1
|
Hubert B, Leprince O, Buitink J. Sleeping but not defenceless: seed dormancy and protection. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:6110-6124. [PMID: 38758708 PMCID: PMC11480657 DOI: 10.1093/jxb/erae213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 05/16/2024] [Indexed: 05/19/2024]
Abstract
To ensure their vital role in disseminating the species, dormant seeds have developed adaptive strategies to protect themselves against pathogens and predators. This is orchestrated through the synthesis of an array of constitutive defences that are put in place in a developmentally regulated manner, which are the focus of this review. We summarize the defence activity and the nature of the molecules coming from the exudate of imbibing seeds that leak into their vicinity, also referred to as the spermosphere. As a second layer of protection, the dual role of the seed coat will be discussed; as a physical barrier and a multi-layered reservoir of defence compounds that are synthesized during seed development. Since imbibed dormant seeds can persist in the soil for extensive periods, we address the question of whether during this time a constitutively regulated defence programme is switched on to provide further protection, via the well-defined pathogenesis-related (PR) protein family. In addition, we review the hormonal and signalling pathways that might be involved in the interplay between dormancy and defence and point out questions that need further attention.
Collapse
Affiliation(s)
- Benjamin Hubert
- INRAE, Institut Agro, Université d'Angers, IRHS, SFR QUASAV, F‐49000 Angers, France
| | - Olivier Leprince
- INRAE, Institut Agro, Université d'Angers, IRHS, SFR QUASAV, F‐49000 Angers, France
| | - Julia Buitink
- INRAE, Institut Agro, Université d'Angers, IRHS, SFR QUASAV, F‐49000 Angers, France
| |
Collapse
|
2
|
Hubert B, Marchi M, Ly Vu J, Tranchant C, Tarkowski ŁP, Leprince O, Buitink J. A method to determine antifungal activity in seed exudates by nephelometry. PLANT METHODS 2024; 20:16. [PMID: 38287427 PMCID: PMC10826049 DOI: 10.1186/s13007-024-01144-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 01/20/2024] [Indexed: 01/31/2024]
Abstract
BACKGROUND One of the levers towards alternative solutions to pesticides is to improve seed defenses against pathogens, but a better understanding is needed on the type and regulation of existing pathways during germination. Dormant seeds are able to defend themselves against microorganisms during cycles of rehydration and dehydration in the soil. During imbibition, seeds leak copious amounts of exudates. Here, we developed a nephelometry method to assay antimicrobial activity (AA) in tomato seed exudates as a proxy to assess level of defenses. RESULTS A protocol is described to determine the level of AA against the nonhost filamentous fungus Alternaria brassicicola in the exudates of tomato seeds and seedlings. The fungal and exudate concentrations can be adjusted to modulate the assay sensitivity, thereby providing a large window of AA detection. We established that AA in dormant seeds depends on the genotype. It ranged from very strong AA to complete absence of AA, even after prolonged imbibition. AA depends also on the stages of germination and seedling emergence. Exudates from germinated seeds and seedlings showed very strong AA, while those from dormant seeds exhibited less activity for the same imbibition time. The exudate AA did not impact the growth of a pathogenic fungus host of tomato, Alternaria alternata, illustrating the adaptation of this fungus to its host. CONCLUSIONS We demonstrate that our nephelometry method is a simple yet powerful bioassay to quantify AA in seed exudates. Different developmental stages from dormant seed to seedlings show different levels of AA in the exudate that vary between genotypes, highlighting a genetic diversity x developmental stage interaction in defense. These findings will be important to identify molecules in the exudates conferring antifungal properties and obtain a better understanding of the regulatory and biosynthetic pathways through the lifecycle of seeds, from dormant seeds until seedling emergence.
