1
|
van Aubel G, Van Cutsem E, Emond A, Métillon G, Cordier É, Van Cutsem P. Dual Transcriptomic and Metabolomic Analysis of Elicited Flax Sheds Light on the Kinetics of Immune Defense Activation Against the Biotrophic Pathogen Oidium lini. PHYTOPATHOLOGY 2024; 114:1904-1916. [PMID: 38748518 DOI: 10.1094/phyto-02-24-0070-kc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/09/2024]
Abstract
Flax (Linum usitatissimum) grown under controlled conditions displayed genotype-dependent resistance to powdery mildew (Oidium lini) following COS-OGA (comprising chitosan- and pectin-derived oligomers) elicitor application. The present study reveals a two-step immune response in plants preventively challenged with the elicitor: an initial, rapid response characterized by the transcription of defense genes whose protein products act in contact with or within the cell wall, where biotrophic pathogens initially thrive, followed by a prolonged activation of cell wall peroxidases and accumulation of secondary metabolites. Thus, dozens of genes encoding membrane receptors, pathogenesis-related proteins, and wall peroxidases were initially overexpressed. Repeated COS-OGA treatments had a transient effect on the transcriptome response while cumulatively remodeling the metabolome over time, with a minimum of two applications required for maximal metabolomic shifts. Secondary metabolites, in particular terpenoids and phenylpropanoids, emerged as major components of this secondary defense response alongside pathogenesis-related proteins and wall peroxidases. The sustained accumulation of secondary metabolites, even after cessation of elicitation, contrasted with the short-lived transcriptomic response. Wall peroxidase enzyme activity also exhibited cumulative effects, increasing strongly for weeks after a third elicitor treatment. This underscores the plasticity of the plant immune response in the face of a potential infection, and the need for repeated preventive applications to achieve the full protective potential of the elicitor.
Collapse
Affiliation(s)
- Géraldine van Aubel
- Biology Department, University of Namur, Rue de Bruxelles 61, 5000 Namur, Belgium
- FytoFend S.A., 5032 Isnes, Belgium
| | | | - Amélie Emond
- Biology Department, University of Namur, Rue de Bruxelles 61, 5000 Namur, Belgium
| | | | - Émilie Cordier
- Biology Department, University of Namur, Rue de Bruxelles 61, 5000 Namur, Belgium
| | - Pierre Van Cutsem
- Biology Department, University of Namur, Rue de Bruxelles 61, 5000 Namur, Belgium
- FytoFend S.A., 5032 Isnes, Belgium
| |
Collapse
|
2
|
Ahmad M, Abdul Aziz M, Sabeem M, Kutty MS, Sivasankaran SK, Brini F, Xiao TT, Blilou I, Masmoudi K. Date palm transcriptome analysis provides new insights on changes in response to high salt stress of colonized roots with the endophytic fungus Piriformospora indica. FRONTIERS IN PLANT SCIENCE 2024; 15:1400215. [PMID: 39145193 PMCID: PMC11322345 DOI: 10.3389/fpls.2024.1400215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 06/13/2024] [Indexed: 08/16/2024]
Abstract
Salinity is a significant threat that causes considerable yield losses in date palm. The root endophytic fungus Piriformospora indica has proven effective in providing salt stress tolerance to host plants. However, the underlying molecular mechanism facilitating the date palm's response to P. indica inoculation, and its involvement in the salt stress tolerance, remains unknown. In this study, the colonization of P. indica on date palm seedlings exposed to saline conditions was observed through confocal microscopy, and its impact on gene expressions was evaluated using the transcriptomic analysis. Our findings show that P. indica colonization reinforced the cortical cells, prevented them from plasmolysis and cell death under salinity. The RNAseq analysis produced clean reads ranging from 62,040,451 to 3,652,095 across the treatment groups, successfully assembling into 30,600 annotated genes. Out of them, the number of differentially expressed genes (DEGs) varied across the treatments: i.e., 2523, 2031, and 1936 DEGs were upregulated, while 2323, 959, and 3546 were downregulated in Salt, Fungi, and Fungi+Salt groups, respectively. Furthermore, principal component analysis based on transcriptome profiles revealed discrete clustering of samples from different treatment groups. KEGG and GO pathways enrichment analysis highlighted variation in the number and types of enriched pathways among the treatments. Our study indicated variations in gene expression related to plant hormone biosynthesis and signal transduction (auxin, abscisic acid, gibberellin, and ethylene), ABC transporters, sodium/hydrogen exchanger, cation HKT transporter, transcription factors such as WRKY and MYBs, and the plant immune system (lipoxygenase and jasmonate) of the date palm seedlings. By characterizing the transcriptome of date palm roots under salt stress and with colonization of P. indica, the present findings provide valuable perspectives on the molecular mechanisms responsible for inducing salinity stress tolerance in plants.
Collapse
Affiliation(s)
- Manzoor Ahmad
- Department of Integrative Agriculture, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Mughair Abdul Aziz
- Department of Integrative Agriculture, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Miloofer Sabeem
- Department of Integrative Agriculture, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al Ain, United Arab Emirates
| | - M. Sangeeta Kutty
- Department of Vegetable Science, College of Agriculture, Kerala Agricultural University, Vellanikkara, Thrissur, India
| | - Sathesh K. Sivasankaran
- Division of Research, Innovation, and Impact, 106B Bond Life Sciences Center, University of Missouri, Columbia, MO, United States
| | - Faical Brini
- Biotechnology and Plant Improvement Laboratory, Centre of Biotechnology of Sfax (CBS)/University of Sfax, Sfax, Tunisia
| | - Ting Ting Xiao
- College of Plant Science and Technology, Beijing Key Laboratory for Agricultural Application and New Technique, Beijing University of Agriculture, Beijing, China
| | - Ikram Blilou
- King Abdullah University of Science and Technology (KAUST), Biological and Environmental Sciences and Engineering (BESE), Thuwal, Saudi Arabia
| | - Khaled Masmoudi
- Department of Integrative Agriculture, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al Ain, United Arab Emirates
| |
Collapse
|
3
|
Rehneke L, Schäfer P. Symbiont effector-guided mapping of proteins in plant networks to improve crop climate stress resilience: Symbiont effectors inform highly interconnected plant protein networks and provide an untapped resource for crop climate resilience strategies. Bioessays 2024; 46:e2300172. [PMID: 38388783 DOI: 10.1002/bies.202300172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 12/21/2023] [Accepted: 01/23/2024] [Indexed: 02/24/2024]
Abstract
There is an urgent need for novel protection strategies to sustainably secure crop production under changing climates. Studying microbial effectors, defined as microbe-derived proteins that alter signalling inside plant cells, has advanced our understanding of plant immunity and microbial plant colonisation strategies. Our understanding of effectors in the establishment and beneficial outcome of plant symbioses is less well known. Combining functional and comparative interaction assays uncovered specific symbiont effector targets in highly interconnected plant signalling networks and revealed the potential of effectors in beneficially modulating plant traits. The diverse functionality of symbiont effectors differs from the paradigmatic immuno-suppressive function of pathogen effectors. These effectors provide solutions for improving crop resilience against climate stress by their evolution-driven specification in host protein targeting and modulation. Symbiont effectors represent stringent tools not only to identify genetic targets for crop breeding, but to serve as applicable agents in crop management strategies under changing environments.
Collapse
Affiliation(s)
- Laura Rehneke
- Institute of Phytopathology, Research Centre for BioSystems, Land Use and Nutrition, Justus Liebig University, Giessen, Germany
| | - Patrick Schäfer
- Institute of Phytopathology, Research Centre for BioSystems, Land Use and Nutrition, Justus Liebig University, Giessen, Germany
| |
Collapse
|
4
|
Sehar S, Adil MF, Askri SMH, Dennis E, Faizan M, Zhao P, Zhou F, Shamsi IH. Nutrient and mycoremediation of a global menace 'arsenic': exploring the prospects of phosphorus and Serendipita indica-based mitigation strategies in rice and other crops. PLANT CELL REPORTS 2024; 43:90. [PMID: 38466444 DOI: 10.1007/s00299-024-03165-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 01/26/2024] [Indexed: 03/13/2024]
Abstract
KEY MESSAGE Serendipita indica induced metabolic reprogramming in colonized plants complements phosphorus-management in improving their tolerance to arsenic stress on multifaceted biological fronts. Restoration of the anthropic damage done to our environment is inextricably linked to devising strategies that are not only economically sound but are self-renewing and ecologically conscious. The dilemma of heavy metal (HM) dietary ingestion, especially arsenic (As), faced by humans and animals alike, necessitates the exploitation of such technologies and the cultivation of healthy and abundant crops. The remarkable symbiotic alliance between plants and 'mycorrhizas' has evolved across eons, benefiting growth/yield aspects as well as imparting abiotic/biotic stress tolerance. The intricate interdependence of Serendipita indica (S. indica) and rice plant reportedly reduce As accumulation, accentuating the interest of microbiologists, agriculturists, and ecotoxicological scientists apropos of the remediation mechanisms of As in the soil-AMF-rice system. Nutrient management, particularly of phosphorus (P), is also praised for mitigating As phytotoxicity by deterring the uptake of As molecules due to the rhizospheric cationic competition. Taking into consideration the reasonable prospects of success in minimizing As acquisition by rice plants, this review focuses on the physiological, metabolic, and transcriptional alterations underlying S. indica symbiosis, recuperation of As stress together with nutritional management of P by gathering case studies and presenting successful paradigms. Weaving together a volume of literature, we assess the chemical forms of As and related transport pathways, discuss As-P-rice interaction and the significance of fungi in As toxicity mitigation, predominantly the role of mycorrhiza, as well as survey of the multifaceted impacts of S. indica on plants. A potential strategy for simultaneous S. indica + P administration in paddy fields is proposed, followed by future research orientation to expand theoretic comprehension and encourage field-based implementation.
Collapse
Affiliation(s)
- Shafaque Sehar
- Zhejiang Key Laboratory of Crop Germplasm Resource, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Muhammad Faheem Adil
- Zhejiang Key Laboratory of Crop Germplasm Resource, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China.
| | - Syed Muhammad Hassan Askri
- Zhejiang Key Laboratory of Crop Germplasm Resource, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Elvis Dennis
- Zhejiang Key Laboratory of Crop Germplasm Resource, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
- School of Natural Resources, Department of Agriculture, Papua New Guinea University of Natural Resources and Environment, Kokopo, ENBP 613, Papua New Guinea
| | - Mohammad Faizan
- Botany Section, School of Sciences, Maulana Azad National Urdu University, Hyderabad, 500032, India
| | - Ping Zhao
- Key Laboratory of State Forestry and Grassland Administration on Highly Efficient Utilization of Forestry Biomass Resources in Southwest China, College of Material and Chemical Engineering, Southwest Forestry University, Kunming, 650224, China
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming, 650224, China
| | - Fanrui Zhou
- Key Laboratory of State Forestry and Grassland Administration on Highly Efficient Utilization of Forestry Biomass Resources in Southwest China, College of Material and Chemical Engineering, Southwest Forestry University, Kunming, 650224, China.
- Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China.
| | - Imran Haider Shamsi
- Zhejiang Key Laboratory of Crop Germplasm Resource, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
5
|
Wanke A, van Boerdonk S, Mahdi LK, Wawra S, Neidert M, Chandrasekar B, Saake P, Saur IML, Derbyshire P, Holton N, Menke FLH, Brands M, Pauly M, Acosta IF, Zipfel C, Zuccaro A. A GH81-type β-glucan-binding protein enhances colonization by mutualistic fungi in barley. Curr Biol 2023; 33:5071-5084.e7. [PMID: 37977140 DOI: 10.1016/j.cub.2023.10.048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 08/06/2023] [Accepted: 10/25/2023] [Indexed: 11/19/2023]
Abstract
Cell walls are important interfaces of plant-fungal interactions, acting as robust physical and chemical barriers against invaders. Upon fungal colonization, plants deposit phenolics and callose at the sites of fungal penetration to prevent further fungal progression. Alterations in the composition of plant cell walls significantly impact host susceptibility. Furthermore, plants and fungi secrete glycan hydrolases acting on each other's cell walls. These enzymes release various sugar oligomers into the apoplast, some of which activate host immunity via surface receptors. Recent characterization of cell walls from plant-colonizing fungi has emphasized the abundance of β-glucans in different cell wall layers, which makes them suitable targets for recognition. To characterize host components involved in immunity against fungi, we performed a protein pull-down with the biotinylated β-glucan laminarin. Thereby, we identified a plant glycoside hydrolase family 81-type glucan-binding protein (GBP) as a β-glucan interactor. Mutation of GBP1 and its only paralog, GBP2, in barley led to decreased colonization by the beneficial root endophytes Serendipita indica and S. vermifera, as well as the arbuscular mycorrhizal fungus Rhizophagus irregularis. The reduction of colonization was accompanied by enhanced responses at the host cell wall, including an extension of callose-containing cell wall appositions. Moreover, GBP mutation in barley also reduced fungal biomass in roots by the hemibiotrophic pathogen Bipolaris sorokiniana and inhibited the penetration success of the obligate biotrophic leaf pathogen Blumeria hordei. These results indicate that GBP1 is involved in the establishment of symbiotic associations with beneficial fungi-a role that has potentially been appropriated by barley-adapted pathogens.
Collapse
Affiliation(s)
- Alan Wanke
- Institute for Plant Sciences, University of Cologne, Cologne, Germany; Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Sarah van Boerdonk
- Institute for Plant Sciences, University of Cologne, Cologne, Germany; Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Lisa Katharina Mahdi
- Institute for Plant Sciences, University of Cologne, Cologne, Germany; Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Stephan Wawra
- Institute for Plant Sciences, University of Cologne, Cologne, Germany
| | - Miriam Neidert
- Institute for Plant Sciences, University of Cologne, Cologne, Germany
| | - Balakumaran Chandrasekar
- Institute for Plant Sciences, University of Cologne, Cologne, Germany; Cluster of Excellence on Plant Sciences (CEPLAS), Cologne, Germany
| | - Pia Saake
- Institute for Plant Sciences, University of Cologne, Cologne, Germany; Cluster of Excellence on Plant Sciences (CEPLAS), Cologne, Germany
| | - Isabel M L Saur
- Institute for Plant Sciences, University of Cologne, Cologne, Germany; Cluster of Excellence on Plant Sciences (CEPLAS), Cologne, Germany
| | - Paul Derbyshire
- The Sainsbury Laboratory, University of East Anglia, Norwich, UK
| | - Nicholas Holton
- The Sainsbury Laboratory, University of East Anglia, Norwich, UK
| | - Frank L H Menke
- The Sainsbury Laboratory, University of East Anglia, Norwich, UK
| | - Mathias Brands
- Institute for Plant Sciences, University of Cologne, Cologne, Germany
| | - Markus Pauly
- Institute of Plant Cell Biology and Biotechnology, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany; Cluster of Excellence on Plant Sciences (CEPLAS), Düsseldorf, Germany
| | - Ivan F Acosta
- Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Cyril Zipfel
- The Sainsbury Laboratory, University of East Anglia, Norwich, UK; Institute of Plant and Microbial Biology, University of Zurich, and Zurich-Basel Plant Science Center, Zurich, Switzerland
| | - Alga Zuccaro
- Institute for Plant Sciences, University of Cologne, Cologne, Germany; Cluster of Excellence on Plant Sciences (CEPLAS), Cologne, Germany.
| |
Collapse
|
6
|
Osborne R, Rehneke L, Lehmann S, Roberts J, Altmann M, Altmann S, Zhang Y, Köpff E, Dominguez-Ferreras A, Okechukwu E, Sergaki C, Rich-Griffin C, Ntoukakis V, Eichmann R, Shan W, Falter-Braun P, Schäfer P. Symbiont-host interactome mapping reveals effector-targeted modulation of hormone networks and activation of growth promotion. Nat Commun 2023; 14:4065. [PMID: 37429856 DOI: 10.1038/s41467-023-39885-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Accepted: 06/27/2023] [Indexed: 07/12/2023] Open
Abstract
Plants have benefited from interactions with symbionts for coping with challenging environments since the colonisation of land. The mechanisms of symbiont-mediated beneficial effects and similarities and differences to pathogen strategies are mostly unknown. Here, we use 106 (effector-) proteins, secreted by the symbiont Serendipita indica (Si) to modulate host physiology, to map interactions with Arabidopsis thaliana host proteins. Using integrative network analysis, we show significant convergence on target-proteins shared with pathogens and exclusive targeting of Arabidopsis proteins in the phytohormone signalling network. Functional in planta screening and phenotyping of Si effectors and interacting proteins reveals previously unknown hormone functions of Arabidopsis proteins and direct beneficial activities mediated by effectors in Arabidopsis. Thus, symbionts and pathogens target a shared molecular microbe-host interface. At the same time Si effectors specifically target the plant hormone network and constitute a powerful resource for elucidating the signalling network function and boosting plant productivity.
