1
|
Mosaddad SA, Hussain A, Tebyaniyan H. Green Alternatives as Antimicrobial Agents in Mitigating Periodontal Diseases: A Narrative Review. Microorganisms 2023; 11:1269. [PMCID: PMC10220622 DOI: 10.3390/microorganisms11051269] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 04/26/2023] [Accepted: 05/09/2023] [Indexed: 06/03/2023] Open
Abstract
Periodontal diseases and dental caries are the most common infectious oral diseases impacting oral health globally. Oral cavity health is crucial for enhancing life quality since it serves as the entranceway to general health. The oral microbiome and oral infectious diseases are strongly correlated. Gram-negative anaerobic bacteria have been associated with periodontal diseases. Due to the shortcomings of several antimicrobial medications frequently applied in dentistry, the lack of resources in developing countries, the prevalence of oral inflammatory conditions, and the rise in bacterial antibiotic resistance, there is a need for reliable, efficient, and affordable alternative solutions for the prevention and treatment of periodontal diseases. Several accessible chemical agents can alter the oral microbiota, although these substances also have unfavorable symptoms such as vomiting, diarrhea, and tooth discoloration. Natural phytochemicals generated from plants that have historically been used as medicines are categorized as prospective alternatives due to the ongoing quest for substitute products. This review concentrated on phytochemicals or herbal extracts that impact periodontal diseases by decreasing the formation of dental biofilms and plaques, preventing the proliferation of oral pathogens, and inhibiting bacterial adhesion to surfaces. Investigations examining the effectiveness and safety of plant-based medicines have also been presented, including those conducted over the past decade.
Collapse
Affiliation(s)
- Seyed Ali Mosaddad
- Student Research Committee, School of Dentistry, Shiraz University of Medical Sciences, Shiraz 71348-14336, Iran;
| | - Ahmed Hussain
- School of Dentistry, Edmonton Clinic Health Academy, University of Alberta, Edmonton, AB T6G 1C9, Canada
| | - Hamid Tebyaniyan
- Science and Research Branch, Islimic Azade University, Tehran 14878-92855, Iran
| |
Collapse
|
2
|
R. Portillo O, Arévalo AC. Coffee's Phenolic Compounds. A general overview of the coffee fruit's phenolic composition. BIONATURA 2022. [DOI: 10.21931/rb/2022.07.03.31] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Phenolic compounds are secondary metabolites ubiquitously distributed in the plant kingdom which come in a wide array of molecular configurations which confer them a comprehensive set of chemical attributes such as, but not limited to: nutraceutical properties, industrial applications (e.g., dyes, rawhide processing, beer production, antioxidants), and plant self-defense mechanisms against natural enemies also known as the Systemic Acquired Resistance (SAR).However, despite the fact, that there is a large number of phenolic-containing food products (e.g., chocolate, green tea, wines, beer, wood barrel-aged spirits, cherries, grapes, apples, peaches, plums, pears, etc.), coffee remains, in the western hemisphere, as the main source of dietary phenolic compounds reflected by the fact that, in the international market, coffee occupies the second trading position after oil and its derivatives. The following discussion is the product of an extensive review of scientific literature that aims to describe essential topics related to coffee phenolic compounds, especially chlorogenic acids, their purpose in nature, biosynthesis, determination, metabolism, chemical properties, and their effect on cup quality.
Keywords: phenolic acids, caffeoylquinic acid, antioxidant capacity, metabolism, biosynthesis.
Collapse
Affiliation(s)
- Ostilio R. Portillo
- Faculty of Engineering, National Autonomous University of Honduras, Tegucigalpa (UNAH), Honduras
| | - Ana C. Arévalo
- Faculty of Chemistry & Pharmacy, National Autonomous University of Honduras, Tegucigalpa (UNAH), Honduras
| |
Collapse
|
3
|
Valorization of Traditional Italian Walnut (Juglans regia L.) Production: Genetic, Nutritional and Sensory Characterization of Locally Grown Varieties in the Trentino Region. PLANTS 2022; 11:plants11151986. [PMID: 35956464 PMCID: PMC9370163 DOI: 10.3390/plants11151986] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 07/22/2022] [Accepted: 07/24/2022] [Indexed: 12/12/2022]
Abstract
Juglans regia (L.) is cultivated worldwide for its nutrient-rich nuts. In Italy, despite the growing demand, walnut cultivation has gone through a strong decline in recent decades, which led to Italy being among the top five net importing countries. To promote the development of local high-quality Italian walnut production, we devised a multidisciplinary project to highlight the distinctive traits of three varieties grown in the mountainous region Trentino (northeast of Italy): the heirloom ‘Bleggiana’, a second local accession called local Franquette and the French cultivar ‘Lara’, recently introduced in the local production to increase yield. The genetic characterization confirmed the uniqueness of ‘Bleggiana’ and revealed local Franquette as a newly described autochthonous variety, thus named ‘Blegette’. The metabolic profiles highlighted a valuable nutritional composition of the local varieties, richer in polyphenols and with a lower ω-6/ω-3 ratio than the commercial ‘Lara’. ‘Blegette’ obtained the highest preference scores from consumers for both the visual aspect and tasting; however, the volatile organic compound profiles did not discriminate among the characterized cultivars. The described local varieties represent an interesting reservoir of walnut genetic diversity and quality properties, which deserve future investigation on agronomically useful traits (e.g., local adaptation and water usage) for a high-quality and sustainable production.
Collapse
|
4
|
Koutouleas A, Sarzynski T, Bordeaux M, Bosselmann AS, Campa C, Etienne H, Turreira-García N, Rigal C, Vaast P, Ramalho JC, Marraccini P, Ræbild A. Shaded-Coffee: A Nature-Based Strategy for Coffee Production Under Climate Change? A Review. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2022. [DOI: 10.3389/fsufs.2022.877476] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Coffee is deemed to be a high-risk crop in light of upcoming climate changes. Agroforestry practices have been proposed as a nature-based strategy for coffee farmers to mitigate and adapt to future climates. However, with agroforestry systems comes shade, a highly contentious factor for coffee production in terms of potential yield reduction, as well as additional management needs and interactions between shade trees and pest and disease. In this review, we summarize recent research relating to the effects of shade on (i) farmers' use and perceptions, (ii) the coffee microenvironment, (iii) pest and disease incidence, (iv) carbon assimilation and phenology of coffee plants, (v) coffee quality attributes (evaluated by coffee bean size, biochemical compounds, and cup quality tests), (vi) breeding of new Arabica coffee F1 hybrids and Robusta clones for future agroforestry systems, and (vii) coffee production under climate change. Through this work, we begin to decipher whether shaded systems are a feasible strategy to improve the coffee crop sustainability in anticipation of challenging climate conditions. Further research is proposed for developing new coffee varieties adapted to agroforestry systems (exhibiting traits suitable for climate stressors), refining extension tools by selecting locally-adapted shade trees species and developing policy and economic incentives enabling the adoption of sustainable agroforestry practices.
