1
|
Lafleur A, Daffis S, Mowbray C, Arana B. Immunotherapeutic Strategies as Potential Treatment Options for Cutaneous Leishmaniasis. Vaccines (Basel) 2024; 12:1179. [PMID: 39460345 PMCID: PMC11511131 DOI: 10.3390/vaccines12101179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 10/10/2024] [Accepted: 10/15/2024] [Indexed: 10/28/2024] Open
Abstract
Cutaneous leishmaniasis (CL), caused by protozoan parasites of the Leishmania genus, is prevalent in tropical and subtropical regions, with important morbidity, particularly in low- to middle-income countries. Current systemic treatments, including pentavalent antimonials and miltefosine, are associated with significant toxicity, reduced efficacy, and are frequently ineffective in cases of severe or chronic CL. Immunotherapies leverage the immune system to combat microbial infection and offer a promising adjunct or alternative approach to the current standard of care for CL. However, the heterogeneous clinical presentation of CL, which is dependent on parasite species and host immunity, may require informed clinical intervention with immunotherapies. This review explores the clinical and immunological characteristics of CL, emphasising the current landscape of immunotherapies in in vivo models and clinical studies. Such immune-based interventions aim to modulate immune responses against Leishmania, with additive therapeutic effects enabling the efficacy of lower drug doses and decreasing the associated toxicity. Understanding the mechanisms that underlie immunotherapy for CL provides critical insights into developing safer and more effective treatments for this neglected tropical disease. Identifying suitable therapeutic candidates and establishing their safety and efficacy are essential steps in this process. However, the feasibility and utility of these treatments in resource-limited settings must also be considered, taking into account factors such as cost of production, temperature stability, and overall patient access.
Collapse
Affiliation(s)
- Andrea Lafleur
- Doctoral Training Centre, University of Oxford, Oxford OX1 3NP, UK
| | - Stephane Daffis
- Drugs for Neglected Diseases initiative (DNDi), 1202 Geneva, Switzerland; (S.D.)
| | - Charles Mowbray
- Drugs for Neglected Diseases initiative (DNDi), 1202 Geneva, Switzerland; (S.D.)
| | - Byron Arana
- Drugs for Neglected Diseases initiative (DNDi), 1202 Geneva, Switzerland; (S.D.)
| |
Collapse
|
2
|
Rungelrath V, Ahmed M, Hicks L, Miller SM, Ryter KT, Montgomery K, Ettenger G, Riffey A, Abdelwahab WM, Khader SA, Evans JT. Vaccination with Mincle agonist UM-1098 and mycobacterial antigens induces protective Th1 and Th17 responses. NPJ Vaccines 2024; 9:100. [PMID: 38844494 PMCID: PMC11156909 DOI: 10.1038/s41541-024-00897-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 05/28/2024] [Indexed: 06/09/2024] Open
Abstract
Tuberculosis (TB), caused by Mycobacterium tuberculosis (Mtb), is one of the top infectious killers in the world. The only licensed vaccine against TB, Bacille Calmette-Guérin (BCG), provides variable protection against pulmonary TB, especially in adults. Hence, novel TB vaccine approaches are urgently needed. Both Th1 and Th17 responses are necessary for protection against TB, yet effective adjuvants and vaccine delivery systems for inducing robust Th1 and Th17 immunity are lacking. Herein we describe a synthetic Mincle agonist, UM-1098, and a silica nanoparticle delivery system that drives Th1/Th17 responses to Mtb antigens. Stimulation of human peripheral blood mononuclear cells (hPBMCs) with UM-1098 induced high levels of Th17 polarizing cytokines IL-6, IL-1β, IL-23 as well as IL-12p70, IL-4 and TNF-α in vitro. PBMCs from both C57BL/6 and BALB/c mice responded with a similar cytokine pattern in vitro and in vivo. Importantly, intramuscular (I.M.) vaccination with UM-1098-adjuvanted TB antigen M72 resulted in significantly higher antigen-specific IFN-γ and IL-17A levels in C57BL/6 wt mice than Mincle KO mice. Vaccination of C57BL/6 wt mice with immunodominant Mtb antigens ESAT6/Ag85B or M72 resulted in predominantly Th1 and Th17 responses and induced antigen-specific serum antibodies. Notably, in a virulent Mtb challenge model, vaccination with UM-1098 adjuvanted ESAT6/Ag85B or M72 significantly reduced lung bacterial burden when compared with unvaccinated mice and protection occurred in the absence of pulmonary inflammation. These data demonstrate that the synthetic Mincle agonist UM-1098 induces strong Th1 and Th17 immunity after vaccination with Mtb antigens and provides protection against Mtb infection in mice.
Collapse
Affiliation(s)
- Viktoria Rungelrath
- Center for Translational Medicine, University of Montana, 32 Campus Drive, Missoula, MT, 59812, USA
- Department of Biomedical & Pharmaceutical Sciences, University of Montana, Missoula, MT, 59812, USA
| | - Mushtaq Ahmed
- Department of Microbiology, University of Chicago, 920 E. 58th St., Chicago, IL, 60637, USA
| | - Linda Hicks
- Center for Translational Medicine, University of Montana, 32 Campus Drive, Missoula, MT, 59812, USA
- Department of Biomedical & Pharmaceutical Sciences, University of Montana, Missoula, MT, 59812, USA
| | - Shannon M Miller
- Center for Translational Medicine, University of Montana, 32 Campus Drive, Missoula, MT, 59812, USA
- Department of Biomedical & Pharmaceutical Sciences, University of Montana, Missoula, MT, 59812, USA
| | - Kendal T Ryter
- Center for Translational Medicine, University of Montana, 32 Campus Drive, Missoula, MT, 59812, USA
- Department of Biomedical & Pharmaceutical Sciences, University of Montana, Missoula, MT, 59812, USA
| | - Kyle Montgomery
- Center for Translational Medicine, University of Montana, 32 Campus Drive, Missoula, MT, 59812, USA
- Department of Biomedical & Pharmaceutical Sciences, University of Montana, Missoula, MT, 59812, USA
| | - George Ettenger
- Center for Translational Medicine, University of Montana, 32 Campus Drive, Missoula, MT, 59812, USA
- Department of Biomedical & Pharmaceutical Sciences, University of Montana, Missoula, MT, 59812, USA
| | - Alexander Riffey
- Center for Translational Medicine, University of Montana, 32 Campus Drive, Missoula, MT, 59812, USA
- Department of Biomedical & Pharmaceutical Sciences, University of Montana, Missoula, MT, 59812, USA
| | - Walid M Abdelwahab
- Center for Translational Medicine, University of Montana, 32 Campus Drive, Missoula, MT, 59812, USA
- Department of Biomedical & Pharmaceutical Sciences, University of Montana, Missoula, MT, 59812, USA
| | - Shabaana Abdul Khader
- Department of Microbiology, University of Chicago, 920 E. 58th St., Chicago, IL, 60637, USA
| | - Jay T Evans
- Center for Translational Medicine, University of Montana, 32 Campus Drive, Missoula, MT, 59812, USA.
- Department of Biomedical & Pharmaceutical Sciences, University of Montana, Missoula, MT, 59812, USA.
| |
Collapse
|
3
|
Chauhan R, Tiwari M, Chaudhary A, Sharan Thakur R, Pande V, Das J. Chemokines: A key driver for inflammation in protozoan infection. Int Rev Immunol 2023; 43:211-228. [PMID: 37980574 DOI: 10.1080/08830185.2023.2281566] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 10/16/2023] [Indexed: 11/21/2023]
Abstract
Chemokines belong to the group of small proteins within the cytokine family having strong chemo-attractant properties. In most cases, the strong immuno-modulatory role of chemokines is crucial for generating the immune response against pathogens in various protozoan diseases. In this review, we have given a brief update on the classification, characterization, homeostasis, transcellular migration, and immuno-modulatory role of chemokines. Here we will evaluate the potential role of chemokines and their regulation in various protozoan diseases. There is a significant direct relationship between parasitic infection and the recruitment of effector cells of the immune response. Chemokines play an indispensable role in mediating several defense mechanisms against infection, such as leukocyte recruitment and the generation of innate and cell-mediated immunity that aids in controlling/eliminating the pathogen. This process is controlled by the chemotactic movement of chemokines induced as a primary host immune response. We have also addressed that chemokine expressions during infection are time-dependent and orchestrated in a systematic pattern that ultimately assists in generating a protective immune response. Taken together, this review provides a systematic understanding of the complexity of chemokines profiles during protozoan disease conditions and the rationale of targeting chemokines for the development of therapeutic strategies.
Collapse
Affiliation(s)
- Rubika Chauhan
- Parasite-Host Biology, National Institute of Malaria Research, Dwarka, New Delhi, India
| | - Mrinalini Tiwari
- Parasite-Host Biology, National Institute of Malaria Research, Dwarka, New Delhi, India
| | - Amrendra Chaudhary
- Parasite-Host Biology, National Institute of Malaria Research, Dwarka, New Delhi, India
| | - Reva Sharan Thakur
- Parasite-Host Biology, National Institute of Malaria Research, Dwarka, New Delhi, India
| | - Veena Pande
- Biotechnology Department, Kumaun University, Nainital, India
| | - Jyoti Das
- Parasite-Host Biology, National Institute of Malaria Research, Dwarka, New Delhi, India
| |
Collapse
|
4
|
Immunoprophylaxis using polypeptide chimera vaccines plus adjuvant system promote Th1 response controlling the spleen parasitism in hamster model of visceral leishmaniasis. Vaccine 2022; 40:5494-5503. [PMID: 35963820 DOI: 10.1016/j.vaccine.2022.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 07/20/2022] [Accepted: 08/03/2022] [Indexed: 11/23/2022]
Abstract
In recent years, several advances have been observed in vaccinology especially for neglected tropical diseases (NTDs). One of the tools employed is epitope prediction by immunoinformatic approaches that reduce the time and cost to develop a vaccine. In this scenario, immunoinformatics is being more often used to develop vaccines for NTDs, in particular visceral leishmaniasis (VL) which is proven not to have an effective vaccine yet. Based on that, in a previous study, two predicted T-cell multi-epitope chimera vaccines were experimentally validated in BALB/c mice to evaluate the immunogenicity, central and effector memory and protection against VL. Considering the results obtained in the mouse model, we assessed the immune response of these chimeras inMesocricetus auratushamster, which displays, experimentally, similar pathological status to human and dog VL disease. Our findings indicate that both chimeras lead to a dominant Th1 response profile, inducing a strong cellular response by increasing the production of IFN-γ and TNF-α cytokines associated with a decrease in IL-10. Also, the chimeras reduced the spleen parasite load and the weight a correlation between protector immunological mechanisms and consistent reduction of the parasitic load was observed. Our results demonstrate that both chimeras were immunogenic and corroborate with findings in the mouse model. Therefore, we reinforce the use of the hamster as a pre-clinical model in vaccination trials for canine and human VL and the importance of immunoinformatic to identify epitopes to design vaccines for this important neglected disease.