Collapse
Affiliation(s)
- Rory Osborne
- School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK
- School of Biosciences, University of Birmingham, Edgbaston, B15 2TT, UK
| | - Laura Rehneke
- Institute of Phytopathology, Research Centre for BioSystems, Land Use and Nutrition, Justus Liebig University, 35392, Giessen, Germany
| | - Silke Lehmann
- School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK
- Laboratory of Biotechnology and Marine Chemistry LBCM, EA3884, IUEM, Southern Brittany University, 56000, Vannes, France
| | - Jemma Roberts
- School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK
| | - Melina Altmann
- Institute of Network Biology, Molecular Targets and Therapeutics Center, Helmholtz Munich, 85764, Munich-Neuherberg, Germany
| | - Stefan Altmann
- Institute of Network Biology, Molecular Targets and Therapeutics Center, Helmholtz Munich, 85764, Munich-Neuherberg, Germany
| | - Yingqi Zhang
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Agronomy, Northwest A&F University, Yangling, 712100, China
| | - Eva Köpff
- Institute of Molecular Botany, Ulm University, 89069, Ulm, Germany
| | | | - Emeka Okechukwu
- School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK
| | - Chrysi Sergaki
- School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK
| | | | - Vardis Ntoukakis
- School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK
| | - Ruth Eichmann
- Institute of Phytopathology, Research Centre for BioSystems, Land Use and Nutrition, Justus Liebig University, 35392, Giessen, Germany
| | - Weixing Shan
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Agronomy, Northwest A&F University, Yangling, 712100, China
| | - Pascal Falter-Braun
- Institute of Network Biology, Molecular Targets and Therapeutics Center, Helmholtz Munich, 85764, Munich-Neuherberg, Germany.
- Microbe-Host Interactions, Faculty of Biology, Ludwig-Maximilians-University München, 82152, Planegg-Martinsried, Germany.
| | - Patrick Schäfer
- Institute of Phytopathology, Research Centre for BioSystems, Land Use and Nutrition, Justus Liebig University, 35392, Giessen, Germany.
| |
Collapse
|
7
|
Enebe MC, Erasmus M. Susceptibility and plant immune control-a case of mycorrhizal strategy for plant colonization, symbiosis, and plant immune suppression. Front Microbiol 2023; 14:1178258. [PMID: 37476663 PMCID: PMC10355322 DOI: 10.3389/fmicb.2023.1178258] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 06/15/2023] [Indexed: 07/22/2023] Open
Abstract
Plants and microbes (mycorrhizal fungi to be precise) have evolved together over the past millions of years into an association that is mutualist. The plants supply the fungi with photosynthates and shelter, while the fungi reciprocate by enhancing nutrient and water uptake by the plants as well as, in some cases, control of soil-borne pathogens, but this fungi-plant association is not always beneficial. We argue that mycorrhizal fungi, despite contributing to plant nutrition, equally increase plant susceptibility to pathogens and herbivorous pests' infestation. Understanding of mycorrhizal fungi strategies for suppressing plant immunity, the phytohormones involved and the signaling pathways that aid them will enable the harnessing of tripartite (consisting of three biological systems)-plant-mycorrhizal fungi-microbe interactions for promoting sustainable production of crops.
Collapse
Affiliation(s)
- Matthew Chekwube Enebe
- Centre for Mineral Biogeochemistry, University of the Free State, Bloemfontein, South Africa
| | | |
Collapse
|
8
|
Adedayo AA, Babalola OO. Fungi That Promote Plant Growth in the Rhizosphere Boost Crop Growth. J Fungi (Basel) 2023; 9:239. [PMID: 36836352 PMCID: PMC9966197 DOI: 10.3390/jof9020239] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 02/05/2023] [Accepted: 02/07/2023] [Indexed: 02/15/2023] Open
Abstract
The fungi species dwelling in the rhizosphere of crop plants, revealing functions that endeavor sustainability of the plants, are commonly referred to as 'plant-growth-promoting fungi' (PGPF). They are biotic inducers that provide benefits and carry out important functions in agricultural sustainability. The problem encountered in the agricultural system nowadays is how to meet population demand based on crop yield and protection without putting the environment and human and animal health at risk based on crop production. PGPF including Trichoderma spp., Gliocladium virens, Penicillium digitatum, Aspergillus flavus, Actinomucor elegans, Podospora bulbillosa, Arbuscular mycorrhizal fungi, etc., have proven their ecofriendly nature to ameliorate the production of crops by improving the growth of the shoots and roots of crop plants, the germination of seeds, the production of chlorophyll for photosynthesis, and the abundant production of crops. PGPF's potential mode of action is as follows: the mineralization of the major and minor elements required to support plants' growth and productivity. In addition, PGPF produce phytohormones, induced resistance, and defense-related enzymes to inhibit or eradicate the invasion of pathogenic microbes, in other words, to help the plants while encountering stress. This review portrays the potential of PGPF as an effective bioagent to facilitate and promote crop production, plant growth, resistance to disease invasion, and various abiotic stresses.
Collapse
Affiliation(s)
| | - Olubukola Oluranti Babalola
- Food Security and Safety Focus Area, Faculty of Natural and Agricultural Sciences, North-West University, Private Bag X2046, Mmabatho 2735, South Africa
| |
Collapse
|
9
|
Lekshmi RS, Sora S, Anith KN, Soniya EV. Root colonization by the endophytic fungus Piriformospora indica shortens the juvenile phase of Piper nigrum L. by fine tuning the floral promotion pathways. FRONTIERS IN PLANT SCIENCE 2022; 13:954693. [PMID: 36479508 PMCID: PMC9720737 DOI: 10.3389/fpls.2022.954693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 10/12/2022] [Indexed: 06/17/2023]
Abstract
Piriformospora indica, the mutualistic biotrophic root colonizing endosymbiotic fungus belonging to the order Sebacinales, offers host plants various benefits and enhances its growth and performance. The effect of colonization of P. indica in Piper nigrum L. cv. Panniyur1 on growth advantages, floral induction and evocation was investigated. Growth and yield benefits are credited to the alteration in the phytohormone levels fine-tuned by plants in response to the fungal colonization and perpetuation. The remarkable upregulation in the phytohormone levels, as estimated by LC- MS/MS and quantified by qRT-PCR, revealed the effectual contribution by the endophyte. qRT-PCR results revealed a significant shift in the expression of putative flowering regulatory genes in the photoperiod induction pathway (FLOWERING LOCUS T, LEAFY, APETALA1, AGAMOUS, SUPPRESSOR OF CONSTANS 1, GIGANTEA, PHYTOCHROMEA, and CRYPTOCHROME1) gibberellin biosynthetic pathway genes (GIBBERELLIN 20-OXIDASE2, GIBBERELLIN 2-OXIDASE, DELLA PROTEIN REPRESSOR OF GA1-3 1) autonomous (FLOWERING LOCUS C, FLOWERING LOCUS VE, FLOWERING LOCUS CA), and age pathway (SQUAMOSA PROMOTER LIKE9, APETALA2). The endophytic colonization had no effect on vernalization (FLOWERING LOCUS C) or biotic stress pathways (SALICYLIC ACID INDUCTION DEFICIENT 2, WRKY family transcription factor 22). The data suggest that P. nigrum responds positively to P. indica colonization, affecting preponement in floral induction as well as evocation, and thereby shortening the juvenile phase of the crop.
Collapse
Affiliation(s)
- R. S. Lekshmi
- Division of Transdisciplinary Biology, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, India
| | - S. Sora
- Division of Transdisciplinary Biology, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, India
| | - K. N. Anith
- Department of Agricultural Microbiology, College of Agriculture, Kerala Agricultural University, Thiruvananthapuram, Kerala, India
| | - E. V. Soniya
- Division of Transdisciplinary Biology, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, India
| |
Collapse
|
10
|
Bandyopadhyay P, Yadav BG, Kumar SG, Kumar R, Kogel KH, Kumar S. Piriformospora indica and Azotobacter chroococcum Consortium Facilitates Higher Acquisition of N, P with Improved Carbon Allocation and Enhanced Plant Growth in Oryza sativa. J Fungi (Basel) 2022; 8:jof8050453. [PMID: 35628709 PMCID: PMC9146537 DOI: 10.3390/jof8050453] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 03/30/2022] [Accepted: 04/06/2022] [Indexed: 12/21/2022] Open
Abstract
The soil microbiome contributes to nutrient acquisition and plant adaptation to numerous biotic and abiotic stresses. Numerous studies have been conducted over the past decade showing that plants take up nutrients better when associated with fungi and additional beneficial bacteria that promote plant growth, but the mechanisms by which the plant host benefits from this tripartite association are not yet fully understood. In this article, we report on a synergistic interaction between rice (Oryza sativa), Piriformospora indica (an endophytic fungus colonizing the rice roots), and Azotobacter chroococcum strain W5, a free-living nitrogen-fixing bacterium. On the basis of mRNA expression analysis and enzymatic activity, we found that co-inoculation of plant roots with the fungus and the rhizobacterium leads to enhanced plant growth and improved nutrient uptake compared to inoculation with either of the two microbes individually. Proteome analysis of O. sativa further revealed that proteins involved in nitrogen and phosphorus metabolism are upregulated and improve nitrogen and phosphate uptake. Our results also show that A. chroococcum supports colonization of rice roots by P. indica, and consequentially, the plants are more resistant to biotic stress upon co-colonization. Our research provides detailed insights into the mechanisms by which microbial partners synergistically promote each other in the interaction while being associated with the host plant.
Collapse
Affiliation(s)
- Prasun Bandyopadhyay
- International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi 110067, India; (P.B.); (B.G.Y.); (S.G.K.); (R.K.)
| | - Bal Govind Yadav
- International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi 110067, India; (P.B.); (B.G.Y.); (S.G.K.); (R.K.)
| | - Srinivasan Ganesh Kumar
- International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi 110067, India; (P.B.); (B.G.Y.); (S.G.K.); (R.K.)
| | - Rahul Kumar
- International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi 110067, India; (P.B.); (B.G.Y.); (S.G.K.); (R.K.)
| | - Karl-Heinz Kogel
- Institute for Phytopathology, Justus Liebig University, Heinrich-Buff-Ring 26, D-35392 Giessen, Germany;
| | - Shashi Kumar
- International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi 110067, India; (P.B.); (B.G.Y.); (S.G.K.); (R.K.)
- Correspondence:
| |
Collapse
|
11
|
Li L, Guo N, Feng Y, Duan M, Li C. Effect of Piriformospora indica-Induced Systemic Resistance and Basal Immunity Against Rhizoctonia cerealis and Fusarium graminearum in Wheat. FRONTIERS IN PLANT SCIENCE 2022; 13:836940. [PMID: 35498704 PMCID: PMC9047502 DOI: 10.3389/fpls.2022.836940] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 03/15/2022] [Indexed: 06/01/2023]
Abstract
Wheat is among the top 10 and most widely grown crops in the world. However, wheat is often infected with many soil-borne diseases, including sharp eyespot, mainly caused by the necrotrophic fungus Rhizoctonia cerealis, and Fusarium head blight (FHB), caused by Fusarium graminearum, resulting in reduced production. Piriformospora indica is a root endophytic fungus with a wide range of host plants, which increases their growth and tolerance to biotic and abiotic stresses. In this study, the capability of P. indica to protect wheat seedlings against R. cerealis and F. graminearum was investigated at the physiological, biochemical, and molecular levels. Our results showed that P. indica significantly reduced the disease progress on wheat caused by F. graminearum and R. cerealis in vivo, but not showed any antagonistic effect on F. graminearum and R. cerealis in vitro. Additionally, P. indica can induce systemic resistance by elevating H2O2 content, antioxidase activity, relative water content (RWC), and membrane stability index (MSI) compared to the plants only inoculated with F. graminearum or R. cerealis and control. RNA-seq suggested that transcriptome changes caused by F. graminearum were more severe than those caused by R. cerealis. The number of differentially expressed genes (DEGs) in the transcriptome can be reduced by the addition of P. indica: for F. graminearum reduced by 18% and for R. cerealis reduced 58%. The DEGs related to disease resistance, such as WRKY and MAPK, were upregulated by P. indica colonization. The data further revealed that the transcriptional resistance to F. graminearum and R. cerealis mediated by P. indica is quite different.
Collapse
|
12
|
Copeland C. The feeling is mutual: Increased host putrescine biosynthesis promotes both plant and endophyte growth. PLANT PHYSIOLOGY 2022; 188:1939-1941. [PMID: 35355052 PMCID: PMC8968283 DOI: 10.1093/plphys/kiac001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 12/18/2021] [Indexed: 06/14/2023]
|
13
|
Kundu A, Mishra S, Kundu P, Jogawat A, Vadassery J. Piriformospora indica recruits host-derived putrescine for growth promotion in plants. PLANT PHYSIOLOGY 2022; 188:2289-2307. [PMID: 34791442 PMCID: PMC8968253 DOI: 10.1093/plphys/kiab536] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 10/20/2021] [Indexed: 06/01/2023]
Abstract
Growth promotion induced by the endosymbiont Piriformospora indica has been observed in various plants; however, except growth phytohormones, specific functional metabolites involved in P. indica-mediated growth promotion are unknown. Here, we used a gas chromatography-mass spectrometry-based untargeted metabolite analysis to identify tomato (Solanum lycopersicum) metabolites whose levels were altered during P. indica-mediated growth promotion. Metabolomic multivariate analysis revealed several primary metabolites with altered levels, with putrescine (Put) induced most significantly in roots during the interaction. Further, our results indicated that P. indica modulates the arginine decarboxylase (ADC)-mediated Put biosynthesis pathway via induction of SlADC1 in tomato. Piriformospora indica did not promote growth in Sladc1-(virus-induced gene silencing of SlADC1) lines of tomato and showed less colonization. Furthermore, using LC-MS/MS we showed that Put promoted growth by elevation of auxin (indole-3-acetic acid) and gibberellin (GA4 and GA7) levels in tomato. In Arabidopsis (Arabidopsis thaliana) adc knockout mutants, P. indica colonization also decreased and showed no plant growth promotion, and this response was rescued upon exogenous application of Put. Put is also important for hyphal growth of P. indica, indicating that it is co-adapted by both host and microbe. Taken together, we conclude that Put is an essential metabolite and its biosynthesis in plants is crucial for P. indica-mediated plant growth promotion and fungal growth.
Collapse
Affiliation(s)
- Anish Kundu
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Shruti Mishra
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Pritha Kundu
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Abhimanyu Jogawat
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi 110067, India
| | | |
Collapse
|
14
|
Xu F, Liao H, Zhang Y, Yao M, Liu J, Sun L, Zhang X, Yang J, Wang K, Wang X, Ding Y, Liu C, Rensing C, Zhang J, Yeh K, Xu W. Coordination of root auxin with the fungus Piriformospora indica and bacterium Bacillus cereus enhances rice rhizosheath formation under soil drying. THE ISME JOURNAL 2022; 16:801-811. [PMID: 34621017 PMCID: PMC8857228 DOI: 10.1038/s41396-021-01133-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 09/22/2021] [Accepted: 09/27/2021] [Indexed: 11/10/2022]
Abstract
Moderate soil drying (MSD) is a promising agricultural technique that can reduce water consumption and enhance rhizosheath formation promoting drought resistance in plants. The endophytic fungus Piriformospora indica (P. indica) with high auxin production may be beneficial for rhizosheath formation. However, the integrated role of P. indica with native soil microbiome in rhizosheath formation is unclear. Here, we investigated the roles of P. indica and native bacteria on rice rhizosheath formation under MSD using high-throughput sequencing and rice mutants. Under MSD, rice rhizosheath formation was significantly increased by around 30% with P. indica inoculation. Auxins in rice roots and P. indica were responsible for the rhizosheath formation under MSD. Next, the abundance of the genus Bacillus, known as plant growth-promoting rhizobacteria, was enriched in the rice rhizosheath and root endosphere with P. indica inoculation under MSD. Moreover, the abundance of Bacillus cereus (B. cereus) with high auxin production was further increased by P. indica inoculation. After inoculation with both P. indica and B. cereus, rhizosheath formation in wild-type or auxin efflux carrier OsPIN2 complemented line rice was higher than that of the ospin2 mutant. Together, our results suggest that the interaction of the endophytic fungus P. indica with the native soil bacterium B. cereus favors rice rhizosheath formation by auxins modulation in rice and microbes under MSD. This finding reveals a cooperative contribution of P. indica and native microbiota in rice rhizosheath formation under moderate soil drying, which is important for improving water use in agriculture.