Collapse
Affiliation(s)
- Benjamin Hubert
- Univ Angers, Institut Agro, INRAE, IRHS, SFR QUASAV, F-49000, Angers, France
| | - Muriel Marchi
- Univ Angers, Institut Agro, INRAE, IRHS, SFR QUASAV, F-49000, Angers, France
| | - Joseph Ly Vu
- Univ Angers, Institut Agro, INRAE, IRHS, SFR QUASAV, F-49000, Angers, France
| | - Camille Tranchant
- Univ Angers, Institut Agro, INRAE, IRHS, SFR QUASAV, F-49000, Angers, France
| | - Łukasz P Tarkowski
- Univ Angers, Institut Agro, INRAE, IRHS, SFR QUASAV, F-49000, Angers, France
- INRAE, Université de Strasbourg, UMR SVQV, Colmar, France
| | - Olivier Leprince
- Univ Angers, Institut Agro, INRAE, IRHS, SFR QUASAV, F-49000, Angers, France
| | - Julia Buitink
- Univ Angers, Institut Agro, INRAE, IRHS, SFR QUASAV, F-49000, Angers, France.
| |
Collapse
|
3
|
Araújo S, Pagano A, Dondi D, Lazzaroni S, Pinela E, Macovei A, Balestrazzi A. Metabolic signatures of germination triggered by kinetin in Medicago truncatula. Sci Rep 2019; 9:10466. [PMID: 31320688 PMCID: PMC6639397 DOI: 10.1038/s41598-019-46866-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 07/01/2019] [Indexed: 11/09/2022] Open
Abstract
In the present work, non-targeted metabolomics was used to investigate the seed response to kinetin, a phytohormone with potential roles in seed germination, still poorly explored. The aim of this study was to elucidate the metabolic signatures of germination triggered by kinetin and explore changes in metabolome to identify novel vigor/stress hallmarks in Medicago truncatula. Exposure to 0.5 mM kinetin accelerated seed germination but impaired seedling growth. Metabolite composition was investigated in seeds imbibed with water or with 0.5 mM kinetin collected at 2 h and 8 h of imbibition, and at the radicle protrusion stage. According to Principal Component Analysis, inositol pentakisphosphate, agmatine, digalactosylglycerol, inositol hexakisphosphate, and oleoylcholine were the metabolites that mostly contributed to the separation between 2 h, 8 h and radicle protrusion stage, irrespective of the treatment applied. Overall, only 27 metabolites showed significant changes in mean relative contents triggered by kinetin, exclusively at the radicle protrusion stage. The observed metabolite depletion might associate with faster germination or regarded as a stress signature. Results from alkaline comet assay, highlighting the occurrence of DNA damage at this stage of germination, are consistent with the hypothesis that prolonged exposure to kinetin induces stress conditions leading to genotoxic injury.
Collapse
Affiliation(s)
- Susana Araújo
- Instituto de Tecnologia Química e Biológica António Xavier - Universidade Nova de Lisboa (ITQB-NOVA), Av. da República, 2780-157, Oeiras, Portugal
| | - Andrea Pagano
- Department of Biology and Biotechnology 'L. Spallanzani', via Ferrata 9, 27100, Pavia, Italy
| | - Daniele Dondi
- Department of Chemistry, Viale Taramelli 12, 27100, Pavia, Italy
| | - Simone Lazzaroni
- Department of Chemistry, Viale Taramelli 12, 27100, Pavia, Italy
| | - Eduardo Pinela
- Instituto de Tecnologia Química e Biológica António Xavier - Universidade Nova de Lisboa (ITQB-NOVA), Av. da República, 2780-157, Oeiras, Portugal
| | - Anca Macovei
- Department of Biology and Biotechnology 'L. Spallanzani', via Ferrata 9, 27100, Pavia, Italy
| | - Alma Balestrazzi
- Department of Biology and Biotechnology 'L. Spallanzani', via Ferrata 9, 27100, Pavia, Italy.
