1
|
Gao Z, He Y. Molecular epigenetic understanding of winter memory in Arabidopsis. PLANT PHYSIOLOGY 2024; 194:1952-1961. [PMID: 37950890 DOI: 10.1093/plphys/kiad597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 10/13/2023] [Accepted: 11/03/2023] [Indexed: 11/13/2023]
Affiliation(s)
- Zheng Gao
- National Key Laboratory of Wheat Improvement, Peking-Tsinghua Center for Life Sciences, School of Advanced Agricultural Sciences, Peking University, Beijing 100871, China
| | - Yuehui He
- National Key Laboratory of Wheat Improvement, Peking-Tsinghua Center for Life Sciences, School of Advanced Agricultural Sciences, Peking University, Beijing 100871, China
- Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Shandong 261325, China
| |
Collapse
|
2
|
Nishio H, Kudoh H. Distinct responses to autumn and spring temperatures by the key flowering-time regulator FLOWERING LOCUS C. Curr Opin Genet Dev 2023; 78:102016. [PMID: 36549195 DOI: 10.1016/j.gde.2022.102016] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 11/10/2022] [Accepted: 11/22/2022] [Indexed: 12/24/2022]
Abstract
Despite the similarity in temperature regimes between late autumn and early spring, plants exhibit distinct developmental responses that result in distinct morphologies, that is, overwintering and reproductive forms. In Arabidopsis, the control of autumn-spring distinction involves the transcriptional regulation of the floral repressor FLOWERING LOCUS C (FLC). The memory of winter cold is registered as epigenetic silencing of FLC. Recent studies on A. thaliana FLC revealed detailed and additional mechanisms of silencing in response to autumn and winter cold. Studies on perennial Arabidopsis FLC revealed that its expression responds to spring warmth and is robustly upregulated, ignoring cold. These new studies provide mechanistic insights into the distinct regulation of FLC under autumn and spring temperature regimes.
Collapse
Affiliation(s)
- Haruki Nishio
- Center for Ecological Research, Kyoto University, Shiga 520-2113, Japan; Data Science and AI Innovation Research Promotion Center, Shiga University, Shiga 522-8522, Japan
| | - Hiroshi Kudoh
- Center for Ecological Research, Kyoto University, Shiga 520-2113, Japan.
| |
Collapse
|
3
|
Jeon M, Jeong G, Yang Y, Luo X, Jeong D, Kyung J, Hyun Y, He Y, Lee I. Vernalization-triggered expression of the antisense transcript COOLAIR is mediated by CBF genes. eLife 2023; 12:84594. [PMID: 36722843 PMCID: PMC10036118 DOI: 10.7554/elife.84594] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 01/31/2023] [Indexed: 02/02/2023] Open
Abstract
To synchronize flowering time with spring, many plants undergo vernalization, a floral-promotion process triggered by exposure to long-term winter cold. In Arabidopsis thaliana, this is achieved through cold-mediated epigenetic silencing of the floral repressor, FLOWERING LOCUS C (FLC). COOLAIR, a cold-induced antisense RNA transcribed from the FLC locus, has been proposed to facilitate FLC silencing. Here, we show that C-repeat (CRT)/dehydration-responsive elements (DREs) at the 3'-end of FLC and CRT/DRE-binding factors (CBFs) are required for cold-mediated expression of COOLAIR. CBFs bind to CRT/DREs at the 3'-end of FLC, both in vitro and in vivo, and CBF levels increase gradually during vernalization. Cold-induced COOLAIR expression is severely impaired in cbfs mutants in which all CBF genes are knocked-out. Conversely, CBF-overexpressing plants show increased COOLAIR levels even at warm temperatures. We show that COOLAIR is induced by CBFs during early stages of vernalization but COOLAIR levels decrease in later phases as FLC chromatin transitions to an inactive state to which CBFs can no longer bind. We also demonstrate that cbfs and FLCΔCOOLAIR mutants exhibit a normal vernalization response despite their inability to activate COOLAIR expression during cold, revealing that COOLAIR is not required for the vernalization process.
Collapse
Affiliation(s)
- Myeongjune Jeon
- School of Biological Sciences, Seoul National University, Seoul, Republic of Korea
- Research Center for Plant Plasticity, Seoul National University, Seoul, Republic of Korea
| | - Goowon Jeong
- School of Biological Sciences, Seoul National University, Seoul, Republic of Korea
- Research Center for Plant Plasticity, Seoul National University, Seoul, Republic of Korea
| | - Yupeng Yang
- Shanghai Center for Plant Stress Biology & National Key Laboratory for Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Xiao Luo
- Peking University Institute of Advanced Agricultural Sciences, Weifang, China
| | - Daesong Jeong
- School of Biological Sciences, Seoul National University, Seoul, Republic of Korea
- Research Center for Plant Plasticity, Seoul National University, Seoul, Republic of Korea
| | - Jinseul Kyung
- School of Biological Sciences, Seoul National University, Seoul, Republic of Korea
- Research Center for Plant Plasticity, Seoul National University, Seoul, Republic of Korea
| | - Youbong Hyun
- School of Biological Sciences, Seoul National University, Seoul, Republic of Korea
- Research Center for Plant Plasticity, Seoul National University, Seoul, Republic of Korea
| | - Yuehui He
- Shanghai Center for Plant Stress Biology & National Key Laboratory for Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
- Peking University Institute of Advanced Agricultural Sciences, Weifang, China
| | - Ilha Lee
- School of Biological Sciences, Seoul National University, Seoul, Republic of Korea
- Research Center for Plant Plasticity, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
4
|
Kyung J, Jeon M, Jeong G, Shin Y, Seo E, Yu J, Kim H, Park CM, Hwang D, Lee I. The two clock proteins CCA1 and LHY activate VIN3 transcription during vernalization through the vernalization-responsive cis-element. THE PLANT CELL 2022; 34:1020-1037. [PMID: 34931682 PMCID: PMC8894950 DOI: 10.1093/plcell/koab304] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 11/22/2021] [Indexed: 05/20/2023]
Abstract
Vernalization, a long-term cold-mediated acquisition of flowering competence, is critically regulated by VERNALIZATION INSENSITIVE 3 (VIN3), a gene induced by vernalization in Arabidopsis. Although the function of VIN3 has been extensively studied, how VIN3 expression itself is upregulated by long-term cold is not well understood. In this study, we identified a vernalization-responsive cis-element in the VIN3 promoter, VREVIN3, composed of a G-box and an evening element (EE). Mutations in either the G-box or the EE prevented VIN3 expression from being fully induced upon vernalization, leading to defects in the vernalization response. We determined that the core clock proteins CIRCADIAN CLOCK-ASSOCIATED 1 (CCA1) and LATE-ELONGATED HYPOCOTYL (LHY) associate with the EE of VREVIN3, both in vitro and in vivo. In a cca1 lhy double mutant background harboring a functional FRIGIDA allele, long-term cold-mediated VIN3 induction and acceleration of flowering were impaired, especially under mild cold conditions such as at 12°C. During prolonged cold exposure, oscillations of CCA1/LHY transcripts were altered, while CCA1 abundance increased at dusk, coinciding with the diurnal peak of VIN3 transcripts. We propose that modulation of the clock proteins CCA1 and LHY participates in the systems involved in sensing long-term cold for the activation of VIN3 transcription.
