1
|
Gálvez-Galván A, Garrido-Ramos MA, Prieto P. Bread wheat satellitome: a complex scenario in a huge genome. PLANT MOLECULAR BIOLOGY 2024; 114:8. [PMID: 38291213 PMCID: PMC10827815 DOI: 10.1007/s11103-023-01404-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 11/01/2023] [Indexed: 02/01/2024]
Abstract
In bread wheat (Triticum aestivum L.), chromosome associations during meiosis are extremely regulated and initiate at the telomeres and subtelomeres, which are enriched in satellite DNA (satDNA). We present the study and characterization of the bread wheat satellitome to shed light on the molecular organization of wheat subtelomeres. Our results revealed that the 2.53% of bread wheat genome is composed by satDNA and subtelomeres are particularly enriched in such DNA sequences. Thirty-four satellite DNA (21 for the first time in this work) have been identified, analyzed and cytogenetically validated. Many of the satDNAs were specifically found at particular subtelomeric chromosome regions revealing the asymmetry in subtelomere organisation among the wheat subgenomes, which might play a role in proper homologous recognition and pairing during meiosis. An integrated physical map of the wheat satellitome was also constructed. To the best of our knowledge, our results show that the combination of both cytogenetics and genome research allowed the first comprehensive analysis of the wheat satellitome, shedding light on the complex wheat genome organization, especially on the polymorphic nature of subtelomeres and their putative implication in chromosome recognition and pairing during meiosis.
Collapse
Affiliation(s)
- Ana Gálvez-Galván
- Plant Breeding Department, Institute for Sustainable Agriculture, Agencia Estatal Consejo Superior de Investigaciones Científicas (CSIC), Avda. Menéndez Pidal, Campus Alameda del Obispo S/N, 14004, Córdoba, Spain
| | - Manuel A Garrido-Ramos
- Departamento de Genética, Facultad de Ciencias, Universidad de Granada, Avda. Fuentenueva S/N, 18071, Granada, Spain.
| | - Pilar Prieto
- Plant Breeding Department, Institute for Sustainable Agriculture, Agencia Estatal Consejo Superior de Investigaciones Científicas (CSIC), Avda. Menéndez Pidal, Campus Alameda del Obispo S/N, 14004, Córdoba, Spain.
| |
Collapse
|
2
|
Serrano-León IM, Prieto P, Aguilar M. Telomere and subtelomere high polymorphism might contribute to the specificity of homologous recognition and pairing during meiosis in barley in the context of breeding. BMC Genomics 2023; 24:642. [PMID: 37884878 PMCID: PMC10601145 DOI: 10.1186/s12864-023-09738-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 10/12/2023] [Indexed: 10/28/2023] Open
Abstract
Barley (Hordeum vulgare) is one of the most popular cereal crops globally. Although it is a diploid species, (2n = 2x = 14) the study of its genome organization is necessary in the framework of plant breeding since barley is often used in crosses with other cereals like wheat to provide them with advantageous characters. We already have an extensive knowledge on different stages of the meiosis, the cell division to generate the gametes in species with sexual reproduction, such as the formation of the synaptonemal complex, recombination, and chromosome segregation. But meiosis really starts with the identification of homologous chromosomes and pairing initiation, and it is still unclear how chromosomes exactly choose a partner to appropriately pair for additional recombination and segregation. In this work we present an exhaustive molecular analysis of both telomeres and subtelomeres of barley chromosome arms 2H-L, 3H-L and 5H-L. As expected, the analysis of multiple features, including transposable elements, repeats, GC content, predicted CpG islands, recombination hotspots, G4 quadruplexes, genes and targeted sequence motifs for key DNA-binding proteins, revealed a high degree of variability both in telomeres and subtelomeres. The molecular basis for the specificity of homologous recognition and pairing occurring in the early chromosomal interactions at the start of meiosis in barley may be provided by these polymorphisms. A more relevant role of telomeres and most distal part of subtelomeres is suggested.
Collapse
Affiliation(s)
- I M Serrano-León
- Plant Breeding Department, Institute for Sustainable Agriculture, Agencia Estatal Consejo Superior de Investigaciones Científicas (CSIC), Avenida Menéndez Pidal S/N., Campus Alameda del Obispo, 14004, Córdoba, Spain
| | - P Prieto
- Plant Breeding Department, Institute for Sustainable Agriculture, Agencia Estatal Consejo Superior de Investigaciones Científicas (CSIC), Avenida Menéndez Pidal S/N., Campus Alameda del Obispo, 14004, Córdoba, Spain.
| | - M Aguilar
- Área de Fisiología Vegetal, Universidad de Córdoba, Campus de Rabanales, Edif. C4, 3ª Planta, Córdoba, Spain
| |
Collapse
|
3
|
Gohar S, Sajjad M, Zulfiqar S, Liu J, Wu J, Rahman MU. Domestication of newly evolved hexaploid wheat—A journey of wild grass to cultivated wheat. Front Genet 2022; 13:1022931. [PMID: 36263418 PMCID: PMC9574122 DOI: 10.3389/fgene.2022.1022931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 09/12/2022] [Indexed: 11/13/2022] Open
Abstract
Domestication of wheat started with the dawn of human civilization. Since then, improvement in various traits including resistance to diseases, insect pests, saline and drought stresses, grain yield, and quality were improved through selections by early farmers and then planned hybridization after the discovery of Mendel’s laws. In the 1950s, genetic variability was created using mutagens followed by the selection of superior mutants. Over the last 3 decades, research was focused on developing superior hybrids, initiating marker-assisted selection and targeted breeding, and developing genetically modified wheat to improve the grain yield, tolerance to drought, salinity, terminal heat and herbicide, and nutritive quality. Acceptability of genetically modified wheat by the end-user remained a major hurdle in releasing into the environment. Since the beginning of the 21st century, changing environmental conditions proved detrimental to achieving sustainability in wheat production particularly in developing countries. It is suggested that high-tech phenotyping assays and genomic procedures together with speed breeding procedures will be instrumental in achieving food security beyond 2050.
Collapse
Affiliation(s)
- Sasha Gohar
- Plant Genomics and Molecular Breeding Laboratory, National Institute for Biotechnology and Genetic Engineering, Faisalabad, Pakistan
- Department of Biotechnology, Pakistan Institute of Engineering and Applied Sciences (PIEAS), Islamabad, Pakistan
| | - Muhammad Sajjad
- Department of Biosciences, COMSATS University Islamabad, Islamabad, Pakistan
| | - Sana Zulfiqar
- Plant Genomics and Molecular Breeding Laboratory, National Institute for Biotechnology and Genetic Engineering, Faisalabad, Pakistan
- Department of Biotechnology, Pakistan Institute of Engineering and Applied Sciences (PIEAS), Islamabad, Pakistan
| | - Jiajun Liu
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, Shandong, China
| | - Jiajie Wu
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, Shandong, China
- *Correspondence: Jiajie Wu, ; Mehboob-ur- Rahman,
| | - Mehboob-ur- Rahman
- Plant Genomics and Molecular Breeding Laboratory, National Institute for Biotechnology and Genetic Engineering, Faisalabad, Pakistan
- Department of Biotechnology, Pakistan Institute of Engineering and Applied Sciences (PIEAS), Islamabad, Pakistan
- *Correspondence: Jiajie Wu, ; Mehboob-ur- Rahman,
| |
Collapse
|
4
|
Samoluk SS, Vaio M, Ortíz AM, Chalup LMI, Robledo G, Bertioli DJ, Seijo G. Comparative repeatome analysis reveals new evidence on genome evolution in wild diploid Arachis (Fabaceae) species. PLANTA 2022; 256:50. [PMID: 35895167 DOI: 10.1007/s00425-022-03961-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 07/12/2022] [Indexed: 06/15/2023]
Abstract
Opposing changes in the abundance of satellite DNA and long terminal repeat (LTR) retroelements are the main contributors to the variation in genome size and heterochromatin amount in Arachis diploids. The South American genus Arachis (Fabaceae) comprises 83 species organized in nine taxonomic sections. Among them, section Arachis is characterized by species with a wide genome and karyotype diversity. Such diversity is determined mainly by the amount and composition of repetitive DNA. Here we performed computational analysis on low coverage genome sequencing to infer the dynamics of changes in major repeat families that led to the differentiation of genomes in diploid species (x = 10) of genus Arachis, focusing on section Arachis. Estimated repeat content ranged from 62.50 to 71.68% of the genomes. Species with different genome composition tended to have different landscapes of repeated sequences. Athila family retrotransposons were the most abundant and variable lineage among Arachis repeatomes, with peaks of transpositional activity inferred at different times in the evolution of the species. Satellite DNAs (satDNAs) were less abundant, but differentially represented among species. High rates of evolution of an AT-rich superfamily of satDNAs led to the differential accumulation of heterochromatin in Arachis genomes. The relationship between genome size variation and the repetitive content is complex. However, largest genomes presented a higher accumulation of LTR elements and lower contents of satDNAs. In contrast, species with lowest genome sizes tended to accumulate satDNAs in detriment of LTR elements. Phylogenetic analysis based on repetitive DNA supported the genome arrangement of section Arachis. Altogether, our results provide the most comprehensive picture on the repeatome dynamics that led to the genome differentiation of Arachis species.
Collapse
Affiliation(s)
- Sergio S Samoluk
- Instituto de Botánica del Nordeste (UNNE-CONICET), Facultad de Ciencias Agrarias, Corrientes, Argentina.
| | - Magdalena Vaio
- Laboratory of Plant Genome Evolution and Domestication, Department of Plant Biology, Faculty of Agronomy, University of the Republic, Montevideo, Uruguay
| | - Alejandra M Ortíz
- Instituto de Botánica del Nordeste (UNNE-CONICET), Facultad de Ciencias Agrarias, Corrientes, Argentina
| | - Laura M I Chalup
- Instituto de Botánica del Nordeste (UNNE-CONICET), Facultad de Ciencias Agrarias, Corrientes, Argentina
| | - Germán Robledo
- Instituto de Botánica del Nordeste (UNNE-CONICET), Facultad de Ciencias Agrarias, Corrientes, Argentina
- Facultad de Ciencias Exactas y Naturales y Agrimensura, Universidad Nacional del Nordeste, Corrientes, Argentina
| | - David J Bertioli
- Center for Applied Genetic Technologies, University of Georgia, Athens, GA, USA
| | - Guillermo Seijo
- Instituto de Botánica del Nordeste (UNNE-CONICET), Facultad de Ciencias Agrarias, Corrientes, Argentina
- Facultad de Ciencias Exactas y Naturales y Agrimensura, Universidad Nacional del Nordeste, Corrientes, Argentina
| |
Collapse
|
5
|
Minaei S, Mohammadi SA, Sabouri A, Dadras AR. High genetic diversity in Aegilops tauschii Coss. accessions from North Iran as revealed by IRAP and REMAP markers. J Genet Eng Biotechnol 2022; 20:86. [PMID: 35696009 PMCID: PMC9192835 DOI: 10.1186/s43141-022-00363-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Accepted: 05/02/2022] [Indexed: 11/10/2022]
Abstract
BACKGROUND Aegilops tauschii Coss. as a donor of wheat D genome has an important role in wheat breeding programs. Genetic and phylogeographic diversity of 79 Ae. tauschii accessions collected from north and northwest of Iran were analyzed based on retroelement insertional polymorphisms using inter-retrotransposon amplified polymorphism (IRAP) and retrotransposon-microsatellite amplified polymorphism (REMAP) markers. RESULTS In total, 306 and 151 polymorphic bands were amplified in IRAP and REMAP analyses, respectively. As a result, a high level of polymorphism was observed among the studied accessions as revealed by an average of 25.5 bands per primer/primer combination and mean PIC value of 0.47 in IRAP and an average of 25.16 bands per primer combination and mean PIC value of 0.47 in REMAP. Genetic relationships of the accessions were analyzed using distance- and model-based cluster analyses. CONCLUSION The result showed that genetic distance did not seem to be related to geographic distribution, and the accessions could be divided into three groups, which was further supported by principal coordinate analysis. These results on genetic diversity and population structure of Ae. tauschii in Iran should provide important knowledge on genetic resources and their applications in wheat breeding programs.