| |
Collapse
|
4
|
Van Dingenen J, Vermeersch M, De Milde L, Hulsmans S, De Winne N, Van Leene J, Gonzalez N, Dhondt S, De Jaeger G, Rolland F, Inzé D. The role of HEXOKINASE1 in Arabidopsis leaf growth. PLANT MOLECULAR BIOLOGY 2019; 99:79-93. [PMID: 30511331 DOI: 10.1007/s11103-018-0803-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 11/27/2018] [Indexed: 06/09/2023]
Abstract
Here, we used a hxk1 mutant in the Col-0 background. We demonstrated that HXK1 regulates cell proliferation and expansion early during leaf development, and that HXK1 is involved in sucrose-induced leaf growth stimulation independent of GPT2. Furthermore, we identified KINγ as a novel HXK1-interacting protein. In the last decade, extensive efforts have been made to unravel the underlying mechanisms of plant growth control through sugar availability. Signaling by the conserved glucose sensor HEXOKINASE1 (HXK1) has been shown to exert both growth-promoting and growth-inhibitory effects depending on the sugar levels, the environmental conditions and the plant species. Here, we used a hxk1 mutant in the Col-0 background to investigate the role of HXK1 during leaf growth in more detail and show that it is affected in both cell proliferation and cell expansion early during leaf development. Furthermore, the hxk1 mutant is less sensitive to sucrose-induced cell proliferation with no significant increase in final leaf growth after transfer to sucrose. Early during leaf development, transfer to sucrose stimulates expression of GLUCOSE-6-PHOSPHATE/PHOSPHATE TRANSPORTER2 (GPT2) and represses chloroplast differentiation. However, in the hxk1 mutant GPT2 expression was still upregulated by transfer to sucrose although chloroplast differentiation was not affected, suggesting that GPT2 is not involved in HXK1-dependent regulation of leaf growth. Finally, using tandem affinity purification of protein complexes from cell cultures, we identified KINγ, a protein containing four cystathionine β-synthase domains, as an interacting protein of HXK1.
Collapse
Affiliation(s)
- Judith Van Dingenen
- Center for Plant Systems Biology, VIB-Ghent University, Technologiepark 927, 9052, Gent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Gent, Belgium
| | - Mattias Vermeersch
- Center for Plant Systems Biology, VIB-Ghent University, Technologiepark 927, 9052, Gent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Gent, Belgium
| | - Liesbeth De Milde
- Center for Plant Systems Biology, VIB-Ghent University, Technologiepark 927, 9052, Gent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Gent, Belgium
| | - Sander Hulsmans
- Laboratory of Molecular Plant Biology, KU Leuven Department of Biology, Kasteelpark Arenberg 31, 3001, Leuven, Belgium
| | - Nancy De Winne
- Center for Plant Systems Biology, VIB-Ghent University, Technologiepark 927, 9052, Gent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Gent, Belgium
| | - Jelle Van Leene
- Center for Plant Systems Biology, VIB-Ghent University, Technologiepark 927, 9052, Gent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Gent, Belgium
| | - Nathalie Gonzalez
- Center for Plant Systems Biology, VIB-Ghent University, Technologiepark 927, 9052, Gent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Gent, Belgium
| | - Stijn Dhondt
- Center for Plant Systems Biology, VIB-Ghent University, Technologiepark 927, 9052, Gent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Gent, Belgium
| | - Geert De Jaeger
- Center for Plant Systems Biology, VIB-Ghent University, Technologiepark 927, 9052, Gent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Gent, Belgium
| | - Filip Rolland
- Laboratory of Molecular Plant Biology, KU Leuven Department of Biology, Kasteelpark Arenberg 31, 3001, Leuven, Belgium
| | - Dirk Inzé
- Center for Plant Systems Biology, VIB-Ghent University, Technologiepark 927, 9052, Gent, Belgium.