Collapse
Affiliation(s)
- Jinseul Kyung
- School of Biological Sciences, Seoul National University, Seoul 08826, Korea
| | - Myeongjune Jeon
- School of Biological Sciences, Seoul National University, Seoul 08826, Korea
| | - Goowon Jeong
- School of Biological Sciences, Seoul National University, Seoul 08826, Korea
| | - Yourae Shin
- School of Biological Sciences, Seoul National University, Seoul 08826, Korea
| | - Eunjoo Seo
- School of Biological Sciences, Seoul National University, Seoul 08826, Korea
| | - Jihyeon Yu
- School of Biological Sciences, Seoul National University, Seoul 08826, Korea
| | - Hoyeun Kim
- School of Biological Sciences, Seoul National University, Seoul 08826, Korea
| | - Chung-Mo Park
- Department of Chemistry, Seoul National University, Seoul 08826, Korea
| | - Daehee Hwang
- School of Biological Sciences, Seoul National University, Seoul 08826, Korea
| | - Ilha Lee
- School of Biological Sciences, Seoul National University, Seoul 08826, Korea
- Research Center for Plant Plasticity, Seoul National University, Seoul 08826, Korea
- Author for correspondence:
| |
Collapse
|
5
|
Transcriptional Association between mRNAs and Their Paired Natural Antisense Transcripts Following Fusarium oxysporum Inoculation in Brassica rapa L. HORTICULTURAE 2021. [DOI: 10.3390/horticulturae8010017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Long noncoding RNAs (lncRNAs) play important roles in abiotic and biotic stress responses; however, studies on the mechanism of regulation of lncRNA expression are limited in plants. The present study examined the relationship between lncRNA expression level and two active histone modifications (H3K4me3 and H3K36me3) in Brassica rapa. Both histone marks were enriched in the chromatin regions encoding lncRNAs, especially around the transcription start site. The transcription level of long intergenic noncoding RNAs was positively associated with the level of H3K4me3 and H3K36me3, while this association was not observed in natural antisense RNAs (NATs) and intronic noncoding RNAs. As coordinate expression of mRNAs and paired NATs under biotic stress treatment has been identified, the transcriptional relationship between mRNAs and their paired NATs following Fusarium oxysporum f. sp. conglutinans (Foc) inoculation was examined. A positive association of expression levels between mRNAs and their paired NATs following Foc inoculation was observed. This association held for several defense-response-related genes and their NAT pairs. These results suggest that coordinate expression of mRNAs and paired NATs plays a role in the defense response against Foc.
Collapse
|
6
|
Mehraj H, Takahashi S, Miyaji N, Akter A, Suzuki Y, Seki M, Dennis ES, Fujimoto R. Characterization of Histone H3 Lysine 4 and 36 Tri-methylation in Brassica rapa L. FRONTIERS IN PLANT SCIENCE 2021; 12:659634. [PMID: 34163501 PMCID: PMC8215614 DOI: 10.3389/fpls.2021.659634] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 04/08/2021] [Indexed: 05/10/2023]
Abstract
Covalent modifications of histone proteins act as epigenetic regulators of gene expression. We report the distribution of two active histone marks (H3K4me3 and H3K36me3) in 14-day leaves in two lines of Brassica rapa L. by chromatin immunoprecipitation sequencing. Both lines were enriched with H3K4me3 and H3K36me3 marks at the transcription start site, and the transcription level of a gene was associated with the level of H3K4me3 and H3K36me3. H3K4me3- and H3K36me3-marked genes showed low tissue-specific gene expression, and genes with both H3K4me3 and H3K36me3 had a high level of expression and were constitutively expressed. Bivalent active and repressive histone modifications such as H3K4me3 and H3K27me3 marks or antagonistic coexistence of H3K36me3 and H3K27me3 marks were observed in some genes. Expression may be susceptible to changes by abiotic and biotic stresses in genes having both H3K4me3 and H3K27me3 marks. We showed that the presence of H3K36me3 marks was associated with different gene expression levels or tissue specificity between paralogous paired genes, suggesting that H3K36me3 might be involved in subfunctionalization of the subgenomes.
Collapse
Affiliation(s)
- Hasan Mehraj
- Graduate School of Agricultural Science, Kobe University, Kobe, Japan
| | | | - Naomi Miyaji
- Graduate School of Agricultural Science, Kobe University, Kobe, Japan
| | - Ayasha Akter
- Graduate School of Agricultural Science, Kobe University, Kobe, Japan
- Department of Horticulture, Faculty of Agriculture, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Yutaka Suzuki
- Department of Computational Biology, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Japan
| | - Motoaki Seki
- RIKEN Center for Sustainable Resource Science, Yokohama, Japan
- RIKEN Cluster for Pioneering Research, Saitama, Japan
- Kihara Institute for Biological Research, Yokohama City University, Yokohama, Japan
| | - Elizabeth S. Dennis
- CSIRO Agriculture and Food, Canberra, ACT, Australia
- School of Life Sciences, Faculty of Science University of Technology, Sydney, NSW, Australia
| | - Ryo Fujimoto
- Graduate School of Agricultural Science, Kobe University, Kobe, Japan
- *Correspondence: Ryo Fujimoto,
| |
Collapse
|
7
|
Hepworth J, Antoniou-Kourounioti RL, Berggren K, Selga C, Tudor EH, Yates B, Cox D, Collier Harris BR, Irwin JA, Howard M, Säll T, Holm S, Dean C. Natural variation in autumn expression is the major adaptive determinant distinguishing Arabidopsis FLC haplotypes. eLife 2020; 9:57671. [PMID: 32902380 PMCID: PMC7518893 DOI: 10.7554/elife.57671] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 09/08/2020] [Indexed: 12/27/2022] Open
Abstract
In Arabidopsis thaliana, winter is registered during vernalization through the temperature-dependent repression and epigenetic silencing of floral repressor FLOWERING LOCUS C (FLC). Natural Arabidopsis accessions show considerable variation in vernalization. However, which aspect of the FLC repression mechanism is most important for adaptation to different environments is unclear. By analysing FLC dynamics in natural variants and mutants throughout winter in three field sites, we find that autumnal FLC expression, rather than epigenetic silencing, is the major variable conferred by the distinct Arabidopsis FLChaplotypes. This variation influences flowering responses of Arabidopsis accessions resulting in an interplay between promotion and delay of flowering in different climates to balance survival and, through a post-vernalization effect, reproductive output. These data reveal how expression variation through non-coding cis variation at FLC has enabled Arabidopsis accessions to adapt to different climatic conditions and year-on-year fluctuations.