Collapse
|
5
|
Kumar R, Bhatia M, Pai K. Role of Chemokines in the Pathogenesis of Visceral Leishmaniasis. Curr Med Chem 2022; 29:5441-5461. [PMID: 35579167 DOI: 10.2174/0929867329666220509171244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 12/23/2021] [Accepted: 03/02/2022] [Indexed: 11/22/2022]
Abstract
Abstract:
Visceral leishmaniasis (VL; also known as kala-azar), caused by the protozoan parasite Leishmania donovani is characterized by the inability of the host to generate an effective immune response. The manifestations of the disease depends on involvement of various immune components such as activation of macrophages, cell mediated immunity, secretion of cytokines and chemokines, etc. Macrophages are the final host cells for Leishmania parasites to multiply, and they are the key to a controlled or aggravated response that leads to clinical symptoms. The two most common macrophage phenotypes are M1 and M2. The pro-inflammatory microenvironment (mainly by IL-1β, IL-6, IL-12, IL-23, and TNF-α cytokines) and tissue injury driven by classically activated macrophages (M1-like) and wound healing driven by alternatively activated macrophages (M2-like) in an anti-inflammatory environment (mainly by IL-10, TGF-β, chemokine ligand (CCL)1, CCL2, CCL17, CCL18, and CCL22). Moreover, on polarized Th cells, chemokine receptors are expressed differently. Typically, CXCR3 and CCR5 are preferentially expressed on polarized Th1 cells, whereas CCR3, CCR4 and CCR8 have been associated with the Th2 phenotype. Further, the ability of the host to produce a cell-mediated immune response capable of regulating and/or eliminating the parasite is critical in the fight against the disease. Here, we review the interactions between parasites and chemokines and chemokines receptors in the pathogenesis of VL.
Collapse
Affiliation(s)
| | | | - Kalpana Pai
- Savitribai Phule Pune University, Pune, Maharashtra
| |
Collapse
|
6
|
Chemokines in Leishmaniasis: Map of cell movements highlights the landscape of infection and pathogenesis. Cytokine 2021; 147:155339. [DOI: 10.1016/j.cyto.2020.155339] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 10/01/2020] [Accepted: 10/05/2020] [Indexed: 02/06/2023]
|
7
|
Maksouri H, Darif D, Estaquier J, Riyad M, Desterke C, Lemrani M, Dang PMC, Akarid K. The Modulation of NADPH Oxidase Activity in Human Neutrophils by Moroccan Strains of Leishmania major and Leishmania tropica Is Not Associated with p47 phox Phosphorylation. Microorganisms 2021; 9:1025. [PMID: 34068760 PMCID: PMC8151549 DOI: 10.3390/microorganisms9051025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 04/26/2021] [Accepted: 04/28/2021] [Indexed: 11/30/2022] Open
Abstract
Polymorphonuclear neutrophils (PMNs) are the first phagocyte recruited and infected by Leishmania. They synthetize superoxide anions (O2-) under the control of the NADPH oxidase complex. In Morocco, Leishmania major and L. tropica are the main species responsible for cutaneous leishmaniasis (CL). The impact of these parasites on human PMN functions is still unclear. We evaluated the in vitro capacity of primary Moroccan strains of L. major and L. tropica to modulate PMN O2- production and p47phox phosphorylation status of the NADPH oxidase complex. PMNs were isolated from healthy blood donors, and their infection rate was measured by microscopy. O2- production was measured by superoxide dismutase-inhibitable reduction of cytochrome C. P47phox phosphorylation was analyzed by Western blot using specific antibodies against Ser328 and Ser345 sites. Whereas we did not observe any difference in PMN infectivity rate, our results indicated that only L. tropica promastigotes inhibited both fMLF- and PMA-mediated O2- production independently of p47phox phosphorylation. Leishmania soluble antigens (SLAs) from both species significantly inhibited O2- induced by fMLF or PMA. However, they only decreased PMA-induced p47phox phosphorylation. L. major and L. tropica modulated differently O2- production by human PMNs independently of p47phox phosphorylation. The inhibition of ROS production by L. tropica could be a mechanism of its survival within PMNs that might explain the reported chronic pathogenicity of L. tropica CL.
Collapse
Affiliation(s)
- Hasnaa Maksouri
- Research Team on Immunopathology of Infectious and Systemic Diseases, Laboratory of Cellular and Molecular Pathology, Faculty of Medicine and Pharmacy (FMPC), Hassan II University of Casablanca (UH2C), 20000 Casablanca, Morocco; (H.M.); (M.R.)
- Molecular Genetics and Immunophysiopathology Research Team, Health and Environment Laboratory, Aïn Chock Faculty of Sciences, UH2C, 20000 Casablanca, Morocco;
| | - Dounia Darif
- Molecular Genetics and Immunophysiopathology Research Team, Health and Environment Laboratory, Aïn Chock Faculty of Sciences, UH2C, 20000 Casablanca, Morocco;
| | - Jerome Estaquier
- INSERM U1124, Paris University, 75006 Paris, France
- Centre Hospitalier Universitaire (CHU) de Québec Research Center, Faculty of Medicine, Laval University, Quebec City, QC G1V0A6, Canada
| | - Myriam Riyad
- Research Team on Immunopathology of Infectious and Systemic Diseases, Laboratory of Cellular and Molecular Pathology, Faculty of Medicine and Pharmacy (FMPC), Hassan II University of Casablanca (UH2C), 20000 Casablanca, Morocco; (H.M.); (M.R.)
| | - Christophe Desterke
- Faculty of Medicine of the Kremlin-Bicêtre, University Paris-Sud, 94270 Paris, France;
| | - Meryem Lemrani
- Laboratory of Parasitology and Vector-Borne-Diseases, Institut Pasteur du Maroc, 20250 Casablanca, Morocco;
| | - Pham My-Chan Dang
- INSERM-U1149, CNRS-ERL8252, Inflammation Research Center, 75018 Paris, France;
- Inflamex Laboratory of Excellence, Faculty of Medicine, Site Xavier Bichat, University of Paris, 75018 Paris, France
| | - Khadija Akarid
- Molecular Genetics and Immunophysiopathology Research Team, Health and Environment Laboratory, Aïn Chock Faculty of Sciences, UH2C, 20000 Casablanca, Morocco;
| |
Collapse
|
8
|
Elmahallawy EK, Alkhaldi AAM, Saleh AA. Host immune response against leishmaniasis and parasite persistence strategies: A review and assessment of recent research. Biomed Pharmacother 2021; 139:111671. [PMID: 33957562 DOI: 10.1016/j.biopha.2021.111671] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 04/18/2021] [Accepted: 04/24/2021] [Indexed: 12/13/2022] Open
Abstract
Leishmaniasis, a neglected parasitic disease caused by a unicellular protozoan of the genus Leishmania, is transmitted through the bite of a female sandfly. The disease remains a major public health problem and is linked to tropical and subtropical regions, with an endemic picture in several regions, including East Africa, the Mediterranean basin and South America. The different causative species display a diversity of clinical presentations; therefore, the immunological data on leishmaniasis are both scarce and controversial for the different forms and infecting species of the parasite. The present review highlights the main immune parameters associated with leishmaniasis that might contribute to a better understanding of the pathogenicity of the parasite and the clinical outcomes of the disease. Our aim was to provide a concise overview of the immunobiology of the disease and the factors that influence it, as this knowledge may be helpful in developing novel chemotherapeutic and vaccine strategies.
Collapse
Affiliation(s)
- Ehab Kotb Elmahallawy
- Department of Zoonoses, Faculty of Veterinary Medicine, Sohag University, Sohag 82524, Egypt.
| | | | - Amira A Saleh
- Department of Medical Parasitology, Faculty of Medicine, Zagazig University, Zgazig, Egypt
| |
Collapse
|
9
|
Rodríguez-Vega A, Losada-Barragán M, Berbert LR, Mesquita-Rodrigues C, Bombaça ACS, Menna-Barreto R, Aquino P, Carvalho PC, Padrón G, de Jesus JB, Cuervo P. Quantitative analysis of proteins secreted by Leishmania (Viannia) braziliensis strains associated to distinct clinical manifestations of American Tegumentary Leishmaniasis. J Proteomics 2020; 232:104077. [PMID: 33309930 DOI: 10.1016/j.jprot.2020.104077] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 12/01/2020] [Accepted: 12/06/2020] [Indexed: 12/15/2022]
Abstract
The role of Leishmania braziliensis in the development of different clinical forms of American Tegumentary Leishmaniasis (ATL) is unclear, but it has been suggested that molecules secreted/released by parasites could modulate the clinical outcome. Here, we analyzed the infection rate and cytokine profile of macrophages pretreated with the secretome of two L. braziliensis strains associated with polar clinical forms of ATL: one associated with localized self-healing cutaneous leishmaniasis (LCL) and other associated with the disseminated form (DL). Besides, we use an iTRAQ-based quantitative proteomics approach to compare the abundance of proteins secreted by those strains. In vitro infection demonstrated that pretreatment with secretome resulted in higher number of infected macrophages, as well as higher number of amastigotes per cell. Additionally, macrophages pretreated with LCL secretome exhibited a proinflammatory profile, whereas those pretreated with the DL one did not. These findings suggest that secretomes made macrophages more susceptible to infection and that molecules secreted by each strain modulate, differentially, the macrophages' cytokine profile. Indeed, proteomics analysis showed that the DL secretome is rich in molecules involved in macrophage deactivation, while is poor in proteins that activate proinflammatory pathways. Together, our results reveal new molecules that may contribute to the infection, persistence and dissemination of the parasite. SIGNIFICANCE: Leishmania braziliensis is associated to localized self-healing cutaneous lesions (LCL), disseminated leishmaniasis (DL), and mucocutaneous lesions (MCL). To understand the role of the parasite in those distinct clinical manifestations we evaluated infection rates and cytokine profiles of macrophages pre-treated with secretomes of two L. braziliensis strains associated with DL and LCL, and quantitatively compared these secretomes. The infection index of macrophages pretreated with the DL secretome was significantly higher than that exhibited by non-treated cells. Interestingly, whereas the LCL secretome stimulated a proinflammatory setting, favoring an effector cell response that would explain the proper resolution of the disease caused by this strain, the DL strain was not able to elicit such response or has mechanisms to prevent this activation. Indeed, DL secretome is rich in peptidases that may deactivate cell pathways crucial for parasite elimination, while is poor in proteins that could activate proinflammatory pathways, favoring parasite infection and persistence.