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Gent, Belgium.
| |
Collapse
|
5
|
Leprince O, Pellizzaro A, Berriri S, Buitink J. Late seed maturation: drying without dying. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:827-841. [PMID: 28391329 DOI: 10.1093/jxb/erw363] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Besides the deposition of storage reserves, seed maturation is characterized by the acquisition of functional traits including germination, desiccation tolerance, dormancy, and longevity. After seed filling, seed longevity increases up to 30-fold, concomitant with desiccation that brings the embryo to a quiescent state. The period that we define as late maturation phase can represent 10-78% of total seed development time, yet it remains overlooked. Its importance is underscored by the fact that in the seed production chain, the stage of maturity at harvest is the primary factor that influences seed longevity and seedling establishment. This review describes the major events and regulatory pathways underlying the acquisition of seed longevity, focusing on key indicators of maturity such as chlorophyll degradation, accumulation of raffinose family oligosaccharides, late embryogenesis abundant proteins, and heat shock proteins. We discuss how these markers are correlated with or contribute to seed longevity, and highlight questions that merit further attention. We present evidence suggesting that molecular players involved in biotic defence also have a regulatory role in seed longevity. We also explore how the concept of plasticity can help understand the acquisition of longevity.
Collapse
Affiliation(s)
- Olivier Leprince
- IRHS, Agrocampus-Ouest, INRA, Université d'Angers, SFR 4207 Quasav, 42 rue George Morel, 49071 Beaucouzé, France
| | - Anthoni Pellizzaro
- IRHS, Agrocampus-Ouest, INRA, Université d'Angers, SFR 4207 Quasav, 42 rue George Morel, 49071 Beaucouzé, France
| | - Souha Berriri
- IRHS, Agrocampus-Ouest, INRA, Université d'Angers, SFR 4207 Quasav, 42 rue George Morel, 49071 Beaucouzé, France
| | - Julia Buitink
- IRHS, Agrocampus-Ouest, INRA, Université d'Angers, SFR 4207 Quasav, 42 rue George Morel, 49071 Beaucouzé, France
| |
Collapse
|
6
|
Terrasson E, Buitink J, Righetti K, Ly Vu B, Pelletier S, Zinsmeister J, Lalanne D, Leprince O. An emerging picture of the seed desiccome: confirmed regulators and newcomers identified using transcriptome comparison. FRONTIERS IN PLANT SCIENCE 2013; 4:497. [PMID: 24376450 PMCID: PMC3859232 DOI: 10.3389/fpls.2013.00497] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2013] [Accepted: 11/18/2013] [Indexed: 05/19/2023]
Abstract
Desiccation tolerance (DT) is the capacity to withstand total loss of cellular water. It is acquired during seed filling and lost just after germination. However, in many species, a germinated seed can regain DT under adverse conditions such as osmotic stress. The genes, proteins and metabolites that are required to establish this DT is referred to as the desiccome. It includes both a range of protective mechanisms and underlying regulatory pathways that remain poorly understood. As a first step toward the identification of the seed desiccome of Medicago truncatula, using updated microarrays we characterized the overlapping transcriptomes associated with acquisition of DT in developing seeds and the re-establishment of DT in germinated seeds using a polyethylene glycol treatment (-1.7 MPa). The resulting list contained 740 and 2829 transcripts whose levels, respectively, increased and decreased with DT. Fourty-eight transcription factors (TF) were identified including MtABI3, MtABI5 and many genes regulating flowering transition and cell identity. A promoter enrichment analysis revealed a strong over-representation of ABRE elements together with light-responsive cis-acting elements. In Mtabi5 Tnt1 insertion mutants, DT could no longer be re-established by an osmotic stress. Transcriptome analysis on Mtabi5 radicles during osmotic stress revealed that 13 and 15% of the up-regulated and down-regulated genes, respectively, are mis-regulated in the mutants and might be putative downstream targets of MtABI5 implicated in the re-establishment of DT. Likewise, transcriptome comparisons of the desiccation sensitive Mtabi3 mutants and hairy roots ectopically expressing MtABI3 revealed that 35 and 23% of the up-regulated and down-regulated genes are acting downstream of MtABI3. Our data suggest that ABI3 and ABI5 have complementary roles in DT. Whether DT evolved by co-opting existing pathways regulating flowering and cellular phase transition and cell identity is discussed.