Collapse
Affiliation(s)
- Jo Hepworth
- Cell and Developmental Biology, John Innes Centre, Norwich, United Kingdom
| | | | - Kristina Berggren
- Department of Natural Sciences, Mid Sweden University, Sundsvall, Sweden
| | - Catja Selga
- Department of Biology, Lund University, Lund, Sweden
| | - Eleri H Tudor
- Crop Genetics, John Innes Centre, Norwich, United Kingdom
| | - Bryony Yates
- Cell and Developmental Biology, John Innes Centre, Norwich, United Kingdom
| | - Deborah Cox
- Cell and Developmental Biology, John Innes Centre, Norwich, United Kingdom
| | | | - Judith A Irwin
- Crop Genetics, John Innes Centre, Norwich, United Kingdom
| | - Martin Howard
- Computational and Systems Biology, John Innes Centre, Norwich, United Kingdom
| | - Torbjörn Säll
- Department of Biology, Lund University, Lund, Sweden
| | - Svante Holm
- Department of Natural Sciences, Mid Sweden University, Sundsvall, Sweden
| | - Caroline Dean
- Cell and Developmental Biology, John Innes Centre, Norwich, United Kingdom
| |
Collapse
|
8
|
Nishio H, Nagano AJ, Ito T, Suzuki Y, Kudoh H. Seasonal plasticity and diel stability of H3K27me3 in natural fluctuating environments. NATURE PLANTS 2020; 6:1091-1097. [PMID: 32868888 DOI: 10.1038/s41477-020-00757-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 07/26/2020] [Indexed: 06/11/2023]
Abstract
Diel and seasonal oscillations are two major environmental changes in nature. While organisms cope with the former by the well-characterized mechanism of the circadian clock1,2, there is limited information on the molecular mechanisms underlying long-term responses to the latter3-5. Histone H3 lysine 27 trimethylation (H3K27me3), a repressive histone modification, imparts stability and plasticity to gene regulation during developmental transitions6-9. Here we studied the seasonal and diel dynamics of H3K27me3 at the genome-wide level in a natural population of perennial Arabidopsis halleri and compared these dynamics with those of histone H3 lysine 4 trimethylation (H3K4me3), an active histone modification. Chromatin immunoprecipitation sequencing revealed that H3K27me3 exhibits seasonal plasticity and diel stability. Furthermore, we found that the seasonal H3K27me3 oscillation is delayed in phase relative to the H3K4me3 oscillation, particularly for genes associated with environmental memory. Our findings suggest that H3K27me3 monitors past transcriptional activity to create long-term gene expression trends during organismal responses over weeks in natural fluctuating environments.
Collapse
Affiliation(s)
- Haruki Nishio
- Center for Ecological Research, Kyoto University, Otsu, Japan.
| | - Atsushi J Nagano
- Center for Ecological Research, Kyoto University, Otsu, Japan
- Faculty of Agriculture, Ryukoku University, Otsu, Japan
| | - Tasuku Ito
- Center for Ecological Research, Kyoto University, Otsu, Japan
| | - Yutaka Suzuki
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, University of Tokyo, Kashiwa, Japan
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, University of Tokyo, Tokyo, Japan
| | - Hiroshi Kudoh
- Center for Ecological Research, Kyoto University, Otsu, Japan.
| |
Collapse
|
9
|
Antoniou-Kourounioti RL, Hepworth J, Heckmann A, Duncan S, Qüesta J, Rosa S, Säll T, Holm S, Dean C, Howard M. Temperature Sensing Is Distributed throughout the Regulatory Network that Controls FLC Epigenetic Silencing in Vernalization. Cell Syst 2018; 7:643-655.e9. [PMID: 30503646 PMCID: PMC6310686 DOI: 10.1016/j.cels.2018.10.011] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 08/15/2018] [Accepted: 10/25/2018] [Indexed: 12/14/2022]
Abstract
Many organisms need to respond to complex, noisy environmental signals for developmental decision making. Here, we dissect how Arabidopsis plants integrate widely fluctuating field temperatures over month-long timescales to progressively upregulate VERNALIZATION INSENSITIVE3 (VIN3) and silence FLOWERING LOCUS C (FLC), aligning flowering with spring. We develop a mathematical model for vernalization that operates on multiple timescales-long term (month), short term (day), and current (hour)-and is constrained by experimental data. Our analysis demonstrates that temperature sensing is not localized to specific nodes within the FLC network. Instead, temperature sensing is broadly distributed, with each thermosensory process responding to specific features of the plants' history of exposure to warm and cold. The model accurately predicts FLC silencing in new field data, allowing us to forecast FLC expression in changing climates. We suggest that distributed thermosensing may be a general property of thermoresponsive regulatory networks in complex natural environments.