Collapse
Affiliation(s)
- Feiyun Xu
- grid.256111.00000 0004 1760 2876Center for Plant Water-use and Nutrition Regulation and College of Life Sciences, Joint International Research Laboratory of Water and Nutrient in Crop, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
| | - Hanpeng Liao
- grid.256111.00000 0004 1760 2876Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
| | - Yingjiao Zhang
- grid.256111.00000 0004 1760 2876Center for Plant Water-use and Nutrition Regulation and College of Life Sciences, Joint International Research Laboratory of Water and Nutrient in Crop, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
| | - Minjie Yao
- grid.256111.00000 0004 1760 2876Engineering Research Center of Soil Remediation of Fujian Province University, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
| | - Jianping Liu
- grid.256111.00000 0004 1760 2876Center for Plant Water-use and Nutrition Regulation and College of Life Sciences, Joint International Research Laboratory of Water and Nutrient in Crop, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
| | - Leyun Sun
- grid.256111.00000 0004 1760 2876Center for Plant Water-use and Nutrition Regulation and College of Life Sciences, Joint International Research Laboratory of Water and Nutrient in Crop, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
| | - Xue Zhang
- grid.256111.00000 0004 1760 2876Engineering Research Center of Soil Remediation of Fujian Province University, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
| | - Jinyong Yang
- grid.256111.00000 0004 1760 2876Center for Plant Water-use and Nutrition Regulation and College of Life Sciences, Joint International Research Laboratory of Water and Nutrient in Crop, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
| | - Ke Wang
- grid.256111.00000 0004 1760 2876Center for Plant Water-use and Nutrition Regulation and College of Life Sciences, Joint International Research Laboratory of Water and Nutrient in Crop, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
| | - Xiaoyun Wang
- grid.256111.00000 0004 1760 2876Center for Plant Water-use and Nutrition Regulation and College of Life Sciences, Joint International Research Laboratory of Water and Nutrient in Crop, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
| | - Yexin Ding
- grid.256111.00000 0004 1760 2876Center for Plant Water-use and Nutrition Regulation and College of Life Sciences, Joint International Research Laboratory of Water and Nutrient in Crop, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
| | - Chen Liu
- grid.256111.00000 0004 1760 2876Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
| | - Christopher Rensing
- grid.256111.00000 0004 1760 2876Institute of Environmental Microbiology, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
| | - Jianhua Zhang
- grid.221309.b0000 0004 1764 5980Department of Biology, Hong Kong Baptist University, Hong Kong, China
| | - Kaiwun Yeh
- grid.19188.390000 0004 0546 0241Institute of Plant Biology, College of Life Science, National Taiwan University, Taipei, Taiwan
| | - Weifeng Xu
- Center for Plant Water-use and Nutrition Regulation and College of Life Sciences, Joint International Research Laboratory of Water and Nutrient in Crop, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| |
Collapse
|
15
|
Ntana F, Johnson SR, Hamberger B, Jensen B, Jørgensen HJL, Collinge DB. Regulation of Tomato Specialised Metabolism after Establishment of Symbiosis with the Endophytic Fungus Serendipita indica. Microorganisms 2022; 10:microorganisms10010194. [PMID: 35056642 PMCID: PMC8778627 DOI: 10.3390/microorganisms10010194] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/09/2022] [Accepted: 01/09/2022] [Indexed: 12/17/2022] Open
Abstract
Specialised metabolites produced during plant-fungal associations often define how symbiosis between the plant and the fungus proceeds. They also play a role in the establishment of additional interactions between the symbionts and other organisms present in the niche. However, specialised metabolism and its products are sometimes overlooked when studying plant-microbe interactions. This limits our understanding of the specific symbiotic associations and potentially future perspectives of their application in agriculture. In this study, we used the interaction between the root endophyte Serendipita indica and tomato (Solanum lycopersicum) plants to explore how specialised metabolism of the host plant is regulated upon a mutualistic symbiotic association. To do so, tomato seedlings were inoculated with S. indica chlamydospores and subjected to RNAseq analysis. Gene expression of the main tomato specialised metabolism pathways was compared between roots and leaves of endophyte-colonised plants and tissues of endophyte-free plants. S. indica colonisation resulted in a strong transcriptional response in the leaves of colonised plants. Furthermore, the presence of the fungus in plant roots appears to induce expression of genes involved in the biosynthesis of lignin-derived compounds, polyacetylenes, and specific terpenes in both roots and leaves, whereas pathways producing glycoalkaloids and flavonoids were expressed in lower or basal levels.
Collapse
Affiliation(s)
- Fani Ntana
- Department of Plant and Environmental Sciences and Copenhagen Plant Science Centre, University of Copenhagen, Thorvaldsensvej 40, 1871 Copenhagen, Denmark; (F.N.); (B.J.); (H.J.L.J.)
| | - Sean R. Johnson
- New England Biolabs, Inc., 240 County Road, Ipswich, MA 01938, USA;
| | - Björn Hamberger
- Department of Biochemistry and Molecular Biology, Michigan State University, 603 Wilson Rd, East Lansing, MI 48824, USA;
| | - Birgit Jensen
- Department of Plant and Environmental Sciences and Copenhagen Plant Science Centre, University of Copenhagen, Thorvaldsensvej 40, 1871 Copenhagen, Denmark; (F.N.); (B.J.); (H.J.L.J.)
| | - Hans J. L. Jørgensen
- Department of Plant and Environmental Sciences and Copenhagen Plant Science Centre, University of Copenhagen, Thorvaldsensvej 40, 1871 Copenhagen, Denmark; (F.N.); (B.J.); (H.J.L.J.)
| | - David B. Collinge
- Department of Plant and Environmental Sciences and Copenhagen Plant Science Centre, University of Copenhagen, Thorvaldsensvej 40, 1871 Copenhagen, Denmark; (F.N.); (B.J.); (H.J.L.J.)
- Correspondence: ; Tel.: +45-35333356
| |
Collapse
|
16
|
Ray P, Guo Y, Chi MH, Krom N, Boschiero C, Watson B, Huhman D, Zhao P, Singan VR, Lindquist EA, Yan J, Adam C, Craven KD. Serendipita Fungi Modulate the Switchgrass Root Transcriptome to Circumvent Host Defenses and Establish a Symbiotic Relationship. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2021; 34:1128-1142. [PMID: 34260261 DOI: 10.1094/mpmi-04-21-0084-r] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The fungal family Serendipitaceae encompasses root-associated lineages with endophytic, ericoid, orchid, and ectomycorrhizal lifestyles. Switchgrass is an important bioenergy crop for cellulosic ethanol production owing to high biomass production on marginal soils otherwise unfit for food crop cultivation. The aim of this study was to investigate the host plant responses to Serendipita spp. colonization by characterizing the switchgrass root transcriptome during different stages of symbiosis in vitro. For this, we included a native switchgrass strain, Serendipita bescii, and a related strain, S. vermifera, isolated from Australian orchids. Serendipita colonization progresses from thin hyphae that grow between root cells to, finally, the production of large, bulbous hyphae that fill root cells during the later stages of colonization. We report that switchgrass seems to perceive both fungi prior to physical contact, leading to the activation of chemical and structural defense responses and putative host disease resistance genes. Subsequently, the host defense system appears to be quenched and carbohydrate metabolism adjusted, potentially to accommodate the fungal symbiont. In addition, prior to contact, switchgrass exhibited significant increases in root hair density and root surface area. Furthermore, genes involved in phytohormone metabolism such as gibberellin, jasmonic acid, and salicylic acid were activated during different stages of colonization. Both fungal strains induced plant gene expression in a similar manner, indicating a conserved plant response to members of this fungal order. Understanding plant responsiveness to Serendipita spp. will inform our efforts to integrate them into forages and row crops for optimal plant-microbe functioning, thus facilitating low-input, sustainable agricultural practices.[Formula: see text] Copyright © 2021 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Prasun Ray
- Noble Research Institute, LLC, Ardmore, OK 73401, U.S.A
| | - Yingqing Guo
- Noble Research Institute, LLC, Ardmore, OK 73401, U.S.A
| | | | - Nick Krom
- Noble Research Institute, LLC, Ardmore, OK 73401, U.S.A
| | | | - Bonnie Watson
- Noble Research Institute, LLC, Ardmore, OK 73401, U.S.A
| | - David Huhman
- Noble Research Institute, LLC, Ardmore, OK 73401, U.S.A
| | - Patrick Zhao
- Noble Research Institute, LLC, Ardmore, OK 73401, U.S.A
| | - Vasanth R Singan
- United States Department of Energy Joint Genome Institute, Walnut Creek, CA, U.S.A
| | - Erika A Lindquist
- United States Department of Energy Joint Genome Institute, Walnut Creek, CA, U.S.A
| | - Juying Yan
- United States Department of Energy Joint Genome Institute, Walnut Creek, CA, U.S.A
| | - Catherine Adam
- United States Department of Energy Joint Genome Institute, Walnut Creek, CA, U.S.A
| | | |
Collapse
|
17
|
Roylawar P, Khandagale K, Randive P, Shinde B, Murumkar C, Ade A, Singh M, Gawande S, Morelli M. Piriformospora indica Primes Onion Response against Stemphylium Leaf Blight Disease. Pathogens 2021; 10:1085. [PMID: 34578118 PMCID: PMC8472787 DOI: 10.3390/pathogens10091085] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 08/14/2021] [Accepted: 08/15/2021] [Indexed: 12/11/2022] Open
Abstract
The root-endophytic fungus Piriformospora indica (=Serendipita indica) has been revealed for its growth-promoting effects and its capacity to induce resistance in a broad spectrum of host plants. However, the bioefficacy of this fungus had not yet been tested against any pathogen affecting onion (Allium cepa). In this study, the biocontrol potency of P. indica against onion leaf blight, an impacting disease caused by the necrotrophic fungal pathogen Stemphylium vesicarium, was evaluated. First, it was proved that colonisation of onion roots by P. indica was beneficial for plant growth, as it increased leaf development and root biomass. Most relevantly, P. indica was also effective in reducing Stemphylium leaf blight (SLB) severity, as assessed under greenhouse conditions and confirmed in field trials in two consecutive years. These investigations could also provide some insight into the biochemical and molecular changes that treatment with P. indica induces in the main pathways associated with host defence response. It was possible to highlight the protective effect of P. indica colonisation against peroxidative damage, and its role in signalling oxidative stress, by assessing changes in malondialdehyde and H2O2 content. It was also showed that treatment with P. indica contributes to modulate the enzymatic activity of superoxide dismutase, catalase, phenylalanine ammonia-lyase and peroxidase, in the course of infection. qPCR-based expression analysis of defence-related genes AcLOX1, AcLOX2, AcPAL1, AcGST, AcCHI, AcWRKY1, and AcWRKY70 provided further indications on P. indica ability to induce onion systemic response. Based on the evidence gathered, this study aims to propose P. indica application as a sustainable tool for improving SLB control, which might not only enhance onion growth performance but also activate defence signalling mechanisms more effectively, involving different pathways.
Collapse
Affiliation(s)
- Praveen Roylawar
- ICAR-Directorate of Onion and Garlic Research (DOGR), Rajgurunagar, Pune 410505, India; (P.R.); (P.R.); (M.S.)
- Tuljaram Chaturchand College of Arts, Science and Commerce, Baramati, Pune 413102, India;
- Department of Botany, Sangamner Nagarpalika Arts, D. J. Malpani Commerce, B. N. Sarda Science College, Sangamner, Ahamadnagar 422605, India
| | - Kiran Khandagale
- Department of Botany, Savitribai Phule Pune University, Pune 411007, India; (K.K.); (A.A.)
| | - Pragati Randive
- ICAR-Directorate of Onion and Garlic Research (DOGR), Rajgurunagar, Pune 410505, India; (P.R.); (P.R.); (M.S.)
| | - Bharat Shinde
- Vidya Pratishthan’s Arts, Science & Commerce College, Baramati, Pune 413133, India;
| | | | - Avinash Ade
- Department of Botany, Savitribai Phule Pune University, Pune 411007, India; (K.K.); (A.A.)
| | - Major Singh
- ICAR-Directorate of Onion and Garlic Research (DOGR), Rajgurunagar, Pune 410505, India; (P.R.); (P.R.); (M.S.)
| | - Suresh Gawande
- ICAR-Directorate of Onion and Garlic Research (DOGR), Rajgurunagar, Pune 410505, India; (P.R.); (P.R.); (M.S.)
| | - Massimiliano Morelli
- CNR-IPSP Istituto per la Protezione Sostenibile delle Piante, Sede Secondaria di Bari, 70124 Bari, Italy;
| |
Collapse
|
18
|
Šečić E, Zanini S, Wibberg D, Jelonek L, Busche T, Kalinowski J, Nasfi S, Thielmann J, Imani J, Steinbrenner J, Kogel KH. A novel plant-fungal association reveals fundamental sRNA and gene expression reprogramming at the onset of symbiosis. BMC Biol 2021; 19:171. [PMID: 34429124 PMCID: PMC8385953 DOI: 10.1186/s12915-021-01104-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 07/16/2021] [Indexed: 01/15/2023] Open
Affiliation(s)
- Ena Šečić
- Institute of Phytopathology, Centre for BioSystems, Land Use and Nutrition, Justus Liebig University, 35392, Giessen, Germany
| | - Silvia Zanini
- Institute of Phytopathology, Centre for BioSystems, Land Use and Nutrition, Justus Liebig University, 35392, Giessen, Germany
| | - Daniel Wibberg
- Center for Biotechnology - CeBiTec, Bielefeld University, 33615, Bielefeld, Germany
| | - Lukas Jelonek
- Institute of Bioinformatics and Systems Biology, Justus Liebig University, 35392, Giessen, Germany
| | - Tobias Busche
- Center for Biotechnology - CeBiTec, Bielefeld University, 33615, Bielefeld, Germany
| | - Jörn Kalinowski
- Center for Biotechnology - CeBiTec, Bielefeld University, 33615, Bielefeld, Germany
| | - Sabrine Nasfi
- Institute of Phytopathology, Centre for BioSystems, Land Use and Nutrition, Justus Liebig University, 35392, Giessen, Germany
| | - Jennifer Thielmann
- Institute of Phytopathology, Centre for BioSystems, Land Use and Nutrition, Justus Liebig University, 35392, Giessen, Germany
| | - Jafargholi Imani
- Institute of Phytopathology, Centre for BioSystems, Land Use and Nutrition, Justus Liebig University, 35392, Giessen, Germany
| | - Jens Steinbrenner
- Institute of Phytopathology, Centre for BioSystems, Land Use and Nutrition, Justus Liebig University, 35392, Giessen, Germany
| | - Karl-Heinz Kogel
- Institute of Phytopathology, Centre for BioSystems, Land Use and Nutrition, Justus Liebig University, 35392, Giessen, Germany.
| |
Collapse
|
19
|
Ntana F, Bhat WW, Johnson SR, Jørgensen HJL, Collinge DB, Jensen B, Hamberger B. A Sesquiterpene Synthase from the Endophytic Fungus Serendipita indica Catalyzes Formation of Viridiflorol. Biomolecules 2021; 11:biom11060898. [PMID: 34208762 PMCID: PMC8234273 DOI: 10.3390/biom11060898] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 06/11/2021] [Accepted: 06/12/2021] [Indexed: 12/16/2022] Open
Abstract
Interactions between plant-associated fungi and their hosts are characterized by a continuous crosstalk of chemical molecules. Specialized metabolites are often produced during these associations and play important roles in the symbiosis between the plant and the fungus, as well as in the establishment of additional interactions between the symbionts and other organisms present in the niche. Serendipita indica, a root endophytic fungus from the phylum Basidiomycota, is able to colonize a wide range of plant species, conferring many benefits to its hosts. The genome of S. indica possesses only few genes predicted to be involved in specialized metabolite biosynthesis, including a putative terpenoid synthase gene (SiTPS). In our experimental setup, SiTPS expression was upregulated when the fungus colonized tomato roots compared to its expression in fungal biomass growing on synthetic medium. Heterologous expression of SiTPS in Escherichia coli showed that the produced protein catalyzes the synthesis of a few sesquiterpenoids, with the alcohol viridiflorol being the main product. To investigate the role of SiTPS in the plant-endophyte interaction, an SiTPS-over-expressing mutant line was created and assessed for its ability to colonize tomato roots. Although overexpression of SiTPS did not lead to improved fungal colonization ability, an in vitro growth-inhibition assay showed that viridiflorol has antifungal properties. Addition of viridiflorol to the culture medium inhibited the germination of spores from a phytopathogenic fungus, indicating that SiTPS and its products could provide S. indica with a competitive advantage over other plant-associated fungi during root colonization.