Collapse
Affiliation(s)
- Emmanuel Terrasson
- Université d'Angers, UMR 1345 Institut de Recherche en Horticulture et Semences, SFR 4207 QUASAVAngers, France
| | - Julia Buitink
- Institut National de la Recherche Agronomique, UMR 1345 Institut de Recherche en Horticulture et Semences, SFR 4207 QUASAVAngers, France
| | - Karima Righetti
- Institut National de la Recherche Agronomique, UMR 1345 Institut de Recherche en Horticulture et Semences, SFR 4207 QUASAVAngers, France
| | - Benoit Ly Vu
- Agrocampus Ouest, UMR 1345 Institut de Recherche en Horticulture et Semences, SFR 4207 QUASAVAngers, France
| | - Sandra Pelletier
- Institut National de la Recherche Agronomique, UMR 1345 Institut de Recherche en Horticulture et Semences, SFR 4207 QUASAVAngers, France
| | - Julia Zinsmeister
- Agrocampus Ouest, UMR 1345 Institut de Recherche en Horticulture et Semences, SFR 4207 QUASAVAngers, France
| | - David Lalanne
- Institut National de la Recherche Agronomique, UMR 1345 Institut de Recherche en Horticulture et Semences, SFR 4207 QUASAVAngers, France
| | - Olivier Leprince
- Agrocampus Ouest, UMR 1345 Institut de Recherche en Horticulture et Semences, SFR 4207 QUASAVAngers, France
| |
Collapse
|
7
|
Ramon M, Ruelens P, Li Y, Sheen J, Geuten K, Rolland F. The hybrid four-CBS-domain KINβγ subunit functions as the canonical γ subunit of the plant energy sensor SnRK1. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2013; 75:11-25. [PMID: 23551663 PMCID: PMC6599549 DOI: 10.1111/tpj.12192] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2013] [Revised: 03/15/2013] [Accepted: 03/26/2013] [Indexed: 05/17/2023]
Abstract
The AMPK/SNF1/SnRK1 protein kinases are a family of ancient and highly conserved eukaryotic energy sensors that function as heterotrimeric complexes. These typically comprise catalytic α subunits and regulatory β and γ subunits, the latter function as the energy-sensing modules of animal AMPK through adenosine nucleotide binding. The ability to monitor accurately and adapt to changing environmental conditions and energy supply is essential for optimal plant growth and survival, but mechanistic insight in the plant SnRK1 function is still limited. In addition to a family of γ-like proteins, plants also encode a hybrid βγ protein that combines the Four-Cystathionine β-synthase (CBS)-domain (FCD) structure in γ subunits with a glycogen-binding domain (GBD), typically found in β subunits. We used integrated functional analyses by ectopic SnRK1 complex reconstitution, yeast mutant complementation, in-depth phylogenetic reconstruction, and a seedling starvation assay to show that only the hybrid KINβγ protein that recruited the GBD around the emergence of the green chloroplast-containing plants, acts as the canonical γ subunit required for heterotrimeric complex formation. Mutagenesis and truncation analysis further show that complex interaction in plant cells and γ subunit function in yeast depend on both a highly conserved FCD and a pre-CBS domain, but not the GBD. In addition to novel insight into canonical AMPK/SNF/SnRK1 γ subunit function, regulation and evolution, we provide a new classification of plant FCD genes as a convenient and reliable tool to predict regulatory partners for the SnRK1 energy sensor and novel FCD gene functions.