Collapse
Affiliation(s)
- Sona Minaei
- Department of Plant Breeding and Biotechnology, Faculty of Agriculture, University of Tabriz, Tabriz, Iran
| | - Seyyed Abolghasem Mohammadi
- Department of Plant Breeding and Biotechnology, Faculty of Agriculture, University of Tabriz, Tabriz, Iran. .,Center of Excellence in Cereal Molecular Breeding, University of Tabriz, Tabriz, Iran. .,Department of Life Sciences, Center for Cell Pathology, Khazar University, Baku, AZ1096, Azerbaijan.
| | - Atefeh Sabouri
- Department of Agronomy and Plant Breeding, Faculty of Agricultural Sciences, University of Guilan, Rasht, Iran
| | - Ahmad Reza Dadras
- Department of Crop and Horticultural Research, Zanjan Agricultural and Natural Resource Research and Education, AREEO, Zanjan, Iran
| |
Collapse
|
6
|
Alotaibi F, Alharbi S, Alotaibi M, Al Mosallam M, Motawei M, Alrajhi A. Wheat omics: Classical breeding to new breeding technologies. Saudi J Biol Sci 2021; 28:1433-1444. [PMID: 33613071 PMCID: PMC7878716 DOI: 10.1016/j.sjbs.2020.11.083] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 11/26/2020] [Accepted: 11/29/2020] [Indexed: 12/26/2022] Open
Abstract
Wheat is an important cereal crop, and its significance is more due to compete for dietary products in the world. Many constraints facing by the wheat crop due to environmental hazardous, biotic, abiotic stress and heavy matters factors, as a result, decrease the yield. Understanding the molecular mechanism related to these factors is significant to figure out genes regulate under specific conditions. Classical breeding using hybridization has been used to increase the yield but not prospered at the desired level. With the development of newly emerging technologies in biological sciences i.e., marker assisted breeding (MAB), QTLs mapping, mutation breeding, proteomics, metabolomics, next-generation sequencing (NGS), RNA_sequencing, transcriptomics, differential expression genes (DEGs), computational resources and genome editing techniques i.e. (CRISPR cas9; Cas13) advances in the field of omics. Application of new breeding technologies develops huge data; considerable development is needed in bioinformatics science to interpret the data. However, combined omics application to address physiological questions linked with genetics is still a challenge. Moreover, viroid discovery opens the new direction for research, economics, and target specification. Comparative genomics important to figure gene of interest processes are further discussed about considering the identification of genes, genomic loci, and biochemical pathways linked with stress resilience in wheat. Furthermore, this review extensively discussed the omics approaches and their effective use. Integrated plant omics technologies have been used viroid genomes associated with CRISPR and CRISPR-associated Cas13a proteins system used for engineering of viroid interference along with high-performance multidimensional phenotyping as a significant limiting factor for increasing stress resistance in wheat.
Collapse
Affiliation(s)
- Fahad Alotaibi
- King Abdulaziz City for Science and Technology (KACST), Riyadh, Saudi Arabia
| | - Saif Alharbi
- King Abdulaziz City for Science and Technology (KACST), Riyadh, Saudi Arabia
| | - Majed Alotaibi
- King Abdulaziz City for Science and Technology (KACST), Riyadh, Saudi Arabia
| | - Mobarak Al Mosallam
- King Abdulaziz City for Science and Technology (KACST), Riyadh, Saudi Arabia
| | | | - Abdullah Alrajhi
- King Abdulaziz City for Science and Technology (KACST), Riyadh, Saudi Arabia
| |
Collapse
|
7
|
Metakovsky E, Pascual L, Vaccino P, Melnik V, Rodriguez-Quijano M, Popovych Y, Chebotar S, Rogers WJ. Heteroalleles in Common Wheat: Multiple Differences between Allelic Variants of the Gli-B1 Locus. Int J Mol Sci 2021; 22:ijms22041832. [PMID: 33673225 PMCID: PMC7917834 DOI: 10.3390/ijms22041832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/30/2021] [Accepted: 02/07/2021] [Indexed: 11/21/2022] Open
Abstract
The Gli-B1-encoded γ-gliadins and non-coding γ-gliadin DNA sequences for 15 different alleles of common wheat have been compared using seven tests: electrophoretic mobility (EM) and molecular weight (MW) of the encoded major γ-gliadin, restriction fragment length polymorphism patterns (RFLPs) (three different markers), Gli-B1-γ-gliadin-pseudogene known SNP markers (Single nucleotide polymorphisms) and sequencing the pseudogene GAG56B. It was discovered that encoded γ-gliadins, with contrasting EM, had similar MWs. However, seven allelic variants (designated from I to VII) differed among them in the other six tests: I (alleles Gli-B1i, k, m, o), II (Gli-B1n, q, s), III (Gli-B1b), IV (Gli-B1e, f, g), V (Gli-B1h), VI (Gli-B1d) and VII (Gli-B1a). Allele Gli-B1c (variant VIII) was identical to the alleles from group IV in four of the tests. Some tests might show a fine difference between alleles belonging to the same variant. Our results attest in favor of the independent origin of at least seven variants at the Gli-B1 locus that might originate from deeply diverged genotypes of the donor(s) of the B genome in hexaploid wheat and therefore might be called “heteroallelic”. The donor’s particularities at the Gli-B1 locus might be conserved since that time and decisively contribute to the current high genetic diversity of common wheat.
Collapse
Affiliation(s)
- Eugene Metakovsky
- Department of Biotechnology-Plant Biology, School of Agricultural, Food and Biosystems Engineering, Universidad Politécnica de Madrid, 28040 Madrid, Spain; (E.M.); (M.R.-Q.)
| | - Laura Pascual
- Department of Biotechnology-Plant Biology, School of Agricultural, Food and Biosystems Engineering, Universidad Politécnica de Madrid, 28040 Madrid, Spain; (E.M.); (M.R.-Q.)
- Correspondence:
| | - Patrizia Vaccino
- Consiglio per la Recerca in Agricultura e l’Analisi dell’Economia Agraria, Research Centre for Cereal and Industrial Crops, 13100 Vercelli, Italy;
| | - Viktor Melnik
- Vavilov Institute of General Genetics RAS, 117971 Moscow, Russia;
| | - Marta Rodriguez-Quijano
- Department of Biotechnology-Plant Biology, School of Agricultural, Food and Biosystems Engineering, Universidad Politécnica de Madrid, 28040 Madrid, Spain; (E.M.); (M.R.-Q.)
| | - Yulia Popovych
- Department of Genetics and Molecular Biology, National I.I. Mechnikov University, 65058 Odessa, Ukraine; (Y.P.); (S.C.)
| | - Sabina Chebotar
- Department of Genetics and Molecular Biology, National I.I. Mechnikov University, 65058 Odessa, Ukraine; (Y.P.); (S.C.)
| | - William John Rogers
- Departamento de Biología Aplicada, CIISAS, CIC-BIOLAB, CONICET-INBIOTEC, CRESCA, Facultad de Agronomía, Universidad Nacional del Centro de la Provincia Buenos Aires, 7300 Azul, Provincia de Buenos Aires, Argentina;
| |
Collapse
|
8
|
Kuo YT, Ishii T, Fuchs J, Hsieh WH, Houben A, Lin YR. The Evolutionary Dynamics of Repetitive DNA and Its Impact on the Genome Diversification in the Genus Sorghum. FRONTIERS IN PLANT SCIENCE 2021; 12:729734. [PMID: 34475879 PMCID: PMC8407070 DOI: 10.3389/fpls.2021.729734] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 07/23/2021] [Indexed: 05/11/2023]
Abstract
Polyploidization is an evolutionary event leading to structural changes of the genome(s), particularly allopolyploidization, which combines different genomes of distinct species. The tetraploid species, Sorghum halepense, is assumed an allopolyploid species formed by hybridization between diploid S. bicolor and S. propinquum. The repeat profiles of S. bicolor, S. halepense, and their relatives were compared to elucidate the repeats' role in shaping their genomes. The repeat frequencies and profiles of the three diploid accessions (S. bicolor, S. bicolor ssp. verticilliflorum, and S. bicolor var. technicum) and two tetraploid accessions (S. halepense) are similar. However, the polymorphic distribution of the subtelomeric satellites preferentially enriched in the tetraploid S. halepense indicates drastic genome rearrangements after the allopolyploidization event. Verified by CENH3 chromatin immunoprecipitation (ChIP)-sequencing and fluorescence in situ hybridization (FISH) analysis the centromeres of S. bicolor are mainly composed of the abundant satellite SorSat137 (CEN38) and diverse CRMs, Athila of Ty3_gypsy and Ty1_copia-SIRE long terminal repeat (LTR) retroelements. A similar centromere composition was found in S. halepense. The potential contribution of S. bicolor in the formation of tetraploid S. halepense is discussed.
Collapse
Affiliation(s)
- Yi-Tzu Kuo
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany
- Department of Agronomy, National Taiwan University, Taipei, Taiwan
| | - Takayoshi Ishii
- Arid Land Research Center, Tottori University, Tottori, Japan
| | - Jörg Fuchs
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany
| | - Wei-Hsun Hsieh
- Department of Agronomy, National Taiwan University, Taipei, Taiwan
| | - Andreas Houben
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany
- *Correspondence: Andreas Houben,
| | - Yann-Rong Lin
- Department of Agronomy, National Taiwan University, Taipei, Taiwan
- World Vegetable Center, Tainan, Taiwan
- Yann-Rong Lin,
| |
Collapse
|
9
|
Aguilar M, Prieto P. Telomeres and Subtelomeres Dynamics in the Context of Early Chromosome Interactions During Meiosis and Their Implications in Plant Breeding. FRONTIERS IN PLANT SCIENCE 2021; 12:672489. [PMID: 34149773 PMCID: PMC8212018 DOI: 10.3389/fpls.2021.672489] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 05/06/2021] [Indexed: 05/08/2023]
Abstract
Genomic architecture facilitates chromosome recognition, pairing, and recombination. Telomeres and subtelomeres play an important role at the beginning of meiosis in specific chromosome recognition and pairing, which are critical processes that allow chromosome recombination between homologs (equivalent chromosomes in the same genome) in later stages. In plant polyploids, these terminal regions are even more important in terms of homologous chromosome recognition, due to the presence of homoeologs (equivalent chromosomes from related genomes). Although telomeres interaction seems to assist homologous pairing and consequently, the progression of meiosis, other chromosome regions, such as subtelomeres, need to be considered, because the DNA sequence of telomeres is not chromosome-specific. In addition, recombination operates at subtelomeres and, as it happens in rye and wheat, homologous recognition and pairing is more often correlated with recombining regions than with crossover-poor regions. In a plant breeding context, the knowledge of how homologous chromosomes initiate pairing at the beginning of meiosis can contribute to chromosome manipulation in hybrids or interspecific genetic crosses. Thus, recombination in interspecific chromosome associations could be promoted with the aim of transferring desirable agronomic traits from related genetic donor species into crops. In this review, we summarize the importance of telomeres and subtelomeres on chromatin dynamics during early meiosis stages and their implications in recombination in a plant breeding framework.
Collapse
Affiliation(s)
- Miguel Aguilar
- Área de Fisiología Vegetal, Universidad de Córdoba, Córdoba, Spain
| | - Pilar Prieto
- Plant Breeding Department, Institute for Sustainable Agriculture, Agencia Estatal Consejo Superior de Investigaciones Científicas (CSIC), Córdoba, Spain
- *Correspondence: Pilar Prieto, ; orcid.org/0000-0002-8160-808X
| |
Collapse
|
10
|
Aguilar M, Prieto P. Sequence analysis of wheat subtelomeres reveals a high polymorphism among homoeologous chromosomes. THE PLANT GENOME 2020; 13:e20065. [PMID: 33029942 DOI: 10.1002/tpg2.20065] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 07/20/2020] [Accepted: 09/08/2020] [Indexed: 05/23/2023]
Abstract
Bread wheat, Triticum aestivum L., is one of the most important crops in the world. Understanding its genome organization (allohexaploid; AABBDD; 2n = 6x = 42) is essential for geneticists and plant breeders. Particularly, the knowledge of how homologous chromosomes (equivalent chromosomes from the same genome) specifically recognize each other to pair at the beginning of meiosis, the cellular process to generate gametes in sexually reproducing organisms, is fundamental for plant breeding and has a big influence on the fertility of wheat plants. Initial homologous chromosome interactions contribute to specific recognition and pairing between homologues at the onset of meiosis. Understanding the molecular basis of these critical processes can help to develop genetic tools in a breeding context to promote interspecific chromosome associations in hybrids or interspecific genetic crosses to facilitate the transfer of desirable agronomic traits from related species into a crop like wheat. The terminal regions of chromosomes, which include telomeres and subtelomeres, participate in chromosome recognition and pairing. We present a detailed molecular analysis of subtelomeres of wheat chromosome arms 1AS, 4AS, 7AS, 7BS and 7DS. Results showed a high polymorphism in the subtelomeric region among homoeologues (equivalent chromosomes from related genomes) for all the features analyzed, including genes, transposable elements, repeats, GC content, predicted CpG islands, recombination hotspots and targeted sequence motifs for relevant DNA-binding proteins. These polymorphisms might be the molecular basis for the specificity of homologous recognition and pairing in initial chromosome interactions at the beginning of meiosis in wheat.
Collapse
Affiliation(s)
- Miguel Aguilar
- Área de Fisiología Vegetal. Universidad de Córdoba. Campus de Rabanales, edif. C4, 3a planta, Córdoba, Spain
| | - Pilar Prieto
- Plant Breeding Department, Institute for Sustainable Agriculture, Agencia Estatal Consejo Superior de Investigaciones Científicas (CSIC), Alameda del Obispo s/n, Apartado 4084, Córdoba, 14080, Spain
| |
Collapse
|
11
|
Yepuri V, Jalali S, Kancharla N, Reddy VB, Arockiasamy S. Development of genome wide transposable elements based repeat junction markers in Jatropha (Jatropha curcas L.). Mol Biol Rep 2020; 47:5091-5099. [PMID: 32562173 DOI: 10.1007/s11033-020-05579-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 06/10/2020] [Indexed: 11/29/2022]
Abstract
Jatropha curcas is a potential biodiesel crop and a highly adaptable species to various agro-climatic conditions. In this study, we have utilized transposable elements' (TE) repeat junctions (RJs) which are an important constituent of the genome, used to form a genome-wide molecular marker platform owing to its use in genomic studies of plants. We screened our previously generated Jatropha hybrid genome assembly of size 265 Mbp using RJPrimers pipeline software and identified a total of 1274 TE junctions. For the predicted RJs, we designed 2868 polymerase chain reaction (PCR) based RJ markers (RJMs) flanking the junction regions. In addition to marker design, the identified RJs were utilized to detect 225,517 TEs across the genome. The different types of transposable repeat elements mainly were scattered into Retro, LTR, Copia and Gypsy categories. The efficacy of the designed markers was tested by utilizing a subset of RJMs selected randomly. We have validated 96 randomly selected RJ primers in a group of 32 J. curcas genotypes and more than 90% of the markers effectively intensified as amplicons. Of these, 10 primers were shown to be polymorphic in estimating genetic diversity among the 32 Jatropha lines. UPGMA cluster analysis revealed the formation of two clusters such as A and B exhibiting 85.5% and 87% similarity coefficient respectively. The various RJMs identified in this study could be utilized as a significant asset in Jatropha functional genomics including genome determination, mapping and marker-assisted selection.