Collapse
Affiliation(s)
- Fani Ntana
- Department of Environmental Science, Aarhus University, Frederiksborgvej 399, 4000 Roskilde, Denmark;
| | - Wajid W. Bhat
- Department of Biochemistry and Molecular Biology, Michigan State University, 603 Wilson Rd, East Lansing, MI 48824, USA;
| | - Sean R. Johnson
- New England Biolabs, Inc., 240 County Road, Ipswich, MA 01938, USA;
| | - Hans J. L. Jørgensen
- Department of Plant and Environmental Sciences and Copenhagen Plant Science Centre, University of Copenhagen, Thorvaldsensvej 40, 1871 Copenhagen, Denmark; (H.J.L.J.); (D.B.C.); (B.J.)
| | - David B. Collinge
- Department of Plant and Environmental Sciences and Copenhagen Plant Science Centre, University of Copenhagen, Thorvaldsensvej 40, 1871 Copenhagen, Denmark; (H.J.L.J.); (D.B.C.); (B.J.)
| | - Birgit Jensen
- Department of Plant and Environmental Sciences and Copenhagen Plant Science Centre, University of Copenhagen, Thorvaldsensvej 40, 1871 Copenhagen, Denmark; (H.J.L.J.); (D.B.C.); (B.J.)
| | - Björn Hamberger
- Department of Biochemistry and Molecular Biology, Michigan State University, 603 Wilson Rd, East Lansing, MI 48824, USA;
- Correspondence:
| |
Collapse
|
20
|
Sepehri M, Ghaffari MR, Khayam Nekoui M, Sarhadi E, Moghadam A, Khatabi B, Hosseini Salekdeh G. Root endophytic fungus Serendipita indica modulates barley leaf blade proteome by increasing the abundance of photosynthetic proteins in response to salinity. J Appl Microbiol 2021; 131:1870-1889. [PMID: 33694234 DOI: 10.1111/jam.15063] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 03/03/2021] [Accepted: 03/04/2021] [Indexed: 11/28/2022]
Abstract
AIMS The present study aimed at analysing the proteome pattern of the leaf blade of barley (Hordeum vulgare L.) in Serendipita indica-colonised plants to decipher the molecular mechanism of S. indica-mediated salt stress. This work is aligned with our previous research on barley leaf sheath to study proteomic pattern variability in leaf blade and sheath of barley plant in response to salinity and S. indica inoculation. METHODS AND RESULTS The experiment was conducted using a completely randomised factorial design with four replications and two treatments: salinity (0 and 300 mmol l-1 NaCl) and fungus (noninoculated and S. indica-inoculated). The leaf blades of the salt-treated S. indica-colonised and noninoculated plants were harvested after 2 weeks of salt treatment for the physiological and proteomic analyses. After exposure to 300 mmol l-1 NaCl, shoot dry matter production in noninoculated control plants decreased 84% which was about twofold higher than inoculated plants with S. indica. However, the accumulation of sodium in the shoot of S. indica-inoculated plants was significantly lower than the control plants. Analysis of the proteome profile revealed a high number of significantly up-regulated proteins involved in photosynthesis (26 out of 42 identified proteins). CONCLUSIONS The results demonstrated how the enhanced plant growth and salt stress resistance induced by S. indica was positively associated with the up-regulation of several proteins involved in photosynthesis and carbohydrate metabolism. In fact, S. indica improved photosynthesis in order to reach the best possible performance of the host plant under salt stress. SIGNIFICANCE AND IMPACT OF THE STUDY Current research provides new insight into the mechanism applied by S. indica in reducing the negative impacts of salt stress in barley at physiological and molecular levels.
Collapse
Affiliation(s)
- M Sepehri
- Department of Soil Science, School of Agriculture, Shiraz University, Shiraz, Iran
| | - M R Ghaffari
- Department of Systems and Synthetic Biology, Agricultural Biotechnology Research Institute of Iran (ABRII), Agricultural Research, Education, and Extension Organization (AREEO), Karaj, Iran
| | - M Khayam Nekoui
- Faculty of Biological Science, Research Center of Biotechnology Development, Tarbiat Modares University, Tehran, Iran
| | - E Sarhadi
- Research Institute of Forests and Rangelands, Tehran, Iran
| | - A Moghadam
- Institute of Biotechnology, School of Agriculture, Shiraz University, Shiraz, Iran
| | - B Khatabi
- Department of Agriculture, Food and Resource Sciences, University of Maryland Eastern Shore, Princess Anne, MD, USA
| | - G Hosseini Salekdeh
- Department of Systems and Synthetic Biology, Agricultural Biotechnology Research Institute of Iran (ABRII), Agricultural Research, Education, and Extension Organization (AREEO), Karaj, Iran.,Department of Molecular Sciences, Macquarie University, Sydney, NSW, Australia
| |
Collapse
|
21
|
Opitz MW, Daneshkhah R, Lorenz C, Ludwig R, Steinkellner S, Wieczorek K. Serendipita indica changes host sugar and defense status in Arabidopsis thaliana: cooperation or exploitation? PLANTA 2021; 253:74. [PMID: 33620564 PMCID: PMC7902589 DOI: 10.1007/s00425-021-03587-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 02/04/2021] [Indexed: 05/10/2023]
Abstract
Manipulation of sugar metabolism upon S. indica root colonization triggers changes in sugar pools and defense responses in A. thaliana. Serendipita indica is an endophytic fungus that establishes mutualistic relationships with many different plants including important crops as well as the model plant A. thaliana. Successful root colonization typically results in growth promotion and enhanced tolerance against various biotic and abiotic stresses. The fungus delivers phosphorus to the host and receives in exchange carbohydrates. There are hints that S. indica prefers hexoses, glucose, and fructose, products of saccharose cleavage driven by invertases (INVs) and sucrose synthases (SUSs). Carbohydrate metabolism in this interaction, however, remains still widely unexplored. Therefore, in this work, the sugar pools as well as the expression of SUSs and cytosolic INVs in plants colonized by S. indica were analyzed. Using sus1/2/3/4 and cinv1/2 mutants the importance of these genes for the induction of growth promotion and proper root colonization was demonstrated. Furthermore, the expression of several defense-related marker genes in both multiple mutants in comparison to the wild-type plants was determined. Our results show that in colonized A. thaliana plants S. indica manipulates the sugar metabolism by altering the expression of host's INV and SUS and modulates both the sugar pools and plant defense in its favor. We conclude that the interaction A. thaliana-S. indica is a balancing act between cooperation and exploitation, in which sugar metabolism plays a crucial role. Small changes in this mechanism can lead to severe disruption resulting in the lack of growth promotion or altered colonization rate.
Collapse
Affiliation(s)
- Michael W Opitz
- Department of Crop Sciences, Institute of Plant Protection, University of Natural Resources and Life Sciences, Tulln an der Donau, Austria
| | - Roshanak Daneshkhah
- Department of Crop Sciences, Institute of Plant Protection, University of Natural Resources and Life Sciences, Tulln an der Donau, Austria
| | - Cindy Lorenz
- Department of Food Sciences and Technology, Institute of Food Technology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Roland Ludwig
- Department of Food Sciences and Technology, Institute of Food Technology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Siegrid Steinkellner
- Department of Crop Sciences, Institute of Plant Protection, University of Natural Resources and Life Sciences, Tulln an der Donau, Austria
| | - Krzysztof Wieczorek
- Department of Crop Sciences, Institute of Plant Protection, University of Natural Resources and Life Sciences, Tulln an der Donau, Austria.
| |
Collapse
|
22
|
Extremophilic Fungi and Their Role in Control of Pathogenic Microbes. Fungal Biol 2021. [DOI: 10.1007/978-3-030-60659-6_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
23
|
Gazara RK, Khan S, Iqrar S, Ashrafi K, Abdin MZ. Comparative transcriptome profiling of rice colonized with beneficial endophyte, Piriformospora indica, under high salinity environment. Mol Biol Rep 2020; 47:7655-7673. [PMID: 32979167 DOI: 10.1007/s11033-020-05839-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Accepted: 09/10/2020] [Indexed: 01/20/2023]
Abstract
The salinity stress tolerance in plants has been studied enormously, reflecting its agronomic relevance. Despite the extensive research, limited success has been achieved in relation to the plant tolerance mechanism. The beneficial interaction between Piriformospora indica and rice could essentially improve the performance of the plant during salt stress. In this study, the transcriptomic data between P. indica treated and untreated rice roots were compared under control and salt stress conditions. Overall, 661 salt-responsive differentially expressed genes (DEGs) were detected with 161 up- and 500 down-regulated genes in all comparison groups. Gene ontology analyses indicated the DEGs were mainly enriched in "auxin-activated signaling pathway", "water channel activity", "integral component of plasma membrane", "stress responses", and "metabolic processes". Kyoto Encyclopedia of Genes and Genomes pathway analysis revealed that the DEGs were primarily related to "Zeatin biosynthesis", "Fatty acid elongation", "Carotenoid biosynthesis", and "Biosynthesis of secondary metabolites". Particularly, genes related to cell wall modifying enzymes (e.g. invertase/pectin methylesterase inhibitor protein and arabinogalactans), phytohormones (e.g. Auxin-responsive Aux/IAA gene family, ent-kaurene synthase, and 12-oxophytodienoate reductase) and receptor-like kinases (e.g. AGC kinase and receptor protein kinase) were induced in P. indica colonized rice under salt stress condition. The differential expression of these genes implies that the coordination between hormonal crosstalk, signaling, and cell wall dynamics contributes to the higher growth and tolerance in P. indica-inoculated rice. Our results offer a valuable resource for future functional studies on salt-responsive genes that should improve the resilience and adaptation of rice against salt stress.
Collapse
Affiliation(s)
- Rajesh K Gazara
- Centro de Bioiências e Biotecnologia, Universidade Estadual do Norte Fluminense "Darcy Ribeiro" University, Campos dos goytacazes, Rio de Janeiro, Brazil
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, 247667, India
- Department of Electrical Engineering, Indian Institute of Technology Roorkee, Roorkee, 247667, India
| | - Shazia Khan
- Department of Biotechnology, Jamia Hamdard, New Delhi, 110062, India
| | - Sadia Iqrar
- Department of Biotechnology, Jamia Hamdard, New Delhi, 110062, India
| | - Kudsiya Ashrafi
- Department of Biotechnology, Jamia Hamdard, New Delhi, 110062, India
| | - Malik Z Abdin
- Department of Biotechnology, Jamia Hamdard, New Delhi, 110062, India.
| |
Collapse
|
24
|
Venneman J, Vandermeersch L, Walgraeve C, Audenaert K, Ameye M, Verwaeren J, Steppe K, Van Langenhove H, Haesaert G, Vereecke D. Respiratory CO 2 Combined With a Blend of Volatiles Emitted by Endophytic Serendipita Strains Strongly Stimulate Growth of Arabidopsis Implicating Auxin and Cytokinin Signaling. FRONTIERS IN PLANT SCIENCE 2020; 11:544435. [PMID: 32983211 PMCID: PMC7492573 DOI: 10.3389/fpls.2020.544435] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 08/14/2020] [Indexed: 05/17/2023]
Abstract
Rhizospheric microorganisms can alter plant physiology and morphology in many different ways including through the emission of volatile organic compounds (VOCs). Here we demonstrate that VOCs from beneficial root endophytic Serendipita spp. are able to improve the performance of in vitro grown Arabidopsis seedlings, with an up to 9.3-fold increase in plant biomass. Additional changes in VOC-exposed plants comprised petiole elongation, epidermal cell and leaf area expansion, extension of the lateral root system, enhanced maximum quantum efficiency of photosystem II (Fv/Fm), and accumulation of high levels of anthocyanin. Notwithstanding that the magnitude of the effects was highly dependent on the test system and cultivation medium, the volatile blends of each of the examined strains, including the references S. indica and S. williamsii, exhibited comparable plant growth-promoting activities. By combining different approaches, we provide strong evidence that not only fungal respiratory CO2 accumulating in the headspace, but also other volatile compounds contribute to the observed plant responses. Volatile profiling identified methyl benzoate as the most abundant fungal VOC, released especially by Serendipita cultures that elicit plant growth promotion. However, under our experimental conditions, application of methyl benzoate as a sole volatile did not affect plant performance, suggesting that other compounds are involved or that the mixture of VOCs, rather than single molecules, accounts for the strong plant responses. Using Arabidopsis mutant and reporter lines in some of the major plant hormone signal transduction pathways further revealed the involvement of auxin and cytokinin signaling in Serendipita VOC-induced plant growth modulation. Although we are still far from translating the current knowledge into the implementation of Serendipita VOCs as biofertilizers and phytostimulants, volatile production is a novel mechanism by which sebacinoid fungi can trigger and control biological processes in plants, which might offer opportunities to address agricultural and environmental problems in the future.
Collapse
Affiliation(s)
- Jolien Venneman
- Laboratory of Applied Mycology and Phenomics, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Lore Vandermeersch
- Research Group EnVOC, Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Christophe Walgraeve
- Research Group EnVOC, Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Kris Audenaert
- Laboratory of Applied Mycology and Phenomics, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Maarten Ameye
- Laboratory of Applied Mycology and Phenomics, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Jan Verwaeren
- Department of Data Analysis and Mathematical Modelling, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Kathy Steppe
- Laboratory of Plant Ecology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Herman Van Langenhove
- Research Group EnVOC, Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Geert Haesaert
- Laboratory of Applied Mycology and Phenomics, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Danny Vereecke
- Laboratory of Applied Mycology and Phenomics, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| |
Collapse
|
25
|
Pérez-Alonso MM, Guerrero-Galán C, Scholz SS, Kiba T, Sakakibara H, Ludwig-Müller J, Krapp A, Oelmüller R, Vicente-Carbajosa J, Pollmann S. Harnessing symbiotic plant-fungus interactions to unleash hidden forces from extreme plant ecosystems. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:3865-3877. [PMID: 31976537 PMCID: PMC7316966 DOI: 10.1093/jxb/eraa040] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 01/21/2020] [Indexed: 05/15/2023]
Abstract
Global climate change is arguably one of the biggest threats of modern times and has already led to a wide range of impacts on the environment, economy, and society. Owing to past emissions and climate system inertia, global climate change is predicted to continue for decades even if anthropogenic greenhouse gas emissions were to stop immediately. In many regions, such as central Europe and the Mediterranean region, the temperature is likely to rise by 2-5 °C and annual precipitation is predicted to decrease. Expected heat and drought periods followed by floods, and unpredictable growing seasons, are predicted to have detrimental effects on agricultural production systems, causing immense economic losses and food supply problems. To mitigate the risks of climate change, agricultural innovations counteracting these effects need to be embraced and accelerated. To achieve maximum improvement, the required agricultural innovations should not focus only on crops but rather pursue a holistic approach including the entire ecosystem. Over millions of years, plants have evolved in close association with other organisms, particularly soil microbes that have shaped their evolution and contemporary ecology. Many studies have already highlighted beneficial interactions among plants and the communities of microorganisms with which they coexist. Questions arising from these discoveries are whether it will be possible to decipher a common molecular pattern and the underlying biochemical framework of interspecies communication, and whether such knowledge can be used to improve agricultural performance under environmental stress conditions. In this review, we summarize the current knowledge of plant interactions with fungal endosymbionts found in extreme ecosystems. Special attention will be paid to the interaction of plants with the symbiotic root-colonizing endophytic fungus Serendipita indica, which has been developed as a model system for beneficial plant-fungus interactions.