Collapse
Affiliation(s)
- Andrés Rodríguez-Vega
- Laboratório de Pesquisa em Leishmanioses, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, RJ, Brazil
| | - Monica Losada-Barragán
- Grupo de Investigación en Biología Celular y Funcional e Ingeniería de Biomoléculas, Universidad Antonio Nariño, Bogotá, Colombia
| | - Luiz Ricardo Berbert
- Laboratório de Pesquisas sobre o Timo, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, RJ, Brazil
| | - Camila Mesquita-Rodrigues
- Laboratório de Biologia Molecular e Doenças Endêmicas, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, RJ, Brazil
| | | | - Rubem Menna-Barreto
- Laboratório de Biologia Celular, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, RJ, Brazil
| | - Priscila Aquino
- Instituto Leônidas e Maria Deane, Fiocruz, Manaus, AM, Brazil
| | - Paulo C Carvalho
- Laboratory for Structural and Computational Proteomics, Fiocruz-Paraná, PR, Brazil
| | - Gabriel Padrón
- Laboratório de Pesquisa em Leishmanioses, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, RJ, Brazil
| | - Jose Batista de Jesus
- Laboratório de Biologia Molecular e Doenças Endêmicas, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, RJ, Brazil; Universidade Federal de São João Del Rei, São João del Rei, MG, Brazil
| | - Patricia Cuervo
- Laboratório de Pesquisa em Leishmanioses, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, RJ, Brazil.
| |
Collapse
|
10
|
|
11
|
Romanelli MM, da Costa-Silva TA, Cunha-Junior E, Dias Ferreira D, Guerra JM, Galisteo AJ, Pinto EG, Barbosa LRS, Torres-Santos EC, Tempone AG. Sertraline Delivered in Phosphatidylserine Liposomes Is Effective in an Experimental Model of Visceral Leishmaniasis. Front Cell Infect Microbiol 2019; 9:353. [PMID: 31737574 PMCID: PMC6828611 DOI: 10.3389/fcimb.2019.00353] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Accepted: 09/30/2019] [Indexed: 12/17/2022] Open
Abstract
Liposomes containing phosphatidylserine (PS) has been used for the delivery of drugs into the intramacrophage milieu. Leishmania (L.) infantum parasites live inside macrophages and cause a fatal and neglected viscerotropic disease, with a toxic treatment. Sertraline was studied as a free formulation (SERT) and also entrapped into phosphatidylserine liposomes (LP-SERT) against intracellular amastigotes and in a murine model of visceral leishmaniasis. LP-SERT showed a potent activity against intracellular amastigotes with an EC50 value of 2.5 μM. The in vivo efficacy of SERT demonstrated a therapeutic failure. However, when entrapped into negatively charged liposomes (−58 mV) of 125 nm, it significantly reduced the parasite burden in the mice liver by 89% at 1 mg/kg, reducing the serum levels of the cytokine IL-6 and upregulating the levels of the chemokine MCP-1. Histopathological studies demonstrated the presence of an inflammatory infiltrate with the development of granulomas in the liver, suggesting the resolution of the infection in the treated group. Delivery studies showed fluorescent-labeled LP-SERT in the liver and spleen of mice even after 48 h of administration. This study demonstrates the efficacy of PS liposomes containing sertraline in experimental VL. Considering the urgent need for VL treatments, the repurposing approach of SERT could be a promising alternative.
Collapse
Affiliation(s)
| | | | - Edezio Cunha-Junior
- Fundação Oswaldo Cruz, Instituto Oswaldo Cruz, Pavilhão Leonidas Deane, Laboratório de Bioquímica de Tripanosomatídeos, Rio de Janeiro, Brazil
| | | | | | - Andres Jimenez Galisteo
- Faculdade de Medicina, Hospital das Clínicas HCFMUSP, Universidade de São Paulo, São Paulo, Brazil
| | | | - Leandro R S Barbosa
- Instituto de Física da Universidade de São Paulo, Cidade Universitária, São Paulo, Brazil
| | - Eduardo Caio Torres-Santos
- Fundação Oswaldo Cruz, Instituto Oswaldo Cruz, Pavilhão Leonidas Deane, Laboratório de Bioquímica de Tripanosomatídeos, Rio de Janeiro, Brazil
| | | |
Collapse
|
12
|
Eufrásio de Figueiredo WM, Heredia FF, Santos AS, da Rocha Braga R, Marciano Fonseca FR, Lúcia de Castro Rodrigues N, Abreu TM, Maria de Lima Pompeu M, Barbosa HS, Teixeira MJ. CXCL10 treatment promotes reduction of IL-10 + regulatory T (Foxp3 + and Tr1) cells in the spleen of BALB/c mice infected by Leishmania infantum. Exp Parasitol 2019; 207:107789. [PMID: 31669169 DOI: 10.1016/j.exppara.2019.107789] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 10/22/2019] [Accepted: 10/22/2019] [Indexed: 02/07/2023]
Abstract
American visceral leishmaniasis is caused by the protozoan Leishmania infantum. The control of the disease depends on the magnitude of the Th1 cell response and IL-10 producing regulatory T cells. Administration of chemokine, such as CXCL10, has shown promising results in the leishmaniasis treatment. Previous studies from our group have shown that CXCL10 induces a reduction in parasite burden in the spleen and a decrease in IL-10 and TGF-β production in L. infantum-infected BALB/c mice. This work investigated whether CXCL10-treatment reduces IL-10 + Treg cell populations (CD4+CD25+Foxp3+ and Tr1) and induces morphological changes in the spleen. BALB/c mice were infected and treated or not with CXCL10 on the 1st, 3rd and 7th days of infection. CXCL10-treatment was able to reduce the parasite load in the spleen in L. infantum-infected BALB/c mice and this decrease in the number of parasites correlated with the decrease in size of this organ in treated animals compared to untreated animals. 7, 23, and 45 days post-treatment (p.t.), the phenotype and frequency of IL-10 + Treg cells were evaluated by flow cytometry, and the morphological changes of the spleen were analyzed by optical microscopy. After 7 and 23 days p.t., CXCL10-treated animals showed a significant reduction of CD25-Foxp3-IL-10+ (Tr1) cells in the spleen when compared to untreated animals, whereas CD4+CD25+Foxp3+IL-10+ Treg cells reduced later at 23rd and 45th days p.t. Furthermore, while untreated animals showed a significant positive correlation between IL-10 production and Tr1 cells, in CXCL10-treated group this correlation was negative. Thus, these findings show that treatment with CXCL10 chemokine in L. infantum-infected BALB/c mice results in suppression of IL10+ Treg (Foxp3+ and Tr1) cells in the spleen, associated with a reduction in parasite load and splenomegaly.
Collapse
Affiliation(s)
| | - Fabiola Fernandes Heredia
- Federal University of Ceará, Department of Pathology and Legal Medicine, 60441-750, Fortaleza, CE, Brazil.
| | - Aline Sombra Santos
- Federal University of Ceará, Department of Pathology and Legal Medicine, 60441-750, Fortaleza, CE, Brazil.
| | | | | | - Naya Lúcia de Castro Rodrigues
- Federal University of Ceará, Faculty of Pharmacy, Dentistry and Nursing, Department of Pharmacy, 60430-170, Fortaleza, CE, Brazil.
| | - Ticiana Monteiro Abreu
- Federal University of Ceará, Department of Pathology and Legal Medicine, 60441-750, Fortaleza, CE, Brazil.
| | | | - Helene Santos Barbosa
- Oswaldo Cruz Foundation, Oswaldo Cruz Institute, Laboratory of Structural Biology, 21040-360, Rio de Janeiro, RJ, Brazil.
| | - Maria Jania Teixeira
- Federal University of Ceará, Department of Pathology and Legal Medicine, 60441-750, Fortaleza, CE, Brazil.
| |
Collapse
|
13
|
da Costa-Silva TA, Conserva GAA, Galisteo AJ, Tempone AG, Lago JHG. Antileishmanial activity and immunomodulatory effect of secosubamolide, a butanolide isolated from Nectandra oppositifolia (Lauraceae). J Venom Anim Toxins Incl Trop Dis 2019; 25:e20190008. [PMID: 31467511 PMCID: PMC6707387 DOI: 10.1590/1678-9199-jvatitd-2019-0008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Accepted: 06/27/2019] [Indexed: 01/15/2023] Open
Abstract
Background: Visceral leishmaniasis is a complex neglected tropical disease caused by
Leishmania donovani complex. Its current treatment
reveals strong limitations, especially high toxicity. In this context,
natural products are important sources of new drug alternatives for VL
therapy. Therefore, the antileishmanial and immunomodulatory activity of
compounds isolated from Nectandra oppositifolia (Lauraceae)
was investigated herein. Methods: The n-hexane extract from twigs of N.
oppositifolia were subjected to HPLC/HRESIMS and
bioactivity-guided fractionation to afford compounds 1 and
2 which were evaluated in vitro against
Leishmania (L.) infantum
chagasi and NCTC cells. Results: The n-hexane extract displayed activity against
L. (L.) infantum
chagasi and afforded isolinderanolide E
(1) and secosubamolide A (2),
which were effective against L. (L.)
infantum chagasi promastigotes, with IC50
values of 57.9 and 24.9 µM, respectively. Compound 2 was
effective against amastigotes (IC50 = 10.5 µM) and displayed
moderate mammalian cytotoxicity (CC50 = 42 µM). The
immunomodulatory studies of compound 2 suggested an
anti-inflammatory activity, with suppression of IL-6, IL-10, TNF with lack
of nitric oxide. Conclusion: This study showed the antileishmanial activity of compounds 1
and 2 isolated from N. oppositifolia.
Furthermore, compound 2 demonstrated an antileishmanial
activity towards amastigotes associated to an immunomodulatory effect.