Collapse
Affiliation(s)
- Vijay Yepuri
- Agronomy Division, Reliance Technology Group, Reliance Industries Limited, Navi Mumbai, Maharashtra, 400701, India
| | - Saakshi Jalali
- Agronomy Division, Reliance Technology Group, Reliance Industries Limited, Navi Mumbai, Maharashtra, 400701, India
| | - Nagesh Kancharla
- Agronomy Division, Reliance Technology Group, Reliance Industries Limited, Navi Mumbai, Maharashtra, 400701, India
| | - V B Reddy
- AgriGenome Labs Private Limited, Hyderabad, 500078, India
| | - S Arockiasamy
- Agronomy Division, Reliance Technology Group, Reliance Industries Limited, Navi Mumbai, Maharashtra, 400701, India.
| |
Collapse
|
12
|
Song Z, Dai S, Bao T, Zuo Y, Xiang Q, Li J, Liu G, Yan Z. Analysis of Structural Genomic Diversity in Aegilops umbellulata, Ae. markgrafii, Ae. comosa, and Ae. uniaristata by Fluorescence In Situ Hybridization Karyotyping. FRONTIERS IN PLANT SCIENCE 2020; 11:710. [PMID: 32655588 PMCID: PMC7325912 DOI: 10.3389/fpls.2020.00710] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Accepted: 05/05/2020] [Indexed: 05/14/2023]
Abstract
Fluorescence in situ hybridization karyotypes have been widely used for evolutionary analysis on chromosome organization and genetic/genomic diversity in the wheat alliance (tribe Triticeae of Poaceae). The karyotpic diversity of Aegilops umbellulata, Ae. markgrafii, Ae. comosa subsp. comosa and subsp. subventricosa, and Ae. uniaristata was evaluated by the fluorescence in situ hybridization (FISH) probes oligo-pSc119.2 and pTa71 in combination with (AAC)5, (ACT)7, and (CTT)12, respectively. Abundant intra- and interspecific genetic variation was discovered in Ae. umbellulata, Ae. markgrafii, and Ae. comosa, but not Ae. uniaristata. Chromosome 7 of Ae. umbellulata had more variants (six variants) than the other six U chromosomes (2-3 variants) as revealed by probes oligo-pSc119.2 and (AAC)5. Intraspecific variation in Ae. markgrafii and Ae. comosa was revealed by oligo-pSc119.2 in combination with (ACT)7 and (CTT)12, respectively. At least five variants were found in every chromosome of Ae. markgrafii and Ae. comosa, and up to 18, 10, and 15 variants were identified for chromosomes 2 of Ae. markgrafii, 4 of Ae. comosa subsp. comosa, and 6 of Ae. comosa subsp. subventricosa. The six Ae. uniaristata accessions showed identical FISH signal patterns. A large number of intra-specific polymorphic FISH signals were observed between the homologous chromosomes of Ae. markgrafii and Ae. comosa, especially chromosomes 1, 2, 4, and 7 of Ae. markgrafii, chromosome 4 of Ae. comosa subsp. comosa, and chromosome 6 of Ae. comosa subsp. subventricosa. Twelve Ae. comosa and 24 Ae. markgrafii accessions showed heteromorphism between homologous chromosomes. Additionally, a translocation between the short arms of chromosomes 1 and 7 of Ae. comosa PI 551038 was identified. The FISH karyotypes can be used to clearly identify the chromosome variations of each chromosome in these Aegilops species and also provide valuable information for understanding the evolutionary relationships and structural genomic variation among Aegilops species.
Collapse
Affiliation(s)
- Zhongping Song
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Wenjiang, China
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, China
| | - Shoufen Dai
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Wenjiang, China
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, China
| | - Tingyu Bao
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, China
| | - Yuanyuan Zuo
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, China
| | - Qin Xiang
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, China
| | - Jian Li
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, China
| | - Gang Liu
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, China
| | - Zehong Yan
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Wenjiang, China
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, China
| |
Collapse
|
13
|
Jouanin A, Gilissen LJWJ, Schaart JG, Leigh FJ, Cockram J, Wallington EJ, Boyd LA, van den Broeck HC, van der Meer IM, America AHP, Visser RGF, Smulders MJM. CRISPR/Cas9 Gene Editing of Gluten in Wheat to Reduce Gluten Content and Exposure-Reviewing Methods to Screen for Coeliac Safety. Front Nutr 2020; 7:51. [PMID: 32391373 PMCID: PMC7193451 DOI: 10.3389/fnut.2020.00051] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Accepted: 03/30/2020] [Indexed: 12/20/2022] Open
Abstract
Ingestion of gluten proteins (gliadins and glutenins) from wheat, barley and rye can cause coeliac disease (CD) in genetically predisposed individuals. The only remedy is a strict and lifelong gluten-free diet. There is a growing desire for coeliac-safe, whole-grain wheat-based products, as consumption of whole-grain foods reduces the risk of chronic diseases. However, due to the large number of gluten genes and the complexity of the wheat genome, wheat that is coeliac-safe but retains baking quality cannot be produced by conventional breeding alone. CD is triggered by immunogenic epitopes, notably those present in α-, γ-, and ω-gliadins. RNA interference (RNAi) silencing has been used to down-regulate gliadin families. Recently, targeted gene editing using CRISPR/Cas9 has been applied to gliadins. These methods produce offspring with silenced, deleted, and/or edited gliadins, that overall may reduce the exposure of patients to CD epitopes. Here we review methods to efficiently screen and select the lines from gliadin gene editing programs for CD epitopes at the DNA and protein level, for baking quality, and ultimately in clinical trials. The application of gene editing for the production of coeliac-safe wheat is further considered within the context of food production and in view of current national and international regulatory frameworks.
Collapse
Affiliation(s)
- Aurelie Jouanin
- Plant Breeding, Wageningen University and Research, Wageningen, Netherlands
- John Bingham Laboratory, NIAB, Cambridge, United Kingdom
| | - Luud J. W. J. Gilissen
- Plant Breeding, Wageningen University and Research, Wageningen, Netherlands
- Bioscience, Wageningen University and Research, Wageningen, Netherlands
| | - Jan G. Schaart
- Plant Breeding, Wageningen University and Research, Wageningen, Netherlands
| | - Fiona J. Leigh
- John Bingham Laboratory, NIAB, Cambridge, United Kingdom
| | - James Cockram
- John Bingham Laboratory, NIAB, Cambridge, United Kingdom
| | | | - Lesley A. Boyd
- John Bingham Laboratory, NIAB, Cambridge, United Kingdom
| | | | | | - A. H. P. America
- Bioscience, Wageningen University and Research, Wageningen, Netherlands
| | | | | |
Collapse
|
14
|
Divashuk MG, Karlov GI, Kroupin PY. Copy Number Variation of Transposable Elements in Thinopyrum intermedium and Its Diploid Relative Species. PLANTS (BASEL, SWITZERLAND) 2019; 9:E15. [PMID: 31877707 PMCID: PMC7020174 DOI: 10.3390/plants9010015] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 12/05/2019] [Accepted: 12/17/2019] [Indexed: 12/14/2022]
Abstract
Diploid and polyploid wild species of Triticeae have complex relationships, and the understanding of their evolution and speciation could help to increase the usability of them in wheat breeding as a source of genetic diversity. The diploid species Pseudoroegneria spicata (St), Thinopyrum bessarabicum (Jb), Dasypyrum villosum (V) derived from a hypothetical common ancestor are considered to be possible subgenome donors in hexaploid species Th. intermedium (JrJvsSt, where indices r, v, and s stand for the partial relation to the genomes of Secale, Dasypyrum, and Pseudoroegneria, respectively). We quantified 10 families of transposable elements (TEs) in P. spicata, Th. bessarabicum, D. villosum (per one genome), and Th. intermedium (per one average subgenome) using the quantitative real time PCR assay and compared their abundance within the studied genomes as well as between them. Sabrina was the most abundant among all studied elements in P. spicata, D. villosum, and Th. intermedium, and among Ty3/Gypsy elements in all studied species. Among Ty1/Copia elements, Angela-A and WIS-A showed the highest and close abundance with the exception of D. villosum, and comprised the majority of all studied elements in Th. bessarabicum. Sabrina, BAGY2, and Angela-A showed similar abundance among diploids and in Th. intermedium hexaploid; Latidu and Barbara demonstrated sharp differences between diploid genomes. The relationships between genomes of Triticeae species based on the studied TE abundance and the role of TEs in speciation and polyploidization in the light of the current phylogenetic models is discussed.
Collapse
Affiliation(s)
- Mikhail G. Divashuk
- Laboratory of Applied Genomics and Crop Breeding, All-Russia Research Institute of Agricultural Biotechnology, Moscow 127550, Russia; (M.G.D.)
- Centre for Molecular Biotechnology, Russian State Agrarian University-Timiryazev Agricultural Academy, Moscow 127550, Russia
| | - Gennady I. Karlov
- Laboratory of Applied Genomics and Crop Breeding, All-Russia Research Institute of Agricultural Biotechnology, Moscow 127550, Russia; (M.G.D.)
- Centre for Molecular Biotechnology, Russian State Agrarian University-Timiryazev Agricultural Academy, Moscow 127550, Russia
| | - Pavel Yu. Kroupin
- Laboratory of Applied Genomics and Crop Breeding, All-Russia Research Institute of Agricultural Biotechnology, Moscow 127550, Russia; (M.G.D.)
- Centre for Molecular Biotechnology, Russian State Agrarian University-Timiryazev Agricultural Academy, Moscow 127550, Russia
| |
Collapse
|
15
|
Jouanin A, Borm T, Boyd LA, Cockram J, Leigh F, Santos BA, Visser RG, Smulders MJ. Development of the GlutEnSeq capture system for sequencing gluten gene families in hexaploid bread wheat with deletions or mutations induced by γ-irradiation or CRISPR/Cas9. J Cereal Sci 2019. [DOI: 10.1016/j.jcs.2019.04.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
16
|
Pamponét VCC, Souza MM, Silva GS, Micheli F, de Melo CAF, de Oliveira SG, Costa EA, Corrêa RX. Low coverage sequencing for repetitive DNA analysis in Passiflora edulis Sims: citogenomic characterization of transposable elements and satellite DNA. BMC Genomics 2019; 20:262. [PMID: 30940088 PMCID: PMC6444444 DOI: 10.1186/s12864-019-5576-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Accepted: 02/28/2019] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND The cytogenomic study of repetitive regions is fundamental for the understanding of morphofunctional mechanisms and genome evolution. Passiflora edulis a species of relevant agronomic value, this work had its genome sequenced by next generation sequencing and bioinformatics analysis performed by RepeatExplorer pipeline. The clusters allowed the identification and characterization of repetitive elements (predominant contributors to most plant genomes). The aim of this study was to identify, characterize and map the repetitive DNA of P. edulis, providing important cytogenomic markers, especially sequences associated with the centromere. RESULTS Three clusters of satellite DNAs (69, 118 and 207) and seven clusters of Long Terminal Repeat (LTR) retrotransposons of the superfamilies Ty1/Copy and Ty3/Gypsy and families Angela, Athila, Chromovirus and Maximus-Sire (6, 11, 36, 43, 86, 94 and 135) were characterized and analyzed. The chromosome mapping of satellite DNAs showed two hybridization sites co-located in the 5S rDNA region (PeSat_1), subterminal hybridizations (PeSat_3) and hybridization in four sites, co-located in the 45S rDNA region (PeSat_2). Most of the retroelements hybridizations showed signals scattered in the chromosomes, diverging in abundance, and only the cluster 6 presented pericentromeric regions marking. No satellite DNAs and retroelement associated with centromere was observed. CONCLUSION P. edulis has a highly repetitive genome, with the predominance of Ty3/Gypsy LTR retrotransposon. The satellite DNAs and LTR retrotransposon characterized are promising markers for investigation of the evolutionary patterns and genetic distinction of species and hybrids of Passiflora.
