE 2014; 5:703. [PMID: 25566278 PMCID: PMC4267191 DOI: 10.3389/fpls.2014.00703] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2014] [Accepted: 11/25/2014] [Indexed: 06/04/2023]
Abstract
It is well established that a high external NH(+) 4 concentration depresses many processes in plant development, but the underlying mechanisms are still not well understood. To determine whether the negative effects of high levels of NH(+) 4 are related to competitive cation uptake, wheat was grown in a field with moderate (18 g N m(-2)) and high (30 g N m(-2)) supplies of NH(+) 4 in the presence or absence of additional K(+) (6 g K2O m(-2)) to examine culm mechanical strength, the main components of the vascular bundle, nitrogen (N) remobilization and the grain-filling rate. The results indicated that an excessive supply of NH(+) 4 significantly decreased culm mechanical strength, the cellulose and lignin contents of vascular bundles, the N remobilization efficiency (NRE) and the grain-filling rate compared with a moderate level of NH(+) 4. The additional provision of K(+) considerably alleviated these negative effects of high NH(+) 4, resulting in a 19.41-26.95% increase in culm mechanical strength during grain filling and a 34.59% increase in the NRE. An assay using the scanning ion-selective electrode technique (SIET) showed that the net rate of transmembrane K(+) influx decreased by 84.62%, and measurements using flame photometry demonstrated that the K(+) content decreased by 36.13% in wheat plants subjected to high NH(+) 4. This study indicates that the effects of high NH(+) 4 on culm mechanical strength, cellulose and lignin contents, the NRE and the grain-filling rate are probably associated with inhibition of K(+) uptake in wheat.
Collapse
Affiliation(s)
- Lingan Kong
- *Correspondence: Lingan Kong, Crop Research Institute, Shandong Academy of Agricultural Sciences, 202 Gongyebei Road, Jinan City 250100, China e-mail:
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Coskun D, Britto DT, Jean YK, Kabir I, Tolay I, Torun AA, Kronzucker HJ. K+ efflux and retention in response to NaCl stress do not predict salt tolerance in contrasting genotypes of rice (Oryza sativa L.). PLoS One 2013; 8:e57767. [PMID: 23460903 PMCID: PMC3583904 DOI: 10.1371/journal.pone.0057767] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2012] [Accepted: 01/25/2013] [Indexed: 12/25/2022] Open
Abstract
Sudden elevations in external sodium chloride (NaCl) accelerate potassium (K(+)) efflux across the plasma membrane of plant root cells. It has been proposed that the extent of this acceleration can predict salt tolerance among contrasting cultivars. However, this proposal has not been considered in the context of plant nutritional history, nor has it been explored in rice (Oryza sativa L.), which stands among the world's most important and salt-sensitive crop species. Using efflux analysis with (42)K, coupled with growth and tissue K(+) analyses, we examined the short- and long-term effects of NaCl exposure to plant performance within a nutritional matrix that significantly altered tissue-K(+) set points in three rice cultivars that differ in salt tolerance: IR29 (sensitive), IR72 (moderate), and Pokkali (tolerant). We show that total short-term K(+) release from roots in response to NaCl stress is small (no more than 26% over 45 min) in rice. Despite strong varietal differences, the extent of efflux is shown to be a poor predictor of plant performance on long-term NaCl stress. In fact, no measure of K(+) status was found to correlate with plant performance among cultivars either in the presence or absence of NaCl stress. By contrast, shoot Na(+) accumulation showed the strongest correlation (a negative one) with biomass, under long-term salinity. Pharmacological evidence suggests that NaCl-induced K(+) efflux is a result of membrane disintegrity, possibly as result of osmotic shock, and not due to ion-channel mediation. Taken together, we conclude that, in rice, K(+) status (including efflux) is a poor predictor of salt tolerance and overall plant performance and, instead, shoot Na(+) accumulation is the key factor in performance decline on NaCl stress.
Collapse
Affiliation(s)
- Devrim Coskun
- Department of Biological Sciences, University of Toronto, Toronto, Ontario, Canada
| | - Dev T. Britto
- Department of Biological Sciences, University of Toronto, Toronto, Ontario, Canada
| | - Yuel-Kai Jean
- Department of Biological Sciences, University of Toronto, Toronto, Ontario, Canada
| | - Imtiaz Kabir
- Department of Biological Sciences, University of Toronto, Toronto, Ontario, Canada
| | - Inci Tolay
- Department of Agriculture, Akdeniz University, Antalya, Turkey
| | - Ayfer A. Torun
- Department of Soil Science & Plant Nutrition, Cukurova University, Adana, Turkey
| | | |
Collapse
|
39
|
Abstract
Sodium (Na) toxicity is one of the most formidable challenges for crop production world-wide. Nevertheless, despite decades of intensive research, the pathways of Na(+) entry into the roots of plants under high salinity are still not definitively known. Here, we review critically the current paradigms in this field. In particular, we explore the evidence supporting the role of nonselective cation channels, potassium transporters, and transporters from the HKT family in primary sodium influx into plant roots, and their possible roles elsewhere. We furthermore discuss the evidence for the roles of transporters from the NHX and SOS families in intracellular Na(+) partitioning and removal from the cytosol of root cells. We also review the literature on the physiology of Na(+) fluxes and cytosolic Na(+) concentrations in roots and invite critical interpretation of seminal published data in these areas. The main focus of the review is Na(+) transport in glycophytes, but reference is made to literature on halophytes where it is essential to the analysis.
Collapse
|