Collapse
Affiliation(s)
- Marta-Marina Pérez-Alonso
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM)–Instituto Nacional de Investigación y Tecnología Agraria y Alimentación (INIA), Campus de Montegancedo, Pozuelo de Alarcón (Madrid), Spain
| | - Carmen Guerrero-Galán
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM)–Instituto Nacional de Investigación y Tecnología Agraria y Alimentación (INIA), Campus de Montegancedo, Pozuelo de Alarcón (Madrid), Spain
| | - Sandra S Scholz
- Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular Botany, Department of Plant Physiology, Friedrich-Schiller-University Jena, Jena, Germany
| | - Takatoshi Kiba
- RIKEN Center for Sustainable Resource Science, Suehiro, Tsurumi, Yokohama, Japan
- Department of Applied Biosciences, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Hitoshi Sakakibara
- RIKEN Center for Sustainable Resource Science, Suehiro, Tsurumi, Yokohama, Japan
- Department of Applied Biosciences, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | | | - Anne Krapp
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, Versailles, France
| | - Ralf Oelmüller
- Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular Botany, Department of Plant Physiology, Friedrich-Schiller-University Jena, Jena, Germany
| | - Jesús Vicente-Carbajosa
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM)–Instituto Nacional de Investigación y Tecnología Agraria y Alimentación (INIA), Campus de Montegancedo, Pozuelo de Alarcón (Madrid), Spain
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid (UPM), Madrid, Spain
| | - Stephan Pollmann
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM)–Instituto Nacional de Investigación y Tecnología Agraria y Alimentación (INIA), Campus de Montegancedo, Pozuelo de Alarcón (Madrid), Spain
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid (UPM), Madrid, Spain
| |
Collapse
|
26
|
Osman M, Stigloher C, Mueller MJ, Waller F. An improved growth medium for enhanced inoculum production of the plant growth-promoting fungus Serendipita indica. PLANT METHODS 2020; 16:39. [PMID: 32190103 PMCID: PMC7076966 DOI: 10.1186/s13007-020-00584-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 03/11/2020] [Indexed: 06/10/2023]
Abstract
BACKGROUND The plant endophytic fungus Serendipita indica colonizes roots of a wide range of plant species and can enhance growth and stress resistance of these plants. Due to its ease of axenic cultivation and its broad host plant range including the model plant Arabidopsis thaliana and numerous crop plants, it is widely used as a model fungus to study beneficial fungus-root interactions. In addition, it was suggested to be utilized for commercial applications, e.g. to enhance yield in barley and other species. To produce inoculum, S. indica is mostly cultivated in a complex Hill-Käfer medium (CM medium), however, growth in this medium is slow, and yield of chlamydospores, which are often used for plant root inoculation, is relatively low. RESULTS We tested and optimized a simple vegetable juice-based medium for an enhanced yield of fungal inoculum. The described vegetable juice (VJ) medium is based on commercially available vegetable juice and is easy to prepare. VJ medium was superior to the currently used CM medium with respect to biomass production in liquid medium and hyphal growth on agar plates. Using solid VJ medium supplemented with sucrose (VJS), a high amount of chlamydospores developed already after 8 days of cultivation, producing significantly more spores than on CM medium. Use of VJ medium is not restricted to S. indica, as it also supported growth of two pathogenic fungi often used in plant pathology experiments: the ascomycete Fusarium graminearum, the causal agent of Fusarium head blight disease on wheat and barley, and Verticillium longisporum, the causal agent of verticillium wilt. CONCLUSIONS The described VJ medium is recommended for streamlined and efficient production of inoculum for the plant endophytic fungus Serendipita indica and might prove superior for the propagation of other fungi for research purposes.
Collapse
Affiliation(s)
- Mohamed Osman
- Julius-Von-Sachs Institute of Biosciences, Biocenter, Pharmaceutical Biology, Julius-Maximilians-Universität Würzburg, Julius-von-Sachs-Platz 2, 97082 Würzburg, Germany
| | - Christian Stigloher
- Imaging Core Facility, Theodor-Boveri Institute of Biosciences, Biocenter, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Martin J. Mueller
- Julius-Von-Sachs Institute of Biosciences, Biocenter, Pharmaceutical Biology, Julius-Maximilians-Universität Würzburg, Julius-von-Sachs-Platz 2, 97082 Würzburg, Germany
| | - Frank Waller
- Julius-Von-Sachs Institute of Biosciences, Biocenter, Pharmaceutical Biology, Julius-Maximilians-Universität Würzburg, Julius-von-Sachs-Platz 2, 97082 Würzburg, Germany
| |
Collapse
|
27
|
Fungal Phytohormones: Plant Growth-Regulating Substances and Their Applications in Crop Productivity. Fungal Biol 2020. [DOI: 10.1007/978-3-030-45971-0_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
28
|
Ye W, Jiang J, Lin Y, Yeh KW, Lai Z, Xu X, Oelmüller R. Colonisation of Oncidium orchid roots by the endophyte Piriformospora indica restricts Erwinia chrysanthemi infection, stimulates accumulation of NBS-LRR resistance gene transcripts and represses their targeting micro-RNAs in leaves. BMC PLANT BIOLOGY 2019; 19:601. [PMID: 31888486 PMCID: PMC6937650 DOI: 10.1186/s12870-019-2105-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 10/28/2019] [Indexed: 05/30/2023]
Abstract
BACKGROUND Erwinia chrysanthemi (Ec) is a destructive pathogen which causes soft-rot diseases in diverse plant species including orchids. We investigated whether colonization of Oncidium roots by the endophytic fungus Piriformospora indica (Pi) restricts Ec-induced disease development in leaves, and whether this might be related to the regulation of nucleotide binding site-leucine rich repeat (NBS-LRR) Resistance (R) genes. RESULTS Root colonization of Oncidium stackings by Pi restricts progression of Ec-induced disease development in the leaves. Since Pi does not inhibit Ec growth on agar plates, we tested whether NBS-LRR R gene transcripts and the levels of their potential target miRNAs in Oncidium leaves might be regulated by Pi. Using bioinformatic tools, we first identified NBS-LRR R gene sequences from Oncidium, which are predicted to be targets of miRNAs. Among them, the expression of two R genes was repressed and the accumulation of several regulatory miRNA stimulated by Ec in the leaves of Oncidium plants. This correlated with the progression of disease development, jasmonic and salicylic acid accumulation, ethylene synthesis and H2O2 production after Ec infection of Oncidium leaves. Interestingly, root colonization by Pi restricted disease development in the leaves, and this was accompanied by higher expression levels of several defense-related R genes and lower expression level of their target miRNA. CONCLUSION Based on these data we propose that Pi controls the levels of NBS-LRR R mRNAs and their target miRNAs in leaves. This regulatory circuit correlates with the protection of Oncidium plants against Ec infection, and molecular and biochemical investigations will demonstrate in the future whether, and if so, to what extent these two observations are related to each other.
Collapse
Affiliation(s)
- Wei Ye
- Sanming Academy of Agricultural Sciences, Sanming, Fujian China
| | - Jinlan Jiang
- Sanming Academy of Agricultural Sciences, Sanming, Fujian China
| | - Yuling Lin
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, Fujian China
| | - Kai-Wun Yeh
- Matthias-Schleiden-Institute, Plant Physiology, Friedrich Schiller University Jena, Jena, Germany
| | - Zhongxiong Lai
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, Fujian China
| | - Xuming Xu
- Sanming Academy of Agricultural Sciences, Sanming, Fujian China
| | - Ralf Oelmüller
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, Fujian China
- Matthias-Schleiden-Institute, Plant Physiology, Friedrich Schiller University Jena, Jena, Germany
| |
Collapse
|
29
|
Treatments with native Coleus forskohlii endophytes improve fitness and secondary metabolite production of some medicinal and aromatic plants. Int Microbiol 2019; 23:345-354. [PMID: 31823202 DOI: 10.1007/s10123-019-00108-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 10/25/2019] [Accepted: 11/21/2019] [Indexed: 01/07/2023]
Abstract
Endophytes have been shown to play a crucial role in determining the fitness of host plant during their association, yet the cross-functional effect of endophytes of one plant on another plant remains largely uncharacterized. In this study, we attempt to analyze the effect of native endophytes of Coleus forskohlii (Phialemoniopsis cornearis (SF1), Macrophomina pseudophaseolina (SF2), and Fusarium redolens (RF1), isolated from stem and root parts) on plant growth and secondary metabolite enhancement in medicinal plant Andrographis paniculata, and aromatic plants Pelargonium graveolens and Artemisia pallens. Here, we report, endophytic treatments with SF2 (21%) and RF1 (9%) in A. paniculata resulted in significant enhancement of andrographolide along with plant primary productivity. Correspondingly, application of fungal endophytes RF1, SF1, and SF2 significantly improved the plant growth (11 to 40%), shoot weight (28 to 34%), oil content (44 to 58%), and oil yield (72 to 122%) in P. graveolens. Interestingly, treatment of A. pallens with three fungal endophytes resulted in significant enhancement of plant productivity and oil content (12 to 80%) and oil yield (32 to 139%). Subsequently, the endophyte treatments RF1 and SF1 enhanced davanone (13 to 22%) and ethyl cinnamate (11 to 22%) content. However, SF2 endophyte-treated plants did not show any improvement in ethyl cinnamate content but enhanced the content of davanone (10%), a signature component of davana essential oil. Overall, results depict cross-functional role of native endophytes of C. forskohlii and repurposing of functional endophytes for sustainable cultivation of economically important medicinal and aromatic crops.
Collapse
|
30
|
Liu H, Senthilkumar R, Ma G, Zou Q, Zhu K, Shen X, Tian D, Hua MS, Oelmüller R, Yeh KW. Piriformospora indica-induced phytohormone changes and root colonization strategies are highly host-specific. PLANT SIGNALING & BEHAVIOR 2019; 14:1632688. [PMID: 31230564 PMCID: PMC6768275 DOI: 10.1080/15592324.2019.1632688] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 06/04/2019] [Accepted: 06/06/2019] [Indexed: 05/19/2023]
Abstract
Piriformospora indica, an endophytic fungus of Sebacinales, has a wide host range and promotes the performance of mono- and eudicot plants. Here, we compare the interaction of P. indica with the roots of seven host plants (Anthurium andraeanum, Arabidopsis thaliana, Brassica campestris, Lycopersicon esculentum, Oncidium orchid, Oryza sativa, and Zea mays). Microscopical analyses showed that the colonization time and the mode of hyphal invasion into the roots differ in the symbiotic interactions. Substantial differences between the species were also observed for the levels and accumulation of jasmonate (JA) and gibberellin (GA) and the transcript levels for genes involved in their syntheses. No obvious correlation could be detected between the endogenous JA and/or GA levels and the time point of root colonization in a given plant species. Our results suggest that root colonization strategies and changes in the two phytohormone levels are highly host-specific.
Collapse
Affiliation(s)
- Huichun Liu
- Research & Development Center of Flower, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Rajendran Senthilkumar
- Institute of Plant Biology, College of Life Science, National Taiwan University, Taipei, Taiwan
- Academia Sinica-Biotechnology Center in Southern Taiwan, Tainan, Taiwan
| | - Guangying Ma
- Research & Development Center of Flower, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Qingcheng Zou
- Research & Development Center of Flower, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Kaiyuan Zhu
- Research & Development Center of Flower, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Xiaolan Shen
- Research & Development Center of Flower, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Danqing Tian
- Research & Development Center of Flower, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Moda Sang Hua
- Institute of Plant Biology, College of Life Science, National Taiwan University, Taipei, Taiwan
| | - Ralf Oelmüller
- Matthias-Schleiden Institute, Plant Physiology, Friedrich-Schiller-University Jena, Jena, Germany
| | - Kai Wun Yeh
- Institute of Plant Biology, College of Life Science, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
31
|
Bertolazi AA, de Souza SB, Ruas KF, Campostrini E, de Rezende CE, Cruz C, Melo J, Colodete CM, Varma A, Ramos AC. Inoculation With Piriformospora indica Is More Efficient in Wild-Type Rice Than in Transgenic Rice Over-Expressing the Vacuolar H +-PPase. Front Microbiol 2019; 10:1087. [PMID: 31156595 PMCID: PMC6530341 DOI: 10.3389/fmicb.2019.01087] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 04/30/2019] [Indexed: 12/19/2022] Open
Abstract
Achieving food security in a context of environmental sustainability is one of the main challenges of the XXI century. Two competing strategies to achieve this goal are the use of genetically modified plants and the use of plant growth promoting microorganisms (PGPMs). However, few studies assess the response of genetically modified plants to PGPMs. The aim of this study was to compare the response of over-expressing the vacuolar H+-PPase (AVP) and wild-type rice types to the endophytic fungus; Piriformospora indica. Oryza sativa plants (WT and AVP) were inoculated with P. indica and 30 days later, morphological, ecophysiological and bioenergetic parameters, and nutrient content were assessed. AVP and WT plant heights were strongly influenced by inoculation with P. indica, which also promoted increases in fresh and dry matter of shoot in both genotypes. This may be related with the stimulatory effect of P. indica on ecophysiological parameters, especially photosynthetic rate, stomatal conductance, intrinsic water use efficiency and carboxylation efficiency. However, there were differences between the genotypes concerning the physiological mechanisms leading to biomass increment. In WT plants, inoculation with P. indica stimulated all H+ pumps. However, in inoculated AVP plants, H+-PPase was stimulated, but P- and V-ATPases were inhibited. Fungal inoculation enhanced nutrient uptake in both shoots and roots of WT and AVP plants, compared to uninoculated plants; but among inoculated genotypes, the nutrient uptake was lower in AVP than in WT plants. These results clearly demonstrate that the symbiosis between P. indica and AVP plants did not benefit those plants, which may be related to the inefficient colonization of this fungus on the transgenic plants, demonstrating an incompatibility of this symbiosis, which needs to be further studied.
Collapse
Affiliation(s)
- Amanda Azevedo Bertolazi
- Laboratory of Environmental Microbiology and Biotechnology, Universidade Vila Velha (UVV), Vila Velha, Brazil
| | - Sávio Bastos de Souza
- Laboratory of Plant Physiology, CCTA, Universidade Estadual do Norte Fluminense (UENF), Campos dos Goytacazes, Brazil
| | - Katherine Fraga Ruas
- Laboratory of Plant Physiology, CCTA, Universidade Estadual do Norte Fluminense (UENF), Campos dos Goytacazes, Brazil
| | - Eliemar Campostrini
- Laboratory of Plant Physiology, CCTA, Universidade Estadual do Norte Fluminense (UENF), Campos dos Goytacazes, Brazil
| | - Carlos Eduardo de Rezende
- Laboratory of Environmental Sciences, CBB, Universidade Estadual do Norte Fluminense (UENF), Campos dos Goytacazes, Brazil
| | - Cristina Cruz
- Centre for Ecology, Evolution and Environmental Changes (Ce3C), Faculty of Sciences, Universidade de Lisboa, Campo Grande, Portugal
| | - Juliana Melo
- Centre for Ecology, Evolution and Environmental Changes (Ce3C), Faculty of Sciences, Universidade de Lisboa, Campo Grande, Portugal
| | - Carlos Moacir Colodete
- Laboratory of Environmental Microbiology and Biotechnology, Universidade Vila Velha (UVV), Vila Velha, Brazil
| | - Ajit Varma
- Amity Institute of Microbial Technology, Amity University, Noida, India
| | - Alessandro Coutinho Ramos
- Laboratory of Environmental Microbiology and Biotechnology, Universidade Vila Velha (UVV), Vila Velha, Brazil
| |
Collapse
|
32
|
Khalid M, Rahman SU, Huang D. Molecular mechanism underlying Piriformospora indica-mediated plant improvement/protection for sustainable agriculture. Acta Biochim Biophys Sin (Shanghai) 2019; 51:229-242. [PMID: 30883651 DOI: 10.1093/abbs/gmz004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2018] [Revised: 01/04/2019] [Accepted: 01/07/2019] [Indexed: 01/02/2023] Open
Abstract
The beneficial endophytic microorganisms have received significant attention in agriculture because of their exceptional capabilities to facilitate functions like nutrient enrichment, water status, and stress tolerance (biotic and abiotic). This review signifies the molecular mechanisms to better understand the Piriformospora indica-mediated plants improvement or protection for sustainable agriculture. P. indica, an endophytic fungus, belonging to the order Sebacinales (Basidiomycota), is versatile in building mutualistic associations with a variety of plants including pteridophytes, bryophytes, gymnosperms, and angiosperms. P. indica has enormous potential to manipulate the hormonal pathway such as the production of indole-3-acetic acid which in turn increases root proliferation and subsequently improves plant nutrient acquisition. P. indica also enhances components of the antioxidant system and expression of stress-related genes which induce plant stress tolerance under adverse environmental conditions. P. indica has tremendous potential for crop improvement because of its multi-dimensional functions such as plant growth promotion, immunomodulatory effect, biofertilizer, obviates biotic (pathogens) and abiotic (metal toxicity, water stress, soil structure, salt, and pH) stresses, phytoremediator, and bio-herbicide. Considering the above points, herein, we reviewed the physiological and molecular mechanisms underlying P. indica-mediated plants improvement or protection under diverse agricultural environment. The first part of the review focuses on the symbiotic association of P. indica with special reference to biotic and abiotic stress tolerance and host plant root colonization mechanisms, respectively. Emphasis is given to the expression level of essential genes involved in the processes that induce changes at the cellular level. The last half emphasizes critical aspects related to the seed germination, plant yield, and nutrients acquisition.