Collapse
Affiliation(s)
| | - Jo Hepworth
- John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Amélie Heckmann
- John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Susan Duncan
- John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Julia Qüesta
- John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Stefanie Rosa
- John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Torbjörn Säll
- Department of Biology, Lund University, Lund 223 62, Sweden
| | - Svante Holm
- Department of Natural Sciences, Mid Sweden University, Sundsvall 851 70, Sweden
| | - Caroline Dean
- John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK.
| | - Martin Howard
- John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK.
| |
Collapse
|
10
|
Bellegarde F, Herbert L, Séré D, Caillieux E, Boucherez J, Fizames C, Roudier F, Gojon A, Martin A. Polycomb Repressive Complex 2 attenuates the very high expression of the Arabidopsis gene NRT2.1. Sci Rep 2018; 8:7905. [PMID: 29784958 PMCID: PMC5962593 DOI: 10.1038/s41598-018-26349-w] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 05/10/2018] [Indexed: 11/09/2022] Open
Abstract
PRC2 is a major regulator of gene expression in eukaryotes. It catalyzes the repressive chromatin mark H3K27me3, which leads to very low expression of target genes. NRT2.1, which encodes a key root nitrate transporter in Arabidopsis, is targeted by H3K27me3, but the function of PRC2 on NRT2.1 remains unclear. Here, we demonstrate that PRC2 directly targets and down-regulates NRT2.1, but in a context of very high transcription, in nutritional conditions where this gene is one of the most highly expressed genes in the transcriptome. Indeed, the mutation of CLF, which encodes a PRC2 subunit, leads to a loss of H3K27me3 at NRT2.1 and results, exclusively under permissive conditions for NRT2.1, in a further increase in NRT2.1 expression, and specifically in tissues where NRT2.1 is normally expressed. Therefore, our data indicates that PRC2 tempers the hyperactivity of NRT2.1 in a context of very strong transcription. This reveals an original function of PRC2 in the control of the expression of a highly expressed gene in Arabidopsis.
Collapse
Affiliation(s)
- Fanny Bellegarde
- BPMP, CNRS, INRA, SupAgro, Univ. Montpellier, Montpellier, France
| | - Léo Herbert
- BPMP, CNRS, INRA, SupAgro, Univ. Montpellier, Montpellier, France
| | - David Séré
- BPMP, CNRS, INRA, SupAgro, Univ. Montpellier, Montpellier, France
| | - Erwann Caillieux
- Institut de Biologie de l'Ecole Normale Supérieure, CNRS UMR8197, INSERM U1024, ENS, 46 rue d'Ulm, 75005, Paris, France
| | - Jossia Boucherez
- BPMP, CNRS, INRA, SupAgro, Univ. Montpellier, Montpellier, France
| | - Cécile Fizames
- BPMP, CNRS, INRA, SupAgro, Univ. Montpellier, Montpellier, France
| | - François Roudier
- Institut de Biologie de l'Ecole Normale Supérieure, CNRS UMR8197, INSERM U1024, ENS, 46 rue d'Ulm, 75005, Paris, France.,Laboratoire Reproduction et Développement des Plantes, Univ Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRA, F-69342, Lyon, France
| | - Alain Gojon
- BPMP, CNRS, INRA, SupAgro, Univ. Montpellier, Montpellier, France
| | - Antoine Martin
- BPMP, CNRS, INRA, SupAgro, Univ. Montpellier, Montpellier, France.
| |
Collapse
|
11
|
Hepworth J, Antoniou-Kourounioti RL, Bloomer RH, Selga C, Berggren K, Cox D, Collier Harris BR, Irwin JA, Holm S, Säll T, Howard M, Dean C. Absence of warmth permits epigenetic memory of winter in Arabidopsis. Nat Commun 2018; 9:639. [PMID: 29434233 PMCID: PMC5809604 DOI: 10.1038/s41467-018-03065-7] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Accepted: 01/17/2018] [Indexed: 11/21/2022] Open
Abstract
Plants integrate widely fluctuating temperatures to monitor seasonal progression. Here, we investigate the temperature signals in field conditions that result in vernalisation, the mechanism by which flowering is aligned with spring. We find that multiple, distinct aspects of the temperature profile contribute to vernalisation. In autumn, transient cold temperatures promote transcriptional shutdown of Arabidopsis FLOWERING LOCUS C (FLC), independently of factors conferring epigenetic memory. As winter continues, expression of VERNALIZATION INSENSITIVE3 (VIN3), a factor needed for epigenetic silencing, is upregulated by at least two independent thermosensory processes. One integrates long-term cold temperatures, while the other requires the absence of daily temperatures above 15 °C. The lack of spikes of high temperature, not just prolonged cold, is thus the major driver for vernalisation. Monitoring of peak daily temperature is an effective mechanism to judge seasonal progression, but is likely to have deleterious consequences for vernalisation as the climate becomes more variable.
Collapse
Affiliation(s)
- Jo Hepworth
- John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | | | | | - Catja Selga
- Department of Biology, Lund University, Sölvegatan 35, Lund, 223 62, Sweden
| | - Kristina Berggren
- Faculty of Science, Technology and Media, Department of Natural Sciences, Mid Sweden University, Sundsvall, SE-851 70, Sweden
| | - Deborah Cox
- John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | | | - Judith A Irwin
- John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Svante Holm
- Faculty of Science, Technology and Media, Department of Natural Sciences, Mid Sweden University, Sundsvall, SE-851 70, Sweden
| | - Torbjörn Säll
- Department of Biology, Lund University, Sölvegatan 35, Lund, 223 62, Sweden
| | - Martin Howard
- John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK.
| | - Caroline Dean
- John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK.
| |
Collapse
|
12
|
Thoen MPM, Davila Olivas NH, Kloth KJ, Coolen S, Huang P, Aarts MGM, Bac‐Molenaar JA, Bakker J, Bouwmeester HJ, Broekgaarden C, Bucher J, Busscher‐Lange J, Cheng X, Fradin EF, Jongsma MA, Julkowska MM, Keurentjes JJB, Ligterink W, Pieterse CMJ, Ruyter‐Spira C, Smant G, Testerink C, Usadel B, van Loon JJA, van Pelt JA, van Schaik CC, van Wees SCM, Visser RGF, Voorrips R, Vosman B, Vreugdenhil D, Warmerdam S, Wiegers GL, van Heerwaarden J, Kruijer W, van Eeuwijk FA, Dicke M. Genetic architecture of plant stress resistance: multi-trait genome-wide association mapping. THE NEW PHYTOLOGIST 2017; 213:1346-1362. [PMID: 27699793 PMCID: PMC5248600 DOI: 10.1111/nph.14220] [Citation(s) in RCA: 95] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2016] [Accepted: 08/17/2016] [Indexed: 05/19/2023]
Abstract
Plants are exposed to combinations of various biotic and abiotic stresses, but stress responses are usually investigated for single stresses only. Here, we investigated the genetic architecture underlying plant responses to 11 single stresses and several of their combinations by phenotyping 350 Arabidopsis thaliana accessions. A set of 214 000 single nucleotide polymorphisms (SNPs) was screened for marker-trait associations in genome-wide association (GWA) analyses using tailored multi-trait mixed models. Stress responses that share phytohormonal signaling pathways also share genetic architecture underlying these responses. After removing the effects of general robustness, for the 30 most significant SNPs, average quantitative trait locus (QTL) effect sizes were larger for dual stresses than for single stresses. Plants appear to deploy broad-spectrum defensive mechanisms influencing multiple traits in response to combined stresses. Association analyses identified QTLs with contrasting and with similar responses to biotic vs abiotic stresses, and below-ground vs above-ground stresses. Our approach allowed for an unprecedented comprehensive genetic analysis of how plants deal with a wide spectrum of stress conditions.