Collapse
MESH Headings
- Chromosome Mapping
- Chromosomes, Plant
- DNA, Plant/genetics
- DNA, Plant/metabolism
- DNA, Satellite/classification
- DNA, Satellite/genetics
- High-Throughput Nucleotide Sequencing
- In Situ Hybridization, Fluorescence
- Passiflora/genetics
- Phylogeny
- RNA, Ribosomal/genetics
- RNA, Ribosomal, 5S/genetics
- Retroelements/genetics
- Sequence Analysis, DNA
Collapse
Affiliation(s)
- Vanessa Carvalho Cayres Pamponét
- Departamento de Ciências Biológicas, Universidade Estadual de Santa Cruz (UESC), km 16, Salobrinho, Ilhéus, Bahia CEP 45662-900 Brazil
| | - Margarete Magalhães Souza
- Departamento de Ciências Biológicas, Universidade Estadual de Santa Cruz (UESC), km 16, Salobrinho, Ilhéus, Bahia CEP 45662-900 Brazil
| | - Gonçalo Santos Silva
- Departamento de Ciências Biológicas, Universidade Estadual de Santa Cruz (UESC), km 16, Salobrinho, Ilhéus, Bahia CEP 45662-900 Brazil
| | - Fabienne Micheli
- Departamento de Ciências Biológicas, Universidade Estadual de Santa Cruz (UESC), km 16, Salobrinho, Ilhéus, Bahia CEP 45662-900 Brazil
- CIRAD, UMR AGAP, F-34398 Montpellier, France
| | - Cláusio Antônio Ferreira de Melo
- Departamento de Ciências Biológicas, Universidade Estadual de Santa Cruz (UESC), km 16, Salobrinho, Ilhéus, Bahia CEP 45662-900 Brazil
| | - Sarah Gomes de Oliveira
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo (USP), Rua do Matão, 14 – Butantã, São Paulo, SP CEP 05508-090 Brazil
| | - Eduardo Almeida Costa
- Núcleo de Biologia Computacional e Gestão de Informações Biotecnológicas (NBCGIB), Universidade Estadual de Santa Cruz (UESC), km 16, Salobrinho, Ilhéus, Bahia CEP 45662-900 Brazil
| | - Ronan Xavier Corrêa
- Departamento de Ciências Biológicas, Universidade Estadual de Santa Cruz (UESC), km 16, Salobrinho, Ilhéus, Bahia CEP 45662-900 Brazil
| |
Collapse
|
17
|
Zimin AV, Puiu D, Hall R, Kingan S, Clavijo BJ, Salzberg SL. The first near-complete assembly of the hexaploid bread wheat genome, Triticum aestivum. Gigascience 2018; 6:1-7. [PMID: 29069494 PMCID: PMC5691383 DOI: 10.1093/gigascience/gix097] [Citation(s) in RCA: 167] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 09/28/2017] [Indexed: 01/17/2023] Open
Abstract
Common bread wheat, Triticum aestivum, has one of the most complex genomes known to science, with 6 copies of each chromosome, enormous numbers of near-identical sequences scattered throughout, and an overall haploid size of more than 15 billion bases. Multiple past attempts to assemble the genome have produced assemblies that were well short of the estimated genome size. Here we report the first near-complete assembly of T. aestivum, using deep sequencing coverage from a combination of short Illumina reads and very long Pacific Biosciences reads. The final assembly contains 15 344 693 583 bases and has a weighted average (N50) contig size of 232 659 bases. This represents by far the most complete and contiguous assembly of the wheat genome to date, providing a strong foundation for future genetic studies of this important food crop. We also report how we used the recently published genome of Aegilops tauschii, the diploid ancestor of the wheat D genome, to identify 4 179 762 575 bp of T. aestivum that correspond to its D genome components.
Collapse
Affiliation(s)
- Aleksey V Zimin
- Center for Computational Biology, McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.,Institute for Physical Sciences and Technology, University of Maryland, College Park, MD 20742, USA
| | - Daniela Puiu
- Center for Computational Biology, McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Richard Hall
- Pacific Biosciences, 1305 O'Brien Dr, Menlo Park, CA 94025, USA
| | - Sarah Kingan
- Pacific Biosciences, 1305 O'Brien Dr, Menlo Park, CA 94025, USA
| | - Bernardo J Clavijo
- Earlham Institute, Norwich Research Park Innovation Centre, Colney Ln, Norwich NR4 7UZ, UK
| | - Steven L Salzberg
- Center for Computational Biology, McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.,Departments of Biomedical Engineering, Computer Science, and Biostatistics, Johns Hopkins University, Baltimore, MD 21205, USA
| |
Collapse
|
18
|
Khan MS, Kumar S, Singh RK, Singh J, Duttamajumder SK, Kapur R. Characterization of leaf transcriptome, development and utilization of unigenes-derived microsatellite markers in sugarcane ( Saccharum sp. hybrid). PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2018; 24:665-682. [PMID: 30042621 PMCID: PMC6041238 DOI: 10.1007/s12298-018-0563-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 05/14/2018] [Accepted: 05/22/2018] [Indexed: 06/08/2023]
Abstract
Sugarcane (Saccharum species hybrid) is the major source of sugar (> 80% sugar) in the world and is cultivated in more than 115 countries. It has recently gained attention as a source of biofuel (ethanol). Due to genomic complexity, the development of new genomic resources is imperative in understanding the gene regulation and function, and to fine tune the genetic improvement of sugarcane. In this study, a cDNA library was constructed from mature leaves so as to develop ESTs resources which were further compared with nucleotide and protein databases to explore the functional identity of sugarcane genes. The non-redundant ESTs (unigenes) were categorized into 18 metabolic functions. The major categories were bioenergetics and photosynthesis (4%), cell metabolism (5%), development related protein (3%), membrane-related, mobile genetic elements (5%), signal transduction (2%), DNA (1%), RNA (1%) and protein (2%) metabolism, other metabolic processes (3%), transcription factors (1%), transport (4%) and proteins related to stress/defense (4%). From 540 unique ESTs, 212 simple sequence repeats were identified, of which 206 were from 463 singlets and six were mined from 77 contig sequences. A total of 540 unique EST sequences were used for SSR search of which 97 (17.9%) contained specified SSR motifs, generating 212 unique SSRs. The genes characterized in this study and the EST-derived microsatellite markers identified from the cDNA library will enrich genomic resources for association- and linkage-mapping studies in sugarcane.
Collapse
Affiliation(s)
- Mohammad Suhail Khan
- ICAR-Indian Institute of Sugarcane Research, Raibareli Road, P.O. Dilkusha, Lucknow, U.P. 226002 India
| | - Sanjeev Kumar
- ICAR-Indian Institute of Sugarcane Research, Raibareli Road, P.O. Dilkusha, Lucknow, U.P. 226002 India
| | - Ram Kewal Singh
- ICAR-Indian Institute of Sugarcane Research, Raibareli Road, P.O. Dilkusha, Lucknow, U.P. 226002 India
- Present Address: Division of Crop Science, Indian Council of Agricultural Research, Dr. Rajendra Prasad Road, Krishi Bhawan, New Delhi, 110 001 India
| | - Jyotsnendra Singh
- ICAR-Indian Institute of Sugarcane Research, Raibareli Road, P.O. Dilkusha, Lucknow, U.P. 226002 India
| | | | - Raman Kapur
- ICAR-Indian Institute of Sugarcane Research, Raibareli Road, P.O. Dilkusha, Lucknow, U.P. 226002 India
| |
Collapse
|
19
|
Li M, Li B, Guo G, Chen Y, Xie J, Lu P, Wu Q, Zhang D, Zhang H, Yang J, Zhang P, Zhang Y, Liu Z. Mapping a leaf senescence gene els1 by BSR-Seq in common wheat. ACTA ACUST UNITED AC 2018. [DOI: 10.1016/j.cj.2018.01.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
20
|
Zhao L, Ning S, Yi Y, Zhang L, Yuan Z, Wang J, Zheng Y, Hao M, Liu D. Fluorescence in situ hybridization karyotyping reveals the presence of two distinct genomes in the taxon Aegilops tauschii. BMC Genomics 2018; 19:3. [PMID: 29291709 PMCID: PMC5748962 DOI: 10.1186/s12864-017-4384-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Accepted: 12/15/2017] [Indexed: 11/23/2022] Open
Abstract
Background Aegilops tauschii is the donor of the bread wheat D genome. Based on spike morphology, the taxon has conventionally been subdivided into ssp. tauschii and ssp. strangulata. The present study was intended to address the poor match between this whole plant morphology-based subdivision and genetic relationships inferred from genotyping by fluorescence in situ hybridization karyotyping a set of 31 Ae. tauschii accessions. Results The distribution of sites hybridizing to the two probes oligo-pTa-535 and (CTT)10 split the Ae. tauschii accessions into two clades, designated Dt and Ds, which corresponded perfectly with a previously assembled phylogeny based on marker genotype. The Dt cluster was populated exclusively by ssp. tauschii accessions, while the Ds cluster harbored both ssp. strangulata and morphologically intermediate accessions. As a result, it is proposed that Ae. tauschii ssp. tauschii is restricted to carriers of the Dt karyotype: their spikelets are regularly spaced along the rachis, at least in the central portion of their spike. Accessions classified as Ae. tauschii ssp. strangulata carry the Ds karyotype; their spikelets are irregularly spaced. Based on this criterion, forms formerly classified as ssp. tauschii var. meyeri have been re-designated ssp. strangulata var. meyeri. Conclusions According to the reworking of the taxon, the bread wheat D genome was most probably donated by ssp. strangulata var. meyeri. Chromosomal differentiation reveals intra-species taxon of Ae. tauschii. Ae. tauschii ssp. tauschii has more distant relationship with breed wheat than ssp. strangulata and can be used for breeding improving effectively.
Collapse
Affiliation(s)
- Laibin Zhao
- Triticeae Research Institute, Sichuan Agricultural University, No. 211 Huiming Rd, Wenjiang District, Chengdu City, Sichuan province, 611130, People's Republic of China
| | - Shunzong Ning
- Triticeae Research Institute, Sichuan Agricultural University, No. 211 Huiming Rd, Wenjiang District, Chengdu City, Sichuan province, 611130, People's Republic of China
| | - Yingjin Yi
- Triticeae Research Institute, Sichuan Agricultural University, No. 211 Huiming Rd, Wenjiang District, Chengdu City, Sichuan province, 611130, People's Republic of China
| | - Lianquan Zhang
- Triticeae Research Institute, Sichuan Agricultural University, No. 211 Huiming Rd, Wenjiang District, Chengdu City, Sichuan province, 611130, People's Republic of China
| | - Zhongwei Yuan
- Triticeae Research Institute, Sichuan Agricultural University, No. 211 Huiming Rd, Wenjiang District, Chengdu City, Sichuan province, 611130, People's Republic of China
| | - Jirui Wang
- Triticeae Research Institute, Sichuan Agricultural University, No. 211 Huiming Rd, Wenjiang District, Chengdu City, Sichuan province, 611130, People's Republic of China.,Key Laboratory of Crop Genetic Resources and Improvement, Ministry of Education, Sichuan Agricultural University, Yaan, Sichuan, 625014, China
| | - Youliang Zheng
- Triticeae Research Institute, Sichuan Agricultural University, No. 211 Huiming Rd, Wenjiang District, Chengdu City, Sichuan province, 611130, People's Republic of China.,Key Laboratory of Crop Genetic Resources and Improvement, Ministry of Education, Sichuan Agricultural University, Yaan, Sichuan, 625014, China
| | - Ming Hao
- Triticeae Research Institute, Sichuan Agricultural University, No. 211 Huiming Rd, Wenjiang District, Chengdu City, Sichuan province, 611130, People's Republic of China.
| | - Dengcai Liu
- Triticeae Research Institute, Sichuan Agricultural University, No. 211 Huiming Rd, Wenjiang District, Chengdu City, Sichuan province, 611130, People's Republic of China. .,Key Laboratory of Crop Genetic Resources and Improvement, Ministry of Education, Sichuan Agricultural University, Yaan, Sichuan, 625014, China.
| |
Collapse
|
21
|
Pedro DLF, Lorenzetti APR, Domingues DS, Paschoal AR. PlaNC-TE: a comprehensive knowledgebase of non-coding RNAs and transposable elements in plants. DATABASE-THE JOURNAL OF BIOLOGICAL DATABASES AND CURATION 2018; 2018:1-7. [PMID: 30101318 PMCID: PMC6146122 DOI: 10.1093/database/bay078] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 06/28/2018] [Indexed: 12/20/2022]
Abstract
Transposable elements (TEs) play an essential role in the genetic variability of eukaryotic species. In plants, they may comprise up to 90% of the total genome. Non-coding RNAs (ncRNAs) are known to control gene expression and regulation. Although the relationship between ncRNAs and TEs is known, obtaining the organized data for sequenced genomes is not straightforward. In this study, we describe the PlaNC-TE (http://planc-te.cp.utfpr.edu.br), a user-friendly portal harboring a knowledgebase created by integrating and analysing plant ncRNA-TE data. We identified a total of 14 350 overlaps between ncRNAs and TEs in 40 plant genomes. The database allows users to browse, search and download all ncRNA and TE data analysed. Overall, PlaNC-TE not only organizes data and provides insights about the relationship between ncRNA and TEs in plants but also helps improve genome annotation strategies. Moreover, this is the first database to provide resources to broadly investigate functions and mechanisms involving TEs and ncRNAs in plants.