Collapse
Affiliation(s)
- Thais A da Costa-Silva
- Center of Natural Sciences and Humanities, Federal University of ABC (UFBAC), São Paulo, SP, Brazil
| | - Geanne A Alves Conserva
- Center of Natural Sciences and Humanities, Federal University of ABC (UFBAC), São Paulo, SP, Brazil
| | - Andrés J Galisteo
- Institute of Tropical Medicine, University of São Paulo (USP), São Paulo, SP, Brazil
| | - Andre G Tempone
- Centre for Parasitology and Mycology, Adolfo Lutz Institute (IAL), São Paulo, SP, Brazil
| | - João Henrique G Lago
- Center of Natural Sciences and Humanities, Federal University of ABC (UFBAC), São Paulo, SP, Brazil
| |
Collapse
|
14
|
Khayeka-Wandabwa C, Zhou G, Magak NG, Choge JK, Kemei WK, Makwali JA, Karani LW, Kisavi MP, Ndulu JV, Anjili CO. Combined chemotherapy manifest less severe immunopathology effects in helminth-protozoa comorbidity. Exp Parasitol 2019; 204:107728. [PMID: 31348915 DOI: 10.1016/j.exppara.2019.107728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2018] [Revised: 07/15/2019] [Accepted: 07/22/2019] [Indexed: 11/24/2022]
Abstract
BACKGROUND Co-infection with Leishmania major and Schistosoma mansoni may have significant consequences for disease progression, severity and subsequent transmission dynamics. Pentavalent antimonials and Praziquantel (PZQ) are used as first line of treatment for Leishmania and Schistosoma infections respectively. However, there is limited insight on how combined therapy with the standard drugs impacts the host in comorbidity. The study aimed to determine the efficacy of combined chemotherapy using Pentostam (P) and PZQ in murine model co-infected with L. major and S. mansoni. METHODS A 3 × 4 factorial design with three parasite infection groups (Lm, Sm, Lm + Sm to represent L. major, S. mansoni and L. major + S. mansoni respectively) and four treatment regimens [P, PZQ, P + PZQ, and PBS designating Pentostam (GlaxoSmithKline UK), Praziquantel (Biltricide®, Bayer Ag. Leverkusen, Germany), Pentostam + Praziquantel and Phosphate buffered saline] as factors was applied. RESULTS Significant changes were observed in the serum Interferon gamma (IFN-γ), and Macrophage inflammatory protein-one alpha (MIP-1α) levels among various treatment groups between week 8 and week 10 (p < 0.05). There was increased IFN-γ in the L. major infected mice subjected to PZQ and PBS, and in L. major + S. mansoni infected BALB/c mice treated with P + PZQ. Subsequently, MIP-1α levels increased significantly in both the L. major infected mice under PZQ and PBS and in L. major + S. mansoni infected BALB/c mice undergoing concurrent chemotherapy with P + PZQ between 8 and 10 weeks (p < 0.05). In the comorbidity, simultaneous chemotherapy resulted in less severe histopathological effects in the liver. CONCLUSION It was evident, combined first line of treatment is a more effective strategy in managing co-infection of L. major and S. mansoni. The findings denote simultaneous chemotherapy compliments immunomodulation in the helminth-protozoa comorbidity hence, less severe pathological effects following the parasites infection. Recent cases of increased incidences of polyparasitism in vertebrates call for better ways to manage co-infections. The findings presented necessitate intrinsic biological interest on examining optimal combined chemotherapeutic agents strategies in helminth-protozoa concomitance and the related infections abatement trends vis-a-vis host-parasite relationships.
Collapse
Affiliation(s)
- Christopher Khayeka-Wandabwa
- School of Pharmaceutical Science and Technology (SPST), Health Science Platform, Tianjin University, Tianjin, 300072, China; Centre for Biotechnology Research and Development (CBRD), Kenya Medical Research Institute (KEMRI), P.O Box 54840, Nairobi, 00200, Kenya.
| | - Guan Zhou
- School of Pharmaceutical Science and Technology (SPST), Health Science Platform, Tianjin University, Tianjin, 300072, China.
| | | | - Joseph K Choge
- University of Kabianga, P.O. Box 2030, Kericho, 20200, Kenya.
| | - William Kipchirchir Kemei
- Institute of Tropical Medicine and Infectious Diseases (ITROMID), Jomo Kenyatta University of Agriculture and Technology (JKUAT), P.O. Box 62000-00200, Nairobi, Kenya.
| | - Judith Alice Makwali
- Department of Biological Science, University of Eldoret, P.O Box 1125, Eldoret, 30100, Kenya.
| | | | - Mutila Phoebe Kisavi
- School of Health Science, Machakos University, Kenya; Public Health Intervention Research Group, The Kirby Institute for Infection and Immunity in Society, University of New South Wales, Sydney, NSW 2052 Australia.
| | - James V Ndulu
- African Population and Health Research Center (APHRC), P .O. Box 10787-00100, Nairobi, Kenya.
| | - Christopher O Anjili
- Centre for Biotechnology Research and Development (CBRD), Kenya Medical Research Institute (KEMRI), P.O Box 54840, Nairobi, 00200, Kenya.
| |
Collapse
|
15
|
Silva PLD, Lauretti-Ferreira F, Caldas de Lima M, Lima SS, Covarrubias AE, De Franco M, Carvalho E, Ho PL, da Costa RMA, Martins EAL, Da Silva JB. Phagocytosis of Leptospira by leukocytes from mice with different susceptibility to leptospirosis and possible role of chemokines. BMC Microbiol 2019; 19:4. [PMID: 30616505 PMCID: PMC6323685 DOI: 10.1186/s12866-018-1371-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 12/10/2018] [Indexed: 01/01/2023] Open
Abstract
Background Leptospirosis is a widespread zoonosis caused by pathogenic prokaryotic microbes of the genus Leptospira. Although there are several reports in the literature, host-pathogen interaction is still poorly understood. The role of chemokine expression is important on the chemotaxis, activation and regulation of immune cells. Recent studies have shown that their expression profiles play an important role on the severity of leptospirosis outcome. We evaluated the phagocytosis of Leptospira by spleens cells from C3H/HeJ, C3H/HePas and BALB/c mouse strains, respectively susceptible, intermediate and resistant to leptospirosis, and by RAW 264.7 macrophages. Besides, we evaluated the effects of CCL2 treatment on the phagocytosis. The cells were incubated with or without CCL2 chemokine, and infected with virulent L. interrogans sv Copenhageni. Cells and culture supernatants were collected for subsequent analysis. Results The number of leptospires was higher in BALB/c cells, CCL2 pre-treated or only infected groups, when compared to C3H/HeJ and C3H/HePas cells. Indeed, CCL2 activation did not interfere in the phagocytosis of Leptospira. Expression of chemokines CXCL5 and CCL8 levels were significantly inhibited in infected BALB/c cells when compared to the non-infected control. Conclusions Higher ability to phagocytosis and early modulation of some chemokines correlated with the resistance to leptospirosis disease. Exposure to CCL2 did not interfere on phagocytosis of Leptospira in our experimental conditions, but acted in the modulation of chemokines expression during Leptospira infection. Electronic supplementary material The online version of this article (10.1186/s12866-018-1371-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | | | | | - Ambart E Covarrubias
- School of Medical Technology, Faculty of Health Sciences, University San Sebastian, Concepción, Chile
| | | | - Eneas Carvalho
- Laboratório de Bacteriologia, Instituto Butantan, São Paulo, Brazil
| | - Paulo Lee Ho
- Seção de Vacinas Aeróbicas, Instituto Butantan, São Paulo, Brazil
| | - Renata M A da Costa
- Laboratório de Bacteriologia, Instituto Butantan, São Paulo, Brazil.,Present address: Global Antibiotics Research and Development Partnership (GARDP), Drugs for Neglected Diseases initiative (DNDi), Chemin Louis-Dunant 15, 1202, Geneva, Switzerland
| | | | - Josefa B Da Silva
- Laboratório de Bacteriologia, Instituto Butantan, São Paulo, Brazil.
| |
Collapse
|
16
|
Maksouri H, Dang PMC, Rodrigues V, Estaquier J, Riyad M, Akarid K. Moroccan strains of Leishmania major and Leishmania tropica differentially impact on nitric oxide production by macrophages. Parasit Vectors 2017; 10:506. [PMID: 29061164 PMCID: PMC5654093 DOI: 10.1186/s13071-017-2401-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Accepted: 09/22/2017] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Cutaneous leishmaniasis (CL) is a vector-borne parasitic disease caused by protozoa of the genus Leishmania. In Morocco, CL is a public health problem mainly caused by Leishmania major and Leishmania tropica, which are responsible for zoonotic and anthroponotic CL, respectively. Macrophages are the primary cells infected by Leishmania parasites and their capacity to produce nitric oxide (NO) is of critical importance for parasite elimination. To our knowledge, the role of NO on autochthonous infections has never been investigated before. In this study, we evaluated in vitro the capacity of autochthonous primary dermotropic strains of L. major and L. tropica to modulate NO production by J774-macrophages and determine the sensitivity of both species to exogenous NO. METHODS The infectivity of the J774 cell line was analyzed by optical microscopy. NO production by macrophages was measured by the Griess method. The sensitivity to NO by the two strains was assessed by the MTT assay using NO donors. RESULTS Our results show that the percentage of infected macrophages and the average number of parasites per macrophage were similar for L. major and L. tropica strains. While L. tropica significantly inhibited NO production induced by LPS and IFN-γ stimulation in J774 macrophages, L. major did not affect it. However, soluble Leishmania antigens (SLAs) from both autochthonous primary strains significantly inhibited the production of NO by J774-macrophages in a dose-dependent manner. Finally, our results demonstrated that promastigotes and amastigotes from both strains are sensitive to SNAP NO donor in a dose-dependent manner, although L. tropica demonstrated an increased sensitivity. CONCLUSIONS Our results suggest a differential ability of L. major and L. tropica strains to modulate the capacity of macrophages to produce NO. The increased ability of L. tropica to inhibit NO production by macrophages might come as a necessity due to its higher sensitivity to NO donor. Our results provide one explanation for the tendency of L. tropica to cause chronic lesions and may contribute to the different physiopathology of CL in Morocco.
Collapse
Affiliation(s)
- Hasnaa Maksouri
- Center for Doctoral Studies on Health Sciences (Immunopathology), Faculty of Medicine and Pharmacy, Hassan II University of Casablanca (UH2C), Casablanca, Morocco.,Research team on Immunopathology of Infectious And Systemic Diseases, Laboratory of Cellular and Molecular Pathology, Faculty of Medicine and Pharmacy, UH2C, Casablanca, Morocco
| | | | | | - Jérôme Estaquier
- CNRS FR3636, Paris Descartes University, Paris, France. .,Centre Hospitalier Universitaire (CHU) de Québec Research Center, Faculty of Medicine, Laval University, Québec, QC, Canada.
| | - Myriam Riyad
- Research team on Immunopathology of Infectious And Systemic Diseases, Laboratory of Cellular and Molecular Pathology, Faculty of Medicine and Pharmacy, UH2C, Casablanca, Morocco.,Laboratory of Parasitology, Faculty of Medicine and Pharmacy, UH2C, Casablanca, Morocco
| | - Khadija Akarid
- Molecular Genetics and Immunophysiopathology research team, Health and Environment Laboratory, Aïn Chock Faculty of Sciences, UH2C, Casablanca, Morocco.
| |
Collapse
|
17
|
Attiq A, Jalil J, Husain K. Annonaceae: Breaking the Wall of Inflammation. Front Pharmacol 2017; 8:752. [PMID: 29104539 PMCID: PMC5654839 DOI: 10.3389/fphar.2017.00752] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 10/03/2017] [Indexed: 12/12/2022] Open
Abstract
Inventories of tropical forests have listed Annonaceae as one of the most diverse plant families. For centuries, it is employed in traditional medicines to cure various pathological conditions including snakebite, analgesic, astringent, diarrhea, dysentery, arthritis pain, rheumatism, neuralgia, and weight loss etc. Phytochemical analysis of Annonaceae family have reported the occurrence of alkaloids, flavonoids, triterpenes, diterpenes and diterpene flavone glycosides, sterols, lignans, and annonaceous acetogenin characteristically affiliated with Annonaceae sp. Numerous past studies have underlined the pleotropic pharmacological activities of the crude extracts and isolated compounds from Annonaceae species. This review is an effort to abridge the ethnobotany, morphology, phytochemistry, toxicity, and particularly focusing on the anti-inflammatory activity of the Annonaceae species.