Collapse
|
13
|
Xing L, Zhang D, Song X, Weng K, Shen Y, Li Y, Zhao C, Ma J, An N, Han M. Genome-Wide Sequence Variation Identification and Floral-Associated Trait Comparisons Based on the Re-sequencing of the 'Nagafu No. 2' and 'Qinguan' Varieties of Apple (Malus domestica Borkh.). FRONTIERS IN PLANT SCIENCE 2016; 7:908. [PMID: 27446138 PMCID: PMC4921462 DOI: 10.3389/fpls.2016.00908] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Accepted: 06/08/2016] [Indexed: 05/14/2023]
Abstract
Apple (Malus domestica Borkh.) is a commercially important fruit worldwide. Detailed information on genomic DNA polymorphisms, which are important for understanding phenotypic traits, is lacking for the apple. We re-sequenced two elite apple varieties, 'Nagafu No. 2' and 'Qinguan,' which have different characteristics. We identified many genomic variations, including 2,771,129 single nucleotide polymorphisms (SNPs), 82,663 structural variations (SVs), and 1,572,803 insertion/deletions (INDELs) in 'Nagafu No. 2' and 2,262,888 SNPs, 63,764 SVs, and 1,294,060 INDELs in 'Qinguan.' The 'SNP,' 'INDEL,' and 'SV' distributions were non-random, with variation-rich or -poor regions throughout the genomes. In 'Nagafu No. 2' and 'Qinguan' there were 171,520 and 147,090 non-synonymous SNPs spanning 23,111 and 21,400 genes, respectively; 3,963 and 3,196 SVs in 3,431 and 2,815 genes, respectively; and 1,834 and 1,451 INDELs in 1,681 and 1,345 genes, respectively. Genetic linkage maps of 190 flowering genes associated with multiple flowering pathways in 'Nagafu No. 2,' 'Qinguan,' and 'Golden Delicious,' identified complex regulatory mechanisms involved in floral induction, flower bud formation, and flowering characteristics, which might reflect the genetic variation of the flowering genes. Expression profiling of key flowering genes in buds and leaves suggested that the photoperiod and autonomous flowering pathways are major contributors to the different floral-associated traits between 'Nagafu No. 2' and 'Qinguan.' The genome variation data provided a foundation for the further exploration of apple diversity and gene-phenotype relationships, and for future research on molecular breeding to improve apple and related species.
Collapse
|
14
|
Liang SC, Hartwig B, Perera P, Mora-García S, de Leau E, Thornton H, de Alves FL, Rapsilber J, Yang S, James GV, Schneeberger K, Finnegan EJ, Turck F, Goodrich J. Kicking against the PRCs - A Domesticated Transposase Antagonises Silencing Mediated by Polycomb Group Proteins and Is an Accessory Component of Polycomb Repressive Complex 2. PLoS Genet 2015; 11:e1005660. [PMID: 26642436 PMCID: PMC4671723 DOI: 10.1371/journal.pgen.1005660] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Accepted: 10/20/2015] [Indexed: 11/18/2022] Open
Abstract
The Polycomb group (PcG) and trithorax group (trxG) genes play crucial roles in development by regulating expression of homeotic and other genes controlling cell fate. Both groups catalyse modifications of chromatin, particularly histone methylation, leading to epigenetic changes that affect gene activity. The trxG antagonizes the function of PcG genes by activating PcG target genes, and consequently trxG mutants suppress PcG mutant phenotypes. We previously identified the ANTAGONIST OF LIKE HETEROCHROMATIN PROTEIN1 (ALP1) gene as a genetic suppressor of mutants in the Arabidopsis PcG gene LIKE HETEROCHROMATIN PROTEIN1 (LHP1). Here, we show that ALP1 interacts genetically with several other PcG and trxG components and that it antagonizes PcG silencing. Transcriptional profiling reveals that when PcG activity is compromised numerous target genes are hyper-activated in seedlings and that in most cases this requires ALP1. Furthermore, when PcG activity is present ALP1 is needed for full activation of several floral homeotic genes that are repressed by the PcG. Strikingly, ALP1 does not encode a known chromatin protein but rather a protein related to PIF/Harbinger class transposases. Phylogenetic analysis indicates that ALP1 is broadly conserved in land plants and likely lost transposase activity and acquired a novel function during angiosperm evolution. Consistent with this, immunoprecipitation and mass spectrometry (IP-MS) show that ALP1 associates, in vivo, with core components of POLYCOMB REPRESSIVE COMPLEX 2 (PRC2), a widely conserved PcG protein complex which functions as a H3K27me3 histone methyltransferase. Furthermore, in reciprocal pulldowns using the histone methyltransferase CURLY LEAF (CLF), we identify not only ALP1 and the core PRC2 components but also plant-specific accessory components including EMBRYONIC FLOWER 1 (EMF1), a transcriptional repressor previously associated with PRC1-like complexes. Taken together our data suggest that ALP1 inhibits PcG silencing by blocking the interaction of the core PRC2 with accessory components that promote its HMTase activity or its role in inhibiting transcription. ALP1 is the first example of a domesticated transposase acquiring a novel function as a PcG component. The antagonistic interaction of a modified transposase with the PcG machinery is novel and may have arisen as a means for the cognate transposon to evade host surveillance or for the host to exploit features of the transposition machinery beneficial for epigenetic regulation of gene activity. Transposons are parasitic genetic elements that proliferate within their hosts’ genomes. Because rampant transposition is usually deleterious, hosts have evolved ways to inhibit the activity of transposons. In plants, this genome defence is provided by the Polycomb group (PcG) proteins and/or the DNA methylation machinery, which repress the transcription of transposase genes. We identified the Arabidopsis ALP1 gene through its role in opposing gene silencing mediated by PcG genes. ALP1 is an ancient gene in land plants and has evolved from a domesticated transposase. Unexpectedly, we find that the ALP1 protein is present in a conserved complex of PcG proteins that inhibit transcription by methylating the histone proteins that package DNA. ALP1 likely inhibits the activity of this PcG complex by blocking its interaction with accessory proteins that stimulate its activity. We suggest that the inhibition of the PcG by a transposase may originally have evolved as a means for transposons to evade surveillance by their hosts, and that subsequently hosts may have exploited this as a means to regulate PcG activity. Our work illustrates how transposons can be friend or fiend, and raises the question of whether other transposases will also be found to inhibit their host’s regulatory machinery.