Collapse
Affiliation(s)
- Muhammad Khalid
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Saeed-ur- Rahman
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Danfeng Huang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
33
|
Pascale A, Proietti S, Pantelides IS, Stringlis IA. Modulation of the Root Microbiome by Plant Molecules: The Basis for Targeted Disease Suppression and Plant Growth Promotion. FRONTIERS IN PLANT SCIENCE 2019; 10:1741. [PMID: 32038698 PMCID: PMC6992662 DOI: 10.3389/fpls.2019.01741] [Citation(s) in RCA: 212] [Impact Index Per Article: 42.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 12/11/2019] [Indexed: 05/18/2023]
Abstract
Plants host a mesmerizing diversity of microbes inside and around their roots, known as the microbiome. The microbiome is composed mostly of fungi, bacteria, oomycetes, and archaea that can be either pathogenic or beneficial for plant health and fitness. To grow healthy, plants need to surveil soil niches around the roots for the detection of pathogenic microbes, and in parallel maximize the services of beneficial microbes in nutrients uptake and growth promotion. Plants employ a palette of mechanisms to modulate their microbiome including structural modifications, the exudation of secondary metabolites and the coordinated action of different defence responses. Here, we review the current understanding on the composition and activity of the root microbiome and how different plant molecules can shape the structure of the root-associated microbial communities. Examples are given on interactions that occur in the rhizosphere between plants and soilborne fungi. We also present some well-established examples of microbiome harnessing to highlight how plants can maximize their fitness by selecting their microbiome. Understanding how plants manipulate their microbiome can aid in the design of next-generation microbial inoculants for targeted disease suppression and enhanced plant growth.
Collapse
Affiliation(s)
- Alberto Pascale
- Department of Agricultural Sciences, University of Naples Federico II, Naples, Italy
| | - Silvia Proietti
- Department of Ecological and Biological Sciences, University of Tuscia, Viterbo, Italy
| | - Iakovos S. Pantelides
- Department of Agricultural Sciences, Biotechnology and Food Science, Cyprus University of Technology, Limassol, Cyprus
- *Correspondence: Iakovos S. Pantelides, ; Ioannis A. Stringlis,
| | - Ioannis A. Stringlis
- Plant-Microbe Interactions, Department of Biology, Science4Life, Utrecht University, Utrecht, Netherlands
- *Correspondence: Iakovos S. Pantelides, ; Ioannis A. Stringlis,
| |
Collapse
|
34
|
Hilbert M, Novero M, Rovenich H, Mari S, Grimm C, Bonfante P, Zuccaro A. MLO Differentially Regulates Barley Root Colonization by Beneficial Endophytic and Mycorrhizal Fungi. FRONTIERS IN PLANT SCIENCE 2019; 10:1678. [PMID: 32010163 PMCID: PMC6976535 DOI: 10.3389/fpls.2019.01678] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 11/28/2019] [Indexed: 05/05/2023]
Abstract
Loss-of-function alleles of MLO (Mildew Resistance Locus O) confer broad-spectrum resistance to foliar infections by powdery mildew pathogens. Like pathogens, microbes that establish mutually beneficial relationships with their plant hosts, trigger the induction of some defense responses. Initially, barley colonization by the root endophyte Serendipita indica (syn. Piriformospora indica) is associated with enhanced defense gene expression and the formation of papillae at sites of hyphal penetration attempts. This phenotype is reminiscent of mlo-conditioned immunity in barley leaf tissue and raises the question whether MLO plays a regulatory role in the establishment of beneficial interactions. Here we show that S. indica colonization was significantly reduced in plants carrying mlo mutations compared to wild type controls. The reduction in fungal biomass was associated with the enhanced formation of papillae. Moreover, epidermal cells of S. indica-treated mlo plants displayed an early accumulation of iron in the epidermal layer suggesting increased basal defense activation in the barley mutant background. Correspondingly, the induction of host cell death during later colonization stages was impaired in mlo colonized plants, highlighting the importance of the early biotrophic growth phase for S. indica root colonization. In contrast, the arbuscular mycorrhizal fungus Funneliformis mosseae displayed a similar colonization morphology on mutant and wild type plants. However, the frequency of mycorrhization and number of arbuscules was higher in mlo-5 mutants. These findings suggest that MLO differentially regulates root colonization by endophytic and AM fungi.
Collapse
Affiliation(s)
- Magdalena Hilbert
- Department of Organismic Interactions, Max Planck Institute of Terrestrial Microbiology, Marburg, Germany
| | - Mara Novero
- Department of Life Sciences and Systems Biology, University of Turin, Turin, Italy
| | - Hanna Rovenich
- Botanical Institute, Cluster of Excellence on Plant Sciences (CEPLAS), University of Cologne, Cologne, Germany
| | - Stéphane Mari
- BPMP, Univ Montpellier, CNRS, INRAE, Montpellier SupAgro, Montpellier, France
| | - Carolin Grimm
- Department of Organismic Interactions, Max Planck Institute of Terrestrial Microbiology, Marburg, Germany
| | - Paola Bonfante
- Department of Life Sciences and Systems Biology, University of Turin, Turin, Italy
| | - Alga Zuccaro
- Department of Organismic Interactions, Max Planck Institute of Terrestrial Microbiology, Marburg, Germany
- Botanical Institute, Cluster of Excellence on Plant Sciences (CEPLAS), University of Cologne, Cologne, Germany
- *Correspondence: Alga Zuccaro,
| |
Collapse
|
35
|
Farias CP, Carvalho RCDE, Resende FML, Azevedo LCB. Consortium of five fungal isolates conditioning root growth and arbuscular mycorrhiza in soybean, corn, and sugarcane. AN ACAD BRAS CIENC 2018; 90:3649-3660. [PMID: 30517219 DOI: 10.1590/0001-3765201820180161] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2018] [Accepted: 05/21/2018] [Indexed: 11/22/2022] Open
Abstract
Plant growth and arbuscular mycorrhizal colonization were studied in sugarcane, corn and soybean by applying five plant growth promoting fungi: Beauveria bassiana, Metarhizium anisopliae, Pochonia chlamydosporia, Purpureocillium lilacinum, and Trichoderma asperella. Sugarcane, corn and soybean were grown in pots under two treatments: (1) inoculation with the fungal consortium and (2) control without inoculation. In the inoculated treatment, fungal spore suspension were applied to the seeds and shoots were sprayed every 28 days. Means were analyzed by analysis of variance and Tukey's test at 5% probability level. The experiment was arranged in a completely randomized design, with six replications. Fungi consortium mediate root growth in soybean and corn, and arbuscular mycorrhizal colonization in soybean and sugarcane. These findings are probably caused by the fungi producing phytohormones and inducing the plants to synthesize phytohormones: auxins for root growth; and jasmonic, abscisic, and salicylic acids with a role in the regulation of mycorrhizal colonization. These effects are important when seeking conservation strategies in agriculture and livestock production, since Fungi consortium can better mediate soil resource acquisition, promoting greater absorption of nutrients and water.
Collapse
Affiliation(s)
- Christyan P Farias
- Instituto de Ciências Agrárias, Universidade Federal de Uberlândia, Avenida Amazonas, s/n, Campus Umuarama, 38400-902 Uberlândia, MG, Brazil
| | - Rafael C DE Carvalho
- Instituto de Ciências Agrárias, Universidade Federal de Uberlândia, Avenida Amazonas, s/n, Campus Umuarama, 38400-902 Uberlândia, MG, Brazil
| | - Felipe M L Resende
- Instituto de Ciências Agrárias, Universidade Federal de Uberlândia, Avenida Amazonas, s/n, Campus Umuarama, 38400-902 Uberlândia, MG, Brazil
| | - Lucas C B Azevedo
- Instituto de Ciências Agrárias, Universidade Federal de Uberlândia, Avenida Amazonas, s/n, Campus Umuarama, 38400-902 Uberlândia, MG, Brazil
| |
Collapse
|
36
|
Xu L, Wu C, Oelmüller R, Zhang W. Role of Phytohormones in Piriformospora indica-Induced Growth Promotion and Stress Tolerance in Plants: More Questions Than Answers. Front Microbiol 2018; 9:1646. [PMID: 30140257 PMCID: PMC6094092 DOI: 10.3389/fmicb.2018.01646] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 07/02/2018] [Indexed: 11/18/2022] Open
Abstract
Phytohormones play vital roles in the growth and development of plants as well as in interactions of plants with microbes such as endophytic fungi. The endophytic root-colonizing fungus Piriformospora indica promotes plant growth and performance, increases resistance of colonized plants to pathogens, insects and abiotic stress. Here, we discuss the roles of the phytohormones (auxins, cytokinin, gibberellins, abscisic acid, ethylene, salicylic acid, jasmonates, and brassinosteroids) in the interaction of P. indica with higher plant species, and compare available data with those from other (beneficial) microorganisms interacting with roots. Crosstalks between different hormones in balancing the plant responses to microbial signals is an emerging topic in current research. Furthermore, phytohormones play crucial roles in systemic signal propagation as well as interplant communication. P. indica interferes with plant hormone synthesis and signaling to stimulate growth, flowering time, differentiation and local and systemic immune responses. Plants adjust their hormone levels in the roots in response to the microbes to control colonization and fungal propagation. The available information on the roles of phytohormones in beneficial root-microbe interactions opens new questions of how P. indica manipulates the plant hormone metabolism to promote the benefits for both partners in the symbiosis.
Collapse
Affiliation(s)
- Le Xu
- Hubei Collaborative Innovation Center for Grain Industry, School of Agriculture, Yangtze University, Jingzhou, China
| | - Chu Wu
- College of Horticulture and Gardening, Yangtze University, Jingzhou, China
| | - Ralf Oelmüller
- Matthias-Schleiden-Institute, Plant Physiology, Friedrich-Schiller-University Jena, Jena, Germany
| | - Wenying Zhang
- Hubei Collaborative Innovation Center for Grain Industry, School of Agriculture, Yangtze University, Jingzhou, China
| |
Collapse
|
37
|
Bajaj R, Huang Y, Gebrechristos S, Mikolajczyk B, Brown H, Prasad R, Varma A, Bushley KE. Transcriptional responses of soybean roots to colonization with the root endophytic fungus Piriformospora indica reveals altered phenylpropanoid and secondary metabolism. Sci Rep 2018; 8:10227. [PMID: 29980739 PMCID: PMC6035220 DOI: 10.1038/s41598-018-26809-3] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Accepted: 05/15/2018] [Indexed: 12/31/2022] Open
Abstract
Piriformospora indica, a root endophytic fungus, has been shown to enhance biomass production and confer tolerance to various abiotic and biotic stresses in many plant hosts. A growth chamber experiment of soybean (Glycine max) colonized by P. indica compared to uninoculated control plants showed that the fungus significantly increased shoot dry weight, nutrient content, and rhizobial biomass. RNA-Seq analyses of root tissue showed upregulation of 61 genes and downregulation of 238 genes in colonized plants. Gene Ontology (GO) enrichment analyses demonstrated that upregulated genes were most significantly enriched in GO categories related to lignin biosynthesis and regulation of iron transport and metabolism but also mapped to categories of nutrient acquisition, hormone signaling, and response to drought stress. Metabolic pathway analysis revealed upregulation of genes within the phenylpropanoid and derivative pathways such as biosynthesis of monolignol subunits, flavonoids and flavonols (luteolin and quercetin), and iron scavenging siderophores. Highly enriched downregulated GO categories included heat shock proteins involved in response to heat, high-light intensity, hydrogen peroxide, and several related to plant defense. Overall, these results suggest that soybean maintains an association with this root endosymbiotic fungus that improves plant growth and nutrient acquisition, modulates abiotic stress, and promotes synergistic interactions with rhizobia.
Collapse
Affiliation(s)
- Ruchika Bajaj
- Department of Plant Biology, University of Minnesota, Saint Paul, MN, USA
- Amity Institute of Microbial Technology, Amity University, Uttar Pradesh, Noida, India
| | - Yinyin Huang
- Department of Plant Biology, University of Minnesota, Saint Paul, MN, USA
| | - Sebhat Gebrechristos
- Master of Biological Sciences Program, University of Minnesota, Saint Paul, MN, USA
| | - Brian Mikolajczyk
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN, USA
| | - Heather Brown
- Department of Chemistry, University of Minnesota, Minneapolis, MN, USA
| | - Ram Prasad
- Amity Institute of Microbial Technology, Amity University, Uttar Pradesh, Noida, India
| | - Ajit Varma
- Amity Institute of Microbial Technology, Amity University, Uttar Pradesh, Noida, India
| | - Kathryn E Bushley
- Department of Plant Biology, University of Minnesota, Saint Paul, MN, USA.
| |
Collapse
|
38
|
Li X, He X, Hou L, Ren Y, Wang S, Su F. Dark septate endophytes isolated from a xerophyte plant promote the growth of Ammopiptanthus mongolicus under drought condition. Sci Rep 2018; 8:7896. [PMID: 29785041 PMCID: PMC5962579 DOI: 10.1038/s41598-018-26183-0] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 05/04/2018] [Indexed: 02/04/2023] Open
Abstract
Dark septate endophytes (DSE) may facilitate plant growth and stress tolerance in stressful ecosystems. However, little is known about the response of plants to non-host DSE fungi isolated from other plants, especially under drought condition. This study aimed to seek and apply non-host DSE to evaluate their growth promoting effects in a desert species, Ammopiptanthus mongolicus, under drought condition. Nine DSE strains isolated from a super-xerophytic shrub, Gymnocarpos przewalskii, were identified and used as the non-host DSE. And DSE colonization rate (30–35%) and species composition in the roots of G. przewalskii were first reported. The inoculation results showed that all DSE strains were effective colonizers and formed a strain-dependent symbiosis with A. mongolicus. Specifically, one Darksidea strain, Knufia sp., and Leptosphaeria sp. increased the total biomass of A. mongolicus compared to non-inoculated plants. Two Paraconiothyrium strains, Phialophora sp., and Embellisia chlamydospora exhibited significantly positive effects on plant branch number, potassium and calcium content. Two Paraconiothyrium and Darksidea strains particularly decreased plant biomass or element content. As A. mongolicus plays important roles in fixing moving sand and delay desertification, the ability of certain DSE strains to promote desert plant growth indicates their potential use for vegetation recovery in arid environments.