Collapse
|
5
|
Dissecting coffee seeds metabolome in context of genotype, roasting degree, and blending in the Middle East using NMR and GC/MS techniques. Food Chem 2021; 373:131452. [PMID: 34731792 DOI: 10.1016/j.foodchem.2021.131452] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Revised: 10/19/2021] [Accepted: 10/19/2021] [Indexed: 12/14/2022]
Abstract
With a favored taste and various bioactivities, coffee has been consumed as a daily beverage worldwide. The current study presented a multi-faceted comparative metabolomics approach dissecting commercially available coffee products in the Middle East region for quality assessment and functional food purposes using NMR and GC/MS platforms. NMR metabolites fingerprinting led to identification of 18 metabolites and quantification (qNMR) of six prominent markers for standardization purposes. An increase of β-ethanolamine (MEA) reported for the first time, 5-(hydroxymethyl) furfural (5-HMF), concurrent with a reduction in chlorogenic acid, kahweol, and sucrose levels post roasting as revealed using multivariate data analyses (MVA). The diterpenes kahweol and cafestol were identified in green and roasted Coffea arabica, while 16-O-methyl cafestol in roasted C. robusta. Moreover, GC/MS identified a total of 143 metabolites belonging to 15 different chemical classes, with fructose found enriched in green C. robusta versus fatty acids abundance, i.e., palmitic and stearic acids in C. arabica confirming NMR results. These potential results aided to identify novel quality control attributes, i.e., ethanolamine, for coffee in the Middle East region and have yet to be confirmed in other coffee specimens.
Collapse
|
6
|
Pereira PV, da Silveira DL, Schwan RF, de Assis Silva S, Coelho JM, Bernardes PC. Effect of altitude and terrain aspect on the chemical composition of Coffea canephora cherries and sensory characteristics of the beverage. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2021; 101:2570-2575. [PMID: 33058186 DOI: 10.1002/jsfa.10885] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 09/23/2020] [Accepted: 10/15/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND The terrain slope and field altitude where the plant is cultivated influence the composition of coffee cherries. The aim of this study was to analyze the effects of different levels of altitude and terrain slope on the Coffea canephora cherries, as well as on the quality of the final beverage. C. canephora harvested in fields with 300 and 600 m altitude and with southeast- and northwest-facing slopes was evaluated. RESULTS Lower pH values were observed for cherries cultivated at higher altitudes. The highest percentage of soluble solids (525.00 g kg-1 ) was found on northwest-facing slopes at 300 m. The highest values of phenolic compounds were observed at 600 m. Significant differences were found in the moisture of coffee cherries grown in different terrain slope and in the fiber content at different altitudes. The results do not enable us to conclude how the altitude and terrain slope influence the mineral content of cherries. Acidity, proteins, lipids, and carbohydrates were not influenced by altitude or terrain slope. The scores of cup quality were significantly affected by the altitude but not by the terrain slope. Coffees from cherries harvested in fields with 600 m altitude obtained the higher scores. CONCLUSION Results show that altitude and terrain slope influence some compounds of coffee fruits, whereas others remain unaffected. The findings are important because, during coffee fruits processing, these compounds are used to produce others that will have an influence on the bean and coffee beverage quality. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Priscila V Pereira
- Department of Food Engineering, Federal University of Espirito Santo, Alegre, Brazil
| | - Daila L da Silveira
- Department of Food Engineering, Federal University of Espirito Santo, Alegre, Brazil
| | - Rosane F Schwan
- Department of Biology, Federal University of Lavras, Lavras, Brazil
| | - Samuel de Assis Silva
- Department of Rural Engineering, Federal University of Espírito Santo, Alegre, Brazil
| | - Jussara M Coelho
- Department of Food Engineering, Federal University of Espirito Santo, Alegre, Brazil
| | - Patrícia C Bernardes
- Department of Food Engineering, Federal University of Espirito Santo, Alegre, Brazil
| |
Collapse
|
7
|
Machine learning and statistics to qualify environments through multi-traits in Coffea arabica. PLoS One 2021; 16:e0245298. [PMID: 33434204 PMCID: PMC7802962 DOI: 10.1371/journal.pone.0245298] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 12/25/2020] [Indexed: 11/30/2022] Open
Abstract
Several factors such as genotype, environment, and post-harvest processing can affect the responses of important traits in the coffee production chain. Determining the influence of these factors is of great relevance, as they can be indicators of the characteristics of the coffee produced. The most efficient models choice to be applied should take into account the variety of information and the particularities of each biological material. This study was developed to evaluate statistical and machine learning models that would better discriminate environments through multi-traits of coffee genotypes and identify the main agronomic and beverage quality traits responsible for the variation of the environments. For that, 31 morpho-agronomic and post-harvest traits were evaluated, from field experiments installed in three municipalities in the Matas de Minas region, in the State of Minas Gerais, Brazil. Two types of post-harvest processing were evaluated: natural and pulped. The apparent error rate was estimated for each method. The Multilayer Perceptron and Radial Basis Function networks were able to discriminate the coffee samples in multi-environment more efficiently than the other methods, identifying differences in multi-traits responses according to the production sites and type of post-harvest processing. The local factors did not present specific traits that favored the severity of diseases and differentiated vegetative vigor. Sensory traits acidity and fragrance/aroma score also made little contribution to the discrimination process, indicating that acidity and fragrance/aroma are characteristic of coffee produced and all coffee samples evaluated are of the special type in the Mata of Minas region. The main traits responsible for the differentiation of production sites are plant height, fruit size, and bean production. The sensory trait "Body" is the main one to discriminate the form of post-harvest processing.