Collapse
Affiliation(s)
- Shih Chieh Liang
- Institute of Molecular Plant Science, University of Edinburgh, Edinburgh, United Kingdom
| | - Ben Hartwig
- Department of Plant Developmental Biology, Max Planck Institute for Plant Breeding Research, Köln, Germany
| | - Pumi Perera
- Institute of Molecular Plant Science, University of Edinburgh, Edinburgh, United Kingdom
| | - Santiago Mora-García
- Institute of Molecular Plant Science, University of Edinburgh, Edinburgh, United Kingdom
| | - Erica de Leau
- Institute of Molecular Plant Science, University of Edinburgh, Edinburgh, United Kingdom
| | - Harry Thornton
- Institute of Molecular Plant Science, University of Edinburgh, Edinburgh, United Kingdom
| | - Flavia Lima de Alves
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, Edinburgh, United Kingdom
| | - Juri Rapsilber
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, Edinburgh, United Kingdom
| | - Suxin Yang
- Institute of Molecular Plant Science, University of Edinburgh, Edinburgh, United Kingdom
| | - Geo Velikkakam James
- Department of Plant Developmental Biology, Max Planck Institute for Plant Breeding Research, Köln, Germany
| | - Korbinian Schneeberger
- Department of Plant Developmental Biology, Max Planck Institute for Plant Breeding Research, Köln, Germany
| | | | - Franziska Turck
- Department of Plant Developmental Biology, Max Planck Institute for Plant Breeding Research, Köln, Germany
- * E-mail: (FT); (JG)
| | - Justin Goodrich
- Institute of Molecular Plant Science, University of Edinburgh, Edinburgh, United Kingdom
- * E-mail: (FT); (JG)
| |
Collapse
|
15
|
Finnegan EJ. Time-dependent stabilization of the +1 nucleosome is an early step in the transition to stable cold-induced repression of FLC. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2015; 84:875-885. [PMID: 26437570 DOI: 10.1111/tpj.13044] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Revised: 09/08/2015] [Accepted: 09/24/2015] [Indexed: 06/05/2023]
Abstract
In vernalized Arabidopsis, the extent of FLC repression and promotion of flowering are correlated with the length of winter (low temperature exposure), but how plants measure the duration of winter is unknown. Repression of FLC occurs in two phases: establishment and maintenance. This study investigates the early events in the transition between establishment and maintenance of repression. Initial repression was rapid but transient; within 24 h of being placed at low temperatures FLC transcription was reduced by 40% and repression was complete after 5 days in the cold. The extent to which repression was maintained depended on the length of the cold treatment. Occupancy of the +1 nucleosome in FLC chromatin increased in a time-dependent manner over a 4-week low temperature treatment concomitant with decreased histone acetylation and increased trimethylation of histone H3 lysine 27 (H3K27me3). Mutant analyses showed that increased nucleosome occupancy occurred independent of histone deacetylation and increased H3K27me3, suggesting that it is an early step in the switch between transient and stable repression. Both altered histone composition and deacetylation contributed to increased nucleosome occupancy. The time-dependency of the steps required for the switch between transient and stable repression suggests that the duration of winter is measured by the chromatin state at FLC. A chromatin-based switch is consistent with finding that each FLC allele in a cell undergoes this transition independently.
Collapse
Affiliation(s)
- E Jean Finnegan
- CSIRO, Agriculture, GPO Box 1600, Canberra, ACT, 2601, Australia
| |
Collapse
|
16
|
Helliwell CA, Anderssen RS, Robertson M, Finnegan EJ. How is FLC repression initiated by cold? TRENDS IN PLANT SCIENCE 2015; 20:76-82. [PMID: 25600480 DOI: 10.1016/j.tplants.2014.12.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Revised: 11/21/2014] [Accepted: 12/16/2014] [Indexed: 05/07/2023]
Abstract
Vernalization is the promotion of flowering in response to prolonged exposure to low temperatures. In Arabidopsis, FLOWERING LOCUS C (FLC), a suppressor of flowering, is repressed by low temperatures but the mechanism leading to the initial decrease in FLC transcription remains a mystery. No mutants that block the repression of FLC at low temperatures have been identified to date. If the failure to identify such a mutant is assumed to imply that no such mutant exists, then it follows that the first response to the drop in temperature is physical, not genetic. In this Opinion article we propose that the drop in temperature first causes a simple change in the topology of the chromatin polymer, which in turn initiates the repression of FLC transcription.
Collapse
Affiliation(s)
- Chris A Helliwell
- Commonwealth Scientific and Industrial Research Organisation (CSIRO), Agriculture, Canberra ACT, Australia
| | | | - Masumi Robertson
- Commonwealth Scientific and Industrial Research Organisation (CSIRO), Agriculture, Canberra ACT, Australia
| | - E Jean Finnegan
- Commonwealth Scientific and Industrial Research Organisation (CSIRO), Agriculture, Canberra ACT, Australia.
| |
Collapse
|
17
|
Engelhorn J, Blanvillain R, Carles CC. Gene activation and cell fate control in plants: a chromatin perspective. Cell Mol Life Sci 2014; 71:3119-37. [PMID: 24714879 PMCID: PMC11113918 DOI: 10.1007/s00018-014-1609-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2013] [Revised: 03/10/2014] [Accepted: 03/12/2014] [Indexed: 01/02/2023]
Abstract
In plants, environment-adaptable organogenesis extends throughout the lifespan, and iterative development requires repetitive rounds of activation and repression of several sets of genes. Eukaryotic genome compaction into chromatin forms a physical barrier for transcription; therefore, induction of gene expression requires alteration in chromatin structure. One of the present great challenges in molecular and developmental biology is to understand how chromatin is brought from a repressive to permissive state on specific loci and in a very specific cluster of cells, as well as how this state is further maintained and propagated through time and cell division in a cell lineage. In this review, we report recent discoveries implementing our knowledge on chromatin dynamics that modulate developmental gene expression. We also discuss how new data sets highlight plant specificities, likely reflecting requirement for a highly dynamic chromatin.