Collapse
Affiliation(s)
- Ali Attiq
- Drug and Herbal Research Centre, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Juriyati Jalil
- Drug and Herbal Research Centre, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Khairana Husain
- Drug and Herbal Research Centre, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| |
Collapse
|
18
|
Nanoliposomal Buparvaquone Immunomodulates Leishmania infantum-Infected Macrophages and Is Highly Effective in a Murine Model. Antimicrob Agents Chemother 2017; 61:AAC.02297-16. [PMID: 28167544 DOI: 10.1128/aac.02297-16] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Accepted: 01/22/2017] [Indexed: 11/20/2022] Open
Abstract
Visceral leishmaniasis is a fatal parasitic neglected disease affecting 1.5 million people worldwide. Based on a drug repositioning approach, the aim of this work was to investigate the in vitro immunomodulatory potential of buparvaquone (BPQ) and to establish a safe regimen to evaluate the in vivo efficacy of BPQ entrapped by negatively charged nanoliposomes (BPQ-LP) in Leishmania infantum-infected hamsters. Small-angle X-ray scattering, dynamic light scattering, and the ζ-potential were applied in order to study the influence of BPQ on the liposome structure. Our data revealed that BPQ was located in the polar-apolar interface, snorkeling the polar region, and protected against aggregation inside the lipophilic region. The presence of BPQ also decreased the Z-average hydrodynamic diameter and increased the surface charge. Compared to intravenous and intramuscular administration, a subcutaneous route was a more effective route for BPQ-LP; at 0.4 mg/kg, BPQ-LP reduced infection in the spleen and liver by 98 and 96%, respectively. Treatment for 5 days resulted in limited efficacy, but 10 days of treatment resulted in an efficacy similar to that of a 15-day regimen. The nanoliposomal drug was highly effective, with a mean 50% effective dose of 0.25 mg/kg, reducing the parasite load in bone marrow by 80%, as detected using quantitative PCR analysis. In addition, flow cytometry studies showed that BPQ upregulated cytokines as tumor necrosis factor, monocyte chemoattractant protein 1, interleukin-10 (IL-10), and IL-6 in Leishmania-infected macrophages, eliminating the parasites via a nitric oxide-independent mechanism. This new formulation proved to be a safe and effective treatment for murine leishmaniasis that could be a useful candidate against visceral leishmaniasis.
Collapse
|
19
|
Gamma Interferon-Regulated Chemokines in Leishmania donovani Infection in the Liver. Infect Immun 2016; 85:IAI.00824-16. [PMID: 27795366 DOI: 10.1128/iai.00824-16] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Accepted: 10/16/2016] [Indexed: 12/25/2022] Open
Abstract
In the livers of C57BL/6 mice, gamma interferon (IFN-γ) controls intracellular Leishmania donovani infection and the efficacy of antimony (Sb) chemotherapy. Since both responses usually correlate with granulomatous inflammation, we tested six prominently expressed, IFN-γ-regulated chemokines-CXCL9, CXCL10, CXCL13, CXCL16, CCL2, and CCL5-for their roles in (i) mononuclear cell recruitment and granuloma assembly and maturation, (ii) initial control of infection and self-cure, and (iii) responsiveness to Sb treatment. Together, the results for the L. donovani-infected livers of chemokine-deficient mice (CXCR6-/- mice were used as CXCL16-deficient surrogates) indicated that individual IFN-γ-induced chemokines have diverse affects and (i) may be entirely dispensable (CXCL13, CXCL16), (ii) may promote (CXCL10, CCL2, CCL5) or downregulate (CXCL9) initial granuloma assembly, (iii) may enhance (CCL2, CCL5) or hinder (CXCL10) early parasite control, (iv) may promote granuloma maturation (CCL2, CCL5), (v) may exert a granuloma-independent action that enables self-cure (CCL5), and (vi) may have no role in responsiveness to chemotherapy. Despite the near absence of tissue inflammation in early-stage infection, parasite replication could be controlled (in CXCL10-/- mice) and Sb was fully active (in CXCL10-/-, CCL2-/-, and CCL5-/- mice). These results characterize chemokine action in the response to L. donovani and also reemphasize that (i) recruited mononuclear cells and granulomas are not required to control infection or respond to Sb chemotherapy, (ii) granuloma assembly, control of infection, and Sb's efficacy are not invariably linked expressions of the same T cell-dependent, cytokine-mediated antileishmanial mechanism, and (iii) granulomas are not necessarily hallmarks of protective antileishmanial immunity.
Collapse
|
20
|
Chaves MM, Canetti C, Coutinho-Silva R. Crosstalk between purinergic receptors and lipid mediators in leishmaniasis. Parasit Vectors 2016; 9:489. [PMID: 27595742 PMCID: PMC5011846 DOI: 10.1186/s13071-016-1781-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Accepted: 08/29/2016] [Indexed: 11/10/2022] Open
Abstract
Leishmaniasis is a neglected tropical disease affecting millions of people around the world caused by organisms of the genus Leishmania. Parasite escape mechanisms of the immune system confer the possibility of resistance and dissemination of the disease. A group of molecules that has become a target for Leishmania survival strategies are lipid mediators. Among them, leukotriene B4 (LTB4) has been described as a pro-inflammatory molecule capable of activating cells of the immune system to combat Leishmania. In an opposite way, prostaglandin E2 (PGE2) is a lipid mediator described as a deactivator of macrophages and neutrophils. The balance of these two molecules can be generated by extracellular nucleotides, such as adenosine 5'-triphosphate (ATP) and adenosine (Ado), which activate the purinergic receptors system. Herein, we discuss the role of extracellular nucleotides and the resulting balance of LTB4 and PGE2 in Leishmania fate, survival or death.
Collapse
Affiliation(s)
- Mariana M Chaves
- Laboratory of Immunophysiology, Biophysics Institute Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, 21941-902, Brazil.,Laboratory of Inflammation, Biophysics Institute Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, 21941-902, Brazil.,National Institute of Translational Research in Health and Environment in the Amazon Region, Biophysics Institute Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, 21941-902, Brazil
| | - Cláudio Canetti
- Laboratory of Inflammation, Biophysics Institute Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, 21941-902, Brazil.,National Institute of Translational Research in Health and Environment in the Amazon Region, Biophysics Institute Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, 21941-902, Brazil
| | - Robson Coutinho-Silva
- Laboratory of Immunophysiology, Biophysics Institute Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, 21941-902, Brazil. .,National Institute of Translational Research in Health and Environment in the Amazon Region, Biophysics Institute Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, 21941-902, Brazil.
| |
Collapse
|
21
|
Gupta PK, Chakraborty P, Kumar S, Singh PK, Rajan MGR, Sainis KB, Kulkarni S. G1-4A, a Polysaccharide from Tinospora cordifolia Inhibits the Survival of Mycobacterium tuberculosis by Modulating Host Immune Responses in TLR4 Dependent Manner. PLoS One 2016; 11:e0154725. [PMID: 27148868 PMCID: PMC4858241 DOI: 10.1371/journal.pone.0154725] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Accepted: 04/18/2016] [Indexed: 11/19/2022] Open
Abstract
Rapid emergence of drug resistance in Mycobacterium tuberculosis (MTB) is a major health concern and demands the development of novel adjunct immunotherapeutic agents capable of modulating the host immune responses in order to control the pathogen. In the present study, we sought to investigate the immunomodulatory effects of G1-4A, a polysaccharide derived from the Indian medicinal plant Tinospora cordifolia, in in-vitro and aerosol mouse models of MTB infection. G1-4A treatment of MTB infected RAW264.7 macrophages significantly induced the surface expression of MHC-II and CD-86 molecules, secretion of proinflammatory cytokines (TNF-α, IL-β, IL-6, IL-12, IFN-γ) and nitric oxide leading to reduced intracellular survival of both drug sensitive (H37Rv) as well as multi drug resistant strains (Beijing and LAM) of MTB, which was partially attributed to G1-4A induced NO production in TLR4-MyD88 dependent manner. Similarly, bacillary burden was significantly reduced in the lungs of MTB infected BALB/c mice treated with G1-4A, with simultaneous up-regulation of the expression of TNF-α, INF-γ and NOS2 in the mouse lung along with increased levels of Th1 cytokines like IFN-γ, IL-12 and decreased levels of Th2 cytokine like IL-4 in the serum. Furthermore, combination of G1-4A with Isoniazid (INH) exhibited better protection against MTB compared to that due to INH or G1-4A alone, suggesting its potential as adjunct therapy. Our results demonstrate that modulation of host immune responses by G1-4A might improve the therapeutic efficacy of existing anti-tubercular drugs and provide an attractive strategy for the development of alternative therapies to control tuberculosis.