Collapse
Affiliation(s)
- Daniel Longhi Fernandes Pedro
- Department of Computer Science, Bioinformatics Graduation Program (PPGBIOINFO), Federal University of Technology - Paraná, Cornélio Procópio, PR, Brazil
| | | | - Douglas Silva Domingues
- Department of Computer Science, Bioinformatics Graduation Program (PPGBIOINFO), Federal University of Technology - Paraná, Cornélio Procópio, PR, Brazil.,Department of Botany, Institute of Biosciences, São Paulo State University, UNESP, Rio Claro, SP, Brazil
| | - Alexandre Rossi Paschoal
- Department of Computer Science, Bioinformatics Graduation Program (PPGBIOINFO), Federal University of Technology - Paraná, Cornélio Procópio, PR, Brazil
| |
Collapse
|
22
|
Danilova TV, Akhunova AR, Akhunov ED, Friebe B, Gill BS. Major structural genomic alterations can be associated with hybrid speciation in Aegilops markgrafii (Triticeae). THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2017; 92:317-330. [PMID: 28776783 DOI: 10.1111/tpj.13657] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 07/21/2017] [Accepted: 07/31/2017] [Indexed: 05/19/2023]
Abstract
During evolutionary history many grasses from the tribe Triticeae have undergone interspecific hybridization, resulting in allopolyploidy; whereas homoploid hybrid speciation was found only in rye. Homoeologous chromosomes within the Triticeae preserved cross-species macrocolinearity, except for a few species with rearranged genomes. Aegilops markgrafii, a diploid wild relative of wheat (2n = 2x = 14), has a highly asymmetrical karyotype that is indicative of chromosome rearrangements. Molecular cytogenetics and next-generation sequencing were used to explore the genome organization. Fluorescence in situ hybridization with a set of wheat cDNAs allowed the macrostructure and cross-genome homoeology of the Ae. markgrafii chromosomes to be established. Two chromosomes maintained colinearity, whereas the remaining were highly rearranged as a result of inversions and inter- and intrachromosomal translocations. We used sets of barley and wheat orthologous gene sequences to compare discrete parts of the Ae. markgrafii genome involved in the rearrangements. Analysis of sequence identity profiles and phylogenic relationships grouped chromosome blocks into two distinct clusters. Chromosome painting revealed the distribution of transposable elements and differentiated chromosome blocks into two groups consistent with the sequence analyses. These data suggest that introgressive hybridization accompanied by gross chromosome rearrangements might have had an impact on karyotype evolution and homoploid speciation in Ae. markgrafii.
Collapse
Affiliation(s)
- Tatiana V Danilova
- Department of Plant Pathology, Kansas State University, Manhattan, KS, USA
| | - Alina R Akhunova
- Department of Plant Pathology, Kansas State University, Manhattan, KS, USA
| | - Eduard D Akhunov
- Department of Plant Pathology, Kansas State University, Manhattan, KS, USA
| | - Bernd Friebe
- Department of Plant Pathology, Kansas State University, Manhattan, KS, USA
| | - Bikram S Gill
- Department of Plant Pathology, Kansas State University, Manhattan, KS, USA
| |
Collapse
|
23
|
Li W, Yang B. Translational genomics of grain size regulation in wheat. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2017; 130:1765-1771. [PMID: 28765985 DOI: 10.1007/s00122-017-2953-x] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Accepted: 07/26/2017] [Indexed: 05/29/2023]
Abstract
Identifying and mapping grain size candidate genes in the wheat genome greatly empowers reverse genetics approaches to improve grain yield potential of wheat. Grain size (GS) or grain weight is believed to be a major driving force for further improvement of wheat yield. Although the large, polyploid genome of wheat poses an obstacle to identifying GS determinants using map-based cloning, a translational genomics approach using GS regulators identified in the model plants rice and Arabidopsis as candidate genes appears to be effective and supports a hypothesis that a conserved genetic network regulates GS in rice and wheat. In this review, we summarize the progress in the studies on GS in the model plants and wheat and identify 45 GS candidate loci in the wheat genome. In silico mapping of these GS loci in the diploid wheat and barley genomes showed (1) several gene families amplified in the wheat lineage, (2) a significant number of the GS genes located in the proximal regions surrounding the centromeres, and (3) more than half of candidate genes to be negative regulators, or their expression negatively related by microRNAs. Identifying and mapping the wheat GS gene homologs will not only facilitate candidate gene analysis, but also open the door to improving wheat yield using reverse genetics approaches by mining desired alleles in landraces and wild ancestors and to developing novel germplasm by TILLING and genome editing technologies.
Collapse
Affiliation(s)
- Wanlong Li
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD, 57007, USA.
| | - Bing Yang
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA, 50011, USA
| |
Collapse
|
24
|
Paz RC, Kozaczek ME, Rosli HG, Andino NP, Sanchez-Puerta MV. Diversity, distribution and dynamics of full-length Copia and Gypsy LTR retroelements in Solanum lycopersicum. Genetica 2017; 145:417-430. [PMID: 28776161 DOI: 10.1007/s10709-017-9977-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Accepted: 07/26/2017] [Indexed: 12/18/2022]
Abstract
Transposable elements are the most abundant components of plant genomes and can dramatically induce genetic changes and impact genome evolution. In the recently sequenced genome of tomato (Solanum lycopersicum), the estimated fraction of elements corresponding to retrotransposons is nearly 62%. Given that tomato is one of the most important vegetable crop cultivated and consumed worldwide, understanding retrotransposon dynamics can provide insight into its evolution and domestication processes. In this study, we performed a genome-wide in silico search of full-length LTR retroelements in the tomato nuclear genome and annotated 736 full-length Gypsy and Copia retroelements. The dispersion level across the 12 chromosomes, the diversity and tissue-specific expression of those elements were estimated. Phylogenetic analysis based on the retrotranscriptase region revealed the presence of 12 major lineages of LTR retroelements in the tomato genome. We identified 97 families, of which 77 and 20 belong to the superfamilies Copia and Gypsy, respectively. Each retroelement family was characterized according to their element size, relative frequencies and insertion time. These analyses represent a valuable resource for comparative genomics within the Solanaceae, transposon-tagging and for the design of cultivar-specific molecular markers in tomato.
Collapse
Affiliation(s)
- Rosalía Cristina Paz
- CIGEOBIO (FCEFyN, UNSJ/CONICET), Av. Ignacio de la Roza 590 (Oeste), J5402DCS, Rivadavia, San Juan, Argentina.
| | - Melisa Eliana Kozaczek
- Facultad de Ciencias Exactas, Químicas y Naturales, Universidad Nacional de Misiones, Posadas, Misiones, Argentina
| | - Hernán Guillermo Rosli
- Instituto de Fisiología Vegetal, INFIVE, Universidad Nacional de La Plata, CONICET, La Plata, Buenos Aires, Argentina
| | - Natalia Pilar Andino
- Facultad de Ciencias Exactas, Físicas y Naturales, Universidad Nacional de San Juan, San Juan, Argentina
| | - Maria Virginia Sanchez-Puerta
- IBAM, Universidad Nacional de Cuyo, CONICET, FCA and FCEN, Almirante Brown 500, M5528AHB, Chacras de Coria, Argentina
| |
Collapse
|
25
|
Markova DN, Mason-Gamer RJ. Transcriptional activity of PIF and Pong-like Class II transposable elements in Triticeae. BMC Evol Biol 2017; 17:178. [PMID: 28774284 PMCID: PMC5543537 DOI: 10.1186/s12862-017-1028-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2017] [Accepted: 07/26/2017] [Indexed: 11/10/2022] Open
Abstract
Background Transposable elements are major contributors to genome size and variability, accounting for approximately 70–80% of the maize, barley, and wheat genomes. PIF and Pong-like elements belong to two closely-related element families within the PIF/Harbinger superfamily of Class II (DNA) transposons. Both elements contain two open reading frames; one encodes a transposase (ORF2) that catalyzes transposition of the functional elements and their related non-autonomous elements, while the function of the second is still debated. In this work, we surveyed for PIF- and Pong-related transcriptional activity in 13 diploid Triticeae species, all of which have been previously shown to harbor extensive within-genome diversity of both groups of elements. Results The results revealed that PIF elements have considerable transcriptional activity in Triticeae, suggesting that they can escape the initial levels of plant cell control and are regulated at the post-transcriptional level. Phylogenetic analysis of 156 PIF cDNA transposase fragments along with 240 genomic partial transposase sequences showed that most, if not all, PIF clades are transcriptionally competent, and that multiple transposases coexisting within a single genome have the potential to act simultaneously. In contrast, we did not detect any transcriptional activity of Pong elements in any sample. Conclusions The lack of Pong element transcription shows that even closely related transposon families can exhibit wide variation in their transposase transcriptional activity within the same genome. Electronic supplementary material The online version of this article (doi:10.1186/s12862-017-1028-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Dragomira N Markova
- Department of Biological Sciences, University of Illinois at Chicago, M/C 067 840 West Taylor Street, Chicago, IL, 60607, USA. .,Present address: Department of Plant Sciences (mail stop 3), 151 Asmundson Hall, University of California, Davis, CA, 95616, USA.
| | - Roberta J Mason-Gamer
- Department of Biological Sciences, University of Illinois at Chicago, M/C 067 840 West Taylor Street, Chicago, IL, 60607, USA
| |
Collapse
|
26
|
Useful parasites: the evolutionary biology and biotechnology applications of transposable elements. J Genet 2017; 95:1039-1052. [PMID: 27994207 DOI: 10.1007/s12041-016-0702-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Transposable elements usually comprise the most abundant nongenic fraction of eukaryotic genomes. Because of their capacity to selfreplicate and to induce a wide range of mutations, transposable elements have long been considered as 'parasitic' or 'selfish'. Today, we recognize that the findings about genomic changes affected by transposable elements have considerably altered our view of the ways in which genomes evolve and work. Numerous studies have provided evidences that mobile elements have the potential to act as agents of evolution by increasing, rearranging and diversifying the genetic repertoire of their hosts. With large-scale sequencing becoming increasingly available, more and more scientists come across transposable element sequences in their data. I will provide examples that transposable elements, although having signatures of 'selfish' DNA, play a significant biological role in the maintainance of genome integrity and providing novel regulatoty networks. These features, along with the transpositional and mutagenic capacity to produce a raw genetic diversity, make the genome mobile fraction, a key player in species adaptation and microevolution. The last but not least, transposable elements stand as informative DNA markers that may complement other conventional DNA markers. Altogether, transposable elements represent a promising, but still largely unexplored research niche and deserve to be included into the agenda of molecular ecologists, evolutionary geneticists, conservation biologists and plant breeders.
Collapse
|
27
|
Xiao J, Sekhwal MK, Li P, Ragupathy R, Cloutier S, Wang X, You FM. Pseudogenes and Their Genome-Wide Prediction in Plants. Int J Mol Sci 2016; 17:E1991. [PMID: 27916797 PMCID: PMC5187791 DOI: 10.3390/ijms17121991] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2016] [Revised: 11/20/2016] [Accepted: 11/22/2016] [Indexed: 11/17/2022] Open
Abstract
Pseudogenes are paralogs generated from ancestral functional genes (parents) during genome evolution, which contain critical defects in their sequences, such as lacking a promoter, having a premature stop codon or frameshift mutations. Generally, pseudogenes are functionless, but recent evidence demonstrates that some of them have potential roles in regulation. The majority of pseudogenes are generated from functional progenitor genes either by gene duplication (duplicated pseudogenes) or retro-transposition (processed pseudogenes). Pseudogenes are primarily identified by comparison to their parent genes. Bioinformatics tools for pseudogene prediction have been developed, among which PseudoPipe, PSF and Shiu's pipeline are publicly available. We compared these three tools using the well-annotated Arabidopsis thaliana genome and its known 924 pseudogenes as a test data set. PseudoPipe and Shiu's pipeline identified ~80% of A. thaliana pseudogenes, of which 94% were shared, while PSF failed to generate adequate results. A need for improvement of the bioinformatics tools for pseudogene prediction accuracy in plant genomes was thus identified, with the ultimate goal of improving the quality of genome annotation in plants.
Collapse
Affiliation(s)
- Jin Xiao
- Morden Research and Development Centre, Agriculture and Agri-Food Canada, Morden, MB R6M 1Y5, Canada.
- Department of Agronomy, Nanjing Agricultural University, Nanjing 210095, China.
| | - Manoj Kumar Sekhwal
- Morden Research and Development Centre, Agriculture and Agri-Food Canada, Morden, MB R6M 1Y5, Canada.
