1
|
Abstract
New crops are gradually establishing along with cultivation systems to reduce reliance on depleting fossil fuel reserves and sustain better adaptation to climate change. These biological assets could be efficiently exploited as bioenergy feedstocks. Bioenergy crops are versatile renewable sources with the potential to alternatively contribute on a daily basis towards the coverage of modern society's energy demands. Biotechnology may facilitate the breeding of elite energy crop genotypes, better suited for bio-processing and subsequent use that will improve efficiency, further reduce costs, and enhance the environmental benefits of biofuels. Innovative molecular techniques may improve a broad range of important features including biomass yield, product quality and resistance to biotic factors like pests or microbial diseases or environmental cues such as drought, salinity, freezing injury or heat shock. The current review intends to assess the capacity of biotechnological applications to develop a beneficial bioenergy pipeline extending from feedstock development to sustainable biofuel production and provide examples of the current state of the art on future energy crops.
Collapse
|
2
|
Derba-Maceluch M, Awano T, Takahashi J, Lucenius J, Ratke C, Kontro I, Busse-Wicher M, Kosik O, Tanaka R, Winzéll A, Kallas Å, Leśniewska J, Berthold F, Immerzeel P, Teeri TT, Ezcurra I, Dupree P, Serimaa R, Mellerowicz EJ. Suppression of xylan endotransglycosylase PtxtXyn10A affects cellulose microfibril angle in secondary wall in aspen wood. THE NEW PHYTOLOGIST 2015; 205:666-81. [PMID: 25307149 DOI: 10.1111/nph.13099] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Accepted: 08/25/2014] [Indexed: 05/02/2023]
Abstract
Certain xylanases from family GH10 are highly expressed during secondary wall deposition, but their function is unknown. We carried out functional analyses of the secondary-wall specific PtxtXyn10A in hybrid aspen (Populus tremula × tremuloides). PtxtXyn10A function was analysed by expression studies, overexpression in Arabidopsis protoplasts and by downregulation in aspen. PtxtXyn10A overexpression in Arabidopsis protoplasts resulted in increased xylan endotransglycosylation rather than hydrolysis. In aspen, the enzyme was found to be proteolytically processed to a 68 kDa peptide and residing in cell walls. Its downregulation resulted in a corresponding decrease in xylan endotransglycosylase activity and no change in xylanase activity. This did not alter xylan molecular weight or its branching pattern but affected the cellulose-microfibril angle in wood fibres, increased primary growth (stem elongation, leaf formation and enlargement) and reduced the tendency to form tension wood. Transcriptomes of transgenic plants showed downregulation of tension wood related genes and changes in stress-responsive genes. The data indicate that PtxtXyn10A acts as a xylan endotransglycosylase and its main function is to release tensional stresses arising during secondary wall deposition. Furthermore, they suggest that regulation of stresses in secondary walls plays a vital role in plant development.
Collapse
Affiliation(s)
- Marta Derba-Maceluch
- Department of Forest Genetics and Plant Physiology, SLU, Umeå Plant Science Centre (UPSC), Umeå, Sweden
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
3
|
Srivastava V, Obudulu O, Bygdell J, Löfstedt T, Rydén P, Nilsson R, Ahnlund M, Johansson A, Jonsson P, Freyhult E, Qvarnström J, Karlsson J, Melzer M, Moritz T, Trygg J, Hvidsten TR, Wingsle G. OnPLS integration of transcriptomic, proteomic and metabolomic data shows multi-level oxidative stress responses in the cambium of transgenic hipI- superoxide dismutase Populus plants. BMC Genomics 2013; 14:893. [PMID: 24341908 PMCID: PMC3878592 DOI: 10.1186/1471-2164-14-893] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Accepted: 11/27/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Reactive oxygen species (ROS) are involved in the regulation of diverse physiological processes in plants, including various biotic and abiotic stress responses. Thus, oxidative stress tolerance mechanisms in plants are complex, and diverse responses at multiple levels need to be characterized in order to understand them. Here we present system responses to oxidative stress in Populus by integrating data from analyses of the cambial region of wild-type controls and plants expressing high-isoelectric-point superoxide dismutase (hipI-SOD) transcripts in antisense orientation showing a higher production of superoxide. The cambium, a thin cell layer, generates cells that differentiate to form either phloem or xylem and is hypothesized to be a major reason for phenotypic perturbations in the transgenic plants. Data from multiple platforms including transcriptomics (microarray analysis), proteomics (UPLC/QTOF-MS), and metabolomics (GC-TOF/MS, UPLC/MS, and UHPLC-LTQ/MS) were integrated using the most recent development of orthogonal projections to latent structures called OnPLS. OnPLS is a symmetrical multi-block method that does not depend on the order of analysis when more than two blocks are analysed. Significantly affected genes, proteins and metabolites were then visualized in painted pathway diagrams. RESULTS The main categories that appear to be significantly influenced in the transgenic plants were pathways related to redox regulation, carbon metabolism and protein degradation, e.g. the glycolysis and pentose phosphate pathways (PPP). The results provide system-level information on ROS metabolism and responses to oxidative stress, and indicate that some initial responses to oxidative stress may share common pathways. CONCLUSION The proposed data evaluation strategy shows an efficient way of compiling complex, multi-platform datasets to obtain significant biological information.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Gunnar Wingsle
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, SE-90183 Umeå, Sweden.
| |
Collapse
|
4
|
Ranade SS, Abrahamsson S, Niemi J, García-Gil MR. <i>Pinus taeda</i> cDNA Microarray as a Tool for Candidate Gene Identification for Local Red/Far-Red Light Adaptive Response in <i>Pinus sylvestris</i>. ACTA ACUST UNITED AC 2013. [DOI: 10.4236/ajps.2013.43061] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
5
|
Jin H, Do J, Moon D, Noh EW, Kim W, Kwon M. EST analysis of functional genes associated with cell wall biosynthesis and modification in the secondary xylem of the yellow poplar (Liriodendron tulipifera) stem during early stage of tension wood formation. PLANTA 2011; 234:959-77. [PMID: 21688015 DOI: 10.1007/s00425-011-1449-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2011] [Accepted: 05/20/2011] [Indexed: 05/07/2023]
Abstract
A cDNA library was constructed from secondary xylem in the stem of a 2-year-old yellow poplar after being bent for 6 h with a 45° configuration to isolate genes related to cell wall modification during the early stages of tension wood formation. A total of 6,141 ESTs were sequenced to generate a database of 5,982 high-quality expressed sequence tags (ESTs). These sequences were clustered into 1,733 unigenes, including 822 contigs and 911 singletons. Homologs of the genes regulate many aspects of secondary xylem development, including those for primary and secondary metabolism, plant growth hormones, transcription factors, cell wall biosynthesis and modification, and stress responses. Although there were only 1,733 annotated ESTs (28.9%), the annotated ESTs obtained in this study provided sequences for a broad array of transcripts expressed in the stem upon mechanical bending, and the majority of them were the first representatives of their respective gene families in Liriodendron tulipifera. In the case of lignin, xylem-specific COMTs were identified and their expressions were significantly downregulated in the tension wood-forming tissues. Additionally, the majority of the auxin- and BR-related genes were downregulated significantly in response to mechanical bending treatment. Despite the small number of ESTs sequenced in this study, many genes that are relevant to cell wall biosynthesis and modification have been isolated. Expression analysis of selected genes allow us to identify the regulatory genes that may perform essential functions during the early stages of tension wood formation and associated cell wall modification.
Collapse
Affiliation(s)
- Hyunjung Jin
- Division of Biotechnology, Korea University, Seoul, 136-713, Korea
| | | | | | | | | | | |
Collapse
|
6
|
Barakat A, Yassin NBM, Park JS, Choi A, Herr J, Carlson JE. Comparative and phylogenomic analyses of cinnamoyl-CoA reductase and cinnamoyl-CoA-reductase-like gene family in land plants. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2011; 181:249-57. [PMID: 21763535 DOI: 10.1016/j.plantsci.2011.05.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2011] [Revised: 05/16/2011] [Accepted: 05/17/2011] [Indexed: 05/08/2023]
Abstract
The biosynthesis of monolignols, the main components of lignin, involves many intermediates and enzymes. The cinnamoyl-CoA reductase (CCR) enzyme catalyzes the conversion of cinnamoyl-CoAs to cinnamaldehydes, i.e. the first specific step in lignin synthesis. The CCR and CCR-like gene family was studied partially in several plant species. This is a comprehensive study of the CCR and CCR-like gene family including genome organization, gene structure, phylogeny across land plant species, and, expression profiling in Populus. Analysis of amino acid motifs enabled the identification of sequence variations in the CCR catalytic site and annotates CCR and CCR-like genes. CCR and CCR-like genes were distributed in three major phylogenetic classes of which one includes the bona fide CCR genes. The other two classes include CCR and CCR-like, of which several genes present a high similarity to cinnamyl alcohol dehydrogenase, or dihydroflavonol reductase (DFR) genes. All CCR, CCR-like, and DFR classes were deeply rooted in the phylogeny of land plants suggesting that their evolution preceded the evolution of lycophytes. Over two thirds of CCR and CCR-like Populus genes were physically distributed on duplicated regions. This suggests that these duplication/retention processes contributed significantly to the size of the CCR and CCR-like gene family. The Populus CCR and CCR-like genes showed six expression patterns in the tissues studied with a preferential expression of PoptrCCR12 in xylem. The other genes present divergent expression profiles with some preferentially expressed in leaves, bark, or both. Several CCR and CCR-like genes were induced or repressed under various abiotic stresses suggesting that their duplication was followed by the evolution of divergent expression profiles and divergence of functions.