Collapse
Affiliation(s)
- Julia Engelhorn
- Université Grenoble Alpes, UMR5168, 38041, Grenoble, France,
| | | | | |
Collapse
|
18
|
Du M, Luo M, Zhang R, Finnegan EJ, Koltunow AMG. Imprinting in rice: the role of DNA and histone methylation in modulating parent-of-origin specific expression and determining transcript start sites. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2014; 79:232-42. [PMID: 24819479 DOI: 10.1111/tpj.12553] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Revised: 04/24/2014] [Accepted: 05/02/2014] [Indexed: 05/13/2023]
Abstract
Over 200 imprinted genes in rice endosperm are known, but the mechanisms modulating their parental allele-specific expression are poorly understood. Here we use three imprinted genes, OsYUCCA11, yellow2-like and ubiquitin hydrolase, to show that differential DNA methylation and tri-methylation of histone H3 lysine 27 (H3K27me3 ) in the promoter and/or gene body influences allele-specific expression or the site of transcript initiation. Paternal expression of OsYUCCA11 required DNA methylation in the gene body whereas the gene body of the silenced maternal allele was hypomethylated and marked with H3K27me3 . These differential markings mirror those proposed to modulate paternal expression of two Arabidopsis genes, PHERES1 and a YUCCA homolog, indicating conservation of imprinting mechanisms. At yellow2-like, DNA hypomethylation in the upstream flanking region resulted in maternal transcripts that were longer than paternal transcripts; the maternal transcript initiation site was marked by DNA methylation in the paternal allele, and transcription initiated ~700 bp downstream. The paternal allele of an ubiquitin hydrolase gene exhibited gene body DNA methylation and produced full-length transcripts, while the maternal allele was hypomethylated in the 5' gene body and transcripts initiated from a downstream promoter. Inhibition of DNA methylation by 5-azacytidine or zebularine activated the long transcripts from yellow2-like and enhanced expression of the short transcripts from the ubiquitin hydrolase in seedlings, indicating that DNA methylation prevents transcript initiation from cryptic promoters. These observations suggest a paradigm whereby maternal genome hypomethylation is associated with the production of distinct transcripts, potentially diversifying the gene products from the two alleles.
Collapse
Affiliation(s)
- Miru Du
- Potato Engineering and Technology Research Centre of Inner Mongolia University, West College Road 235, Hohhot, 010021, China
| | | | | | | | | |
Collapse
|
19
|
Wollenberg AC, Amasino RM. Natural variation in the temperature range permissive for vernalization in accessions of Arabidopsis thaliana. PLANT, CELL & ENVIRONMENT 2012; 35:2181-91. [PMID: 22639792 DOI: 10.1111/j.1365-3040.2012.02548.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Vernalization is an acceleration of flowering in response to chilling, and is normally studied in the laboratory at near-freezing (2-4 °C) temperatures. Many vernalization-requiring species, such as Arabidopsis thaliana, are found in a range of habitats with varying winter temperatures. Natural variation in the temperature range that elicits a vernalization response in Arabidopsis has not been fully explored. We characterized the effect of intermediate temperatures (7-19 °C) on 15 accessions and the well-studied reference line Col-FRI. Although progressively warmer temperatures are gradually less effective at activating expression of the vernalization-specific gene VERNALIZATION-INSENSITIVE 3 (VIN3) and in accelerating flowering, there is substantial natural variation in the upper threshold (T(max) ) of the flowering-time response. VIN3 is required for the T(max) (13 °C) response of Col-FRI. Surprisingly, even 16 °C treatment caused induction of VIN3 in six tested lines, despite the ineffectiveness of this temperature in accelerating flowering for two of them. Finally, we present evidence that mild acceleration of flowering by 19 °C exposure may counterbalance the flowering time delay caused by non-inductive photoperiods in at least one accession, creating an appearance of photoperiod insensitivity.
Collapse
Affiliation(s)
- Amanda C Wollenberg
- Graduate Program in Cellular and Molecular Biology, University of Wisconsin-Madison, 433 Babcock Drive, Madison, WI 53706, USA
| | | |
Collapse
|
20
|
Zografos BR, Sung S. Vernalization-mediated chromatin changes. JOURNAL OF EXPERIMENTAL BOTANY 2012; 63:4343-8. [PMID: 22685309 DOI: 10.1093/jxb/ers157] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Proper flowering time is vital for reproductive fitness in flowering plants. In Arabidopsis, vernalization is mediated primarily through the repression of a MADS box transcription factor, FLOWERING LOCUS C (FLC). The induction of a plant homeodomain-containing protein, VERNALIZATION INSENSITIVE 3 (VIN3), by vernalizing cold is required for proper repression of FLC. One of a myriad of changes that occurs after VIN3 is induced is the establishment of FLC chromatin at a mitotically repressed state due to the enrichment of repressive histone modifications. VIN3 induction by cold is the earliest known event during the vernalization response and includes changes in histone modifications at its chromatin. Here, the current understanding of the vernalization-mediated chromatin changes in Arabidopsis is discussed, with a focus on the roles of shared chromatin-modifying machineries in regulating VIN3 and FLC gene family expression during the course of vernalization.
Collapse
Affiliation(s)
- Brett R Zografos
- Graduate Program in Cell and Molecular Biology, Section of Molecular Cell and Developmental Biology, Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX 78712, USA
| | | |
Collapse
|
21
|
Buzas DM, Tamada Y, Kurata T. FLC: a hidden polycomb response element shows up in silence. PLANT & CELL PHYSIOLOGY 2012; 53:785-793. [PMID: 22107881 DOI: 10.1093/pcp/pcr163] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
A sizeable fraction of eukaryotic genomes is regulated by Polycomb group (PcG) and trithorax group (trxG) proteins, which play key roles in epigenetic repression and activation, respectively. In Drosophila melanogaster, homeotic genes are well-documented PcG targets; they are known to contain cis-acting elements termed Polycomb response elements (PREs), which bind PcG proteins and satisfy three defined criteria, and also often contain binding sites for the trithorax (trx) protein. However, the presence of PREs, or an alternative mode for PcG/trxG interaction with the genome, has not been well documented outside Drosophila. In Arabidopsis thaliana, PcG/trxG regulation has been studied extensively for the flowering repressor gene FLOWERING LOCUS C (FLC). Here we evaluate how PRE-like activities that reside within the FLC locus may satisfy the defined Drosophila criteria, by analyzing four FLC transcription states. When the FLC locus is not transcribed, the intrinsic PcG recruitment ability of the coding region can be attributed to two redundant cis-acting elements (Modules IIA and IIB). When FLC is highly expressed, trxG recruitment is to a region overlapping the transcription start site (Module I). Exposure to prolonged cold converts the active FLC state into a repressed state that is maintained after the cold period finishes. These two additional transcriptional states also rely on the same three modules for PcG/trxG regulation. We conclude that each of Modules I, IIA and IIB partially fulfills the PRE function criteria, and that together they represent the functional FLC PRE, which differs structurally from canonical PREs in Drosophila.