Collapse
|
8
|
Zielińska A, Siudem P, Paradowska K, Gralec M, Kaźmierski S, Wawer I. Aronia melanocarpa Fruits as a Rich Dietary Source of Chlorogenic Acids and Anthocyanins: 1H-NMR, HPLC-DAD, and Chemometric Studies. Molecules 2020; 25:molecules25143234. [PMID: 32679898 PMCID: PMC7397235 DOI: 10.3390/molecules25143234] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 07/10/2020] [Accepted: 07/13/2020] [Indexed: 12/16/2022] Open
Abstract
Aronia melanocarpa (Michx.) Elliott's (chokeberry) besides anthocyanins contains significant amounts of hydroxycinnamic acids: Chlorogenic and its isomer neochlorogenic acid. They exhibit antioxidant, anti-inflammatory, antidiabetic, and antibacterial activities, thus they can have a significant impact on the health-promoting properties of Aronia. The aim of our research was to determine the changes in the content of chlorogenic acids (CGAs) and anthocyanins during fruit development and ripening, with a particular emphasis on acids. Aronia fruit samples were collected from July to October on two organic farms in Poland. The chemical composition of the extracts was determined by NMR spectroscopy and HPLC-DAD. 1H-NMR and HPLC data were analyzed using chemometric analysis and multivariate statistics (PCA). The results showed that the content of chlorogenic acids and anthocyanins changes during ripening and depends on the time of harvest and the region of cultivation. A correlation between the time of CGAs reduction and the appearance of anthocyanins was also noticed. The result of our research was also a database in the form of NMR parameters, which allows analysis of the metabolite profile and tracking of its changes. The 1H-NMR spectrum showing anthocyanin and CGA resonance can be considered the Aronia berry fingerprint.
Collapse
Affiliation(s)
- Agnieszka Zielińska
- Department of Physical Chemistry, Physical Pharmacy and Bioanalysis, Faculty of Pharmacy, Medical University of Warsaw, Banacha 1, 02-097 Warsaw, Poland; (A.Z.); (K.P.); (M.G.)
| | - Paweł Siudem
- Department of Physical Chemistry, Physical Pharmacy and Bioanalysis, Faculty of Pharmacy, Medical University of Warsaw, Banacha 1, 02-097 Warsaw, Poland; (A.Z.); (K.P.); (M.G.)
- Correspondence:
| | - Katarzyna Paradowska
- Department of Physical Chemistry, Physical Pharmacy and Bioanalysis, Faculty of Pharmacy, Medical University of Warsaw, Banacha 1, 02-097 Warsaw, Poland; (A.Z.); (K.P.); (M.G.)
| | - Małgorzata Gralec
- Department of Physical Chemistry, Physical Pharmacy and Bioanalysis, Faculty of Pharmacy, Medical University of Warsaw, Banacha 1, 02-097 Warsaw, Poland; (A.Z.); (K.P.); (M.G.)
| | - Sławomir Kaźmierski
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Łódź, Poland;
| | - Iwona Wawer
- Herbology Department, Carpathian State University, Rynek 1, 38-400 Krosno, Poland;
| |
Collapse
|
9
|
Cheng B, Smyth HE, Furtado A, Henry RJ. Slower development of lower canopy beans produces better coffee. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:4201-4214. [PMID: 32206798 PMCID: PMC7337091 DOI: 10.1093/jxb/eraa151] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 03/19/2020] [Indexed: 06/10/2023]
Abstract
The production of high-quality coffee is being challenged by changing climates in coffee-growing regions. The coffee beans from the upper and lower canopy at different development stages of the same plants were analyzed to investigate the impact of the microenvironment on gene expression and coffee quality. Compared with coffee beans from the upper canopy, lower canopy beans displayed more intense aroma with higher caffeine, trigonelline, and sucrose contents, associated with greater gene expression in the representative metabolic pathways. Global gene expression indicated a longer ripening in the lower canopy, resulting from higher expression of genes relating to growth inhibition and suppression of chlorophyll degradation during early bean ripening. Selection of genotypes or environments that enhance expression of the genes slowing bean development may produce higher quality coffee beans, allowing coffee production in a broader range of available future environments.
Collapse
Affiliation(s)
- Bing Cheng
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St Lucia, QLD, Australia
| | - Heather E Smyth
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St Lucia, QLD, Australia
| | - Agnelo Furtado
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St Lucia, QLD, Australia
| | - Robert J Henry
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St Lucia, QLD, Australia
| |
Collapse
|
10
|
Tormena CD, Marcheafave GG, Pauli ED, Bruns RE, Scarminio IS. Potential biomonitoring of atmospheric carbon dioxide in Coffea arabica leaves using near-infrared spectroscopy and partial least squares discriminant analysis. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:30356-30364. [PMID: 31432374 DOI: 10.1007/s11356-019-06163-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Accepted: 08/07/2019] [Indexed: 06/10/2023]
Abstract
The potencial of Coffea arabica leaves as bioindicators of atmospheric carbon dioxide (CO2) was evaluated in a free-air carbon dioxide enrichment (FACE) experiment by using near-infrared reflectance (NIR) spectroscopy for direct analysis and partial least squares discriminant analysis (PLS-DA). A supervised classification model was built and validated from the spectra of coffee leaves grown under elevated and current CO2 levels. PLS-DA allowed correct test set classification of 92% of the elevated-CO2 level leaves and 100% of the current-CO2 level leaves. The spectral bands accounting for the discrimination of the elevated-CO2 leaves were at 1657 and 1698 nm, as indicated by the variable importance in the projection (VIP) score together with the regression coefficients. Seven months after suspension of enriched CO2, returning to current-CO2 levels, new spectral measurements were made and subjected to PLS-DA analysis. The predictive model correctly classified all leaves as grown under current-CO2 levels. The fingerprints suggest that after suspension of elevated-CO2, the spectral changes observed previously disappeared. The recovery could be triggered by two reasons: the relief of the stress stimulus or the perception of a return of favorable conditions. In addition, the results demonstrate that NIR spectroscopy can provide a rapid, nondestructive, and environmentally friendly method for biomonitoring leaves suffering environmental modification. Finally, C. arabica leaves associated with NIR and mathematical models have the potential to become a good biomonitoring system.