Collapse
Affiliation(s)
- Abdelali Barakat
- The Department of Bioenergy Science & Technology. Chonnam National University, Buk-Gu, Gwangju, 500-757, Republic of Korea.
| | | | | | | | | | | |
Collapse
|
7
|
Comparative genomics and evolutionary analyses of the O-methyltransferase gene family in Populus. Gene 2011; 479:37-46. [PMID: 21338660 DOI: 10.1016/j.gene.2011.02.008] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2011] [Revised: 02/07/2011] [Accepted: 02/13/2011] [Indexed: 11/22/2022]
Abstract
S-adenosyl-l-methionine (SAM) dependent O-methyltransferases (OMTs) proteins are involved in the methylation of various secondary metabolites. The OMT genes have been studied in various plants, but these studies focused either on a single or a small set of genes. Moreover, no comprehensive study was published yet on the OMT gene family in a tree species. To investigate the evolutionary history of this gene family and the functional diversification of its members, phylogenetic and several comparative genomics analyses were performed. Phylogeny across land plant lineages showed that OMT genes were distributed in two main classes deeply rooted in the phylogeny of land plants, suggesting that they have evolved by a gene duplication that had happen in the ancestor of land plants. COMT and COMT-like genes were clustering with few flavonoid and multifunctional OMT genes in class II. Class I included flavonoid, simple phenol, and multifunctional OMT genes. All 26 Populus OMT genes were located in segmental duplication blocks and two third of them were tandem duplicated, indicating the role of duplication processes in the expansion of this gene family. Expression profiling of OMT genes in Populus showed that only PoptrOMT25 was differentially expressed in xylem. The other genes were differentially expressed in leaves, bark, or both. Some OMT genes showed differential expression patterns under various biotic and abiotic stresses. The divergence of protein sequences, the phylogenetic distribution, and the expression of COMT and COMT-like genes suggest that they have evolved different functions or tissue specificities following duplications.
Collapse
|
8
|
Activity-dormancy transition in the cambial meristem involves stage-specific modulation of auxin response in hybrid aspen. Proc Natl Acad Sci U S A 2011; 108:3418-23. [PMID: 21289280 DOI: 10.1073/pnas.1011506108] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The molecular basis of short-day-induced growth cessation and dormancy in the meristems of perennial plants (e.g., forest trees growing in temperate and high-latitude regions) is poorly understood. Using global transcript profiling, we show distinct stage-specific alterations in auxin responsiveness of the transcriptome in the stem tissues during short-day-induced growth cessation and both the transition to and establishment of dormancy in the cambial meristem of hybrid aspen trees. This stage-specific modulation of auxin signaling appears to be controlled via distinct mechanisms. Whereas the induction of growth cessation in the cambium could involve induction of repressor auxin response factors (ARFs) and down-regulation of activator ARFs, dormancy is associated with perturbation of the activity of the SKP-Cullin-F-box(TIR) (SCF(TIR)) complex, leading to potential stabilization of repressor auxin (AUX)/indole-3-acetic acid (IAA) proteins. Although the role of hormones, such as abscisic acid (ABA) and gibberellic acid (GA), in growth cessation and dormancy is well established, our data now implicate auxin in this process. Importantly, in contrast to most developmental processes in which regulation by auxin involves changes in cellular auxin contents, day-length-regulated induction of cambial growth cessation and dormancy involves changes in auxin responses rather than auxin content.
Collapse
|
9
|
Street NR, Jansson S, Hvidsten TR. A systems biology model of the regulatory network in Populus leaves reveals interacting regulators and conserved regulation. BMC PLANT BIOLOGY 2011; 11:13. [PMID: 21232107 PMCID: PMC3030533 DOI: 10.1186/1471-2229-11-13] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2010] [Accepted: 01/13/2011] [Indexed: 05/23/2023]
Abstract
BACKGROUND Green plant leaves have always fascinated biologists as hosts for photosynthesis and providers of basic energy to many food webs. Today, comprehensive databases of gene expression data enable us to apply increasingly more advanced computational methods for reverse-engineering the regulatory network of leaves, and to begin to understand the gene interactions underlying complex emergent properties related to stress-response and development. These new systems biology methods are now also being applied to organisms such as Populus, a woody perennial tree, in order to understand the specific characteristics of these species. RESULTS We present a systems biology model of the regulatory network of Populus leaves. The network is reverse-engineered from promoter information and expression profiles of leaf-specific genes measured over a large set of conditions related to stress and developmental. The network model incorporates interactions between regulators, such as synergistic and competitive relationships, by evaluating increasingly more complex regulatory mechanisms, and is therefore able to identify new regulators of leaf development not found by traditional genomics methods based on pair-wise expression similarity. The approach is shown to explain available gene function information and to provide robust prediction of expression levels in new data. We also use the predictive capability of the model to identify condition-specific regulation as well as conserved regulation between Populus and Arabidopsis. CONCLUSIONS We outline a computationally inferred model of the regulatory network of Populus leaves, and show how treating genes as interacting, rather than individual, entities identifies new regulators compared to traditional genomics analysis. Although systems biology models should be used with care considering the complexity of regulatory programs and the limitations of current genomics data, methods describing interactions can provide hypotheses about the underlying cause of emergent properties and are needed if we are to identify target genes other than those constituting the "low hanging fruit" of genomic analysis.
Collapse
Affiliation(s)
- Nathaniel Robert Street
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, 901 87 Umeå, Sweden
| | - Stefan Jansson
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, 901 87 Umeå, Sweden
| | - Torgeir R Hvidsten
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, 901 87 Umeå, Sweden
- Computational Life Science Cluster (CLiC), Umeå University, 901 87 Umeå, Sweden
| |
Collapse
|
10
|
Cohen D, Bogeat-Triboulot MB, Tisserant E, Balzergue S, Martin-Magniette ML, Lelandais G, Ningre N, Renou JP, Tamby JP, Le Thiec D, Hummel I. Comparative transcriptomics of drought responses in Populus: a meta-analysis of genome-wide expression profiling in mature leaves and root apices across two genotypes. BMC Genomics 2010; 11:630. [PMID: 21073700 PMCID: PMC3091765 DOI: 10.1186/1471-2164-11-630] [Citation(s) in RCA: 116] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2010] [Accepted: 11/12/2010] [Indexed: 12/18/2022] Open
Abstract
Background Comparative genomics has emerged as a promising means of unravelling the molecular networks underlying complex traits such as drought tolerance. Here we assess the genotype-dependent component of the drought-induced transcriptome response in two poplar genotypes differing in drought tolerance. Drought-induced responses were analysed in leaves and root apices and were compared with available transcriptome data from other Populus species. Results Using a multi-species designed microarray, a genomic DNA-based selection of probesets provided an unambiguous between-genotype comparison. Analyses of functional group enrichment enabled the extraction of processes physiologically relevant to drought response. The drought-driven changes in gene expression occurring in root apices were consistent across treatments and genotypes. For mature leaves, the transcriptome response varied weakly but in accordance with the duration of water deficit. A differential clustering algorithm revealed similar and divergent gene co-expression patterns among the two genotypes. Since moderate stress levels induced similar physiological responses in both genotypes, the genotype-dependent transcriptional responses could be considered as intrinsic divergences in genome functioning. Our meta-analysis detected several candidate genes and processes that are differentially regulated in root and leaf, potentially under developmental control, and preferentially involved in early and long-term responses to drought. Conclusions In poplar, the well-known drought-induced activation of sensing and signalling cascades was specific to the early response in leaves but was found to be general in root apices. Comparing our results to what is known in arabidopsis, we found that transcriptional remodelling included signalling and a response to energy deficit in roots in parallel with transcriptional indices of hampered assimilation in leaves, particularly in the drought-sensitive poplar genotype.