- Department of Soil Science, University of Saskatchewan, Saskatoon, SK S7N 5A8, Canada.
| | - Pingchuan Li
- Morden Research and Development Centre, Agriculture and Agri-Food Canada, Morden, MB R6M 1Y5, Canada.
| | - Raja Ragupathy
- Department of Plant Science, University of Saskatchewan, Saskatoon, SK S7N 5A2, Canada.
| | - Sylvie Cloutier
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, Ottawa, ON K1A 0C6, Canada.
| | - Xiue Wang
- Department of Agronomy, Nanjing Agricultural University, Nanjing 210095, China.
| | - Frank M You
- Morden Research and Development Centre, Agriculture and Agri-Food Canada, Morden, MB R6M 1Y5, Canada.
| |
Collapse
|
28
|
Totta C, Rosato M, Ferrer-Gallego P, Lucchese F, Rosselló JA. Temporal frames of 45S rDNA site-number variation in diploid plant lineages: lessons from the rock rose genusCistus(Cistaceae). Biol J Linn Soc Lond 2016. [DOI: 10.1111/bij.12909] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Chiara Totta
- Università degli Studi Roma Tre; Viale G. Marconi 446 00146 Rome Italy
| | - Marcela Rosato
- Jardín Botánico-ICBiBE-Unidad Asociada CSIC; Universidad de Valencia; c/Quart 80 E46008 Valencia Spain
| | - Pablo Ferrer-Gallego
- CIEF, Servicio de Vida Silvestre; Generalitat Valenciana; Avda. Comarques del País Valencià 114 E46930 Valencia Spain
| | - Fernando Lucchese
- Università degli Studi Roma Tre; Viale G. Marconi 446 00146 Rome Italy
| | - Josep A. Rosselló
- Jardín Botánico-ICBiBE-Unidad Asociada CSIC; Universidad de Valencia; c/Quart 80 E46008 Valencia Spain
- Carl Faust Fdn.; PO Box 112 E17300 Blanes Spain
| |
Collapse
|
29
|
Li G, Wang H, Lang T, Li J, La S, Yang E, Yang Z. New molecular markers and cytogenetic probes enable chromosome identification of wheat-Thinopyrum intermedium introgression lines for improving protein and gluten contents. PLANTA 2016; 244:865-76. [PMID: 27290728 DOI: 10.1007/s00425-016-2554-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Accepted: 06/06/2016] [Indexed: 05/19/2023]
Abstract
New molecular markers were developed for targeting Thinopyrum intermedium 1St#2 chromosome, and novel FISH probe representing the terminal repeats was produced for identification of Thinopyrum chromosomes. Thinopyrum intermedium has been used as a valuable resource for improving the disease resistance and yield potential of wheat. A wheat-Th. intermedium ssp. trichophorum chromosome 1St#2 substitution and translocation has displayed superior grain protein and wet gluten content. With the aim to develop a number of chromosome 1St#2 specific molecular and cytogenetic markers, a high throughput, low-cost specific-locus amplified fragment sequencing (SLAF-seq) technology was used to compare the sequences between a wheat-Thinopyrum 1St#2 (1D) substitution and the related species Pseudoroegneria spicata (St genome, 2n = 14). A total of 5142 polymorphic fragments were analyzed and 359 different SLAF markers for 1St#2 were predicted. Thirty-seven specific molecular markers were validated by PCR from 50 randomly selected SLAFs. Meanwhile, the distribution of transposable elements (TEs) at the family level between wheat and St genomes was compared using the SLAFs. A new oligo-nucleotide probe named Oligo-pSt122 from high SLAF reads was produced for fluorescence in situ hybridization (FISH), and was observed to hybridize to the terminal region of 1St#L and also onto the terminal heterochromatic region of Th. intermedium genomes. The genome-wide markers and repetitive based probe Oligo-pSt122 will be valuable for identifying Thinopyrum chromosome segments in wheat backgrounds.
Collapse
Affiliation(s)
- Guangrong Li
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, Sichuan, China
| | - Hongjin Wang
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, Sichuan, China
| | - Tao Lang
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, Sichuan, China
| | - Jianbo Li
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, Sichuan, China
| | - Shixiao La
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, Sichuan, China
| | - Ennian Yang
- Crop Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, 610066, Sichuan, China
| | - Zujun Yang
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, Sichuan, China.
| |
Collapse
|
30
|
Ye C, Ji G, Liang C. detectMITE: A novel approach to detect miniature inverted repeat transposable elements in genomes. Sci Rep 2016; 6:19688. [PMID: 26795595 PMCID: PMC4726161 DOI: 10.1038/srep19688] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Accepted: 12/14/2015] [Indexed: 12/27/2022] Open
Abstract
Miniature inverted repeat transposable elements (MITEs) are prevalent in eukaryotic genomes, including plants and animals. Classified as a type of non-autonomous DNA transposable elements, they play important roles in genome organization and evolution. Comprehensive and accurate genome-wide detection of MITEs in various eukaryotic genomes can improve our understanding of their origins, transposition processes, regulatory mechanisms, and biological relevance with regard to gene structures, expression, and regulation. In this paper, we present a new MATLAB-based program called detectMITE that employs a novel numeric calculation algorithm to replace conventional string matching algorithms in MITE detection, adopts the Lempel-Ziv complexity algorithm to filter out MITE candidates with low complexity, and utilizes the powerful clustering program CD-HIT to cluster similar MITEs into MITE families. Using the rice genome as test data, we found that detectMITE can more accurately, comprehensively, and efficiently detect MITEs on a genome-wide scale than other popular MITE detection tools. Through comparison with the potential MITEs annotated in Repbase, the widely used eukaryotic repeat database, detectMITE has been shown to find known and novel MITEs with a complete structure and full-length copies in the genome. detectMITE is an open source tool (https://sourceforge.net/projects/detectmite).
Collapse
Affiliation(s)
- Congting Ye
- Department of Automation, Xiamen University, Xiamen, Fujian 361005, China.,Department of Biology, Miami University, Oxford, Ohio 45056, USA
| | - Guoli Ji
- Department of Automation, Xiamen University, Xiamen, Fujian 361005, China.,Innovation Center for Cell Biology, Xiamen University, Xiamen, Fujian 361102, China
| | - Chun Liang
- Department of Biology, Miami University, Oxford, Ohio 45056, USA
| |
Collapse
|
31
|
Akpinar BA, Budak H. Dissecting miRNAs in Wheat D Genome Progenitor, Aegilops tauschii. FRONTIERS IN PLANT SCIENCE 2016; 7:606. [PMID: 27200073 PMCID: PMC4855405 DOI: 10.3389/fpls.2016.00606] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Accepted: 04/20/2016] [Indexed: 05/09/2023]
Abstract
As the post-transcriptional regulators of gene expression, microRNAs or miRNAs comprise an integral part of understanding how genomes function. Although miRNAs have been a major focus of recent efforts, miRNA research is still in its infancy in most plant species. Aegilops tauschii, the D genome progenitor of bread wheat, is a wild diploid grass exhibiting remarkable population diversity. Due to the direct ancestry and the diverse gene pool, A. tauschii is a promising source for bread wheat improvement. In this study, a total of 87 Aegilops miRNA families, including 51 previously unknown, were computationally identified both at the subgenomic level, using flow-sorted A. tauschii 5D chromosome, and at the whole genome level. Predictions at the genomic and subgenomic levels suggested A. tauschii 5D chromosome as rich in pre-miRNAs that are highly associated with Class II DNA transposons. In order to gain insights into miRNA evolution, putative 5D chromosome miRNAs were compared to its modern ortholog, Triticum aestivum 5D chromosome, revealing that 48 of the 58 A. tauschii 5D miRNAs were conserved in orthologous T. aestivum 5D chromosome. The expression profiles of selected miRNAs (miR167, miR5205, miR5175, miR5523) provided the first experimental evidence for miR5175, miR5205 and miR5523, and revealed differential expressional changes in response to drought in different genetic backgrounds for miR167 and miR5175. Interestingly, while miR5523 coding regions were present and expressed as pre-miR5523 in both T. aestivum and A. tauschii, the expression of mature miR5523 was observed only in A. tauschii under normal conditions, pointing out to an interference at the downstream processing of pre-miR5523 in T. aestivum. Overall, this study expands our knowledge on the miRNA catalog of A. tauschii, locating a subset specifically to the 5D chromosome, with ample functional and comparative insight which should contribute to and complement efforts to develop drought tolerant wheat varieties.
Collapse
Affiliation(s)
- Bala A. Akpinar
- Molecular Biology, Genetics and Bioengineering Program, Faculty of Engineering and Natural Sciences, Sabanci UniversityIstanbul, Turkey
| | - Hikmet Budak
- Molecular Biology, Genetics and Bioengineering Program, Faculty of Engineering and Natural Sciences, Sabanci UniversityIstanbul, Turkey
- Department of Plant Sciences and Plant Pathology, Montana State UniversityBozeman, MT, USA
- *Correspondence: Hikmet Budak,
| |
Collapse
|
32
|
Markova DN, Mason-Gamer RJ. The Role of Vertical and Horizontal Transfer in the Evolutionary Dynamics of PIF-Like Transposable Elements in Triticeae. PLoS One 2015; 10:e0137648. [PMID: 26355747 PMCID: PMC4565680 DOI: 10.1371/journal.pone.0137648] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Accepted: 08/20/2015] [Indexed: 11/19/2022] Open
Abstract
PIF-like transposable elements are members of the PIF/Harbinger superfamily of DNA transposons found in the genomes of many plants, animals, and fungi. The evolution of the gene that encodes the transposase responsible for mobilizing PIF-like elements has been studied in both plants and animals, but the elements' history in flowering plants remains poorly known. In this work, we describe the phylogenetic distribution and evolution of PIF-like elements in the genomes of 21 diploid species from the wheat tribe, Triticeae, and we present the first convincing evidence of horizontal transfer of PIF elements in plant genomes. A phylogenetic analysis of 240 PIF sequences based on the conserved region of the transposase domain revealed at least four main transposase lineages. Their complex evolutionary history can be best explained by a combination of vertical transmission with differential evolutionary success among lineages, and occasional horizontal transfer between phylogenetically distant Triticeae genera. In addition, we identified 127 potentially functional transposase sequences indicating possible recent activity of PIF.
Collapse
Affiliation(s)
- Dragomira N. Markova
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL, United States of America
| | - Roberta J. Mason-Gamer
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL, United States of America
| |
Collapse
|
33
|
Akpinar BA, Lucas SJ, Vrána J, Doležel J, Budak H. Sequencing chromosome 5D of Aegilops tauschii and comparison with its allopolyploid descendant bread wheat (Triticum aestivum). PLANT BIOTECHNOLOGY JOURNAL 2015; 13:740-52. [PMID: 25516153 DOI: 10.1111/pbi.12302] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Revised: 10/08/2014] [Accepted: 10/25/2014] [Indexed: 05/11/2023]
Abstract
Flow cytometric sorting of individual chromosomes and chromosome-based sequencing reduces the complexity of large, repetitive Triticeae genomes. We flow-sorted chromosome 5D of Aegilops tauschii, the D genome donor of bread wheat and sequenced it by Roche 454 GS FLX platform to approximately 2.2x coverage. Repetitive sequences represent 81.09% of the survey sequences of this chromosome, and Class I retroelements are the prominent type, with a particular abundance of LTR/Gypsy superfamily. Nonrepetitive sequences were assembled to cover 17.76% of the total chromosome regions. Up to 6188 nonrepetitive gene loci were predicted to be encoded by the 5D chromosome. The numbers and chromosomal distribution patterns of tRNA genes suggest abundance in tRNA(L) (ys) and tRNA(M) (et) species, while the nonrepetitive assembly reveals tRNA(A) (la) species as the most abundant type. A comparative analysis of the genomic sequences of bread wheat and Aegilops chromosome 5D indicates conservation of gene content. Orthologous unique genes, matching Aegilops 5D sequences, numbered 3730 in barley, 5063 in Brachypodium, 4872 in sorghum and 4209 in rice. In this study, we provide a chromosome-specific view into the structure and organization of the 5D chromosome of Ae. tauschii, the D genome ancestor of bread wheat. This study contributes to our understanding of the chromosome-level evolution of the wheat genome and presents a valuable resource in wheat genomics due to the recent hybridization of Ae. tauschii genome with its tetraploid ancestor.
Collapse
Affiliation(s)
- Bala A Akpinar
- Faculty of Engineering and Natural Sciences, Sabanci University, Tuzla, Istanbul, Turkey
| | - Stuart J Lucas
- Sabanci University Nanotechnology Research and Application Centre (SUNUM), Sabanci University, Tuzla, Istanbul, Turkey
| | - Jan Vrána
- Institute of Experimental Botany, Centre of the Region Haná for Biotechnological and Agricultural Research, Olomouc, Czech Republic
| | - Jaroslav Doležel
- Institute of Experimental Botany, Centre of the Region Haná for Biotechnological and Agricultural Research, Olomouc, Czech Republic
| | - Hikmet Budak
- Faculty of Engineering and Natural Sciences, Sabanci University, Tuzla, Istanbul, Turkey
- Sabanci University Nanotechnology Research and Application Centre (SUNUM), Sabanci University, Tuzla, Istanbul, Turkey
| |
Collapse
|
34
|
Abstract
Pong-like elements are members of the PIF/Harbinger superfamily of DNA transposons that has been described in many plants, animals, and fungi. Most Pong elements contain two open reading frames (ORFs). One encodes a transposase (ORF2) that catalyzes transposition of Pong and related non-autonomous elements, while the function of the second is unknown. Little is known about the evolutionary history of Pong elements in flowering plants. In this work, we present the first comprehensive analysis of the diversity, abundance, and evolution of the Pong-like transposase gene in the genomes of 21 diploid species from the wheat tribe, Triticeae, and we present the first convincing evidence of horizontal transfer of nuclear-encoded Pong elements in any organism. A phylogenetic analysis of nearly 300 Pong sequences based on a conserved region of the transposase domain revealed a complex evolutionary history of Pong elements that can be best explained by ancestral polymorphism, followed by differential evolutionary success of some transposase lineages, and by occasional horizontal transfer between phylogenetically distant genera. In addition, we used transposon display to estimate the abundance of the transposase gene within Triticeae genomes, and our results revealed varying levels of Pong proliferation, with numbers of transposase copies ranging from 22 to 92. Comparisons of Pong transposase abundance to flow cytometry estimates of genome size revealed that larger Triticeae genome size was not correlated with transposase abundance.