Collapse
Affiliation(s)
- Cláudia Domiciano Tormena
- Laboratório de Quimiometria em Ciências Naturais, Departamento de Química, Universidade Estadual de Londrina, CP 6001, Londrina, PR, 86051-990, Brazil
| | - Gustavo Galo Marcheafave
- Laboratório de Quimiometria em Ciências Naturais, Departamento de Química, Universidade Estadual de Londrina, CP 6001, Londrina, PR, 86051-990, Brazil.
| | - Elis Daiane Pauli
- Instituto de Química, Universidade Estadual de Campinas, CP 6154, Campinas, SP, 13083-970, Brazil
| | - Roy Edward Bruns
- Instituto de Química, Universidade Estadual de Campinas, CP 6154, Campinas, SP, 13083-970, Brazil
| | - Ieda Spacino Scarminio
- Laboratório de Quimiometria em Ciências Naturais, Departamento de Química, Universidade Estadual de Londrina, CP 6001, Londrina, PR, 86051-990, Brazil.
| |
Collapse
|
11
|
Tsou SH, Hu SW, Yang JJ, Yan M, Lin YY. Potential Oral Health Care Agent from Coffee Against Virulence Factor of Periodontitis. Nutrients 2019; 11:nu11092235. [PMID: 31527555 PMCID: PMC6769475 DOI: 10.3390/nu11092235] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 09/10/2019] [Accepted: 09/14/2019] [Indexed: 12/17/2022] Open
Abstract
Background: Coffee is a major dietary source of polyphenols. Previous research found that coffee had a protective effect on periodontal disease. In this study, we aimed to investigate whether coffee extract and its primary phenolic acid, chlorogenic acid, affect the growth and protease activity of a periodontopathogen Porphyromonas gingivalis (P. gingivalis). Methods: Coffee extract and chlorogenic acid were prepared by a two-fold serial dilution. The turbid metric test and plate count method were used to examine the inhibitory effects of chlorogenic acid on P. gingivalis. The time-kill assay was used to measure changes in the viability of P. gingivalis after exposure to chlorogenic acid for 0–24 h. The protease activity of P. gingivalis was analyzed using the optical density of a chromogenic substrate. Results: As a result, the minimum inhibitory concentration (MIC) of chlorogenic acid was 4 mg/mL, and the minimum bactericidal concentration was 16 mg/mL. Chlorogenic acid at concentrations above MIC resulted in a longer-lasting inhibitory effect on P. gingivalis viability and significantly reduced associated protease activity. The coffee extract showed antibacterial activity as observed by the disk diffusion test, whereas these inhibitory effects were not affected by different roast degrees of coffee. Conclusions: Collectively, our novel findings indicate that chlorogenic acid not only has antimicrobial activity but also reduced the protease activity of P. gingivalis. In addition, coffee extract inhibits the proliferation of P. gingivalis, which may partly be attributed to the effect of chlorogenic acid.
Collapse
Affiliation(s)
- Sing-Hua Tsou
- Institute of Oral Sciences, College of Oral Medicine, Chung Shan Medical University, Taichung 40201, Taiwan
| | - Suh-Woan Hu
- Institute of Oral Sciences, College of Oral Medicine, Chung Shan Medical University, Taichung 40201, Taiwan
| | - Jaw-Ji Yang
- Institute of Oral Sciences, College of Oral Medicine, Chung Shan Medical University, Taichung 40201, Taiwan
| | - Min Yan
- Institute of Oral Sciences, College of Oral Medicine, Chung Shan Medical University, Taichung 40201, Taiwan
| | - Yuh-Yih Lin
- School of Dentistry, College of Oral Medicine, Chung Shan Medical University, Taichung 40201, Taiwan.
- Department of Stomatology, Chung Shan Medical University Hospital, Taichung 40201, Taiwan.
| |
Collapse
|
12
|
Dussert S, Serret J, Bastos-Siqueira A, Morcillo F, Déchamp E, Rofidal V, Lashermes P, Etienne H, JOët T. Integrative analysis of the late maturation programme and desiccation tolerance mechanisms in intermediate coffee seeds. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:1583-1597. [PMID: 29361125 PMCID: PMC5888931 DOI: 10.1093/jxb/erx492] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 12/20/2017] [Indexed: 05/24/2023]
Abstract
The 'intermediate seed' category was defined in the early 1990s using coffee (Coffea arabica) as a model. In contrast to orthodox seeds, intermediate seeds cannot survive complete drying, which is a major constraint for seed storage and has implications for both biodiversity conservation and agricultural purposes. However, intermediate seeds are considerably more tolerant to drying than recalcitrant seeds, which are highly sensitive to desiccation. To gain insight into the mechanisms governing such differences, changes in desiccation tolerance (DT), hormone contents, and the transcriptome were analysed in developing coffee seeds. Acquisition of DT coincided with a dramatic transcriptional switch characterised by the repression of primary metabolism, photosynthesis, and respiration, and the up-regulation of genes coding for late-embryogenesis abundant (LEA) proteins, heat-shock proteins (HSPs), and antioxidant enzymes. Analysis of the heat-stable proteome in mature coffee seeds confirmed the accumulation of LEA proteins identified at the transcript level. Transcriptome analysis also suggested a major role for ABA and for the transcription factors CaHSFA9, CaDREB2G, CaANAC029, CaPLATZ, and CaDOG-like in DT acquisition. The ability of CaHSFA9 and CaDREB2G to trigger HSP gene transcription was validated by Agrobacterium-mediated transformation of coffee somatic embryos.