Collapse
Affiliation(s)
- David Cohen
- INRA, Nancy Université, UMR1137 Ecologie et Ecophysiologie Forestières, IFR 110 EFABA, F-54280 Champenoux, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Resman L, Howe G, Jonsen D, Englund M, Druart N, Schrader J, Antti H, Skinner J, Sjödin A, Chen T, Bhalerao RP. Components acting downstream of short day perception regulate differential cessation of cambial activity and associated responses in early and late clones of hybrid poplar. PLANT PHYSIOLOGY 2010; 154:1294-303. [PMID: 20847139 PMCID: PMC2971607 DOI: 10.1104/pp.110.163907] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2010] [Accepted: 09/15/2010] [Indexed: 05/20/2023]
Abstract
Short days (SDs) in autumn induce growth cessation, bud set, cold acclimation, and dormancy in trees of boreal and temperate forests, and these responses occur earlier in northern than in southern genotypes. Nevertheless, we know little about whether this variation results from differential perception of SDs or differential downstream responses to the SD signal or a combination of the two. We compared global patterns of SD-regulated gene expression in the stems of hybrid poplar (Populus trichocarpa × Populus deltoides) clones that differ in their SD-induced growth cessation in order to address this question. The timing of cessation of cambial cell division caused by SDs differed between the clones and was coincident with the change in the pattern of expression of the auxin-regulated genes. The clones also differed in the timing of their SD-regulated changes in the transcript abundance of genes associated with cold tolerance, starch breakdown, and storage protein accumulation. By analyzing the expression of homologs of FLOWERING LOCUS T, we demonstrated that the clones differed little in their perception of SDs under the growth conditions applied but differed substantially in the downstream responses manifested in the timing and magnitude of gene expression after SD treatment. These results demonstrate the existence of factors that act downstream of SD perception and can contribute to variation in SD-regulated adaptive photoperiodic responses in trees.
Collapse
|
12
|
Hu R, Qi G, Kong Y, Kong D, Gao Q, Zhou G. Comprehensive analysis of NAC domain transcription factor gene family in Populus trichocarpa. BMC PLANT BIOLOGY 2010; 10:145. [PMID: 20630103 PMCID: PMC3017804 DOI: 10.1186/1471-2229-10-145] [Citation(s) in RCA: 281] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2010] [Accepted: 07/15/2010] [Indexed: 05/18/2023]
Abstract
BACKGROUND NAC (NAM, ATAF1/2 and CUC2) domain proteins are plant-specific transcriptional factors known to play diverse roles in various plant developmental processes. NAC transcription factors comprise of a large gene family represented by more than 100 members in Arabidopsis, rice and soybean etc. Recently, a preliminary phylogenetic analysis was reported for NAC gene family from 11 plant species. However, no comprehensive study incorporating phylogeny, chromosomal location, gene structure, conserved motifs, and expression profiling analysis has been presented thus far for the model tree species Populus. RESULTS In the present study, a comprehensive analysis of NAC gene family in Populus was performed. A total of 163 full-length NAC genes were identified in Populus, and they were phylogenetically clustered into 18 distinct subfamilies. The gene structure and motif compositions were considerably conserved among the subfamilies. The distributions of 120 Populus NAC genes were non-random across the 19 linkage groups (LGs), and 87 genes (73%) were preferentially retained duplicates that located in both duplicated regions. The majority of NACs showed specific temporal and spatial expression patterns based on EST frequency and microarray data analyses. However, the expression patterns of a majority of duplicate genes were partially redundant, suggesting the occurrence of subfunctionalization during subsequent evolutionary process. Furthermore, quantitative real-time RT-PCR (RT-qPCR) was performed to confirm the tissue-specific expression patterns of 25 NAC genes. CONCLUSION Based on the genomic organizations, we can conclude that segmental duplications contribute significantly to the expansion of Populus NAC gene family. The comprehensive expression profiles analysis provides first insights into the functional divergence among members in NAC gene family. In addition, the high divergence rate of expression patterns after segmental duplications indicates that NAC genes in Populus are likewise to have been retained by substantial subfunctionalization. Taken together, our results presented here would be helpful in laying the foundation for functional characterization of NAC gene family and further gaining an understanding of the structure-function relationship between these family members.
Collapse
Affiliation(s)
- Ruibo Hu
- Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, PR China
| | - Guang Qi
- Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, PR China
| | - Yingzhen Kong
- Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, PR China
- Current address: Complex Carbohydrate Research Center, The University of Georgia, 315 Riverbend Road, Athens, GA 30602, USA
| | - Dejing Kong
- Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, PR China
| | - Qian Gao
- Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, PR China
| | - Gongke Zhou
- Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, PR China
| |
Collapse
|
13
|
Zhang D, Du Q, Xu B, Zhang Z, Li B. The actin multigene family in Populus: organization, expression and phylogenetic analysis. Mol Genet Genomics 2010; 284:105-19. [PMID: 20577761 DOI: 10.1007/s00438-010-0552-5] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2009] [Accepted: 06/13/2010] [Indexed: 11/30/2022]
Abstract
Despite the significance of actin in plant growth and development, little is known of the structure, expression and evolution of the actin gene family in woody plants. In this study, we systematically examined the diversification of the actin gene family in Populus by integrating genomic organization, expression, and phylogeny data. Genome-wide analysis of the Populus genome indicated that actin is a multigene family consisting of eight members, all predicted to encode 377-amino acid polypeptides that share high sequence homology ranging from 94.2 to 100% identity. Microarray and real-time PCR expression analysis showed that the PtrACT family members are differentially expressed in different tissues, exhibiting overlapping and unique expression patterns. Of particular interest, all PtrACT genes have been found to be preferentially expressed in the stem phloem and xylem, suggesting that poplar PtrACTs are involved in the wood formation. Gene structural and phylogenetic analyses revealed that the PtrACT family is composed of two main subgroups that share an ancient common ancestor. Extremely high intraspecies synonymous nucleotide diversity of pi(syn) = 0.01205 was detected, and the pi(non-syn)/pi(syn) ratio was significantly less than 1; therefore, the PtACT1 appears to be evolving in Populus, primarily under purifying selection. We demonstrated that the actin gene family in Populus is divided into two distinct subgroups, suggesting functional divergence. The results reported here will be useful in conducting future functional genomics studies to understand the detailed function of actin genes in tree growth and development.
Collapse
Affiliation(s)
- Deqiang Zhang
- National Engineering Laboratory for Tree Breeding, Beijing Forestry University, Beijing 100083, People's Republic of China.
| | | | | | | | | |
Collapse
|
14
|
Barakat A, Bagniewska-Zadworna A, Frost CJ, Carlson JE. Phylogeny and expression profiling of CAD and CAD-like genes in hybrid Populus (P. deltoides x P. nigra): evidence from herbivore damage for subfunctionalization and functional divergence. BMC PLANT BIOLOGY 2010; 10:100. [PMID: 20509918 PMCID: PMC2887455 DOI: 10.1186/1471-2229-10-100] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2010] [Accepted: 05/28/2010] [Indexed: 05/04/2023]
Abstract
BACKGROUND Cinnamyl Alcohol Dehydrogenase (CAD) proteins function in lignin biosynthesis and play a critical role in wood development and plant defense against stresses. Previous phylogenetic studies did not include genes from seedless plants and did not reflect the deep evolutionary history of this gene family. We reanalyzed the phylogeny of CAD and CAD-like genes using a representative dataset including lycophyte and bryophyte sequences. Many CAD/CAD-like genes do not seem to be associated with wood development under normal growth conditions. To gain insight into the functional evolution of CAD/CAD-like genes, we analyzed their expression in Populus plant tissues in response to feeding damage by gypsy moth larvae (Lymantria dispar L.). Expression of CAD/CAD-like genes in Populus tissues (xylem, leaves, and barks) was analyzed in herbivore-treated and non-treated plants by real time quantitative RT-PCR. RESULTS CAD family genes were distributed in three classes based on sequence conservation. All the three classes are represented by seedless as well as seed plants, including the class of bona fide lignin pathway genes. The expression of some CAD/CAD-like genes that are not associated with xylem development were induced following herbivore damage in leaves, while other genes were induced in only bark or xylem tissues. Five of the CAD/CAD-like genes, however, showed a shift in expression from one tissue to another between non-treated and herbivore-treated plants. Systemic expression of the CAD/CAD-like genes was generally suppressed. CONCLUSIONS Our results indicated a correlation between the evolution of the CAD gene family and lignin and that the three classes of genes may have evolved in the ancestor of land plants. Our results also suggest that the CAD/CAD-like genes have evolved a diversity of expression profiles and potentially different functions, but that they are nonetheless co-regulated under stress conditions.