Collapse
|
35
|
Novoselskaya-Dragovich AY. Genetics and genomics of wheat: Storage proteins, ecological plasticity, and immunity. RUSS J GENET+ 2015. [DOI: 10.1134/s102279541505004x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
36
|
Escudero M, Maguilla E, Loureiro J, Castro M, Castro S, Luceño M. Genome size stability despite high chromosome number variation in Carex gr. laevigata. AMERICAN JOURNAL OF BOTANY 2015; 102:233-8. [PMID: 25667076 DOI: 10.3732/ajb.1400433] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
PREMISE OF THE STUDY In organisms with holocentric chromosomes like Carex species, chromosome number evolution has been hypothesized to be a result of fission, fusion, and/or translocation events. Negative, positive, or the absence of correlations have been found between chromosome number and genome size in Carex. METHODS Using the inferred diploid chromosome number and 80 genome size measurements from 26 individuals and 20 populations of Carex gr. laevigata, we tested the null hypothesis of chromosome number evolution by duplication and deletion of whole chromosomes. KEY RESULTS Our results show a significant positive correlation between genome size and chromosome number, but the slope of such correlation supports the hypothesis of proliferation and removal of repetitive DNA fragments to explain genome size variation rather than duplication and deletion of whole chromosomes. CONCLUSIONS Our results refine the theory of the holokinetic drive: this mechanism is proposed to facilitate repetitive DNA removal (or any segmental deletion) when smaller homologous chromosomes are preferentially inherited, or repetitive DNA proliferation (or any segmental duplication) when larger homologs are preferred. This study sheds light on how karyotype evolution plays an important role in the diversification of the species of the genus Carex.
Collapse
Affiliation(s)
- Marcial Escudero
- Department of Integrative Ecology, Estación Biológica de Doñana (EBD-CSIC), Americo Vespucio sn 41092 Seville, Spain
| | - Enrique Maguilla
- Department of Molecular Biology and Biochemical Engineering, Pablo de Olavide University, Carretera de Utrera Km 1 sn 41013 Seville, Spain
| | - João Loureiro
- Centre for Functional Ecology, Department of Life Sciences, Faculty of Sciences and Technology, University of Coimbra, Calçada Martim de Freitas, 3000-456, Coimbra, Portugal
| | - Mariana Castro
- Centre for Functional Ecology, Department of Life Sciences, Faculty of Sciences and Technology, University of Coimbra, Calçada Martim de Freitas, 3000-456, Coimbra, Portugal
| | - Sílvia Castro
- Centre for Functional Ecology, Department of Life Sciences, Faculty of Sciences and Technology, University of Coimbra, Calçada Martim de Freitas, 3000-456, Coimbra, Portugal
| | - Modesto Luceño
- Department of Molecular Biology and Biochemical Engineering, Pablo de Olavide University, Carretera de Utrera Km 1 sn 41013 Seville, Spain
| |
Collapse
|
37
|
Harris MO, Friesen TL, Xu SS, Chen MS, Giron D, Stuart JJ. Pivoting from Arabidopsis to wheat to understand how agricultural plants integrate responses to biotic stress. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:513-531. [PMID: 25504642 DOI: 10.1093/jxb/eru465] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
In this review, we argue for a research initiative on wheat's responses to biotic stress. One goal is to begin a conversation between the disparate communities of plant pathology and entomology. Another is to understand how responses to a variety of agents of biotic stress are integrated in an important crop. We propose gene-for-gene interactions as the focus of the research initiative. On the parasite's side is an Avirulence (Avr) gene that encodes one of the many effector proteins the parasite applies to the plant to assist with colonization. On the plant's side is a Resistance (R) gene that mediates a surveillance system that detects the Avr protein directly or indirectly and triggers effector-triggered plant immunity. Even though arthropods are responsible for a significant proportion of plant biotic stress, they have not been integrated into important models of plant immunity that come from plant pathology. A roadblock has been the absence of molecular evidence for arthropod Avr effectors. Thirty years after this evidence was discovered in a plant pathogen, there is now evidence for arthropods with the cloning of the Hessian fly's vH13 Avr gene. After reviewing the two models of plant immunity, we discuss how arthropods could be incorporated. We end by showing features that make wheat an interesting system for plant immunity, including 479 resistance genes known from agriculture that target viruses, bacteria, fungi, nematodes, insects, and mites. It is not likely that humans will be subsisting on Arabidopsis in the year 2050. It is time to start understanding how agricultural plants integrate responses to biotic stress.
Collapse
Affiliation(s)
- M O Harris
- Department of Entomology, North Dakota State University, Fargo, ND 58105, USA
| | - T L Friesen
- USDA-ARS, Cereal Crops Research Unit, Fargo, ND USA
| | - S S Xu
- USDA-ARS, Cereal Crops Research Unit, Fargo, ND USA
| | - M S Chen
- USDA-ARS, Hard Winter Wheat Genetics Research Unit, Kansas State University, Manhattan, KS, USA
| | - D Giron
- Institut de Recherche sur la Biologie de l'Insecte UMR 7261 CNRS/Université François-Rabelais de Tours, Tours, France
| | - J J Stuart
- Department of Entomology, Purdue University, West Lafayette, IN, USA
| |
Collapse
|
38
|
Eslami Farouji A, Khodayari H, Saeidi H, Rahiminejad MR. Genetic diversity of diploid Triticum species in Iran assessed using inter-retroelement amplified polymorphisms (IRAP) markers. Biologia (Bratisl) 2015. [DOI: 10.1515/biolog-2015-0002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
39
|
Senerchia N, Felber F, Parisod C. Contrasting evolutionary trajectories of multiple retrotransposons following independent allopolyploidy in wild wheats. THE NEW PHYTOLOGIST 2014; 202:975-985. [PMID: 24548250 DOI: 10.1111/nph.12731] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Accepted: 01/09/2014] [Indexed: 06/03/2023]
Abstract
Transposable elements (TEs) are expectedly central to genome evolution. To assess the impact of TEs in driving genome turnover, we used allopolyploid genomes, showing considerable deviation from the predicted additivity of their diploid progenitors and thus having undergone major restructuring. Genome survey sequencing was used to select 17 putatively active families of long terminal repeat retrotransposons. Genome-wide TE insertions were genotyped with sequence-specific amplified polymorphism (SSAP) in diploid progenitors and their derived polyploids, and compared with changes in random sequences to assess restructuring of four independent Aegilops allotetraploid genomes. Generally, TEs with different evolutionary trajectories from those of random sequences were identified. Thus, TEs presented family-specific and species-specific dynamics following polyploidy, as illustrated by Sabine showing proliferation in particular polyploids, but massive elimination in others. Contrasting with that, only a few families (BARE1 and Romani) showed proliferation in all polyploids. Overall, TE divergence between progenitors was strongly correlated with the degree of restructuring in polyploid TE fractions. TE families present evolutionary trajectories that are decoupled from genome-wide changes after allopolyploidy and have a pervasive impact on their restructuring.
Collapse
Affiliation(s)
- Natacha Senerchia
- Laboratory of Evolutionary Botany, Institute of Biology, University of Neuchâtel, Rue Emile-Argand 11, 2000, Neuchâtel, Switzerland
| | - François Felber
- Laboratory of Evolutionary Botany, Institute of Biology, University of Neuchâtel, Rue Emile-Argand 11, 2000, Neuchâtel, Switzerland
- Musée et Jardins botaniques cantonaux, Avenue de Cour 14bis, 1007, Lausanne, Switzerland
| | - Christian Parisod
- Laboratory of Evolutionary Botany, Institute of Biology, University of Neuchâtel, Rue Emile-Argand 11, 2000, Neuchâtel, Switzerland
| |
Collapse
|
40
|
Genetic diversity and geographic distribution of variation of Hordeum murinum as revealed by retroelement insertional polymorphisms in Iran. Biologia (Bratisl) 2014. [DOI: 10.2478/s11756-014-0340-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
41
|
Li XQ, Du D. Variation, evolution, and correlation analysis of C+G content and genome or chromosome size in different kingdoms and phyla. PLoS One 2014; 9:e88339. [PMID: 24551092 PMCID: PMC3923770 DOI: 10.1371/journal.pone.0088339] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2013] [Accepted: 01/06/2014] [Indexed: 12/05/2022] Open
Abstract
C+G content (GC content or G+C content) is known to be correlated with genome/chromosome size in bacteria but the relationship for other kingdoms remains unclear. This study analyzed genome size, chromosome size, and base composition in most of the available sequenced genomes in various kingdoms. Genome size tends to increase during evolution in plants and animals, and the same is likely true for bacteria. The genomic C+G contents were found to vary greatly in microorganisms but were quite similar within each animal or plant subkingdom. In animals and plants, the C+G contents are ranked as follows: monocot plants>mammals>non-mammalian animals>dicot plants. The variation in C+G content between chromosomes within species is greater in animals than in plants. The correlation between average chromosome C+G content and chromosome length was found to be positive in Proteobacteria, Actinobacteria (but not in other analyzed bacterial phyla), Ascomycota fungi, and likely also in some plants; negative in some animals, insignificant in two protist phyla, and likely very weak in Archaea. Clearly, correlations between C+G content and chromosome size can be positive, negative, or not significant depending on the kingdoms/groups or species. Different phyla or species exhibit different patterns of correlation between chromosome-size and C+G content. Most chromosomes within a species have a similar pattern of variation in C+G content but outliers are common. The data presented in this study suggest that the C+G content is under genetic control by both trans- and cis- factors and that the correlation between C+G content and chromosome length can be positive, negative, or not significant in different phyla.
Collapse
Affiliation(s)
- Xiu-Qing Li
- Molecular Genetics Laboratory, Potato Research Centre, Agriculture and Agri-Food Canada, Fredericton, New Brunswick, Canada
- * E-mail:
| | - Donglei Du
- Quantitative Methods Research Group, Faculty of Business Administration, University of New Brunswick, Fredericton, New Brunswick, Canada
| |
Collapse
|
42
|
Differentially expressed genes in response to gamma-irradiation during the vegetative stage in Arabidopsis thaliana. Mol Biol Rep 2014; 41:2229-41. [PMID: 24442319 DOI: 10.1007/s11033-014-3074-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2013] [Accepted: 01/04/2014] [Indexed: 10/25/2022]
Abstract
Biochemical and physiological processes in plants are affected by gamma-irradiation, which causes significant changes in gene transcripts and expression. To identify the differentially expressed Arabidopsis genes in response to gamma-irradiation, we performed a microarray analysis with rosette leaves during the vegetative stage. Arabidopsis plants were exposed to a wide spectrum doses of gamma ray (100, 200, 300, 400, 800, 1200, 1600 or 2000 Gy) for 24 h. At the dose range from 100 to 400 Gy, irradiated plants were found to be shorter than controls after 8 days of irradiation, while doses over 800 Gy caused severe growth retardation. Therefore, 100 and 800 Gy were selected as adequate doses for microarray analysis to identify differentially expressed genes. Among the 20,993 genes used as microarray probes, a total number of 496 and 1,042 genes were up-regulated and down-regulated by gamma-irradiation, respectively (P < 0.05). We identified the characteristics of the genes that were up-and down-regulated fourfold higher genes by gamma irradiation according to The arabidopsis information resource gene ontology. To confirm the microarray results, we performed a northern blot and quantitative real-time PCR with several selected genes that had a large difference in expression after irradiation. In particular, genes associated with lipid transfer proteins, histones and transposons were down-regulated by 100 and/or 800 Gy of gamma irradiation. The expression patterns of selected genes were generally in agreement with the microarray results, although there were quantitative differences in the expression levels.
Collapse
|
43
|
Daron J, Glover N, Pingault L, Theil S, Jamilloux V, Paux E, Barbe V, Mangenot S, Alberti A, Wincker P, Quesneville H, Feuillet C, Choulet F. Organization and evolution of transposable elements along the bread wheat chromosome 3B. Genome Biol 2014; 15:546. [PMID: 25476263 PMCID: PMC4290129 DOI: 10.1186/s13059-014-0546-4] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Accepted: 11/17/2014] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND The 17 Gb bread wheat genome has massively expanded through the proliferation of transposable elements (TEs) and two recent rounds of polyploidization. The assembly of a 774 Mb reference sequence of wheat chromosome 3B provided us with the opportunity to explore the impact of TEs on the complex wheat genome structure and evolution at a resolution and scale not reached so far. RESULTS We develop an automated workflow, CLARI-TE, for TE modeling in complex genomes. We delineate precisely 56,488 intact and 196,391 fragmented TEs along the 3B pseudomolecule, accounting for 85% of the sequence, and reconstruct 30,199 nested insertions. TEs have been mostly silent for the last one million years, and the 3B chromosome has been shaped by a succession of bursts that occurred between 1 to 3 million years ago. Accelerated TE elimination in the high-recombination distal regions is a driving force towards chromosome partitioning. CACTAs overrepresented in the high-recombination distal regions are significantly associated with recently duplicated genes. In addition, we identify 140 CACTA-mediated gene capture events with 17 genes potentially created by exon shuffling and show that 19 captured genes are transcribed and under selection pressure, suggesting the important role of CACTAs in the recent wheat adaptation. CONCLUSION Accurate TE modeling uncovers the dynamics of TEs in a highly complex and polyploid genome. It provides novel insights into chromosome partitioning and highlights the role of CACTA transposons in the high level of gene duplication in wheat.