Collapse
Affiliation(s)
- Xia Li
- College of Life Sciences, Hebei University, Baoding, 071002, China
| | - Xueli He
- College of Life Sciences, Hebei University, Baoding, 071002, China.
| | - Lifeng Hou
- College of Life Sciences, Hebei University, Baoding, 071002, China
| | - Ying Ren
- College of Life Sciences, Hebei University, Baoding, 071002, China
| | - Shaojie Wang
- College of Life Sciences, Hebei University, Baoding, 071002, China
| | - Fang Su
- College of Life Sciences, Hebei University, Baoding, 071002, China
| |
Collapse
|
39
|
Daneshkhah R, Grundler FMW, Wieczorek K. The Role of MPK6 as Mediator of Ethylene/Jasmonic Acid Signaling in Serendipita indica-Colonized Arabidopsis Roots. PLANT MOLECULAR BIOLOGY REPORTER 2018; 36:284-294. [PMID: 29875545 PMCID: PMC5966479 DOI: 10.1007/s11105-018-1077-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Serendipita indica is an axenically cultivable fungus, which colonizes a broad range of plant species including the model plant Arabidopsis thaliana. Root colonization by this endophyte leads to enhanced plant fitness and performance and promotes resistance against different biotic and abiotic stresses. The involvement of MPK6 in this mutualistic interaction had been previously shown with an mpk6 A. thaliana mutant, which failed to respond to S. indica colonization. Here, we demonstrate that mpk6 roots are significantly less colonized by S. indica compared to wild-type roots and the foliar application of plant hormones, ethylene, or jasmonic acid, restores the colonization rate at least to the wild-type level. Further, hormone-treated mpk6 plants show typical S. indica-induced growth promotion effects. Moreover, expression levels of several genes related to plant defense and hormone signaling are significantly changed at different colonization phases. Our results demonstrate that the successful root colonization by S. indica depends on efficient suppression of plant immune responses. In A. thaliana, this process relies on intact hormone signaling in which MPK6 seems to play a pivotal role.
Collapse
Affiliation(s)
- R. Daneshkhah
- Division of Plant Protection, Department of Crop Sciences, University of Natural Resources and Life Sciences, Konrad-Lorenz-Straße 24, 3430 Tulln on the Danube, Austria
| | - F. M. W. Grundler
- Institute of Crop Science and Resource Conservation, Molecular Phytomedicine, University Bonn, Karlrobert-Kreiten-Str. 13, 53115 Bonn, Germany
| | - Krzysztof Wieczorek
- Division of Plant Protection, Department of Crop Sciences, University of Natural Resources and Life Sciences, Konrad-Lorenz-Straße 24, 3430 Tulln on the Danube, Austria
| |
Collapse
|
40
|
Pan R, Xu L, Wei Q, Wu C, Tang W, Oelmüller R, Zhang W. Piriformospora indica promotes early flowering in Arabidopsis through regulation of the photoperiod and gibberellin pathways. PLoS One 2017; 12:e0189791. [PMID: 29261746 PMCID: PMC5736186 DOI: 10.1371/journal.pone.0189791] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 12/03/2017] [Indexed: 11/19/2022] Open
Abstract
Flowering in plants is synchronized by both environmental cues and internal regulatory factors. Previous studies have shown that the endophytic fungus Piriformospora indica promotes the growth and early flowering in Coleus forskohlii (a medicinal plant) and Arabidopsis. To further dissect the impact of P. indica on pathways responsible for flowering time in Arabidopsis, we co-cultivated Arabidopsis with P. indica and used RT-qPCR to analyze the main gene regulation networks involved in flowering. Our results revealed that the symbiotic interaction of Arabidopsis with P. indica promotes early flower development and the number of siliques. In addition, expression of the core flowering regulatory gene FLOWERING LOCUS T (FT), of genes controlling the photoperiod [CRYPTOCHROMES (CRY1, CRY2) and PHYTOCHROME B (PHYB)] and those related to gibberellin (GA) functions (RGA1, AGL24, GA3, and MYB5) were induced by the fungus, while key genes controlling the age and autonomous pathways remained unchanged. Moreover, early flowering promotion conferred by P. indica was promoted by exogenous GA and inhabited by GA inhibitor, and this effect could be observed under long day and neutral day photoperiod. Therefore, our data suggested that P. indica promotes early flowering in Arabidopsis likely through photoperiod and GA rather than age or the autonomous pathway.
Collapse
Affiliation(s)
- Rui Pan
- Hubei Collaborative Innovation Center for Grain Industry/ Hubei Key Laboratory of Waterlogging Disaster and Agricultural Use of Wetland, Yangtze University, Jingzhou, China
| | - Le Xu
- Hubei Collaborative Innovation Center for Grain Industry/ Hubei Key Laboratory of Waterlogging Disaster and Agricultural Use of Wetland, Yangtze University, Jingzhou, China
| | - Qiao Wei
- Hubei Collaborative Innovation Center for Grain Industry/ Hubei Key Laboratory of Waterlogging Disaster and Agricultural Use of Wetland, Yangtze University, Jingzhou, China
| | - Chu Wu
- College of Horticulture and Gardening, Yangtze University, Jingzhou, China
| | - Wenlin Tang
- Hubei Collaborative Innovation Center for Grain Industry/ Hubei Key Laboratory of Waterlogging Disaster and Agricultural Use of Wetland, Yangtze University, Jingzhou, China
| | - Ralf Oelmüller
- Friedrich-Schiller-University Jena, Institute of General Botany and Plant Physiology, Jena, Germany
| | - Wenying Zhang
- Hubei Collaborative Innovation Center for Grain Industry/ Hubei Key Laboratory of Waterlogging Disaster and Agricultural Use of Wetland, Yangtze University, Jingzhou, China
| |
Collapse
|
41
|
Hua MDS, Senthil Kumar R, Shyur LF, Cheng YB, Tian Z, Oelmüller R, Yeh KW. Metabolomic compounds identified in Piriformospora indica-colonized Chinese cabbage roots delineate symbiotic functions of the interaction. Sci Rep 2017; 7:9291. [PMID: 28839213 PMCID: PMC5571224 DOI: 10.1038/s41598-017-08715-2] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Accepted: 07/12/2017] [Indexed: 11/23/2022] Open
Abstract
Root colonization by endophytic fungus Piriformospora indica facilitating growth/development and stress tolerance has been demonstrated in various host plants. However, global metabolomic studies are rare. By using high-throughput gas-chromatography-based mass spectrometry, 549 metabolites of 1,126 total compounds observed were identified in colonized and uncolonized Chinese cabbage roots, and hyphae of P. indica. The analyses demonstrate that the host metabolomic compounds and metabolite pathways are globally reprogrammed after symbiosis with P. indica. Especially, γ-amino butyrate (GABA), oxylipin-family compounds, poly-saturated fatty acids, and auxin and its intermediates were highly induced and de novo synthesized in colonized roots. Conversely, nicotinic acid (niacin) and dimethylallylpyrophosphate were strongly decreased. In vivo assays with exogenously applied compounds confirmed that GABA primes plant immunity toward pathogen attack and enhances high salinity and temperature tolerance. Moreover, generation of reactive oxygen/nitrogen species stimulated by nicotinic acid is repressed by P. indica, and causes the feasibility of symbiotic interaction. This global metabolomic analysis and the identification of symbiosis-specific metabolites may help to understand how P. indica confers benefits to the host plant.
Collapse
Affiliation(s)
- Mo Da-Sang Hua
- Institute of Plant Biology, National Taiwan University, 106, Taipei, Taiwan
| | | | - Lie-Fen Shyur
- Agricultural Biotechnology Research Centre, Academia Sinica, 106, Taipei, Taiwan
| | - Yuan-Bin Cheng
- Institute of Natural Products, Kaohsiung Medical University, 807, Kaohsiung, Taiwan
| | - Zhihong Tian
- Hubei Collaborative Innovation, College of Life Science, Yangtze University, Jingzhou, 434025, Hubei, China
| | - Ralf Oelmüller
- Institute of General Botany and Plant Physiology, Friedrich-Schiller-University Jena, Dornburger Str. 159, D-07743, Jena, Germany.
| | - Kai-Wun Yeh
- Institute of Plant Biology, National Taiwan University, 106, Taipei, Taiwan. .,Hubei Collaborative Innovation, College of Life Science, Yangtze University, Jingzhou, 434025, Hubei, China.
| |
Collapse
|
42
|
Hua MDS, Senthil Kumar R, Shyur LF, Cheng YB, Tian Z, Oelmüller R, Yeh KW. Metabolomic compounds identified in Piriformospora indica-colonized Chinese cabbage roots delineate symbiotic functions of the interaction. Sci Rep 2017; 7:9291. [PMID: 28839213 DOI: 10.1038/s41598-017-087152] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Accepted: 07/12/2017] [Indexed: 05/28/2023] Open
Abstract
Root colonization by endophytic fungus Piriformospora indica facilitating growth/development and stress tolerance has been demonstrated in various host plants. However, global metabolomic studies are rare. By using high-throughput gas-chromatography-based mass spectrometry, 549 metabolites of 1,126 total compounds observed were identified in colonized and uncolonized Chinese cabbage roots, and hyphae of P. indica. The analyses demonstrate that the host metabolomic compounds and metabolite pathways are globally reprogrammed after symbiosis with P. indica. Especially, γ-amino butyrate (GABA), oxylipin-family compounds, poly-saturated fatty acids, and auxin and its intermediates were highly induced and de novo synthesized in colonized roots. Conversely, nicotinic acid (niacin) and dimethylallylpyrophosphate were strongly decreased. In vivo assays with exogenously applied compounds confirmed that GABA primes plant immunity toward pathogen attack and enhances high salinity and temperature tolerance. Moreover, generation of reactive oxygen/nitrogen species stimulated by nicotinic acid is repressed by P. indica, and causes the feasibility of symbiotic interaction. This global metabolomic analysis and the identification of symbiosis-specific metabolites may help to understand how P. indica confers benefits to the host plant.
Collapse
Affiliation(s)
- Mo Da-Sang Hua
- Institute of Plant Biology, National Taiwan University, 106, Taipei, Taiwan
| | | | - Lie-Fen Shyur
- Agricultural Biotechnology Research Centre, Academia Sinica, 106, Taipei, Taiwan
| | - Yuan-Bin Cheng
- Institute of Natural Products, Kaohsiung Medical University, 807, Kaohsiung, Taiwan
| | - Zhihong Tian
- Hubei Collaborative Innovation, College of Life Science, Yangtze University, Jingzhou, 434025, Hubei, China
| | - Ralf Oelmüller
- Institute of General Botany and Plant Physiology, Friedrich-Schiller-University Jena, Dornburger Str. 159, D-07743, Jena, Germany.
| | - Kai-Wun Yeh
- Institute of Plant Biology, National Taiwan University, 106, Taipei, Taiwan.
- Hubei Collaborative Innovation, College of Life Science, Yangtze University, Jingzhou, 434025, Hubei, China.
| |
Collapse
|
43
|
Ahlawat S, Saxena P, Ali A, Khan S, Abdin MZ. Comparative study of withanolide production and the related transcriptional responses of biosynthetic genes in fungi elicited cell suspension culture of Withania somnifera in shake flask and bioreactor. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2017; 114:19-28. [PMID: 28249222 DOI: 10.1016/j.plaphy.2017.02.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2016] [Revised: 12/16/2016] [Accepted: 02/13/2017] [Indexed: 06/06/2023]
Abstract
Ashwagandha (Withania somnifera) is one of the most reputed medicinal plants in the traditional medicinal system. In this study, cell suspension culture of W. somnifera was elicited with cell homogenates of fungi (A. alternata, F. solani, V. dahliae and P. indica) in shake flask and the major withanolides like withanolide A, withaferin A and withanone were analysed. Simultaneously expression levels of key pathway genes from withanolides biosynthetic pathways were also checked via quantitative PCR in shake flask as well as in bioreactor. The results show that highest gene expression of 10.8, 5.8, 4.9, and 3.3 folds were observed with HMGR among all the expressed genes in cell suspension cultures with cell homogenates of 3% P. indica, 5% V. dahliae, 3% A. alternata and 3% F. solani, respectively, in comparison to the control in shake flask. Optimized concentration of cell homogenate of P. indica (3% v/v) was added to the growing culture in 5.0-l bioreactor under optimized up-scaling conditions and harvested after 22 days. The genes of MVA, MEP and withanolides biosynthetic pathways like HMGR, SS, SE, CAS, FPPS, DXR and DXS were up-regulated by 12.5, 4.9, 2.18, 4.65, 2.34, 1.89 and 1.4 folds, respectively in bioreactor. The enhancement of biomass (1.13 fold) and withanolides [withanolide A (1.7), withaferin A (1.5), and withanone (1.5) folds] in bioreactor in comparison to shake flask was also found to be in line with the up-regulation of genes of withanolide biosynthetic pathways.
Collapse
Affiliation(s)
- Seema Ahlawat
- Department of Biotechnology, Faculty of Science, Centre for Transgenic Plant Development, Jamia Hamdard, New Delhi 110062, India
| | - Parul Saxena
- Department of Biotechnology, Faculty of Science, Centre for Transgenic Plant Development, Jamia Hamdard, New Delhi 110062, India
| | - Athar Ali
- Department of Biotechnology, Faculty of Science, Centre for Transgenic Plant Development, Jamia Hamdard, New Delhi 110062, India
| | - Shazia Khan
- Department of Biotechnology, Faculty of Science, Centre for Transgenic Plant Development, Jamia Hamdard, New Delhi 110062, India
| | - Malik Z Abdin
- Department of Biotechnology, Faculty of Science, Centre for Transgenic Plant Development, Jamia Hamdard, New Delhi 110062, India.
| |
Collapse
|
44
|
Guo H, Glaeser SP, Alabid I, Imani J, Haghighi H, Kämpfer P, Kogel KH. The Abundance of Endofungal Bacterium Rhizobium radiobacter (syn. Agrobacterium tumefaciens) Increases in Its Fungal Host Piriformospora indica during the Tripartite Sebacinalean Symbiosis with Higher Plants. Front Microbiol 2017; 8:629. [PMID: 28450855 PMCID: PMC5390018 DOI: 10.3389/fmicb.2017.00629] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Accepted: 03/28/2017] [Indexed: 11/13/2022] Open
Abstract
Rhizobium radiobacter (syn. Agrobacterium tumefaciens, syn. "Agrobacterium fabrum") is an endofungal bacterium of the fungal mutualist Piriformospora (syn. Serendipita) indica (Basidiomycota), which together form a tripartite Sebacinalean symbiosis with a broad range of plants. R. radiobacter strain F4 (RrF4), isolated from P. indica DSM 11827, induces growth promotion and systemic resistance in cereal crops, including barley and wheat, suggesting that R. radiobacter contributes to a successful symbiosis. Here, we studied the impact of endobacteria on the morphology and the beneficial activity of P. indica during interactions with plants. Low numbers of endobacteria were detected in the axenically grown P. indica (long term lab-cultured, lcPiri) whereas mycelia colonizing the plant root contained increased numbers of bacteria. Higher numbers of endobacteria were also found in axenic cultures of P. indica that was freshly re-isolated (riPiri) from plant roots, though numbers dropped during repeated axenic re-cultivation. Prolonged treatments of P. indica cultures with various antibiotics could not completely eliminate the bacterium, though the number of detectable endobacteria decreased significantly, resulting in partial-cured P. indica (pcPiri). pcPiri showed reduced growth in axenic cultures and poor sporulation. Consistent with this, pcPiri also showed reduced plant growth promotion and reduced systemic resistance against powdery mildew infection as compared with riPiri and lcPiri. These results are consistent with the assumption that the endobacterium R. radiobacter improves P. indica's fitness and thus contributes to the success of the tripartite Sebacinalean symbiosis.