Collapse
Affiliation(s)
- Abdelali Barakat
- The School of Forest Resources, and The Huck Institutes of the Life Sciences, Pennsylvania State University, 324 Forest Resources Building, University Park, PA 16802, USA
| | - Agnieszka Bagniewska-Zadworna
- Department of General Botany, Institute of Experimental Biology, Adam Mickiewicz University, Umultowska 89, 61-614 Poznań, Poland
| | - Christopher J Frost
- The School of Forest Resources, and The Huck Institutes of the Life Sciences, Pennsylvania State University, 324 Forest Resources Building, University Park, PA 16802, USA
- Center for Chemical Ecology, Pennsylvania State University, University Park, PA 16802, USA
| | - John E Carlson
- The School of Forest Resources, and The Huck Institutes of the Life Sciences, Pennsylvania State University, 324 Forest Resources Building, University Park, PA 16802, USA
| |
Collapse
|
15
|
Albrectsen BR, Björkén L, Varad A, Hagner Å, Wedin M, Karlsson J, Jansson S. Endophytic fungi in European aspen (Populus tremula) leaves—diversity, detection, and a suggested correlation with herbivory resistance. FUNGAL DIVERS 2010. [DOI: 10.1007/s13225-009-0011-y] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
16
|
Gupta AB, Sankararamakrishnan R. Genome-wide analysis of major intrinsic proteins in the tree plant Populus trichocarpa: characterization of XIP subfamily of aquaporins from evolutionary perspective. BMC PLANT BIOLOGY 2009; 9:134. [PMID: 19930558 PMCID: PMC2789079 DOI: 10.1186/1471-2229-9-134] [Citation(s) in RCA: 115] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2008] [Accepted: 11/20/2009] [Indexed: 05/18/2023]
Abstract
BACKGROUND Members of major intrinsic proteins (MIPs) include water-conducting aquaporins and glycerol-transporting aquaglyceroporins. MIPs play important role in plant-water relations. The model plants Arabidopsis thaliana, rice and maize contain more than 30 MIPs and based on phylogenetic analysis they can be divided into at least four subfamilies. Populus trichocarpa is a model tree species and provides an opportunity to investigate several tree-specific traits. In this study, we have investigated Populus MIPs (PtMIPs) and compared them with their counterparts in Arabidopsis, rice and maize. RESULTS Fifty five full-length MIPs have been identified in Populus genome. Phylogenetic analysis reveals that Populus has a fifth uncharacterized subfamily (XIPs). Three-dimensional models of all 55 PtMIPs were constructed using homology modeling technique. Aromatic/arginine (ar/R) selectivity filters, characteristics of loops responsible for solute selectivity (loop C) and gating (loop D) and group conservation of small and weakly polar interfacial residues have been analyzed. Majority of the non-XIP PtMIPs are similar to those in Arabidopsis, rice and maize. Additional XIPs were identified from database search and 35 XIP sequences from dicots, fungi, moss and protozoa were analyzed. Ar/R selectivity filters of dicots XIPs are more hydrophobic compared to fungi and moss XIPs and hence they are likely to transport hydrophobic solutes. Loop C is longer in one of the subgroups of dicot XIPs and most probably has a significant role in solute selectivity. Loop D in dicot XIPs has higher number of basic residues. Intron loss is observed on two occasions: once between two subfamilies of eudicots and monocot and in the second instance, when dicot and moss XIPs diverged from fungi. Expression analysis of Populus MIPs indicates that Populus XIPs don't show any tissue-specific transcript abundance. CONCLUSION Due to whole genome duplication, Populus has the largest number of MIPs identified in any single species. Non-XIP MIPs are similar in all four plant species considered in this study. Small and weakly polar residues at the helix-helix interface are group conserved presumably to maintain the hourglass fold of MIP channels. Substitutions in ar/R selectivity filter, insertion/deletion in loop C, increasing basic nature of loop D and loss of introns are some of the events occurred during the evolution of dicot XIPs.
Collapse
Affiliation(s)
- Anjali Bansal Gupta
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur 208016, India
| | | |
Collapse
|
17
|
Gimeno J, Gadea J, Forment J, Pérez-Valle J, Santiago J, Martínez-Godoy MA, Yenush L, Bellés JM, Brumós J, Colmenero-Flores JM, Talón M, Serrano R. Shared and novel molecular responses of mandarin to drought. PLANT MOLECULAR BIOLOGY 2009; 70:403-20. [PMID: 19290483 DOI: 10.1007/s11103-009-9481-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2008] [Accepted: 03/06/2009] [Indexed: 05/20/2023]
Abstract
Drought is the most important stress experienced by citrus crops. A citrus cDNA microarray of about 6.000 genes has been utilized to identify transcriptomic responses of mandarin to water stress. As observed in other plant species challenged with drought stress, key genes for lysine catabolism, proline and raffinose synthesis, hydrogen peroxide reduction, vacuolar malate transport, RCI2 proteolipids and defence proteins such as osmotin, dehydrins and heat-shock proteins are induced in mandarin. Also, some aquaporin genes are repressed. The osmolyte raffinose could be detected in stressed roots while the dehydrin COR15 protein only accumulated in stressed leaves but not in roots. Novel drought responses in mandarin include the induction of genes encoding a new miraculin isoform, chloroplast beta-carotene hydroxylase, oleoyl desaturase, ribosomal protein RPS13A and protein kinase CTR1. These results suggest that drought tolerance in citrus may benefit from inhibition of proteolysis, activation of zeaxanthin and linolenoyl synthesis, reinforcement of ribosomal structure and down-regulation of the ethylene response.
Collapse
Affiliation(s)
- Jacinta Gimeno
- Instituto De Biología Molecular y Celular de Plantas, Universidad Politécnica de Valencia-CSIC, Camino de Vera s/n, Valencia, Spain
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Sjödin A, Street NR, Sandberg G, Gustafsson P, Jansson S. The Populus Genome Integrative Explorer (PopGenIE): a new resource for exploring the Populus genome. THE NEW PHYTOLOGIST 2009; 182:1013-1025. [PMID: 19383103 DOI: 10.1111/j.1469-8137.2009.02807.x] [Citation(s) in RCA: 108] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Populus has become an important model plant system. However, utilization of the increasingly extensive collection of genetics and genomics data created by the community is currently hindered by the lack of a central resource, such as a model organism database (MOD). Such MODs offer a single entry point to the collection of resources available within a model system, typically including tools for exploring and querying those resources. As a starting point to overcoming the lack of such an MOD for Populus, we present the Populus Genome Integrative Explorer (PopGenIE), an integrated set of tools for exploring the Populus genome and transcriptome. The resource includes genome, synteny and quantitative trait locus (QTL) browsers for exploring genetic data. Expression tools include an electronic fluorescent pictograph (eFP) browser, expression profile plots, co-regulation within collated transcriptomics data sets, and identification of over-represented functional categories and genomic hotspot locations. A number of collated transcriptomics data sets are made available in the eFP browser to facilitate functional exploration of gene function. Additional homology and data extraction tools are provided. PopGenIE significantly increases accessibility to Populus genomics resources and allows exploration of transcriptomics data without the need to learn or understand complex statistical analysis methods. PopGenIE is available at www.popgenie.org or via www.populusgenome.info.
Collapse
Affiliation(s)
- Andreas Sjödin
- Umeå Plant Science Centre, Department of Plant Physiology, University of Umeå, SE-901-87 Umeå, Sweden
- CBRN Security and Defence, Swedish Defence Research Agency, SE-90182 Umeå, Sweden
| | - Nathaniel Robert Street
- Umeå Plant Science Centre, Department of Plant Physiology, University of Umeå, SE-901-87 Umeå, Sweden
| | - Göran Sandberg
- Umeå Plant Science Centre, Department of Plant Physiology, University of Umeå, SE-901-87 Umeå, Sweden
| | - Petter Gustafsson
- Umeå Plant Science Centre, Department of Plant Physiology, University of Umeå, SE-901-87 Umeå, Sweden
| | - Stefan Jansson
- Umeå Plant Science Centre, Department of Plant Physiology, University of Umeå, SE-901-87 Umeå, Sweden
| |
Collapse
|
19
|
Kumar M, Thammannagowda S, Bulone V, Chiang V, Han KH, Joshi CP, Mansfield SD, Mellerowicz E, Sundberg B, Teeri T, Ellis BE. An update on the nomenclature for the cellulose synthase genes in Populus. TRENDS IN PLANT SCIENCE 2009; 14:248-54. [PMID: 19375973 DOI: 10.1016/j.tplants.2009.02.004] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2008] [Revised: 02/12/2009] [Accepted: 02/12/2009] [Indexed: 05/07/2023]
Abstract
Cellulose synthase (CesA) is a central catalyst in the generation of the plant cell wall biomass and is, therefore, the focus of intense research. Characterization of individual CesA genes from Populus species has led to the publication of several different naming conventions for CesA gene family members in this model tree. To help reduce the resulting confusion, we propose here a new phylogeny-based CesA nomenclature that aligns the Populus CesA gene family with the established Arabidopsis thaliana CesA family structure.