Collapse
Affiliation(s)
- Josquin Daron
- />INRA UMR1095 Genetics, Diversity and Ecophysiology of Cereals, 5 chemin de Beaulieu, 63039 Clermont-Ferrand, France
- />University Blaise Pascal UMR1095 Genetics, Diversity and Ecophysiology of Cereals, 5 chemin de Beaulieu, 63039 Clermont-Ferrand, France
| | - Natasha Glover
- />INRA UMR1095 Genetics, Diversity and Ecophysiology of Cereals, 5 chemin de Beaulieu, 63039 Clermont-Ferrand, France
- />University Blaise Pascal UMR1095 Genetics, Diversity and Ecophysiology of Cereals, 5 chemin de Beaulieu, 63039 Clermont-Ferrand, France
| | - Lise Pingault
- />INRA UMR1095 Genetics, Diversity and Ecophysiology of Cereals, 5 chemin de Beaulieu, 63039 Clermont-Ferrand, France
- />University Blaise Pascal UMR1095 Genetics, Diversity and Ecophysiology of Cereals, 5 chemin de Beaulieu, 63039 Clermont-Ferrand, France
| | - Sébastien Theil
- />INRA UMR1095 Genetics, Diversity and Ecophysiology of Cereals, 5 chemin de Beaulieu, 63039 Clermont-Ferrand, France
- />University Blaise Pascal UMR1095 Genetics, Diversity and Ecophysiology of Cereals, 5 chemin de Beaulieu, 63039 Clermont-Ferrand, France
| | - Véronique Jamilloux
- />INRA-URGI, Centre de Versailles, Route de Saint Cyr, 78026 Versailles, France
| | - Etienne Paux
- />INRA UMR1095 Genetics, Diversity and Ecophysiology of Cereals, 5 chemin de Beaulieu, 63039 Clermont-Ferrand, France
- />University Blaise Pascal UMR1095 Genetics, Diversity and Ecophysiology of Cereals, 5 chemin de Beaulieu, 63039 Clermont-Ferrand, France
| | - Valérie Barbe
- />CEA/DSV/IG/Genoscope, 2 rue Gaston Cremieux, 91000 Evry, France
| | - Sophie Mangenot
- />CEA/DSV/IG/Genoscope, 2 rue Gaston Cremieux, 91000 Evry, France
| | - Adriana Alberti
- />CEA/DSV/IG/Genoscope, 2 rue Gaston Cremieux, 91000 Evry, France
| | - Patrick Wincker
- />CEA/DSV/IG/Genoscope, 2 rue Gaston Cremieux, 91000 Evry, France
- />CNRS UMR 8030, 2 rue Gaston Crémieux, 91000 Evry, France
- />Université d’Evry, P5706 Evry, France
| | - Hadi Quesneville
- />INRA-URGI, Centre de Versailles, Route de Saint Cyr, 78026 Versailles, France
| | - Catherine Feuillet
- />INRA UMR1095 Genetics, Diversity and Ecophysiology of Cereals, 5 chemin de Beaulieu, 63039 Clermont-Ferrand, France
- />University Blaise Pascal UMR1095 Genetics, Diversity and Ecophysiology of Cereals, 5 chemin de Beaulieu, 63039 Clermont-Ferrand, France
| | - Frédéric Choulet
- />INRA UMR1095 Genetics, Diversity and Ecophysiology of Cereals, 5 chemin de Beaulieu, 63039 Clermont-Ferrand, France
- />University Blaise Pascal UMR1095 Genetics, Diversity and Ecophysiology of Cereals, 5 chemin de Beaulieu, 63039 Clermont-Ferrand, France
| |
Collapse
|
44
|
Chromosomal distribution of a new centromeric Ty3-gypsy retrotransposon sequence in Dasypyrum and related Triticeae species. J Genet 2013; 91:343-8. [PMID: 23271019 DOI: 10.1007/s12041-012-0181-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
45
|
Hassan NM, El-Bastawisy ZM, El-Sayed AK, Ebeed HT, Nemat Alla MM. Roles of dehydrin genes in wheat tolerance to drought stress. J Adv Res 2013; 6:179-88. [PMID: 25750752 PMCID: PMC4348445 DOI: 10.1016/j.jare.2013.11.004] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2013] [Revised: 11/14/2013] [Accepted: 11/15/2013] [Indexed: 01/24/2023] Open
Abstract
Physiological parameters and expression levels of drought related genes were analyzed in early vegetative stage of two bread wheat cultivars (Sids and Gmiza) differ in drought tolerance capacity. Both cultivars were imposed to gradual water depletion started on day 17 till day 32 after sowing. Sids, the more tolerant cultivar to drought showed higher fresh and dry weights than the drought sensitive genotype, Gmiza. Under water stress, Sids had higher membrane stability index (MSI), lower accumulated H2O2 and higher activity of the antioxidant enzymes; catalase (CAT), guaiacol peroxidase (GPX), ascorbate peroxidase (APX) and superoxide dismutase (SOD) than Gmiza. On the other hand, the differential expression patterns of the genes dhn, wcor and dreb were observed due to water deficit intensity according to cultivar’s tolerance to drought. The DNA sequence alignment of dun showed high similarity of about 80–92% identities with other related plants. The most striking overall observed trend was the highly induction in the expression of dun, wcor and dreb in leaves of the tolerant genotype, Sids under severe water stress.
Collapse
Affiliation(s)
- Nemat M Hassan
- Botany Department, Faculty of Science, Damietta University, Egypt
| | | | | | - Heba T Ebeed
- Botany Department, Faculty of Science, Damietta University, Egypt
| | | |
Collapse
|
46
|
Kurtoglu KY, Kantar M, Lucas SJ, Budak H. Unique and conserved microRNAs in wheat chromosome 5D revealed by next-generation sequencing. PLoS One 2013; 8:e69801. [PMID: 23936103 PMCID: PMC3720673 DOI: 10.1371/journal.pone.0069801] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2013] [Accepted: 06/12/2013] [Indexed: 11/18/2022] Open
Abstract
MicroRNAs are a class of short, non-coding, single-stranded RNAs that act as post-transcriptional regulators in gene expression. miRNA analysis of Triticum aestivum chromosome 5D was performed on 454 GS FLX Titanium sequences of flow-sorted chromosome 5D with a total of 3,208,630 good quality reads representing 1.34x and 1.61x coverage of the short (5DS) and long (5DL) arms of the chromosome respectively. In silico and structural analyses revealed a total of 55 miRNAs; 48 and 42 miRNAs were found to be present on 5DL and 5DS respectively, of which 35 were common to both chromosome arms, while 13 miRNAs were specific to 5DL and 7 miRNAs were specific to 5DS. In total, 14 of the predicted miRNAs were identified in wheat for the first time. Representation (the copy number of each miRNA) was also found to be higher in 5DL (1,949) compared to 5DS (1,191). Targets were predicted for each miRNA, while expression analysis gave evidence of expression for 6 out of 55 miRNAs. Occurrences of the same miRNAs were also found in Brachypodium distachyon and Oryza sativa genome sequences to identify syntenic miRNA coding sequences. Based on this analysis, two other miRNAs: miR1133 and miR167 were detected in B. distachyon syntenic region of wheat 5DS. Five of the predicted miRNA coding regions (miR6220, miR5070, miR169, miR5085, miR2118) were experimentally verified to be located to the 5D chromosome and three of them : miR2118, miR169 and miR5085, were shown to be 5D specific. Furthermore miR2118 was shown to be expressed in Chinese Spring adult leaves. miRNA genes identified in this study will expand our understanding of gene regulation in bread wheat.
Collapse
Affiliation(s)
| | - Melda Kantar
- Faculty of Engineering and Natural Sciences, Sabanci University, Orhanlı, Tuzla, Istanbul, Turkey
| | - Stuart J. Lucas
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Sabanci University, Tuzla, Istanbul, Turkey
| | - Hikmet Budak
- Faculty of Engineering and Natural Sciences, Sabanci University, Orhanlı, Tuzla, Istanbul, Turkey
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Sabanci University, Tuzla, Istanbul, Turkey
- * E-mail:
| |
Collapse
|
47
|
Bento M, Tomás D, Viegas W, Silva M. Retrotransposons represent the most labile fraction for genomic rearrangements in polyploid plant species. Cytogenet Genome Res 2013; 140:286-94. [PMID: 23899810 DOI: 10.1159/000353308] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Understanding how increased genome size and diversity within polyploid genomes impacts plant evolution and breeding continues to be challenging. Although historical studies by McClintock suggested the importance of transposable elements mediated by polyploidisation on genomic changes, data from plant crosses remain scarce. Despite the absence of a conclusive proof regarding autonomous retrotransposon movement in synthetic allopolyploids, the transposition of retrotransposons and their ubiquitous dispersion in all plant species might explain the positive correlation between the genome size of plants and the prevalence of retrotransposons. Here, we address polyploidisation-mediated rearrangements of retrotransposon-associated sequences and discuss a tendency for a preferential restructuring of large ancestral genomes after polyploidisation. A comparative analysis of the frequency of modifications of retrotransposon-associated sequences in synthetic polyploids with marked differences in genome sizes is presented. Such analyses suggest the absence of a significant difference in the rates of rearrangements despite vast dissimilarities in the retrotransposon copy number between species, which emphasises the high plasticity of this genomic feature. See also the sister article focusing on animals by Arkhipova and Rodriguez in this themed issue.
Collapse
Affiliation(s)
- M Bento
- Centro de Botânica Aplicada à Agricultura, Secção de Genética, Instituto Superior de Agronomia, Universidade Técnica de Lisboa, Lisboa, Portugal
| | | | | | | |
Collapse
|
48
|
Bonchev G, Parisod C. Transposable elements and microevolutionary changes in natural populations. Mol Ecol Resour 2013; 13:765-75. [DOI: 10.1111/1755-0998.12133] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2013] [Revised: 05/31/2013] [Accepted: 06/04/2013] [Indexed: 11/27/2022]
Affiliation(s)
- Georgi Bonchev
- Laboratory of evolutionary botany Institute of biology University of Neuchâtel Rue Emile‐Argand 11 CH‐2000 Neuchâtel Switzerland
- Institute of plant physiology and genetics Bulgarian academy of sciences G. Bonchev Street, Bldg 24 Sofia 1113 Bulgaria
| | - Christian Parisod
- Laboratory of evolutionary botany Institute of biology University of Neuchâtel Rue Emile‐Argand 11 CH‐2000 Neuchâtel Switzerland
| |
Collapse
|
49
|
A 4-gigabase physical map unlocks the structure and evolution of the complex genome of Aegilops tauschii, the wheat D-genome progenitor. Proc Natl Acad Sci U S A 2013; 110:7940-5. [PMID: 23610408 DOI: 10.1073/pnas.1219082110] [Citation(s) in RCA: 178] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The current limitations in genome sequencing technology require the construction of physical maps for high-quality draft sequences of large plant genomes, such as that of Aegilops tauschii, the wheat D-genome progenitor. To construct a physical map of the Ae. tauschii genome, we fingerprinted 461,706 bacterial artificial chromosome clones, assembled contigs, designed a 10K Ae. tauschii Infinium SNP array, constructed a 7,185-marker genetic map, and anchored on the map contigs totaling 4.03 Gb. Using whole genome shotgun reads, we extended the SNP marker sequences and found 17,093 genes and gene fragments. We showed that collinearity of the Ae. tauschii genes with Brachypodium distachyon, rice, and sorghum decreased with phylogenetic distance and that structural genome evolution rates have been high across all investigated lineages in subfamily Pooideae, including that of Brachypodieae. We obtained additional information about the evolution of the seven Triticeae chromosomes from 12 ancestral chromosomes and uncovered a pattern of centromere inactivation accompanying nested chromosome insertions in grasses. We showed that the density of noncollinear genes along the Ae. tauschii chromosomes positively correlates with recombination rates, suggested a cause, and showed that new genes, exemplified by disease resistance genes, are preferentially located in high-recombination chromosome regions.
Collapse
|
50
|
Belova T, Zhan B, Wright J, Caccamo M, Asp T, Simková H, Kent M, Bendixen C, Panitz F, Lien S, Doležel J, Olsen OA, Sandve SR. Integration of mate pair sequences to improve shotgun assemblies of flow-sorted chromosome arms of hexaploid wheat. BMC Genomics 2013; 14:222. [PMID: 23557231 PMCID: PMC3622640 DOI: 10.1186/1471-2164-14-222] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2012] [Accepted: 03/22/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The assembly of the bread wheat genome sequence is challenging due to allohexaploidy and extreme repeat content (>80%). Isolation of single chromosome arms by flow sorting can be used to overcome the polyploidy problem, but the repeat content cause extreme assembly fragmentation even at a single chromosome level. Long jump paired sequencing data (mate pairs) can help reduce assembly fragmentation by joining multiple contigs into single scaffolds. The aim of this work was to assess how mate pair data generated from multiple displacement amplified DNA of flow-sorted chromosomes affect assembly fragmentation of shotgun assemblies of the wheat chromosomes. RESULTS Three mate pair (MP) libraries (2 Kb, 3 Kb, and 5 Kb) were sequenced to a total coverage of 89x and 64x for the short and long arm of chromosome 7B, respectively. Scaffolding using SSPACE improved the 7B assembly contiguity and decreased gene space fragmentation, but the degree of improvement was greatly affected by scaffolding stringency applied. At the lowest stringency the assembly N50 increased by ~7 fold, while at the highest stringency N50 was only increased by ~1.5 fold. Furthermore, a strong positive correlation between estimated scaffold reliability and scaffold assembly stringency was observed. A 7BS scaffold assembly with reduced MP coverage proved that assembly contiguity was affected only to a small degree down to ~50% of the original coverage. CONCLUSION The effect of MP data integration into pair end shotgun assemblies of wheat chromosome was moderate; possibly due to poor contig assembly contiguity, the extreme repeat content of wheat, and the use of amplified chromosomal DNA for MP library construction.
Collapse
Affiliation(s)
- Tatiana Belova
- Department of Plant and Environmental Sciences, University of Life Sciences, Ås, Norway
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|