Collapse
Affiliation(s)
| | | | | | | | | | - Valérie Rofidal
- Biochimie et physiologie moléculaire des plantes, CNRS, INRA, Montpellier Supagro, Université Montpellier, France
| | | | | | | |
Collapse
|
13
|
Cañas RA, Yesbergenova-Cuny Z, Simons M, Chardon F, Armengaud P, Quilleré I, Cukier C, Gibon Y, Limami AM, Nicolas S, Brulé L, Lea PJ, Maranas CD, Hirel B. Exploiting the Genetic Diversity of Maize Using a Combined Metabolomic, Enzyme Activity Profiling, and Metabolic Modeling Approach to Link Leaf Physiology to Kernel Yield. THE PLANT CELL 2017; 29:919-943. [PMID: 28396554 PMCID: PMC5466022 DOI: 10.1105/tpc.16.00613] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Revised: 03/07/2017] [Accepted: 04/06/2017] [Indexed: 05/18/2023]
Abstract
A combined metabolomic, biochemical, fluxomic, and metabolic modeling approach was developed using 19 genetically distant maize (Zea mays) lines from Europe and America. Considerable differences were detected between the lines when leaf metabolic profiles and activities of the main enzymes involved in primary metabolism were compared. During grain filling, the leaf metabolic composition appeared to be a reliable marker, allowing a classification matching the genetic diversity of the lines. During the same period, there was a significant correlation between the genetic distance of the lines and the activities of enzymes involved in carbon metabolism, notably glycolysis. Although large differences were observed in terms of leaf metabolic fluxes, these variations were not tightly linked to the genome structure of the lines. Both correlation studies and metabolic network analyses allowed the description of a maize ideotype with a high grain yield potential. Such an ideotype is characterized by low accumulation of soluble amino acids and carbohydrates in the leaves and high activity of enzymes involved in the C4 photosynthetic pathway and in the biosynthesis of amino acids derived from glutamate. Chlorogenates appear to be important markers that can be used to select for maize lines that produce larger kernels.
Collapse
Affiliation(s)
- Rafael A Cañas
- Institut Jean-Pierre Bourgin, Institut National de la Recherche Agronomique (INRA), Centre de Versailles-Grignon, Unité Mixte de Recherche 1318, INRA-Agro-ParisTech, Equipe de Recherche Labellisée, Centre National de la Recherche Scientifique (CNRS) 3559, F-78026 Versailles cedex, France
- Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, Universidad de Málaga, 29071 Málaga, Spain
| | - Zhazira Yesbergenova-Cuny
- Institut Jean-Pierre Bourgin, Institut National de la Recherche Agronomique (INRA), Centre de Versailles-Grignon, Unité Mixte de Recherche 1318, INRA-Agro-ParisTech, Equipe de Recherche Labellisée, Centre National de la Recherche Scientifique (CNRS) 3559, F-78026 Versailles cedex, France
| | - Margaret Simons
- Department of Chemical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802
| | - Fabien Chardon
- Institut Jean-Pierre Bourgin, Institut National de la Recherche Agronomique (INRA), Centre de Versailles-Grignon, Unité Mixte de Recherche 1318, INRA-Agro-ParisTech, Equipe de Recherche Labellisée, Centre National de la Recherche Scientifique (CNRS) 3559, F-78026 Versailles cedex, France
| | - Patrick Armengaud
- Institut Jean-Pierre Bourgin, Institut National de la Recherche Agronomique (INRA), Centre de Versailles-Grignon, Unité Mixte de Recherche 1318, INRA-Agro-ParisTech, Equipe de Recherche Labellisée, Centre National de la Recherche Scientifique (CNRS) 3559, F-78026 Versailles cedex, France
| | - Isabelle Quilleré
- Institut Jean-Pierre Bourgin, Institut National de la Recherche Agronomique (INRA), Centre de Versailles-Grignon, Unité Mixte de Recherche 1318, INRA-Agro-ParisTech, Equipe de Recherche Labellisée, Centre National de la Recherche Scientifique (CNRS) 3559, F-78026 Versailles cedex, France
| | - Caroline Cukier
- University of Angers, Institut de Recherche en Horticulture et Semences, INRA, Structure Fédérative de Recherche 4207, Qualité et Santé du Végétal, F-49045 Angers, France
| | - Yves Gibon
- Unité Mixte Recherche 1332, Biologie du Fruit et Pathologie, Bordeaux Métabolome Platform, INRA de Bordeaux-Aquitaine, F-33883 Villenave d'Ornon cedex, France
| | - Anis M Limami
- University of Angers, Institut de Recherche en Horticulture et Semences, INRA, Structure Fédérative de Recherche 4207, Qualité et Santé du Végétal, F-49045 Angers, France
| | - Stéphane Nicolas
- Station de Génétique Végétale, INRA-UPS-INAPG-CNRS, Ferme du Moulon, F-91190 Gif/Yvette, France
| | - Lenaïg Brulé
- Institut Jean-Pierre Bourgin, Institut National de la Recherche Agronomique (INRA), Centre de Versailles-Grignon, Unité Mixte de Recherche 1318, INRA-Agro-ParisTech, Equipe de Recherche Labellisée, Centre National de la Recherche Scientifique (CNRS) 3559, F-78026 Versailles cedex, France
| | - Peter J Lea
- Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, United Kingdom
| | - Costas D Maranas
- Department of Chemical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802
| | - Bertrand Hirel
- Institut Jean-Pierre Bourgin, Institut National de la Recherche Agronomique (INRA), Centre de Versailles-Grignon, Unité Mixte de Recherche 1318, INRA-Agro-ParisTech, Equipe de Recherche Labellisée, Centre National de la Recherche Scientifique (CNRS) 3559, F-78026 Versailles cedex, France
| |
Collapse
|
14
|
Guerin C, Joët T, Serret J, Lashermes P, Vaissayre V, Agbessi MDT, Beulé T, Severac D, Amblard P, Tregear J, Durand-Gasselin T, Morcillo F, Dussert S. Gene coexpression network analysis of oil biosynthesis in an interspecific backcross of oil palm. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2016; 87:423-41. [PMID: 27145323 DOI: 10.1111/tpj.13208] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Revised: 04/27/2016] [Accepted: 04/27/2016] [Indexed: 05/25/2023]
Abstract
Global demand for vegetable oils is increasing at a dramatic rate, while our understanding of the regulation of oil biosynthesis in plants remains limited. To gain insights into the mechanisms that govern oil synthesis and fatty acid (FA) composition in the oil palm fruit, we used a multilevel approach combining gene coexpression analysis, quantification of allele-specific expression and joint multivariate analysis of transcriptomic and lipid data, in an interspecific backcross population between the African oil palm, Elaeis guineensis, and the American oil palm, Elaeis oleifera, which display contrasting oil contents and FA compositions. The gene coexpression network produced revealed tight transcriptional coordination of fatty acid synthesis (FAS) in the plastid with sugar sensing, plastidial glycolysis, transient starch storage and carbon recapture pathways. It also revealed a concerted regulation, along with FAS, of both the transfer of nascent FA to the endoplasmic reticulum, where triacylglycerol assembly occurs, and of the production of glycerol-3-phosphate, which provides the backbone of triacylglycerols. Plastid biogenesis and auxin transport were the two other biological processes most tightly connected to FAS in the network. In addition to WRINKLED1, a transcription factor (TF) known to activate FAS genes, two novel TFs, termed NF-YB-1 and ZFP-1, were found at the core of the FAS module. The saturated FA content of palm oil appeared to vary above all in relation to the level of transcripts of the gene coding for β-ketoacyl-acyl carrier protein synthase II. Our findings should facilitate the development of breeding and engineering strategies in this and other oil crops.