Collapse
Affiliation(s)
- Manoj Kumar
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish Agricultural University, Umeå, Sweden
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Courtois-Moreau CL, Pesquet E, Sjödin A, Muñiz L, Bollhöner B, Kaneda M, Samuels L, Jansson S, Tuominen H. A unique program for cell death in xylem fibers of Populus stem. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2009; 58:260-74. [PMID: 19175765 DOI: 10.1111/j.1365-313x.2008.03777.x] [Citation(s) in RCA: 100] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Maturation of the xylem elements involves extensive deposition of secondary cell-wall material and autolytic processes resulting in cell death. We describe here a unique type of cell-death program in xylem fibers of hybrid aspen (Populus tremula x P. tremuloides) stems, including gradual degradative processes in both the nucleus and cytoplasm concurrently with the phase of active cell-wall deposition. Nuclear DNA integrity, as determined by TUNEL (terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling) and Comet (single-cell gel electrophoresis) assays, was compromised early during fiber maturation. In addition, degradation of the cytoplasmic contents, as detected by electron microscopy of samples fixed by high-pressure freezing/freeze substitution (HPF-FS), was gradual and resulted in complete loss of the cytoplasmic contents well before the loss of vacuolar integrity, which is considered to be the moment of death. This type of cell death differs significantly from that seen in xylem vessels. The loss of vacuolar integrity, which is thought to initiate cell degradative processes in the xylem vessels, is one of the last processes to occur before the final autolysis of the remaining cell contents in xylem fibers. High-resolution microarray analysis in the vascular tissues of Populus stem, combined with in silico analysis of publicly available data repositories, suggests the involvement of several previously uncharacterized transcription factors, ethylene, sphingolipids and light signaling as well as autophagy in the control of fiber cell death.
Collapse
|
21
|
Bylesjö M, Nilsson R, Srivastava V, Grönlund A, Johansson AI, Jansson S, Karlsson J, Moritz T, Wingsle G, Trygg J. Integrated analysis of transcript, protein and metabolite data to study lignin biosynthesis in hybrid aspen. J Proteome Res 2009; 8:199-210. [PMID: 19053836 DOI: 10.1021/pr800298s] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Tree biotechnology will soon reach a mature state where it will influence the overall supply of fiber, energy and wood products. We are now ready to make the transition from identifying candidate genes, controlling important biological processes, to discovering the detailed molecular function of these genes on a broader, more holistic, systems biology level. In this paper, a strategy is outlined for informative data generation and integrated modeling of systematic changes in transcript, protein and metabolite profiles measured from hybrid aspen samples. The aim is to study characteristics of common changes in relation to genotype-specific perturbations affecting the lignin biosynthesis and growth. We show that a considerable part of the systematic effects in the system can be tracked across all platforms and that the approach has a high potential value in functional characterization of candidate genes.
Collapse
Affiliation(s)
- Max Bylesjö
- Department of Chemistry, Umeå University, SE-901 87 Umeå, Sweden
| | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Frenkel M, Külheim C, Jänkänpää HJ, Skogström O, Dall'Osto L, Ågren J, Bassi R, Moritz T, Moen J, Jansson S. Improper excess light energy dissipation in Arabidopsis results in a metabolic reprogramming. BMC PLANT BIOLOGY 2009; 9:12. [PMID: 19171025 PMCID: PMC2656510 DOI: 10.1186/1471-2229-9-12] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2008] [Accepted: 01/26/2009] [Indexed: 05/18/2023]
Abstract
BACKGROUND Plant performance is affected by the level of expression of PsbS, a key photoprotective protein involved in the process of feedback de-excitation (FDE), or the qE component of non-photochemical quenching, NPQ. RESULTS In studies presented here, under constant laboratory conditions the metabolite profiles of leaves of wild-type Arabidopsis thaliana and plants lacking or overexpressing PsbS were very similar, but under natural conditions their differences in levels of PsbS expression were associated with major changes in metabolite profiles. Some carbohydrates and amino acids differed ten-fold in abundance between PsbS-lacking mutants and over-expressers, with wild-type plants having intermediate amounts, showing that a metabolic shift had occurred. The transcriptomes of the genotypes also varied under field conditions, and the genes induced in plants lacking PsbS were similar to those reportedly induced in plants exposed to ozone stress or treated with methyl jasmonate (MeJA). Genes involved in the biosynthesis of JA were up-regulated, and enzymes involved in this pathway accumulated. JA levels in the undamaged leaves of field-grown plants did not differ between wild-type and PsbS-lacking mutants, but they were higher in the mutants when they were exposed to herbivory. CONCLUSION These findings suggest that lack of FDE results in increased photooxidative stress in the chloroplasts of Arabidopsis plants grown in the field, which elicits a response at the transcriptome level, causing a redirection of metabolism from growth towards defence that resembles a MeJA/JA response.
Collapse
Affiliation(s)
- Martin Frenkel
- Department of Ecology and Environmental Science, Umeå University, SE-901 87 Umeå, Sweden
| | - Carsten Külheim
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, SE-901 87 Umeå, Sweden
| | | | - Oskar Skogström
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, SE-901 87 Umeå, Sweden
| | - Luca Dall'Osto
- Dipartimento Scientifico e Tecnologico, Università di Verona, Strada Le Grazie, 15- 37134 Verona, Italy
| | - Jon Ågren
- Department of Ecology and Evolution, EBC, Uppsala University, Villavägen 14. SE-752 36 Uppsala, Sweden
| | - Roberto Bassi
- Dipartimento Scientifico e Tecnologico, Università di Verona, Strada Le Grazie, 15- 37134 Verona, Italy
- Université Aix-Marseille II, LGBP- Faculté des Sciences de Luminy, Département de Biologie, Case 901, 163, Avenue de Luminy, 13288 Marseille, France
| | - Thomas Moritz
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, SE-901 87 Umeå, Sweden
| | - Jon Moen
- Department of Ecology and Environmental Science, Umeå University, SE-901 87 Umeå, Sweden
| | - Stefan Jansson
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, SE-901 87 Umeå, Sweden
| |
Collapse
|
23
|
Grönlund A, Bhalerao RP, Karlsson J. Modular gene expression in Poplar: a multilayer network approach. THE NEW PHYTOLOGIST 2009; 181:315-322. [PMID: 19121030 DOI: 10.1111/j.1469-8137.2008.02668.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
By applying a multilayer network approach to an extensive set of Poplar microarray data, a genome-wide coexpression network has been detected and explored. Multilayer networks were generated from minimum spanning trees (MSTs) using Kruskal's algorithm from random jack-knife resamplings of half of the full data set. The final network is obtained from the union of all the generated MSTs. The gene expression correlations display a highly clustered topology, which is more pronounced when introducing links appearing in relatively few of the generated MSTs. The network also reveals a modular architecture, reflecting functional groups with relatively frequent gene-to-gene communication. Furthermore, the observed modular structure overlaps with different gene activities in different tissues, and closely related tissues show similar over- and/or under-expression patterns at the modular scale. It is shown that including links that appear in a few of the generated MSTs increases the information quality of the network. In other words, a link may be 'weak' because it reflects rare signaling events rather than merely a signal weakened by noise. The method allows, from comparisons of random 'null networks', tuning to maximize the information obtainable.
Collapse
Affiliation(s)
- Andreas Grönlund
- Umeå Plant Science Center Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, SE-901 83 Umeå, Sweden;Umeå Plant Science Center, Department of Plant Physiology, Umeå University, SE-901 87 Umeå, Sweden;Computational Life Science Cluster (CLIC), KBC, Umeå University, SE-901 87 Umeå, Sweden
| | - Rishikesh P Bhalerao
- Umeå Plant Science Center Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, SE-901 83 Umeå, Sweden;Umeå Plant Science Center, Department of Plant Physiology, Umeå University, SE-901 87 Umeå, Sweden;Computational Life Science Cluster (CLIC), KBC, Umeå University, SE-901 87 Umeå, Sweden
| | - Jan Karlsson
- Umeå Plant Science Center Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, SE-901 83 Umeå, Sweden;Umeå Plant Science Center, Department of Plant Physiology, Umeå University, SE-901 87 Umeå, Sweden;Computational Life Science Cluster (CLIC), KBC, Umeå University, SE-901 87 Umeå, Sweden
| |
Collapse
|
24
|
Street NR, Sjödin A, Bylesjö M, Gustafsson P, Trygg J, Jansson S. A cross-species transcriptomics approach to identify genes involved in leaf development. BMC Genomics 2008; 9:589. [PMID: 19061504 PMCID: PMC2621207 DOI: 10.1186/1471-2164-9-589] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2008] [Accepted: 12/05/2008] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND We have made use of publicly available gene expression data to identify transcription factors and transcriptional modules (regulons) associated with leaf development in Populus. Different tissue types were compared to identify genes informative in the discrimination of leaf and non-leaf tissues. Transcriptional modules within this set of genes were identified in a much wider set of microarray data collected from leaves in a number of developmental, biotic, abiotic and transgenic experiments. RESULTS Transcription factors that were over represented in leaf EST libraries and that were useful for discriminating leaves from other tissues were identified, revealing that the C2C2-YABBY, CCAAT-HAP3 and 5, MYB, and ZF-HD families are particularly important in leaves. The expression of transcriptional modules and transcription factors was examined across a number of experiments to select those that were particularly active during the early stages of leaf development. Two transcription factors were found to collocate to previously published Quantitative Trait Loci (QTL) for leaf length. We also found that miRNA family 396 may be important in the control of leaf development, with three members of the family collocating with clusters of leaf development QTL. CONCLUSION This work provides a set of candidate genes involved in the control and processes of leaf development. This resource can be used for a wide variety of purposes such as informing the selection of candidate genes for association mapping or for the selection of targets for reverse genetics studies to further understanding of the genetic control of leaf size and shape.