Collapse
Affiliation(s)
| | - Pampi Chakraborty
- Radiation Medicine Centre, Bhabha Atomic Research Centre, Mumbai, India
| | - Santosh Kumar
- Tuberculosis Aerosol Challenge Facility, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Prafull Kumar Singh
- Tuberculosis Aerosol Challenge Facility, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - M. G. R. Rajan
- Radiation Medicine Centre, Bhabha Atomic Research Centre, Mumbai, India
| | - Krishna B. Sainis
- Radiation Medicine Centre, Bhabha Atomic Research Centre, Mumbai, India
| | - Savita Kulkarni
- Radiation Medicine Centre, Bhabha Atomic Research Centre, Mumbai, India
- * E-mail:
| |
Collapse
|
22
|
Maurya R, Bhattacharya P, Ismail N, Dagur PK, Joshi AB, Razdan K, McCoy JP, Ascher J, Dey R, Nakhasi HL. Differential Role of Leptin as an Immunomodulator in Controlling Visceral Leishmaniasis in Normal and Leptin-Deficient Mice. Am J Trop Med Hyg 2016; 95:109-119. [PMID: 27114296 PMCID: PMC4944674 DOI: 10.4269/ajtmh.15-0804] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Accepted: 03/07/2016] [Indexed: 02/05/2023] Open
Abstract
Visceral leishmaniasis (VL) is caused by the protozoan parasite Leishmania donovani. There are no vaccines and available drugs against leishmaniasis are toxic. Immunomodulators that specifically boost the anti-microbial activities of the immune cells could alleviate several of these limitations. Therefore, finding novel immunomodulators for VL therapy is a pressing need. This study is aimed to evaluate the immunomodulatory role of leptin, an adipocyte-derived hormone capable of regulating the immune response, in L. donovani-infected mice. We observed that recombinant leptin treatment reduced splenic parasite burden compared with non-treated infected normal mice. Decrease in parasite burden correlated with an induction of innate immune response in antigen-presenting cells that showed an increase in nitric oxide, enhanced pro-inflammatory cytokine (interferon gamma [IFNγ], interleukin12 [IL]12, and IL1β) response in the splenocytes, indicating host-protecting Th1 response mediated by leptin. Moreover, in infected normal mice, leptin treatment induced IFNγ production from both CD4+ and CD8+ T cells, compared with non-treated infected mice. Alternatively, leptin-deficient (Ob/Ob) mice had higher splenic and liver parasite burden compared with the infected normal mice. However, leptin treatment failed to reduce the splenic parasite burden and improve a host-protective cytokine response in these mice. In addition, in contrast to dendritic cells (DCs) from a normal mouse, Ob/Ob mouse–derived DCs showed a defect in the induction of innate immune response on Leishmania infection that could not be reversed by leptin treatment. Therefore, our findings reveal that leptin has a differential immunomodulatory effect in controlling VL in normal and Ob/Ob mice.
Collapse
Affiliation(s)
- Radheshyam Maurya
- Department of Animal Biology, School of Life Science, University of Hyderabad, Hyderabad, India.,Division of Emerging and Transfusion Transmitted Diseases, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland
| | - Parna Bhattacharya
- Division of Emerging and Transfusion Transmitted Diseases, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland
| | - Nevien Ismail
- Division of Emerging and Transfusion Transmitted Diseases, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland
| | - Pradeep K Dagur
- Flow Cytometry Core, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | - Amritanshu B Joshi
- Division of Emerging and Transfusion Transmitted Diseases, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland
| | - Kundan Razdan
- Division of Emerging and Transfusion Transmitted Diseases, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland
| | - J Philip McCoy
- Flow Cytometry Core, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | - Jill Ascher
- Division of Veterinary Services, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland
| | - Ranadhir Dey
- Division of Emerging and Transfusion Transmitted Diseases, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland
| | - Hira L Nakhasi
- Division of Emerging and Transfusion Transmitted Diseases, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland
| |
Collapse
|
23
|
Fiuza JA, Dey R, Davenport D, Abdeladhim M, Meneses C, Oliveira F, Kamhawi S, Valenzuela JG, Gannavaram S, Nakhasi HL. Intradermal Immunization of Leishmania donovani Centrin Knock-Out Parasites in Combination with Salivary Protein LJM19 from Sand Fly Vector Induces a Durable Protective Immune Response in Hamsters. PLoS Negl Trop Dis 2016; 10:e0004322. [PMID: 26752686 PMCID: PMC4708988 DOI: 10.1371/journal.pntd.0004322] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Accepted: 12/02/2015] [Indexed: 01/23/2023] Open
Abstract
Background Visceral leishmaniasis (VL) is a neglected tropical disease and is fatal if untreated. There is no vaccine available against leishmaniasis. The majority of patients with cutaneous leishmaniasis (CL) or VL develop a long-term protective immunity after cure from infection, which indicates that development of an effective vaccine against leishmaniasis is possible. Such protection may also be achieved by immunization with live attenuated parasites that do not cause disease. We have previously reported a protective response in mice, hamsters and dogs with Leishmania donovani centrin gene knock-out parasites (LdCen-/-), a live attenuated parasite with a cell division specific centrin1 gene deletion. In this study we have explored the effects of salivary protein LJM19 as an adjuvant and intradermal (ID) route of immunization on the efficacy of LdCen-/- parasites as a vaccine against virulent L. donovani. Methodology/Principal Findings To explore the potential of a combination of LdCen-/- parasites and salivary protein LJM19 as vaccine antigens, LdCen-/- ID immunization followed by ID challenge with virulent L. donovani were performed in hamsters in a 9-month follow up study. We determined parasite burden (serial dilution), antibody production (ELISA) and cytokine expression (qPCR) in these animals. Compared to controls, animals immunized with LdCen-/- + LJM19 induced a strong antibody response, a reduction in spleen and liver parasite burden and a higher expression of pro-inflammatory cytokines after immunization and one month post-challenge. Additionally, a low parasite load in lymph nodes, spleen and liver, and a non-inflamed spleen was observed in immunized animals 9 months after the challenge infection. Conclusions Our results demonstrate that an ID vaccination using LdCen-/-parasites in combination with sand fly salivary protein LJM19 has the capability to confer long lasting protection against visceral leishmaniasis that is comparable to intravenous or intracardial immunization. Leishmaniasis is a disease with a wide spectrum of clinical manifestations caused by different species of protozoa belonging to the Leishmania genus that are transmitted by sand fly vectors. Visceral infections of Leishmania cause significant mortality and morbidity and development of a vaccine to prevent leishmaniasis has become a high priority. We have previously reported that intravenous immunization with a live attenuated parasite vaccine comprised of Leishmania donovani parasites lacking the centrin gene conferred protection in mice, hamsters and dogs. In the current report, we describe the immunological response and associated protection to the ID immunization with attenuated parasites in combination with a sand fly salivary protein (LJM19). We observe that protection against experimental ID challenge with L. donovani resulting from ID immunization with live attenuated parasites in combination with LJM19 is comparable to intracardial immunization and offers improved protective immunity compared to immunization with salivary protein alone and non-immunized hamsters. This study supports the potential use of the genetically attenuated vaccine and a recombinant sand fly salivary protein for control of visceral leishmaniasis.
Collapse
Affiliation(s)
- Jacqueline Araújo Fiuza
- Laboratory of Emerging Pathogens, Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland, United States of America
- Laboratório de Imunologia Celular e Molecular, Centro de Pesquisas René Rachou—Fiocruz Minas, Belo Horizonte, Minas Gerais, Brasil
| | - Ranadhir Dey
- Laboratory of Emerging Pathogens, Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland, United States of America
| | - Dwann Davenport
- Laboratory of Emerging Pathogens, Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland, United States of America
| | - Maha Abdeladhim
- Vector Molecular Biology Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
| | - Claudio Meneses
- Vector Molecular Biology Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
| | - Fabiano Oliveira
- Vector Molecular Biology Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
| | - Shaden Kamhawi
- Vector Molecular Biology Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
| | - Jesus G. Valenzuela
- Vector Molecular Biology Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
| | - Sreenivas Gannavaram
- Laboratory of Emerging Pathogens, Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland, United States of America
- * E-mail: (SG); (HLN)
| | - Hira L. Nakhasi
- Laboratory of Emerging Pathogens, Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland, United States of America
- * E-mail: (SG); (HLN)
| |
Collapse
|
24
|
Babiker DT, Bakhiet SM, Mukhtar MM. Leishmania donovaniinfluenced cytokines and Toll-like receptors expression among Sudanese visceral leishmaniasis patients. Parasite Immunol 2015; 37:417-25. [DOI: 10.1111/pim.12202] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Accepted: 03/06/2015] [Indexed: 12/18/2022]
Affiliation(s)
- D. T. Babiker
- Institute of Endemic Diseases; University of Khartoum; Khartoum Sudan
| | - S. M. Bakhiet
- Institute of Endemic Diseases; University of Khartoum; Khartoum Sudan
| | - M. M. Mukhtar
- Institute of Endemic Diseases; University of Khartoum; Khartoum Sudan
| |
Collapse
|
25
|
Kedzierski L, Evans KJ. Immune responses during cutaneous and visceral leishmaniasis. Parasitology 2014; 141:1544-1562. [PMID: 25075460 DOI: 10.1017/s003118201400095x] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Leishmania are protozoan parasites spread by a sandfly insect vector and causing a spectrum of diseases collectively known as leishmaniasis. The disease is a significant health problem in many parts of the world, resulting in an estimated 1·3 million new cases and 30 000 deaths annually. Current treatment is based on chemotherapy, which is difficult to administer, expensive and becoming ineffective in several endemic regions. To date there is no vaccine against leishmaniasis, although extensive evidence from studies in animal models indicates that solid protection can be achieved upon immunization. This review focuses on immune responses to Leishmania in both cutaneous and visceral forms of the disease, pointing to the complexity of the immune response and to a range of evasive mechanisms utilized by the parasite to bypass those responses. The amalgam of innate and acquired immunity combined with the paucity of data on the human immune response is one of the major problems currently hampering vaccine development and implementation.
Collapse
Affiliation(s)
- Lukasz Kedzierski
- Inflammation Division, The Walter and Eliza Hall Institute of Medical Research, 1G Royal Pde, Parkville 3052, Victoria, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Melbourne, Victoria 3010, Australia
| | - Krystal J Evans
- Department of Medical Biology, University of Melbourne, Parkville, Melbourne, Victoria 3010, Australia
- Infection and Immunity Division, The Walter and Eliza Hall Institute of Medical Research, 1G Royal Pde, Parkville 3052, Victoria, Australia
| |
Collapse
|
26
|
Saha A, Biswas A, Srivastav S, Mukherjee M, Das PK, Ukil A. Prostaglandin E2 negatively regulates the production of inflammatory cytokines/chemokines and IL-17 in visceral leishmaniasis. THE JOURNAL OF IMMUNOLOGY 2014; 193:2330-9. [PMID: 25049356 DOI: 10.4049/jimmunol.1400399] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Persistence of intracellular infection depends on the exploitation of factors that negatively regulate the host immune response. In this study, we elucidated the role of macrophage PGE2, an immunoregulatory lipid, in successful survival of Leishmania donovani, causative agent of the fatal visceral leishmaniasis. PGE2 production was induced during infection and resulted in increased cAMP level in peritoneal macrophages through G protein-coupled E-series prostanoid (EP) receptors. Among four different EPs (EP1-4), infection upregulated the expression of only EP2, and individual administration of either EP2-specific agonist, butaprost, or 8-Br-cAMP, a cell-permeable cAMP analog, promoted parasite survival. Inhibition of cAMP also induced generation of reactive oxygen species, an antileishmanial effector molecule. Negative modulation of PGE2 signaling reduced infection-induced anti-inflammatory cytokine polarization and enhanced inflammatory chemokines, CCL3 and CCL5. Effect of PGE2 on cytokine and chemokine production was found to be differentially modulated by cAMP-dependent protein kinase A (PKA) and exchange protein directly activated by cAMP (EPAC). PGE2-induced decreases in TNF-α and CCL5 were mediated specifically by PKA, whereas administration of brefeldin A, an EPAC inhibitor, could reverse decreased production of CCL3. Apart from modulating inflammatory/anti-inflammatory balance, PGE2 inhibited antileishmanial IL-17 cytokine production in splenocyte culture. Augmented PGE2 production was also found in splenocytes of infected mice, and administration of EP2 antagonist in mice resulted in reduced liver and spleen parasite burden along with host-favorable T cell response. These results suggest that Leishmania facilitates an immunosuppressive environment in macrophages by PGE2-driven, EP2-mediated cAMP signaling that is differentially regulated by PKA and EPAC.