Collapse
Affiliation(s)
- Chloé Guerin
- PalmElit SAS, Montferrier-sur-Lez, F-34980, France
| | - Thierry Joët
- IRD, UMR DIADE, 911 Av. Agropolis, Montpellier, 34394, France
| | - Julien Serret
- IRD, UMR DIADE, 911 Av. Agropolis, Montpellier, 34394, France
| | | | | | | | | | - Dany Severac
- MGX-Montpellier GenomiX, c/o Institut de Génomique Fonctionnelle, 141 Rue de la Cardonille, Montpellier Cedex 5, 34094, France
| | | | - James Tregear
- IRD, UMR DIADE, 911 Av. Agropolis, Montpellier, 34394, France
| | | | | | | |
Collapse
|
15
|
Tran HT, Lee LS, Furtado A, Smyth H, Henry RJ. Advances in genomics for the improvement of quality in coffee. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2016; 96:3300-3312. [PMID: 26919810 DOI: 10.1002/jsfa.7692] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2015] [Revised: 02/08/2016] [Accepted: 02/23/2016] [Indexed: 06/05/2023]
Abstract
Coffee is an important crop that provides a livelihood to millions of people living in developing countries. Production of genotypes with improved coffee quality attributes is a primary target of coffee genetic improvement programmes. Advances in genomics are providing new tools for analysis of coffee quality at the molecular level. The recent report of a genomic sequence for robusta coffee, Coffea canephora, is a major development. However, a reference genome sequence for the genetically more complex arabica coffee (C. arabica) will also be required to fully define the molecular determinants controlling quality in coffee produced from this high quality coffee species. Genes responsible for control of the levels of the major biochemical components in the coffee bean that are known to be important in determining coffee quality can now be identified by association analysis. However, the narrow genetic base of arabica coffee suggests that genomics analysis of the wild relatives of coffee (Coffea spp.) may be required to find the phenotypic diversity required for effective association genetic analysis. The genomic resources available for the study of coffee quality are described and the potential for the application of next generation sequencing and association genetic analysis to advance coffee quality research are explored. © 2016 Society of Chemical Industry.
Collapse
Affiliation(s)
- Hue Tm Tran
- Queensland Alliance for Agri culture and Food Innovation (QAAFI), The University of Queensland, St Lucia, Queensland, Australia
- Western Highlands Agriculture & Forestry Science Institute (WASI), Daklak, Vietnam
| | - L Slade Lee
- Southern Cross University, East Lismore, NSW 2480, Australia
| | - Agnelo Furtado
- Queensland Alliance for Agri culture and Food Innovation (QAAFI), The University of Queensland, St Lucia, Queensland, Australia
| | - Heather Smyth
- Queensland Alliance for Agri culture and Food Innovation (QAAFI), The University of Queensland, St Lucia, Queensland, Australia
| | - Robert J Henry
- Queensland Alliance for Agri culture and Food Innovation (QAAFI), The University of Queensland, St Lucia, Queensland, Australia
| |
Collapse
|
16
|
Diego ER, Flavio MB, Marcelo AC, Mariele VBP, Vany PF, Helena MRA, Jose HDST. Interaction of genotype, environment and processing in the chemical composition expression and sensorial quality of Arabica coffee. ACTA ACUST UNITED AC 2016. [DOI: 10.5897/ajar2016.10832] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
17
|
Mhlongo MI, Piater LA, Madala NE, Steenkamp PA, Dubery IA. Phenylpropanoid Defences in Nicotiana tabacum Cells: Overlapping Metabolomes Indicate Common Aspects to Priming Responses Induced by Lipopolysaccharides, Chitosan and Flagellin-22. PLoS One 2016; 11:e0151350. [PMID: 26978774 PMCID: PMC4792386 DOI: 10.1371/journal.pone.0151350] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Accepted: 02/26/2016] [Indexed: 01/17/2023] Open
Abstract
Plants have evolved both constitutive and inducible defence strategies to cope with different biotic stimuli and stresses. Exposure of a plant to a challenging stress can lead to a primed state that allows it to launch a more rapid and stronger defence. Here we applied a metabolomic approach to study and compare the responses induced in Nicotiana tabacum cells by microbe-associated molecular pattern (MAMP) molecules, namely lipopolysaccharides (LPS), chitosan (CHT) and flagellin-22 (FLG22). Early response metabolites, extracted with methanol, were analysed by UHPLC-MS/MS. Using multivariate statistical tools the metabolic profiles induced by these elicitors were analysed. In the metabolic fingerprint of these agents a total of 19 cinnamic acid derivatives conjugated to quinic acids (chlorogenic acids), shikimic acid, tyramine, polyamines or glucose were found as discriminant biomarkers. In addition, treatment with the phytohormones salicylic acid (SA), methyljasmonic acid (MJ) and abscisic acid (ABA) resulted in differentially-induced phenylpropanoid pathway metabolites. The results indicate that the phenylpropanoid pathway is activated by these elicitors while hydroxycinnamic acid derivatives are commonly associated with the metabolic response to the MAMPs, and that the activated responses are modulated by both SA and MJ, with ABA not playing a role.