Collapse
|
25
|
Street NR, Sjödin A, Bylesjö M, Gustafsson P, Trygg J, Jansson S. A cross-species transcriptomics approach to identify genes involved in leaf development. BMC Genomics 2008. [PMID: 19061504 DOI: 10.1186/1471‐2164‐9‐589] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND We have made use of publicly available gene expression data to identify transcription factors and transcriptional modules (regulons) associated with leaf development in Populus. Different tissue types were compared to identify genes informative in the discrimination of leaf and non-leaf tissues. Transcriptional modules within this set of genes were identified in a much wider set of microarray data collected from leaves in a number of developmental, biotic, abiotic and transgenic experiments. RESULTS Transcription factors that were over represented in leaf EST libraries and that were useful for discriminating leaves from other tissues were identified, revealing that the C2C2-YABBY, CCAAT-HAP3 and 5, MYB, and ZF-HD families are particularly important in leaves. The expression of transcriptional modules and transcription factors was examined across a number of experiments to select those that were particularly active during the early stages of leaf development. Two transcription factors were found to collocate to previously published Quantitative Trait Loci (QTL) for leaf length. We also found that miRNA family 396 may be important in the control of leaf development, with three members of the family collocating with clusters of leaf development QTL. CONCLUSION This work provides a set of candidate genes involved in the control and processes of leaf development. This resource can be used for a wide variety of purposes such as informing the selection of candidate genes for association mapping or for the selection of targets for reverse genetics studies to further understanding of the genetic control of leaf size and shape.
Collapse
|
26
|
Lexer C, Widmer A. Review. The genic view of plant speciation: recent progress and emerging questions. Philos Trans R Soc Lond B Biol Sci 2008; 363:3023-36. [PMID: 18579476 DOI: 10.1098/rstb.2008.0078] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The genic view of the process of speciation is based on the notion that species isolation may be achieved by a modest number of genes. Although great strides have been made to characterize 'speciation genes' in some groups of animals, little is known about the nature of genic barriers to gene flow in plants. We review recent progress in the characterization of genic species barriers in plants with a focus on five 'model' genera: Mimulus (monkey flowers); Iris (irises); Helianthus (sunflowers); Silene (campions); and Populus (poplars, aspens, cottonwoods). The study species in all five genera are diploid in terms of meiotic behaviour, and chromosomal rearrangements are assumed to play a minor role in species isolation, with the exception of Helianthus for which data on the relative roles of chromosomal and genic isolation factors are available. Our review identifies the following key topics as being of special interest for future research: the role of intraspecific variation in speciation; the detection of balancing versus directional selection in speciation genetic studies; the timing of fixation of alleles of major versus minor effects during plant speciation; the likelihood of adaptive trait introgression; and the identification and characterization of speciation genes and speciation gene networks.
Collapse
Affiliation(s)
- Christian Lexer
- Jodrell Laboratory, Royal Botanic Gardens, Kew, Richmond, Surrey TW9 3DS, UK.
| | | |
Collapse
|
27
|
Sjödin A, Wissel K, Bylesjö M, Trygg J, Jansson S. Global expression profiling in leaves of free-growing aspen. BMC PLANT BIOLOGY 2008; 8:61. [PMID: 18500984 PMCID: PMC2416451 DOI: 10.1186/1471-2229-8-61] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2007] [Accepted: 05/23/2008] [Indexed: 05/22/2023]
Abstract
BACKGROUND Genomic studies are routinely performed on young plants in controlled environments which is very different from natural conditions. In reality plants in temperate countries are exposed to large fluctuations in environmental conditions, in the case of perennials over several years. We have studied gene expression in leaves of a free-growing aspen (Populus tremula) throughout multiple growing seasons RESULTS We show that gene expression during the first month of leaf development was largely determined by a developmental program although leaf expansion, chlorophyll accumulation and the speed of progression through this program was regulated by the temperature. We were also able to define "transcriptional signatures" for four different substages of leaf development. In mature leaves, weather factors were important for gene regulation. CONCLUSION This study shows that multivariate methods together with high throughput transcriptional methods in the field can provide additional, novel information as to plant status under changing environmental conditions that is impossible to mimic in laboratory conditions. We have generated a dataset that could be used to e.g. identify marker genes for certain developmental stages or treatments, as well as to assess natural variation in gene expression.
Collapse
Affiliation(s)
- Andreas Sjödin
- Um eå Plant Science Centre, Department of Plant Physiology, Um eå University, SE-901 87 Um eå, Sweden
| | - Kirsten Wissel
- Um eå Plant Science Centre, Department of Plant Physiology, Um eå University, SE-901 87 Um eå, Sweden
- Department of Otolaryngology, Medical University of Hannover, Carl-Neuberg Str. 1, D-30625 Hannover, Germany
| | - Max Bylesjö
- Research Group for Chemometrics, Department of Chemistry, Um eå University, SE-901 87 Um eå, Sweden
| | - Johan Trygg
- Research Group for Chemometrics, Department of Chemistry, Um eå University, SE-901 87 Um eå, Sweden
| | - Stefan Jansson
- Um eå Plant Science Centre, Department of Plant Physiology, Um eå University, SE-901 87 Um eå, Sweden
| |
Collapse
|
28
|
Nilsson J, Karlberg A, Antti H, Lopez-Vernaza M, Mellerowicz E, Perrot-Rechenmann C, Sandberg G, Bhalerao RP. Dissecting the molecular basis of the regulation of wood formation by auxin in hybrid aspen. THE PLANT CELL 2008; 20:843-55. [PMID: 18424614 PMCID: PMC2390731 DOI: 10.1105/tpc.107.055798] [Citation(s) in RCA: 154] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2007] [Revised: 02/29/2008] [Accepted: 04/01/2008] [Indexed: 05/18/2023]
Abstract
Indole acetic acid (auxin) is a key regulator of wood formation, and an observed overlap between auxin concentration gradient and developing secondary xylem cells has led to the hypothesis that auxin regulates wood formation by acting as a morphogen. We dissected the role of auxin in wood formation by identifying the auxin-responsive transcriptome in wood-forming tissues and investigating alterations in wood formation in transgenic hybrid aspen plants (Populus tremula x Populus tremuloides) with perturbed auxin signaling. We showed that auxin-responsive genes in wood-forming tissues respond dynamically to changes in cellular auxin levels. However, the expression patterns of most of the auxin-responsive genes displayed limited correlation with the auxin concentration across this developmental zone. Perturbing auxin signaling by reducing auxin responsiveness reduced the cambial cell division activity, caused spatial deregulation of cell division of the cambial initials, and led to reductions in not only radial but also axial dimensions of fibers and vessels. We propose that, instead of acting as a morphogen, changes in auxin concentration in developing secondary xylem cells may provide important regulatory cues that modulate the expression of a few key regulators; these, in turn, may control the global gene expression patterns that are essential for normal secondary xylem development.
Collapse
Affiliation(s)
- Jeanette Nilsson
- Umeå Plant Science Centre, Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, SE-90183 Umeå, Sweden
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Affiliation(s)
- Stefan Jansson
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, SE-901 87 Umeå, Sweden
| | - Howard Thomas
- Institute of Biological Sciences, Aberystwyth University, Ceredigion, SY23 3DA, UK
| |
Collapse
|
30
|
Grattapaglia D, Kirst M. Eucalyptus applied genomics: from gene sequences to breeding tools. THE NEW PHYTOLOGIST 2008; 179:911-929. [PMID: 18537893 DOI: 10.1111/j.1469-8137.2008.02503.x] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Eucalyptus is the most widely planted hardwood crop in the tropical and subtropical world because of its superior growth, broad adaptability and multipurpose wood properties. Plantation forestry of Eucalyptus supplies high-quality woody biomass for several industrial applications while reducing the pressure on tropical forests and associated biodiversity. This review links current eucalypt breeding practices with existing and emerging genomic tools. A brief discussion provides a background to modern eucalypt breeding together with some current applications of molecular markers in support of operational breeding. Quantitative trait locus (QTL) mapping and genetical genomics are reviewed and an in-depth perspective is provided on the power of association genetics to dissect quantitative variation in this highly diverse organism. Finally, some challenges and opportunities to integrate genomic information into directional selective breeding are discussed in light of the upcoming draft of the Eucalyptus grandis genome. Given the extraordinary genetic variation that exists in the genus Eucalyptus, the ingenuity of most breeders, and the powerful genomic tools that have become available, the prospects of applied genomics in Eucalyptus forest production are encouraging.