Collapse
Affiliation(s)
- Amrita Saha
- Department of Biochemistry, University of Calcutta, Kolkata 700019, India; and
| | - Arunima Biswas
- Infectious Diseases and Immunology Division, Council of Scientific & Industrial Research-Indian Institute of Chemical Biology, Kolkata 700032, India
| | - Supriya Srivastav
- Infectious Diseases and Immunology Division, Council of Scientific & Industrial Research-Indian Institute of Chemical Biology, Kolkata 700032, India
| | - Madhuchhanda Mukherjee
- Infectious Diseases and Immunology Division, Council of Scientific & Industrial Research-Indian Institute of Chemical Biology, Kolkata 700032, India
| | - Pijush K Das
- Infectious Diseases and Immunology Division, Council of Scientific & Industrial Research-Indian Institute of Chemical Biology, Kolkata 700032, India
| | - Anindita Ukil
- Department of Biochemistry, University of Calcutta, Kolkata 700019, India; and
| |
Collapse
|
27
|
Koutsoni O, Barhoumi M, Guizani I, Dotsika E. Leishmania eukaryotic initiation factor (LeIF) inhibits parasite growth in murine macrophages. PLoS One 2014; 9:e97319. [PMID: 24830439 PMCID: PMC4022710 DOI: 10.1371/journal.pone.0097319] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Accepted: 04/16/2014] [Indexed: 01/28/2023] Open
Abstract
The leishmaniases constitute neglected global public health problems that require adequate control measures, prophylactic clinical vaccines and effective and non-toxic drug treatments. In this study, we explored the potential of Leishmania infantum eukaryotic initiation factor (LieIF), an exosomal protein, as a novel anti-infective therapeutic molecule. More specifically, we assessed the efficacy of recombinant LieIF, in combination with recombinant IFN-γ, in eliminating intracellular L. donovani parasites in an in vitro macrophage model. J774A.1 macrophages were initially treated with LieIF/IFN-γ prior to in vitro infection with L. donovani stationary phase promastigotes (pre-infection treatment), and resistance to infection was observed 72 h after infection. J774A.1 macrophages were also treated with LieIF/IFN-γ after L. donovani infection (post-infection treatment), and resistance to infection was also observed at both time points tested (19 h and 72 h) after infection. To elucidate the LieIF/IFN-γ-induced mechanism(s) that mediate the reduction of intracellular parasite growth, we examined the generation of potent microbicidal molecules, such as nitric oxide (NO) and reactive oxygen species (ROS), within infected macrophages. Furthermore, macrophages pre-treated with LieIF/IFN-γ showed a clear up-regulation in macrophage inflammatory protein 1α (MIP-1α) as well as tumor necrosis factor alpha (TNF-α) expression. However, significant different protein levels were not detected. In addition, macrophages pre-treated with LieIF/IFN-γ combined with anti-TNF-α monoclonal antibody produced significantly lower amounts of ROS. These data suggest that during the pre-treatment state, LieIF induces intramacrophage parasite growth inhibition through the production of TNF-α, which induces microbicidal activity by stimulating NO and ROS production. The mechanisms of NO and ROS production when macrophages are treated with LieIF after infection are probably different. Overall, these results indicate that LieIF is a good candidate for use as an anti-leishmanial molecule.
Collapse
Affiliation(s)
- Olga Koutsoni
- Laboratory of Cellular Immunology, Department of Microbiology, Hellenic Pasteur Institute, Athens, Greece; Department of Microbiology, Medical School of Athens, National and Kapodistrian University, Athens, Greece
| | - Mourad Barhoumi
- Laboratoire d'Epidémiologie Moléculaire et de Pathologie Expérimentale Appliquée aux Maladies Infectieuses/LR11IPT04, Institut Pasteur de Tunis- Université Tunis El Manar, Tunis-Belvédère, Tunisia
| | - Ikram Guizani
- Laboratoire d'Epidémiologie Moléculaire et de Pathologie Expérimentale Appliquée aux Maladies Infectieuses/LR11IPT04, Institut Pasteur de Tunis- Université Tunis El Manar, Tunis-Belvédère, Tunisia
| | - Eleni Dotsika
- Laboratory of Cellular Immunology, Department of Microbiology, Hellenic Pasteur Institute, Athens, Greece
| |
Collapse
|
28
|
Manhas R, Anand S, Tripathi P, Madhubala R. Deletion of Vitamin C biosynthesis enzyme, Arabino-1, 4-lactone oxidase inLeishmania donovaniresults in increased pro-inflammatory responses from host immune cells. Mol Microbiol 2014; 91:1227-39. [DOI: 10.1111/mmi.12530] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/22/2014] [Indexed: 12/24/2022]
Affiliation(s)
- Reetika Manhas
- School of Life Sciences; Jawaharlal Nehru University; New Delhi 110067 India
| | - Sneha Anand
- School of Life Sciences; Jawaharlal Nehru University; New Delhi 110067 India
| | - Pankaj Tripathi
- School of Life Sciences; Jawaharlal Nehru University; New Delhi 110067 India
| | - Rentala Madhubala
- School of Life Sciences; Jawaharlal Nehru University; New Delhi 110067 India
| |
Collapse
|
29
|
Adhikari A, Majumder S, Banerjee S, Gupta G, Bhattacharya P, Majumdar SB, Saha B, Majumdar S. Mycobacterium indicus pranii (Mw)-mediated protection against visceral leishmaniasis: involvement of TLR4 signalling. J Antimicrob Chemother 2012; 67:2892-902. [DOI: 10.1093/jac/dks315] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
|
30
|
Adhikari A, Gupta G, Majumder S, Banerjee S, Bhattacharjee S, Bhattacharya P, Kumari S, Haldar S, Majumdar SB, Saha B, Majumdar S. Mycobacterium indicus pranii (Mw) re-establishes host protective immune response in Leishmania donovani infected macrophages: critical role of IL-12. PLoS One 2012; 7:e40265. [PMID: 22792256 PMCID: PMC3390375 DOI: 10.1371/journal.pone.0040265] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2012] [Accepted: 06/04/2012] [Indexed: 11/18/2022] Open
Abstract
Leishmania donovani, a protozoan parasite, causes a strong immunosuppression in a susceptible host and inflicts the fatal disease visceral leishmaniasis. Relatively high toxicity, low therapeutic index, and failure in reinstating host-protective anti-leishmanial immune responses have made anti-leishmanial drugs patient non-compliant and an immuno-modulatory treatment a necessity. Therefore, we have tested the anti-leishmanial efficacy of a combination of a novel immunomodulator, Mycobacterium indicus pranii (Mw), and an anti-leishmanial drug, Amphotericin B (AmpB). We observe that Mw alone or with a suboptimal dose of AmpB offers significant protection against L. donovani infection by activating the macrophages. Our experiments examining the anti-leishmanial activity of Mw alone or with AmpB also indicate a p38MAPK and ERK-1/2 regulated pro-inflammatory responses. The Mw-AmpB combination induced nitric oxide production, restored Th1 response, and significantly reduced parasite burden in wild type macrophages but not in IL-12-deficient macrophages indicating a pivotal role for IL-12 in the induction of host-protection by Mw and AmpB treatments. In addition, we observed that Mw alone or in combination with suboptimal dose of AmpB render protection against L. donovani infection in susceptible BALB/c mice. However, these treatments failed to render protection in IL-12-deficient mice in vivo which added further support that IL-12 played a central role in this chemo immunotherapeutic approach. Thus, we demonstrate a novel chemo-immunotherapeutic approach- Mw and AmpB crosstalk eliminating the parasite-induced immunosuppression and inducing collateral host-protective effects.
Collapse
Affiliation(s)
- Anupam Adhikari
- Division of Molecular Medicine, Bose Institute, Kolkata, India
| | - Gaurav Gupta
- Division of Molecular Medicine, Bose Institute, Kolkata, India
| | - Saikat Majumder
- Division of Molecular Medicine, Bose Institute, Kolkata, India
| | | | | | | | | | | | | | - Bhaskar Saha
- National Centre for Cell Science, Ganeshkhind, Pune, India
| | - Subrata Majumdar
- Division of Molecular Medicine, Bose Institute, Kolkata, India
- * E-mail:
| |
Collapse
|
31
|
Shakya N, Sane SA, Vishwakarma P, Gupta S. Enhancement in therapeutic efficacy of miltefosine in combination with synthetic bacterial lipopeptide, Pam3Cys against experimental Visceral Leishmaniasis. Exp Parasitol 2012; 131:377-82. [PMID: 22626518 DOI: 10.1016/j.exppara.2012.05.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2011] [Revised: 12/21/2011] [Accepted: 05/11/2012] [Indexed: 11/30/2022]
Abstract
Existing drugs for visceral leishmaniasis (VL) are partially effective, toxic, having high cost and long term treatment. Their efficacies are also compromised due to suppression of immune function associated during the course of infection. Combination therapy including a potential and safe immunostimulant with lower doses of effective drug has proven as a significant approach which is more effective than immunotherapy or drug therapy alone. In the present study, we have used the combination of Pam3Cys (an in-built immunoadjuvant and TLR2 ligand) and miltefosine. Initially dose optimization of both the agents was carried out and after that, antileishmanial effect of their combination was evaluated. All experiments were done in BALB/c mouse model. The immunomodulatory role of Pam3Cys on the immune functions of the host receiving combination treatment was also determined using immunological and biochemical parameters viz. phagocytosis, Th1/Th2 cytokines and production of ROS, RNS and H(2)O(2). Combination group showed significant enhancement in parasitic inhibition as compared to groups receiving miltefosine and Pam3Cys separately. Enhanced production of Th1 cytokines as well as ROS, RNS and H(2)O(2) was witnessed during the study of immunological alterations. Remarkable increase in phagocytosis index was also observed. Thus, the risk of development of drug resistance against miltefosine can be resolved through using low doses of it and Pam3Cys (single-dose) in combination and also provide a promising alternative for cure of leishmaniasis, with a pronounced transformation of the host immune response.