Collapse
Affiliation(s)
- Msizi I. Mhlongo
- Department of Biochemistry, University of Johannesburg, Auckland Park, Johannesburg, South Africa
| | - Lizelle A. Piater
- Department of Biochemistry, University of Johannesburg, Auckland Park, Johannesburg, South Africa
| | - Ntakadzeni E. Madala
- Department of Biochemistry, University of Johannesburg, Auckland Park, Johannesburg, South Africa
| | - Paul A. Steenkamp
- Department of Biochemistry, University of Johannesburg, Auckland Park, Johannesburg, South Africa
- CSIR Biosciences, Natural Products and Agroprocessing Group, Pretoria, South Africa
| | - Ian A. Dubery
- Department of Biochemistry, University of Johannesburg, Auckland Park, Johannesburg, South Africa
| |
Collapse
|
18
|
Alves LC, Magalhães DMD, Labate MTV, Guidetti-Gonzalez S, Labate CA, Domingues DS, Sera T, Vieira LGE, Pereira LFP. Differentially Accumulated Proteins in Coffea arabica Seeds during Perisperm Tissue Development and Their Relationship to Coffee Grain Size. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2016; 64:1635-1647. [PMID: 26809209 DOI: 10.1021/acs.jafc.5b04376] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Coffee is one of the most important crops for developing countries. Coffee classification for trading is related to several factors, including grain size. Larger grains have higher market value then smaller ones. Coffee grain size is determined by the development of the perisperm, a transient tissue with a highly active metabolism, which is replaced by the endosperm during seed development. In this study, a proteomics approach was used to identify differentially accumulated proteins during perisperm development in two genotypes with regular (IPR59) and large grain sizes (IPR59-Graudo) in three developmental stages. Twenty-four spots were identified by MALDI-TOF/TOF-MS, corresponding to 15 proteins. We grouped them into categories as follows: storage (11S), methionine metabolism, cell division and elongation, metabolic processes (mainly redox), and energy. Our data enabled us to show that perisperm metabolism in IPR59 occurs at a higher rate than in IPR59-Graudo, which is supported by the accumulation of energy and detoxification-related proteins. We hypothesized that grain and fruit size divergences between the two coffee genotypes may be due to the comparatively earlier triggering of seed development processes in IPR59. We also demonstrated for the first time that the 11S protein is accumulated in the coffee perisperm.
Collapse
Affiliation(s)
- Leonardo Cardoso Alves
- Biotechnology Laboratory, Instituto Agronomico do Parana , Londrina, Parana 86047-902, Brazil
- Department of Biochemistry and Biotechnology, Universidade Estadual de Londrina , P.O. Box 6001, Londrina, Parana 86051-990, Brazil
| | | | | | - Simone Guidetti-Gonzalez
- Max Feffer Plant Genetics Laboratory, ESALQ, Universidade de Sao Paulo , Piracicaba, Sao Paulo, Brazil
| | - Carlos Alberto Labate
- Max Feffer Plant Genetics Laboratory, ESALQ, Universidade de Sao Paulo , Piracicaba, Sao Paulo, Brazil
| | - Douglas Silva Domingues
- Biotechnology Laboratory, Instituto Agronomico do Parana , Londrina, Parana 86047-902, Brazil
| | - Tumoru Sera
- Biotechnology Laboratory, Instituto Agronomico do Parana , Londrina, Parana 86047-902, Brazil
| | | | - Luiz Filipe Protasio Pereira
- Biotechnology Laboratory, Instituto Agronomico do Parana , Londrina, Parana 86047-902, Brazil
- EMBRAPA Café , Brasilia, DF, Brazil
| |
Collapse
|
19
|
Becker N, Rimbaud L, Chiroleu F, Reynaud B, Thébaud G, Lett JM. Rapid accumulation and low degradation: key parameters of Tomato yellow leaf curl virus persistence in its insect vector Bemisia tabaci. Sci Rep 2015; 5:17696. [PMID: 26625871 PMCID: PMC4667217 DOI: 10.1038/srep17696] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Accepted: 11/04/2015] [Indexed: 02/05/2023] Open
Abstract
Of worldwide economic importance, Tomato yellow leaf curl virus (TYLCV, Begomovirus) is responsible for one of the most devastating plant diseases in warm and temperate regions. The DNA begomoviruses (Geminiviridae) are transmitted by the whitefly species complex Bemisia tabaci. Although geminiviruses have long been described as circulative non-propagative viruses, observations such as long persistence of TYLCV in B. tabaci raised the question of their possible replication in the vector. We monitored two major TYLCV strains, Mild (Mld) and Israel (IL), in the invasive B. tabaci Middle East-Asia Minor 1 cryptic species, during and after the viral acquisition, within two timeframes (0-144 hours or 0-20 days). TYLCV DNA was quantified using real-time PCR, and the complementary DNA strand of TYLCV involved in viral replication was specifically quantified using anchored real-time PCR. The DNA of both TYLCV strains accumulated exponentially during acquisition but remained stable after viral acquisition had stopped. Neither replication nor vertical transmission were observed. In conclusion, our quantification of the viral loads and complementary strands of both Mld and IL strains of TYLCV in B. tabaci point to an efficient accumulation and preservation mechanism, rather than to a dynamic equilibrium between replication and degradation.