Collapse
Affiliation(s)
- Dario Grattapaglia
- Plant Genetics Laboratory, Embrapa - Genetic Resources and Biotechnology, Parque Estação Biológica, Brasília 70770-970 DF, Brazil
- Graduate Program in Genomic Sciences and Biotechnology, Universidade Católica de Brasília - SGAN 916 módulo B, Brasília 70790-160 DF, Brazil
| | - Matias Kirst
- School of Forest Resources and Conservation, Graduate Program in Plant Molecular and Cellular Biology, and University of Florida Genetics Institute, University of Florida, PO Box 110410, Gainesville, FL 32611, USA
| |
Collapse
|
31
|
Lee H, Bae EK, Park SY, Sjödin A, Lee JS, Noh EW, Jansson S. Growth-phase-dependent gene expression profiling of poplar (Populus alba x Populus tremula var. glandulosa) suspension cells. PHYSIOLOGIA PLANTARUM 2007; 131:599-613. [PMID: 18251851 DOI: 10.1111/j.1399-3054.2007.00987.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Complex sequences of morphological and biochemical changes occur during the developmental course of a batch plant cell culture. However, little information is available about the changes in gene expression that could explain these changes, because of the difficulties involved in isolating specific cellular events or developmental phases in the overlapping phases of cell growth. In an attempt to obtain such information we have examined the global growth phase-dependent gene expression of poplar cells in suspension cultures by cDNA microarray analysis. Our results reveal that significant changes occur in the expression of genes with functions related to protein synthesis, cell cycling, hormonal responses and cell wall biosynthesis, as cultures progress from initiation to senescence, that are highly correlated with observed developmental and physiological changes in the cells. Genes encoding protein kinases, calmodulin and proteins involved in both ascorbate metabolism and water-limited stress responses also showed strong stage-specific expression patterns. Our report provides fundamental information on molecular mechanisms that control cellular changes throughout the developmental course of poplar cell cultures.
Collapse
Affiliation(s)
- Hyoshin Lee
- Biotechnology Division, Korea Forest Research Institute, 44-3 Omokchundong, Suwon, 441-350, Korea.
| | | | | | | | | | | | | |
Collapse
|
32
|
Bylesjö M, Eriksson D, Kusano M, Moritz T, Trygg J. Data integration in plant biology: the O2PLS method for combined modeling of transcript and metabolite data. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2007; 52:1181-91. [PMID: 17931352 DOI: 10.1111/j.1365-313x.2007.03293.x] [Citation(s) in RCA: 138] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
The technological advances in the instrumentation employed in life sciences have enabled the collection of a virtually unlimited quantity of data from multiple sources. By gathering data from several analytical platforms, with the aim of parallel monitoring of, e.g. transcriptomic, metabolomic or proteomic events, one hopes to answer and understand biological questions and observations. This 'systems biology' approach typically involves advanced statistics to facilitate the interpretation of the data. In the present study, we demonstrate that the O2PLS multivariate regression method can be used for combining 'omics' types of data. With this methodology, systematic variation that overlaps across analytical platforms can be separated from platform-specific systematic variation. A study of Populus tremula x Populus tremuloides, investigating short-day-induced effects at transcript and metabolite levels, is employed to demonstrate the benefits of the methodology. We show how the models can be validated and interpreted to identify biologically relevant events, and discuss the results in relation to a pairwise univariate correlation approach and principal component analysis.
Collapse
Affiliation(s)
- Max Bylesjö
- Research group for Chemometrics, Department of Chemistry, Umeå University, SE-901 87 Umeå, Sweden
| | | | | | | | | |
Collapse
|
33
|
Björklund S, Antti H, Uddestrand I, Moritz T, Sundberg B. Cross-talk between gibberellin and auxin in development of Populus wood: gibberellin stimulates polar auxin transport and has a common transcriptome with auxin. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2007; 52:499-511. [PMID: 17825053 DOI: 10.1111/j.1365-313x.2007.03250.x] [Citation(s) in RCA: 138] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Both indole acetic acid (IAA) and gibberellins (GAs) stimulate cell and organ growth. We have examined GA/IAA cross-talk in cambial growth of hybrid aspen (Populus tremulaxtremuloides). Decapitated trees were fed with IAA and GA, alone and in combination. Endogenous hormone levels after feeding were measured, by mass spectrometry, in the stem tissues below the point of application. These stem tissues with defined hormone balances were also used for global transcriptome analysis, and the abundance of selected transcripts was measured by real-time reverse-transcription polymerase chain reaction. By feeding isotope-labeled IAA, we demonstrated that GA increases auxin levels in the stem by stimulating polar auxin transport. This finding adds a new dimension to the concept that the endogenous GA/IAA balance in plants is determined by cross-talk between the two hormones. We also show that GA has a common transcriptome with auxin, including many transcripts related to cell growth. This finding provides molecular support to physiological experiments demonstrating that either hormone can induce growth if the other hormone is absent/deficient because of mutations or experimental treatments. It also highlights the potential for extensive cross-talk between GA- and auxin-induced responses in vegetative growth of the intact plant. The role of endogenous IAA and GA in wood development is discussed.
Collapse
Affiliation(s)
- Simon Björklund
- Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, SE 901 83 Umeå, Sweden
| | | | | | | | | |
Collapse
|
34
|
Leplé JC, Dauwe R, Morreel K, Storme V, Lapierre C, Pollet B, Naumann A, Kang KY, Kim H, Ruel K, Lefèbvre A, Joseleau JP, Grima-Pettenati J, De Rycke R, Andersson-Gunnerås S, Erban A, Fehrle I, Petit-Conil M, Kopka J, Polle A, Messens E, Sundberg B, Mansfield SD, Ralph J, Pilate G, Boerjan W. Downregulation of cinnamoyl-coenzyme A reductase in poplar: multiple-level phenotyping reveals effects on cell wall polymer metabolism and structure. THE PLANT CELL 2007; 19:3669-91. [PMID: 18024569 PMCID: PMC2174873 DOI: 10.1105/tpc.107.054148] [Citation(s) in RCA: 220] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2007] [Revised: 10/12/2007] [Accepted: 10/19/2007] [Indexed: 05/17/2023]
Abstract
Cinnamoyl-CoA reductase (CCR) catalyzes the penultimate step in monolignol biosynthesis. We show that downregulation of CCR in transgenic poplar (Populus tremula x Populus alba) was associated with up to 50% reduced lignin content and an orange-brown, often patchy, coloration of the outer xylem. Thioacidolysis, nuclear magnetic resonance (NMR), immunocytochemistry of lignin epitopes, and oligolignol profiling indicated that lignin was relatively more reduced in syringyl than in guaiacyl units. The cohesion of the walls was affected, particularly at sites that are generally richer in syringyl units in wild-type poplar. Ferulic acid was incorporated into the lignin via ether bonds, as evidenced independently by thioacidolysis and by NMR. A synthetic lignin incorporating ferulic acid had a red-brown coloration, suggesting that the xylem coloration was due to the presence of ferulic acid during lignification. Elevated ferulic acid levels were also observed in the form of esters. Transcript and metabolite profiling were used as comprehensive phenotyping tools to investigate how CCR downregulation impacted metabolism and the biosynthesis of other cell wall polymers. Both methods suggested reduced biosynthesis and increased breakdown or remodeling of noncellulosic cell wall polymers, which was further supported by Fourier transform infrared spectroscopy and wet chemistry analysis. The reduced levels of lignin and hemicellulose were associated with an increased proportion of cellulose. Furthermore, the transcript and metabolite profiling data pointed toward a stress response induced by the altered cell wall structure. Finally, chemical pulping of wood derived from 5-year-old, field-grown transgenic lines revealed improved pulping characteristics, but growth was affected in all transgenic lines tested.
Collapse
Affiliation(s)
- Jean-Charles Leplé
- Department of Plant Systems Biology, Flanders Institute for Biotechnology, 9052 Gent, Belgium
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Druart N, Johansson A, Baba K, Schrader J, Sjödin A, Bhalerao RR, Resman L, Trygg J, Moritz T, Bhalerao RP. Environmental and hormonal regulation of the activity-dormancy cycle in the cambial meristem involves stage-specific modulation of transcriptional and metabolic networks. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2007; 50:557-73. [PMID: 17419838 DOI: 10.1111/j.1365-313x.2007.03077.x] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
We have performed transcript and metabolite profiling of isolated cambial meristem cells of the model tree aspen during the course of their activity-dormancy cycle to better understand the environmental and hormonal regulation of this process in perennial plants. Considerable modulation of cambial transcriptome and metabolome occurs throughout the activity-dormancy cycle. However, in addition to transcription, post-transcriptional control is also an important regulatory mechanism as exemplified by the regulation of cell-cycle genes during the reactivation of cambial cell division in the spring. Genes related to cold hardiness display temporally distinct induction patterns in the autumn which could explain the step-wise development of cold hardiness. Factors other than low temperature regulate the induction of early cold hardiness-related genes whereas abscisic acid (ABA) could potentially regulate the induction of late cold hardiness-related genes in the autumn. Starch breakdown in the autumn appears to be regulated by the 'short day' signal and plays a key role in providing substrates for the production of energy, fatty acids and cryoprotectants. Catabolism of sucrose and fats provides energy during the early stages of reactivation in the spring, whereas the reducing equivalents are generated through activation of the pentose phosphate shunt. Modulation of gibberellin (GA) signaling and biosynthesis could play a key role in the regulation of cambial activity during the activity-dormancy cycle as suggested by the induction of PttRGA which encodes a negative regulator of growth in the autumn and that of a GA-20 oxidase, a key gibberellin biosynthesis gene during reactivation in spring. In summary, our data reveal the dynamics of transcriptional and metabolic networks and identify potential targets of environmental and hormonal signals in the regulation of the activity-dormancy cycle in cambial meristem.