Collapse
Affiliation(s)
- Matthew Ramon
- Laboratory of Molecular Plant Biology, KU Leuven Department of Biology, B-3001, Leuven, Belgium
| | - Philip Ruelens
- Laboratory of Molecular Plant Biology, KU Leuven Department of Biology, B-3001, Leuven, Belgium
| | - Yi Li
- Laboratory of Molecular Plant Biology, KU Leuven Department of Biology, B-3001, Leuven, Belgium
| | - Jen Sheen
- Department of Molecular Biology and Center for Computational and Integrative, Biology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Koen Geuten
- Laboratory of Molecular Plant Biology, KU Leuven Department of Biology, B-3001, Leuven, Belgium
| | - Filip Rolland
- Laboratory of Molecular Plant Biology, KU Leuven Department of Biology, B-3001, Leuven, Belgium
| |
Collapse
|
8
|
Vandecasteele C, Teulat-Merah B, Morère-Le Paven MC, Leprince O, Ly Vu B, Viau L, Ledroit L, Pelletier S, Payet N, Satour P, Lebras C, Gallardo K, Huguet T, Limami AM, Prosperi JM, Buitink J. Quantitative trait loci analysis reveals a correlation between the ratio of sucrose/raffinose family oligosaccharides and seed vigour in Medicago truncatula. PLANT, CELL & ENVIRONMENT 2011; 34:1473-87. [PMID: 21554325 DOI: 10.1111/j.1365-3040.2011.02346.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Seed vigour is important for successful establishment and high yield, especially under suboptimal environmental conditions. In legumes, raffinose oligosaccharide family (RFO) sugars have been proposed as an easily available energy reserve for seedling establishment. In this study, we investigated whether the composition or amount of soluble sugars (sucrose and RFO) is part of the genetic determinants of seed vigour of Medicago truncatula using two recombinant inbred line (RIL) populations. Quantitative trait loci (QTL) mapping for germination rate, hypocotyl and radicle growth under water deficit and nutritional stress, seed weight and soluble sugar content was performed using RIL populations LR1 and LR4. Seven of the 12 chromosomal regions containing QTL for germination rate or post-germinative radicle growth under optimal or stress conditions co-located with Suc/RFO QTL. A significant negative correlation was also found between seed vigour traits and Suc/RFO. In addition, one QTL that explained 80% of the variation in the ratio stachyose/verbascose co-located with a stachyose synthase gene whose expression profile in the parental lines could explain the variation in oligosaccharide composition. The correlation and co-location of Suc/RFO ratio with germination and radicle growth QTL suggest that an increased Suc/RFO ratio in seeds of M. truncatula might negatively affect seed vigour.
Collapse
Affiliation(s)
- Céline Vandecasteele
- Institut National de la Recherche Agronomique, Physiologie Moléculaire des Semences, IFR 149 QUASAV, 49045 Angers, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Kranner I, Minibayeva FV, Beckett RP, Seal CE. What is stress? Concepts, definitions and applications in seed science. THE NEW PHYTOLOGIST 2010; 188:655-73. [PMID: 20854396 DOI: 10.1111/j.1469-8137.2010.03461.x] [Citation(s) in RCA: 200] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
'Stresses' that impact upon seeds can affect plant reproduction and productivity, and, hence, agriculture and biodiversity. In the absence of a clear definition of plant stress, we relate concepts from physics, medicine and psychology to stresses that are specific to seeds. Potential 'eustresses' that enhance function and 'distresses' that have harmful effects are considered in relation to the seed life cycle. Taking a triphasic biomedical stress concept published in 1936, the 'General Adaptation Syndrome', to the molecular level, the 'alarm' response is defined by post-translational modifications and stress signalling through cross-talk between reactive oxygen and nitrogen species, and seed hormones, that result in modifications to the transcriptome. Protection, repair, acclimation and adaptation are viewed as the 'building blocks' of the 'resistance' response, which, in seeds, are the basis for their longevity over centuries. When protection and repair mechanisms eventually fail, depending on dose and time of exposure to stress, cell death and, ultimately, seed death are the result, corresponding to 'exhaustion'. This proposed seed stress concept may have wider applicability to plants in general.
Collapse
Affiliation(s)
- Ilse Kranner
- Seed Conservation Department, Royal Botanic Gardens, Kew, Wakehurst Place, West Sussex, UK.
| | | | | | | |
Collapse
|