Collapse
Affiliation(s)
- Nathalie Becker
- Institut de Systématique, Évolution, Biodiversité ISYEB - UMR 7205 - CNRS, MNHN, UPMC, EPHE. Muséum National d’Histoire Naturelle, Sorbonne Universités, 57 rue Cuvier, CP 50, F-75005, Paris, France
- CIRAD, UMR PVBMT, Pôle de Protection des Plantes, 7 chemin de l’Irat, F-97410 Saint Pierre, Ile de La Réunion, France
| | - Loup Rimbaud
- CIRAD, UMR PVBMT, Pôle de Protection des Plantes, 7 chemin de l’Irat, F-97410 Saint Pierre, Ile de La Réunion, France
- Montpellier SupAgro, UMR 385 BGPI, F-34398 Montpellier, France
| | - Frédéric Chiroleu
- CIRAD, UMR PVBMT, Pôle de Protection des Plantes, 7 chemin de l’Irat, F-97410 Saint Pierre, Ile de La Réunion, France
| | - Bernard Reynaud
- CIRAD, UMR PVBMT, Pôle de Protection des Plantes, 7 chemin de l’Irat, F-97410 Saint Pierre, Ile de La Réunion, France
| | | | - Jean-Michel Lett
- CIRAD, UMR PVBMT, Pôle de Protection des Plantes, 7 chemin de l’Irat, F-97410 Saint Pierre, Ile de La Réunion, France
| |
Collapse
|
20
|
Luisa PF, Flavio MB, Fabiana CR, Gerson SG, Jose HDST, Marcelo RM. Fatty acid profiles and parameters of quality of specialty coffees produced in different Brazilian regions. ACTA ACUST UNITED AC 2015. [DOI: 10.5897/ajar2015.9697] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
21
|
Nuhu AA. Bioactive micronutrients in coffee: recent analytical approaches for characterization and quantification. ISRN NUTRITION 2014; 2014:384230. [PMID: 24967266 PMCID: PMC4045301 DOI: 10.1155/2014/384230] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2013] [Accepted: 11/07/2013] [Indexed: 12/14/2022]
Abstract
Production of coffee beans is an important lifeline for the economy of several countries in Latin America, Africa, and Asia. The brew from this well sought for cash crop is readily consumed due to its good sensory qualities owing to the presence of many micronutrients. Some of these chemical compounds possess biological activities, including antiproliferative, antioxidant, and antimicrobial effects. Four representative groups of these micronutrients, namely, caffeine, chlorogenic acid, diterpenes, and trigonelline, play key roles in these bioactive effects of coffee. In order to guarantee the quality of coffee products and to protect consumer interest and safeguard their well-being, it is extremely important to employ sensitive and accurate analytical methods in the characterization and quantitative determination of these bioactive constituents. This review aims to present recent applications in this regard.
Collapse
Affiliation(s)
- Abdulmumin A. Nuhu
- Department of Chemistry, Ahmadu Bello University, PMB 1069, Zaria, Kaduna 2222, Nigeria
| |
Collapse
|
22
|
Xue LJ, Guo W, Yuan Y, Anino EO, Nyamdari B, Wilson MC, Frost CJ, Chen HY, Babst BA, Harding SA, Tsai CJ. Constitutively elevated salicylic acid levels alter photosynthesis and oxidative state but not growth in transgenic populus. THE PLANT CELL 2013; 25:2714-30. [PMID: 23903318 PMCID: PMC3753393 DOI: 10.1105/tpc.113.112839] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2013] [Revised: 06/24/2013] [Accepted: 07/10/2013] [Indexed: 05/18/2023]
Abstract
Salicylic acid (SA) has long been implicated in plant responses to oxidative stress. SA overproduction in Arabidopsis thaliana leads to dwarfism, making in planta assessment of SA effects difficult in this model system. We report that transgenic Populus tremula × alba expressing a bacterial SA synthase hyperaccumulated SA and SA conjugates without negative growth consequences. In the absence of stress, endogenously elevated SA elicited widespread metabolic and transcriptional changes that resembled those of wild-type plants exposed to oxidative stress-promoting heat treatments. Potential signaling and oxidative stress markers azelaic and gluconic acids as well as antioxidant chlorogenic acids were strongly coregulated with SA, while soluble sugars and other phenylpropanoids were inversely correlated. Photosynthetic responses to heat were attenuated in SA-overproducing plants. Network analysis identified potential drivers of SA-mediated transcriptome rewiring, including receptor-like kinases and WRKY transcription factors. Orthologs of Arabidopsis SA signaling components NON-EXPRESSOR OF PATHOGENESIS-RELATED GENES1 and thioredoxins were not represented. However, all members of the expanded Populus nucleoredoxin-1 family exhibited increased expression and increased network connectivity in SA-overproducing Populus, suggesting a previously undescribed role in SA-mediated redox regulation. The SA response in Populus involved a reprogramming of carbon uptake and partitioning during stress that is compatible with constitutive chemical defense and sustained growth, contrasting with the SA response in Arabidopsis, which is transient and compromises growth if sustained.
Collapse
Affiliation(s)
- Liang-Jiao Xue
- Warnell School of Forestry and Natural Resources, University of Georgia, Athens, Georgia 30602
- Department of Genetics, University of Georgia, Athens, Georgia 30602
- Institute of Bioinformatics, University of Georgia, Athens, Georgia 30602
| | - Wenbing Guo
- Warnell School of Forestry and Natural Resources, University of Georgia, Athens, Georgia 30602
- Department of Genetics, University of Georgia, Athens, Georgia 30602
| | - Yinan Yuan
- School of Forest Resources and Environmental Science, Michigan Technological University, Houghton, Michigan 49931
| | - Edward O. Anino
- Warnell School of Forestry and Natural Resources, University of Georgia, Athens, Georgia 30602
- Department of Genetics, University of Georgia, Athens, Georgia 30602
| | - Batbayar Nyamdari
- Warnell School of Forestry and Natural Resources, University of Georgia, Athens, Georgia 30602
- Department of Genetics, University of Georgia, Athens, Georgia 30602
| | - Mark C. Wilson
- Institute of Bioinformatics, University of Georgia, Athens, Georgia 30602
| | - Christopher J. Frost
- Warnell School of Forestry and Natural Resources, University of Georgia, Athens, Georgia 30602
- Department of Genetics, University of Georgia, Athens, Georgia 30602
| | - Han-Yi Chen
- Warnell School of Forestry and Natural Resources, University of Georgia, Athens, Georgia 30602
| | - Benjamin A. Babst
- Warnell School of Forestry and Natural Resources, University of Georgia, Athens, Georgia 30602
- Department of Genetics, University of Georgia, Athens, Georgia 30602
| | - Scott A. Harding
- Warnell School of Forestry and Natural Resources, University of Georgia, Athens, Georgia 30602
- Department of Genetics, University of Georgia, Athens, Georgia 30602
| | - Chung-Jui Tsai
- Warnell School of Forestry and Natural Resources, University of Georgia, Athens, Georgia 30602
- Department of Genetics, University of Georgia, Athens, Georgia 30602
- Institute of Bioinformatics, University of Georgia, Athens, Georgia 30602
| |
Collapse
|