Collapse
Affiliation(s)
- Huijuan Guo
- Institute of Phytopathology, Research Centre for BioSystems, Land Use and Nutrition, Justus-Liebig-University GiessenGiessen, Germany
| | - Stefanie P Glaeser
- Institute of Applied Microbiology, Research Centre for BioSystems, Land Use and Nutrition, Justus-Liebig-University GiessenGiessen, Germany
| | - Ibrahim Alabid
- Institute of Phytopathology, Research Centre for BioSystems, Land Use and Nutrition, Justus-Liebig-University GiessenGiessen, Germany
| | - Jafargholi Imani
- Institute of Phytopathology, Research Centre for BioSystems, Land Use and Nutrition, Justus-Liebig-University GiessenGiessen, Germany
| | - Hossein Haghighi
- Institute of Applied Microbiology, Research Centre for BioSystems, Land Use and Nutrition, Justus-Liebig-University GiessenGiessen, Germany
| | - Peter Kämpfer
- Institute of Applied Microbiology, Research Centre for BioSystems, Land Use and Nutrition, Justus-Liebig-University GiessenGiessen, Germany
| | - Karl-Heinz Kogel
- Institute of Phytopathology, Research Centre for BioSystems, Land Use and Nutrition, Justus-Liebig-University GiessenGiessen, Germany
| |
Collapse
|
45
|
Santos SGD, Silva PRAD, Garcia AC, Zilli JÉ, Berbara RLL. Dark septate endophyte decreases stress on rice plants. Braz J Microbiol 2017; 48:333-341. [PMID: 28089614 PMCID: PMC5470451 DOI: 10.1016/j.bjm.2016.09.018] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Accepted: 09/09/2016] [Indexed: 11/20/2022] Open
Abstract
Abiotic stress is one of the major limiting factors for plant development and productivity, which makes it important to identify microorganisms capable of increasing plant tolerance to stress. Dark septate endophytes can be symbionts of plants. In the present study, we evaluated the ability of dark septate endophytes isolates to reduce the effects of water stress in the rice varieties Nipponbare and Piauí. The experiments were performed under gnotobiotic conditions, and the water stress was induced with PEG. Four dark septate endophytes were isolated from the roots of wild rice (Oryza glumaepatula) collected from the Brazilian Amazon. Plant height as well as shoot and root fresh and dry matter were measured. Leaf protein concentrations and antioxidant enzyme activity were also estimated. The dark septate endophytes were grown in vitro in Petri dishes containing culture medium; they exhibited different levels of tolerance to salinity and water stress. The two rice varieties tested responded differently to inoculation with dark septate endophytes. Endophytes promoted rice plant growth both in the presence and in the absence of a water deficit. Decreased oxidative stress in plants in response to inoculation was observed in nearly all inoculated treatments, as indicated by the decrease in antioxidant enzyme activity. Dark septate endophytes fungi were shown to increase the tolerance of rice plants to stress caused by water deficiency.
Collapse
|
46
|
Venneman J, Audenaert K, Verwaeren J, Baert G, Boeckx P, Moango AM, Dhed’a BD, Vereecke D, Haesaert G. Congolese Rhizospheric Soils as a Rich Source of New Plant Growth-Promoting Endophytic Piriformospora Isolates. Front Microbiol 2017; 8:212. [PMID: 28261171 PMCID: PMC5306995 DOI: 10.3389/fmicb.2017.00212] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Accepted: 01/30/2017] [Indexed: 12/26/2022] Open
Abstract
In the last decade, there has been an increasing focus on the implementation of plant growth-promoting (PGP) organisms as a sustainable option to compensate for poor soil fertility conditions in developing countries. Trap systems were used in an effort to isolate PGP fungi from rhizospheric soil samples collected in the region around Kisangani in the Democratic Republic of Congo. With sudangrass as a host, a highly conducive environment was created for sebacinalean chlamydospore formation inside the plant roots resulting in a collection of 51 axenically cultured isolates of the elusive genus Piriformospora (recently transferred to the genus Serendipita). Based on morphological data, ISSR fingerprinting profiles and marker gene sequences, we propose that these isolates together with Piriformospora williamsii constitute a species complex designated Piriformospora (= Serendipita) 'williamsii.' A selection of isolates strongly promoted plant growth of in vitro inoculated Arabidopsis seedlings, which was evidenced by an increase in shoot fresh weight and a strong stimulation of lateral root formation. This isolate collection provides unprecedented opportunities for fundamental as well as translational research on the Serendipitaceae, a family of fungal endophytes in full expansion.
Collapse
Affiliation(s)
- Jolien Venneman
- Department of Applied Biosciences, Ghent UniversityGhent, Belgium
| | - Kris Audenaert
- Department of Applied Biosciences, Ghent UniversityGhent, Belgium
| | - Jan Verwaeren
- Department of Applied Biosciences, Ghent UniversityGhent, Belgium
| | - Geert Baert
- Department of Applied Biosciences, Ghent UniversityGhent, Belgium
| | - Pascal Boeckx
- Isotope Bioscience Laboratory-ISOFYS, Ghent UniversityGhent, Belgium
| | - Adrien M. Moango
- Faculty of Science and Agriculture, Kisangani UniversityKisangani, Congo
| | - Benoît D. Dhed’a
- Faculty of Science and Agriculture, Kisangani UniversityKisangani, Congo
| | - Danny Vereecke
- Department of Applied Biosciences, Ghent UniversityGhent, Belgium
| | - Geert Haesaert
- Department of Applied Biosciences, Ghent UniversityGhent, Belgium
| |
Collapse
|
47
|
Koch A, Biedenkopf D, Furch A, Weber L, Rossbach O, Abdellatef E, Linicus L, Johannsmeier J, Jelonek L, Goesmann A, Cardoza V, McMillan J, Mentzel T, Kogel KH. An RNAi-Based Control of Fusarium graminearum Infections Through Spraying of Long dsRNAs Involves a Plant Passage and Is Controlled by the Fungal Silencing Machinery. PLoS Pathog 2016; 12:e1005901. [PMID: 27737019 PMCID: PMC5063301 DOI: 10.1371/journal.ppat.1005901] [Citation(s) in RCA: 267] [Impact Index Per Article: 33.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Accepted: 08/28/2016] [Indexed: 01/17/2023] Open
Abstract
Meeting the increasing food and energy demands of a growing population will require the development of ground-breaking strategies that promote sustainable plant production. Host-induced gene silencing has shown great potential for controlling pest and diseases in crop plants. However, while delivery of inhibitory noncoding double-stranded (ds)RNA by transgenic expression is a promising concept, it requires the generation of transgenic crop plants which may cause substantial delay for application strategies depending on the transformability and genetic stability of the crop plant species. Using the agronomically important barley—Fusarium graminearum pathosystem, we alternatively demonstrate that a spray application of a long noncoding dsRNA (791 nt CYP3-dsRNA), which targets the three fungal cytochrome P450 lanosterol C-14α-demethylases, required for biosynthesis of fungal ergosterol, inhibits fungal growth in the directly sprayed (local) as well as the non-sprayed (distal) parts of detached leaves. Unexpectedly, efficient spray-induced control of fungal infections in the distal tissue involved passage of CYP3-dsRNA via the plant vascular system and processing into small interfering (si)RNAs by fungal DICER-LIKE 1 (FgDCL-1) after uptake by the pathogen. We discuss important consequences of this new finding on future RNA-based disease control strategies. Given the ease of design, high specificity, and applicability to diverse pathogens, the use of target-specific dsRNA as an anti-fungal agent offers unprecedented potential as a new plant protection strategy. RNA interference has emerged as a powerful genetic tool for scientific research. The demonstration that agricultural pests, such as insects and nematodes, are killed by exogenously supplied RNA targeting their essential genes has raised the possibility that plant predation can be controlled by lethal RNA signals. We show that spraying barley with a 791 nt long dsRNA (CYP3-dsRNA) targeting the three fungal ergosterol biosynthesis genes (CYP51A, CYP51B, CYP51C), whose respective proteins also are known as azole fungicide targets, efficiently inhibited the necrotrophic fungus Fusarium graminearum in directly sprayed and systemic leaf tissue. Strong inhibition of fungal growth required an operational fungal RNA interference mechanism as demonstrated by the fact that a Fusarium DICER-LIKE-1 mutant was insensitive to CYP3-dsRNA in systemic, non-sprayed leaf areas. Our findings will help in the efficient design of RNAi-based plant disease control. We provide essential information on a fundamentally new plant protection strategy, thereby opening novel avenues for improving crop yields in an environmentally friendly and sustainable manner.
Collapse
Affiliation(s)
- Aline Koch
- Institute for Phytopathology, Centre for BioSystems, Land Use and Nutrition, Justus Liebig University, Giessen, Germany
| | - Dagmar Biedenkopf
- Institute for Phytopathology, Centre for BioSystems, Land Use and Nutrition, Justus Liebig University, Giessen, Germany
| | - Alexandra Furch
- Institute of General Botany and Plant Physiology, Friedrich-Schiller-University, Jena, Germany
| | - Lennart Weber
- Institute for Microbiology and Molecular Biology, Centre for BioSystems, Land Use and Nutrition, Justus Liebig University, Giessen, Germany
| | - Oliver Rossbach
- Institute of Biochemistry, Centre for BioSystems, Land Use and Nutrition, Justus Liebig University, Giessen, Germany
| | - Eltayb Abdellatef
- Institute for Phytopathology, Centre for BioSystems, Land Use and Nutrition, Justus Liebig University, Giessen, Germany
| | - Lukas Linicus
- Institute for Phytopathology, Centre for BioSystems, Land Use and Nutrition, Justus Liebig University, Giessen, Germany
| | - Jan Johannsmeier
- Institute for Phytopathology, Centre for BioSystems, Land Use and Nutrition, Justus Liebig University, Giessen, Germany
| | - Lukas Jelonek
- Institute for Bioinformatics and Systems Biology, Centre for BioSystems, Land Use and Nutrition, Justus Liebig University, Giessen, Germany
| | - Alexander Goesmann
- Institute for Bioinformatics and Systems Biology, Centre for BioSystems, Land Use and Nutrition, Justus Liebig University, Giessen, Germany
| | - Vinitha Cardoza
- BASF Plant Science LP, Research Triangle Park, Durham, North Carolina, United States of America
| | - John McMillan
- BASF Plant Science LP, Research Triangle Park, Durham, North Carolina, United States of America
| | | | - Karl-Heinz Kogel
- Institute for Phytopathology, Centre for BioSystems, Land Use and Nutrition, Justus Liebig University, Giessen, Germany
- * E-mail:
| |
Collapse
|
48
|
Abstract
Colonization of plants by particular endophytic fungi can provide plants with improved defenses toward nematodes. Evidently, such endophytes can be important in developing more sustainable agricultural practices. The mechanisms playing a role in this quantitative antagonism are poorly understood but most likely multifactorial. This knowledge gap obstructs the progress regarding the development of endophytes or endophyte-derived constituents into biocontrol agents. In part, this may be caused by the fact that endophytic fungi form a rather heterogeneous group. By combining the knowledge of the currently characterized antagonistic endophytic fungi and their effects on nematode behavior and biology with the knowledge of microbial competition and induced plant defenses, the various mechanisms by which this nematode antagonism operates or may operate are discussed. Now that new technologies are becoming available and more accessible, the currently unresolved mechanisms can be studied in greater detail than ever before.
Collapse
Affiliation(s)
- Alexander Schouten
- Institute of Crop Science and Resource Conservation (INRES), University of Bonn, 53115 Bonn, Germany
| |
Collapse
|
49
|
Cosme M, Lu J, Erb M, Stout MJ, Franken P, Wurst S. A fungal endophyte helps plants to tolerate root herbivory through changes in gibberellin and jasmonate signaling. THE NEW PHYTOLOGIST 2016; 211:1065-76. [PMID: 27061745 PMCID: PMC5071772 DOI: 10.1111/nph.13957] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Accepted: 02/25/2016] [Indexed: 05/02/2023]
Abstract
Plant-microbe mutualisms can improve plant defense, but the impact of root endophytes on below-ground herbivore interactions remains unknown. We investigated the effects of the root endophyte Piriformospora indica on interactions between rice (Oryza sativa) plants and its root herbivore rice water weevil (RWW; Lissorhoptrus oryzophilus), and how plant jasmonic acid (JA) and GA regulate this tripartite interaction. Glasshouse experiments with wild-type rice and coi1-18 and Eui1-OX mutants combined with nutrient, jasmonate and gene expression analyses were used to test: whether RWW adult herbivory above ground influences subsequent damage caused by larval herbivory below ground; whether P. indica protects plants against RWW; and whether GA and JA signaling mediate these interactions. The endophyte induced plant tolerance to root herbivory. RWW adults and larvae acted synergistically via JA signaling to reduce root growth, while endophyte-elicited GA biosynthesis suppressed the herbivore-induced JA in roots and recovered plant growth. Our study shows for the first time the impact of a root endophyte on plant defense against below-ground herbivores, adds to growing evidence that induced tolerance may be an important root defense, and implicates GA as a signal component of inducible plant tolerance against biotic stress.
Collapse
Affiliation(s)
- Marco Cosme
- Functional BiodiversityDahlem Center of Plant SciencesInstitute of BiologyFreie Universität BerlinKönigin‐Luise‐Straße 1–314195BerlinGermany
- Department of Plant PropagationLeibniz‐Institute of Vegetable and Ornamental CropsKühnhäuser Straße 10199090Erfurt‐KühnhausenGermany
- Plant–Microbe InteractionsDepartment of BiologyFaculty of ScienceUtrecht UniversityPO Box 800.563508 TBUtrechtthe Netherlands
| | - Jing Lu
- Department of BiochemistryMax Planck Institute for Chemical EcologyHans‐Knoell‐Str. 807745JenaGermany
- Institute of Insect ScienceZijingang CampusZhejiang UniversityYuhangtang Road 866Hangzhou310058China
| | - Matthias Erb
- Department of BiochemistryMax Planck Institute for Chemical EcologyHans‐Knoell‐Str. 807745JenaGermany
- Institute of Plant SciencesUniversity of BernAltenbergrain 213013BernSwitzerland
| | - Michael Joseph Stout
- Department of EntomologyLouisiana State University Agricultural Center404 Life Sciences BuildingBaton RougeLA70803USA
| | - Philipp Franken
- Department of Plant PropagationLeibniz‐Institute of Vegetable and Ornamental CropsKühnhäuser Straße 10199090Erfurt‐KühnhausenGermany
- Department of Plant PhysiologyHumboldt Universität zu BerlinPhilippstrasse 1310115BerlinGermany
| | - Susanne Wurst
- Functional BiodiversityDahlem Center of Plant SciencesInstitute of BiologyFreie Universität BerlinKönigin‐Luise‐Straße 1–314195BerlinGermany
| |
Collapse
|
50
|
Strehmel N, Mönchgesang S, Herklotz S, Krüger S, Ziegler J, Scheel D. Piriformospora indica Stimulates Root Metabolism of Arabidopsis thaliana. Int J Mol Sci 2016; 17:ijms17071091. [PMID: 27399695 PMCID: PMC4964467 DOI: 10.3390/ijms17071091] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2016] [Accepted: 06/28/2016] [Indexed: 11/24/2022] Open
Abstract
Piriformospora indica is a root-colonizing fungus, which interacts with a variety of plants including Arabidopsis thaliana. This interaction has been considered as mutualistic leading to growth promotion of the host. So far, only indolic glucosinolates and phytohormones have been identified as key players. In a comprehensive non-targeted metabolite profiling study, we analyzed Arabidopsis thaliana’s roots, root exudates, and leaves of inoculated and non-inoculated plants by ultra performance liquid chromatography/electrospray ionization quadrupole-time-of-flight mass spectrometry (UPLC/(ESI)-QTOFMS) and gas chromatography/electron ionization quadrupole mass spectrometry (GC/EI-QMS), and identified further biomarkers. Among them, the concentration of nucleosides, dipeptides, oligolignols, and glucosinolate degradation products was affected in the exudates. In the root profiles, nearly all metabolite levels increased upon co-cultivation, like carbohydrates, organic acids, amino acids, glucosinolates, oligolignols, and flavonoids. In the leaf profiles, we detected by far less significant changes. We only observed an increased concentration of organic acids, carbohydrates, ascorbate, glucosinolates and hydroxycinnamic acids, and a decreased concentration of nitrogen-rich amino acids in inoculated plants. These findings contribute to the understanding of symbiotic interactions between plant roots and fungi of the order of Sebacinales and are a valid source for follow-up mechanistic studies, because these symbioses are particular and clearly different from interactions of roots with mycorrhizal fungi or dark septate endophytes
Collapse
Affiliation(s)
- Nadine Strehmel
- Department of Stress and Developmental Biology, Leibniz Institute of Plant Biochemistry, Weinberg 3, 06120 Halle (Saale), Germany.
| | - Susann Mönchgesang
- Department of Stress and Developmental Biology, Leibniz Institute of Plant Biochemistry, Weinberg 3, 06120 Halle (Saale), Germany.
| | - Siska Herklotz
- Department of Stress and Developmental Biology, Leibniz Institute of Plant Biochemistry, Weinberg 3, 06120 Halle (Saale), Germany.
| | - Sylvia Krüger
- Department of Stress and Developmental Biology, Leibniz Institute of Plant Biochemistry, Weinberg 3, 06120 Halle (Saale), Germany.
| | - Jörg Ziegler
- Department of Molecular Signal Processing, Leibniz Institute of Plant Biochemistry, Weinberg 3, 06120 Halle (Saale), Germany.
| | - Dierk Scheel
- Department of Stress and Developmental Biology, Leibniz Institute of Plant Biochemistry, Weinberg 3, 06120 Halle (Saale), Germany.
| |
Collapse
|