Collapse
Affiliation(s)
- Nishi Shakya
- Division of Parasitology, Central Drug Research Institute, Chattar Manzil Palace, M.G. Road, Lucknow, UP, India.
| | | | | | | |
Collapse
|
32
|
Augmentation of antileishmanial efficacy of miltefosine in combination with tuftsin against experimental visceral leishmaniasis. Parasitol Res 2012; 111:563-70. [DOI: 10.1007/s00436-012-2868-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2011] [Accepted: 02/16/2012] [Indexed: 10/28/2022]
|
33
|
Immunity to visceral leishmaniasis using genetically defined live-attenuated parasites. J Trop Med 2011; 2012:631460. [PMID: 21912560 PMCID: PMC3168768 DOI: 10.1155/2012/631460] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2011] [Accepted: 07/01/2011] [Indexed: 11/18/2022] Open
Abstract
Leishmaniasis is a protozoan parasitic disease endemic to the tropical and subtropical regions of the world, with three major clinical forms, self-healing cutaneous leishmaniasis (CL), mucocutaneous leishmaniasis (MCL), and visceral leishmaniasis (VL). Drug treatments are expensive and often result in the development of drug resistance. No vaccine is available against leishmaniasis. Subunit Leishmania vaccine immunization in animal models has shown some efficacy but little or none in humans. However, individuals who recover from natural infection are protected from reinfection and develop life-long protection, suggesting that infection may be a prerequisite for immunological memory. Thus, genetically altered live-attenuated parasites with controlled infectivity could achieve such memory. In this paper, we discuss development and characteristics of genetically altered, live-attenuated Leishmania donovani parasites and their possible use as vaccine candidates against VL. In addition, we discuss the challenges and other considerations in the use of live-attenuated parasites.
Collapse
|
34
|
Gupta G, Majumdar S, Adhikari A, Bhattacharya P, Mukherjee AK, Majumdar SB, Majumdar S. Treatment with IP-10 induces host-protective immune response by regulating the T regulatory cell functioning in Leishmania donovani-infected mice. Med Microbiol Immunol 2011; 200:241-53. [PMID: 21533785 DOI: 10.1007/s00430-011-0197-y] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2011] [Indexed: 02/07/2023]
Abstract
Visceral leishmaniasis (VL), caused by the protozoan parasite, Leishmania donovani, is characterized by an infection in the liver and spleen. The failure of the first-line drugs has led to the development of new strategies for combating VL. Recently, our group has shown that interferon-γ-inducible protein (IP)-10, a CXC chemokine, renders protection against VL. In the present study, we have elucidated the mechanism by which IP-10 renders protection in in vivo L. donovani infection. We observed that IP-10-treated parasitized BALB/c mice showed a strong host-protective T helper cell (Th) 1 immune response along with marked decrease in immunosuppressive cytokines, tumor growth factor (TGF)-β, and interleukin (IL)-10 secreting CD4(+) T cells. This IP-10-mediated decrease in immunosuppressive cytokines was correlated with the reduction in the elevated frequency of CD4(+)CD25(+) T regulatory (Treg) cells along with the reduced TFG-β production from these Treg cells in Leishmania-infected mice. This reduction in TGF-β production was due to effective modulation of TGF-β signaling by IP-10, which reduced the immunosuppressive activity of Treg cells. Thus, these findings put forward a detailed mechanistic insight into IP-10-mediated regulation of the Treg cell functioning during experimental VL, which might be helpful in combating Leishmania-induced pathogenesis.
Collapse
Affiliation(s)
- Gaurav Gupta
- Division of Molecular Medicine, Bose Institute, P-1/12, CIT Scheme VII M, Kolkata, India
| | | | | | | | | | | | | |
Collapse
|
35
|
Yue Y, Gui J, Xu W, Xiong S. Gene therapy with CCL2 (MCP-1) mutant protects CVB3-induced myocarditis by compromising Th1 polarization. Mol Immunol 2011; 48:706-13. [DOI: 10.1016/j.molimm.2010.11.018] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2010] [Revised: 09/27/2010] [Accepted: 11/23/2010] [Indexed: 11/27/2022]
|
36
|
Oghumu S, Lezama-Dávila CM, Isaac-Márquez AP, Satoskar AR. Role of chemokines in regulation of immunity against leishmaniasis. Exp Parasitol 2010; 126:389-96. [PMID: 20206625 DOI: 10.1016/j.exppara.2010.02.010] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2009] [Revised: 02/11/2010] [Accepted: 02/19/2010] [Indexed: 12/16/2022]
Abstract
Successful immunity to Leishmania depends on recruitment of appropriate immune effector cells to the site of infection and chemokines play a crucial role in the process. At the same time, Leishmania parasites possess the ability to modify the chemokine profiles of their host thereby facilitating establishment of progressive infection. Therapeutic and prophylactic strategies targeted at chemokines and their receptors provide a promising area for further research. This review highlights our current knowledge concerning the role of chemokines and their receptors in modulating leishmaniasis in both clinical settings and experimental disease models.
Collapse
Affiliation(s)
- Steve Oghumu
- Department of Pathology, The Ohio State University Medical Center, 1645 Neil Avenue, Columbus, OH 43210, USA
| | | | | | | |
Collapse
|
37
|
Martínez W, Ospina LF, Granados D, Delgado G. In vitrostudies on the relationship between the anti-inflammatory activity ofPhysalis peruvianaextracts and the phagocytic process. Immunopharmacol Immunotoxicol 2010. [DOI: 10.3109/08923970903143957] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
38
|
Lapara NJ, Kelly BL. Suppression of LPS-induced inflammatory responses in macrophages infected with Leishmania. JOURNAL OF INFLAMMATION-LONDON 2010; 7:8. [PMID: 20205812 PMCID: PMC2824668 DOI: 10.1186/1476-9255-7-8] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2009] [Accepted: 02/02/2010] [Indexed: 07/01/2024]
Abstract
Background Chronic inflammation activated by macrophage innate pathogen recognition receptors such as TLR4 can lead to a range of inflammatory diseases, including atherosclerosis, Crohn's disease, arthritis and cancer. Unlike many microbes, the kinetoplastid protozoan pathogen Leishmania has been shown to avoid and even actively suppress host inflammatory cytokine responses, such as LPS-induced IL-12 production. The nature and scope of Leishmania-mediated inflammatory cytokine suppression, however, is not well characterized. Advancing our knowledge of such microbe-mediated cytokine suppression may provide new avenues for therapeutic intervention in inflammatory disease. Methods We explored the kinetics of a range of cytokine and chemokine responses in primary murine macrophages stimulated with LPS in the presence versus absence of two clinically distinct species of Leishmania using sensitive multiplex cytokine analyses. To confirm that these effects were parasite-specific, we compared the effects of Leishmania uptake on LPS-induced cytokine expression with uptake of inert latex beads. Results Whilst Leishmania uptake alone did not induce significant levels of any cytokine analysed in this study, Leishmania uptake in the presence of LPS caused parasite-specific suppression of certain LPS-induced pro-inflammatory cytokines, including IL-12, IL-17 and IL-6. Interestingly, L. amazonensis was generally more suppressive than L. major. We also found that other LPS-induced proinflammatory cytokines, such as IL-1α, TNF-α and the chemokines MIP-1α and MCP-1 and also the anti-inflammatory cytokine IL-10, were augmented during Leishmania uptake, in a parasite-specific manner. Conclusions During uptake by macrophages, Leishmania evades the activation of a broad range of cytokines and chemokines. Further, in the presence of a strong inflammatory stimulus, Leishmania suppresses certain proinflammatory cytokine responses in a parasite-specific manner, however it augments the production of other proinflammatory cytokines. Our findings highlight the complexity of inflammatory cytokine signalling regulation in the context of the macrophage and Leishmania interaction and confirm the utility of the Leishmania/macrophage infection model as an experimental system for further studies of inflammatory regulation. Such studies may advance the development of therapies against inflammatory disease.
Collapse
Affiliation(s)
- Nicholas J Lapara
- Department of Microbiology Immunology and Parasitology, LSU Health Sciences Center, 1901 Perdido Street, New Orleans, LA 70112, USA.
| | | |
Collapse
|
39
|
LÓPEZ R, CUCA LE, DELGADO G. Antileishmanial and immunomodulatory activity ofXylopia discreta. Parasite Immunol 2009; 31:623-30. [DOI: 10.1111/j.1365-3024.2009.01134.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
40
|
Majumder N, Bhattacharjee S, Bhattacharyya Majumdar S, Dey R, Guha P, Pal NK, Majumdar S. Restoration of impaired free radical generation and proinflammatory cytokines by MCP-1 in mycobacterial pathogenesis. Scand J Immunol 2008; 67:329-39. [PMID: 18282229 DOI: 10.1111/j.1365-3083.2008.02070.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Mycobacterium tuberculosis exerts its pathogenic effects mainly via its cell wall glycolipid called Mannosylated Lipoarabinomannan (Man-LAM), which subverts the cellular inflammatory responses by the suppression of superoxide anion generation in earlier hours, and nitric oxide (NO) generation at later hours of pathogenic invasion. In this paper, we have shown the prophylactic effect of C-C chemokines, both in vitro and in vivo. Exogenous administration of C-C chemokines, particularly monocyte chemoattractant protein (MCP)-1, led to the induction of superoxide anion generation via the restoration of impaired protein kinase C (PKC) signalling in Man-LAM-treated macrophages. Monocyte chemoattractant protein-1 could also potently induce NO generation by upregulation of the proinflammatory cytokines tumour necrosis factor-alpha and interleukin-12 from Man-LAM-treated macrophages accompanied by inhibition of anti-inflammatory responses. Our in vivo observations clearly exhibited effective restoration of impaired PKC signalling as well as proinflammatory cytokine expression by MCP-1 in Man-LAM treated as well as M. tuberculosis H37Rv-infected C57BL/6 mice. We also observed, as direct evidence, that MCP-1 induced a significant reduction of the number of viable tubercle bacilli in the lungs and spleen of infected mice. Collectively, our findings strongly suggest the effectiveness of MCP-1 as a potent immunoprophylactic tool for controlling the mycobacterial establishment within the host.
Collapse
Affiliation(s)
- N Majumder
- Department of Microbiology, Bose Institute, Kolkata, India.
| | | | | | | | | | | | | |
Collapse
|