Collapse
Affiliation(s)
- Nathalie Druart
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, The Swedish University of Agricultural Sciences, S-901 83 Umeå, Sweden
| | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Abstract
With the completion of the Populus trichocarpa genome sequence and the development of various genetic, genomic, and biochemical tools, Populus now offers many possibilities to study questions that cannot be as easily addressed in Arabidopsis and rice, the two prime model systems of plant biology and genomics. Tree-specific traits such as wood formation, long-term perennial growth, and seasonality are obvious areas of research, but research in other areas such as control of flowering, biotic interactions, and evolution of adaptive traits is enriched by adding a tree to the suite of model systems. Furthermore, the reproductive biology of Populus (a dioeceous wind-pollinated long-lived tree) offers both new possibilities and challenges in the study and analysis of natural genetic and phenotypic variation. The relatively close phylogenetic relationship of Populus to Arabidopsis in the Eurosid clade of Eudicotyledonous plants aids in comparative functional studies and comparative genomics, and has the potential to greatly facilitate studies on genome and gene family evolution in eudicots.
Collapse
Affiliation(s)
- Stefan Jansson
- Department of Plant Physiology, Umeå Plant Science Center, Umeå University, SE-901 87 Umeå, Sweden.
| | | |
Collapse
|
37
|
Street NR, Skogström O, Sjödin A, Tucker J, Rodríguez-Acosta M, Nilsson P, Jansson S, Taylor G. The genetics and genomics of the drought response in Populus. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2006; 48:321-41. [PMID: 17005011 DOI: 10.1111/j.1365-313x.2006.02864.x] [Citation(s) in RCA: 133] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
The genetic nature of tree adaptation to drought stress was examined by utilizing variation in the drought response of a full-sib second generation (F(2)) mapping population from a cross between Populus trichocarpa (93-968) and P. deltoides Bart (ILL-129) and known to be highly divergent for a vast range of phenotypic traits. We combined phenotyping, quantitative trait loci (QTL) analysis and microarray experiments to demonstrate that 'genetical genomics' can be used to provide information on adaptation at the species level. The grandparents and F(2) population were subjected to soil drying, and contrasting responses to drought across genotypes, including leaf coloration, expansion and abscission, were observed, and QTL for these traits mapped. A subset of extreme genotypes exhibiting extreme sensitivity and insensitivity to drought on the basis of leaf abscission were defined, and microarray experiments conducted on these genotypes and the grandparent species. The extreme genotype groups induced a different set of genes: 215 and 125 genes differed in their expression response between groups in control and drought, respectively, suggesting species adaptation at the gene expression level. Co-location of differentially expressed genes with drought-specific and drought-responsive QTLs was examined, and these may represent candidate genes contributing to the variation in drought response.
Collapse
|
38
|
Rydén P, Andersson H, Landfors M, Näslund L, Hartmanová B, Noppa L, Sjöstedt A. Evaluation of microarray data normalization procedures using spike-in experiments. BMC Bioinformatics 2006; 7:300. [PMID: 16774679 PMCID: PMC1526761 DOI: 10.1186/1471-2105-7-300] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2006] [Accepted: 06/14/2006] [Indexed: 11/30/2022] Open
Abstract
Background Recently, a large number of methods for the analysis of microarray data have been proposed but there are few comparisons of their relative performances. By using so-called spike-in experiments, it is possible to characterize the analyzed data and thereby enable comparisons of different analysis methods. Results A spike-in experiment using eight in-house produced arrays was used to evaluate established and novel methods for filtration, background adjustment, scanning, channel adjustment, and censoring. The S-plus package EDMA, a stand-alone tool providing characterization of analyzed cDNA-microarray data obtained from spike-in experiments, was developed and used to evaluate 252 normalization methods. For all analyses, the sensitivities at low false positive rates were observed together with estimates of the overall bias and the standard deviation. In general, there was a trade-off between the ability of the analyses to identify differentially expressed genes (i.e. the analyses' sensitivities) and their ability to provide unbiased estimators of the desired ratios. Virtually all analysis underestimated the magnitude of the regulations; often less than 50% of the true regulations were observed. Moreover, the bias depended on the underlying mRNA-concentration; low concentration resulted in high bias. Many of the analyses had relatively low sensitivities, but analyses that used either the constrained model (i.e. a procedure that combines data from several scans) or partial filtration (a novel method for treating data from so-called not-found spots) had with few exceptions high sensitivities. These methods gave considerable higher sensitivities than some commonly used analysis methods. Conclusion The use of spike-in experiments is a powerful approach for evaluating microarray preprocessing procedures. Analyzed data are characterized by properties of the observed log-ratios and the analysis' ability to detect differentially expressed genes. If bias is not a major problem; we recommend the use of either the CM-procedure or partial filtration.
Collapse
Affiliation(s)
- Patrik Rydén
- Department of Clinical Microbiology Division of Clinical Bacteriology, Umeå University, SE-90187 Umeå, Sweden
- Department of Mathematics and Mathematical Statistics, Umeå University, SE-90187 Umeå, Sweden
| | - Henrik Andersson
- Department of Clinical Microbiology Division of Clinical Bacteriology, Umeå University, SE-90187 Umeå, Sweden
| | - Mattias Landfors
- Department of Clinical Microbiology Division of Clinical Bacteriology, Umeå University, SE-90187 Umeå, Sweden
| | - Linda Näslund
- Department of Clinical Microbiology Division of Clinical Bacteriology, Umeå University, SE-90187 Umeå, Sweden
| | - Blanka Hartmanová
- Proteome Center for the Study of Intracellular Parasitism of Bacteria, Faculty of Military Health Science, University of Defence, Trebesská 1575, 50001 Hradec Králové, Czech Republic
| | - Laila Noppa
- Department of Clinical Microbiology Division of Clinical Bacteriology, Umeå University, SE-90187 Umeå, Sweden
- Department of Medical Countermeasures, Division of NBC-Defence, Swedish Defence Research Agency, SE-90182 Umeå, Sweden
| | - Anders Sjöstedt
- Department of Clinical Microbiology Division of Clinical Bacteriology, Umeå University, SE-90187 Umeå, Sweden
| |
Collapse
|
39
|
Bylesjö M, Eriksson D, Sjödin A, Sjöström M, Jansson S, Antti H, Trygg J. MASQOT: a method for cDNA microarray spot quality control. BMC Bioinformatics 2005; 6:250. [PMID: 16223442 PMCID: PMC1276784 DOI: 10.1186/1471-2105-6-250] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2005] [Accepted: 10/13/2005] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND cDNA microarray technology has emerged as a major player in the parallel detection of biomolecules, but still suffers from fundamental technical problems. Identifying and removing unreliable data is crucial to prevent the risk of receiving illusive analysis results. Visual assessment of spot quality is still a common procedure, despite the time-consuming work of manually inspecting spots in the range of hundreds of thousands or more. RESULTS A novel methodology for cDNA microarray spot quality control is outlined. Multivariate discriminant analysis was used to assess spot quality based on existing and novel descriptors. The presented methodology displays high reproducibility and was found superior in identifying unreliable data compared to other evaluated methodologies. CONCLUSION The proposed methodology for cDNA microarray spot quality control generates non-discrete values of spot quality which can be utilized as weights in subsequent analysis procedures as well as to discard spots of undesired quality using the suggested threshold values. The MASQOT approach provides a consistent assessment of spot quality and can be considered an alternative to the labor-intensive manual quality assessment process.
Collapse
Affiliation(s)
- Max Bylesjö
- Research group for Chemometrics, Department of Chemistry, Umeå University, SE-901 87 Umeå, Sweden
| | - Daniel Eriksson
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, SE-901 83 Umeå, Sweden
| | - Andreas Sjödin
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, SE-901 87 Umeå, Sweden
| | - Michael Sjöström
- Research group for Chemometrics, Department of Chemistry, Umeå University, SE-901 87 Umeå, Sweden
| | - Stefan Jansson
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, SE-901 87 Umeå, Sweden
| | - Henrik Antti
- Research group for Chemometrics, Department of Chemistry, Umeå University, SE-901 87 Umeå, Sweden
| | - Johan Trygg
- Research group for Chemometrics, Department of Chemistry, Umeå University, SE-901 87 Umeå, Sweden
| |
Collapse
|