Collapse
Affiliation(s)
- Diana Mihaela Buzas
- Plant Reproductive Genetics, Graduate School of Biological Sciences, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0192 Japan.
| | | | | |
Collapse
|
22
|
Lopez-Vernaza M, Yang S, Müller R, Thorpe F, de Leau E, Goodrich J. Antagonistic roles of SEPALLATA3, FT and FLC genes as targets of the polycomb group gene CURLY LEAF. PLoS One 2012; 7:e30715. [PMID: 22363474 PMCID: PMC3281876 DOI: 10.1371/journal.pone.0030715] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2011] [Accepted: 12/20/2011] [Indexed: 01/11/2023] Open
Abstract
In Arabidopsis, mutations in the Pc-G gene CURLY LEAF (CLF) give early flowering plants with curled leaves. This phenotype is caused by mis-expression of the floral homeotic gene AGAMOUS (AG) in leaves, so that ag mutations largely suppress the clf phenotype. Here, we identify three mutations that suppress clf despite maintaining high AG expression. We show that the suppressors correspond to mutations in FPA and FT, two genes promoting flowering, and in SEPALLATA3 (SEP3) which encodes a co-factor for AG protein. The suppression of the clf phenotype is correlated with low SEP3 expression in all case and reveals that SEP3 has a role in promoting flowering in addition to its role in controlling floral organ identity. Genetic analysis of clf ft mutants indicates that CLF promotes flowering by reducing expression of FLC, a repressor of flowering. We conclude that SEP3 is the key target mediating the clf phenotype, and that the antagonistic effects of CLF target genes masks a role for CLF in promoting flowering.
Collapse
Affiliation(s)
- Manuel Lopez-Vernaza
- Institute for Molecular Plant Sciences, School of Biology, University of Edinburgh, Edinburgh, United Kingdom
| | - Suxin Yang
- Institute for Molecular Plant Sciences, School of Biology, University of Edinburgh, Edinburgh, United Kingdom
| | - Ralf Müller
- Institute for Molecular Plant Sciences, School of Biology, University of Edinburgh, Edinburgh, United Kingdom
| | - Frazer Thorpe
- Institute for Molecular Plant Sciences, School of Biology, University of Edinburgh, Edinburgh, United Kingdom
| | - Erica de Leau
- Institute for Molecular Plant Sciences, School of Biology, University of Edinburgh, Edinburgh, United Kingdom
| | - Justin Goodrich
- Institute for Molecular Plant Sciences, School of Biology, University of Edinburgh, Edinburgh, United Kingdom
- * E-mail:
| |
Collapse
|
23
|
Hu Y, Shen Y, Conde e Silva N, Zhou DX. The role of histone methylation and H2A.Z occupancy during rapid activation of ethylene responsive genes. PLoS One 2011; 6:e28224. [PMID: 22140554 PMCID: PMC3225391 DOI: 10.1371/journal.pone.0028224] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2011] [Accepted: 11/03/2011] [Indexed: 12/31/2022] Open
Abstract
Ethylene signaling pathway leads to rapid gene activation by two hierarchies of transcription factors with EIN3/EIL proteins as primary ones and ERF proteins as secondary ones. The role of chromatin modifications during the rapid gene activation is not known. In this work we studied trimethylated histone H3 lysine 4 (H3K4me3) and lysine 27 (H3K27me3), two opposite histone methylation marks for gene activity, during the induction course of three ethylene-responsive genes (ERF1, AtERF14 and ChiB). We found that the three genes displayed different histone modification profiles before induction. After induction, H3K4me3 was increased in the 5′ region and the gene body of ERF1, while H3K27me3 was decreased in the promoter of AtERF14. But the modification changes were later than the gene activation. Analysis of other rapidly inducible ERF genes confirmed the observation. In addition, histone H2A.Z occupancy on the three genes and the association of the H3K27me3-binding protein LHP1 with AtERF14 and ChiB were not affected by the inductive signal. However, the mutation of genes encoding H2A.Z and LHP1 attenuated and enhanced respectively the induction of target genes and altered H3K4me3. These results indicate that the induction of ethylene-responsive genes does not require immediate modulation of H3K4me3 and H3K27me3 and dissociation of LHP1 and H2A.Z from the targets, and suggest that the chromatin structure of the genes before induction is committed for transcriptional activation and that H3K4me3 is not required for ethylene-responsive gene activation, but may serve as a mark for gene activity.
Collapse
Affiliation(s)
- Yongfeng Hu
- Institut de Biologie des Plantes, Université Paris-Sud, Orsay, France
| | - Yuan Shen
- Institut de Biologie des Plantes, Université Paris-Sud, Orsay, France
| | | | - Dao-Xiu Zhou
- Institut de Biologie des Plantes, Université Paris-Sud, Orsay, France
- * E-mail:
| |
Collapse
|
24
|
Bond DM, Dennis ES, Finnegan EJ. The low temperature response pathways for cold acclimation and vernalization are independent. PLANT, CELL & ENVIRONMENT 2011; 34:1737-48. [PMID: 21631537 DOI: 10.1111/j.1365-3040.2011.02370.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Vernalization is the promotion of flowering in response to the prolonged cold of winter. To survive sub-zero winter temperatures, plants must first acclimate to low, non-freezing temperatures (cold acclimation). Induction of VERNALIZATION INSENSITIVE 3 (VIN3), the first gene in the vernalization pathway, is initiated within the same time frame as the induction of genes in the cold acclimation pathway raising the question of whether there are common elements in the signal transduction pathways that activate these two responses to cold. We show that none of the signalling components required for cold acclimation, including the 'master regulator'INDUCTION OF CBF EXPRESSION1 (ICE1) or HIGH EXPRESSION OF OSMOTICALLY RESPONSIVE GENE1 (HOS1), which has been described as a link between cold acclimation and vernalization, play a role in VIN3 induction. We also show that the hormone abscisic acid (ABA) does not modulate VIN3 induction, consistent with earlier reports that ABA signalling plays no role in the vernalization response. The cold acclimation pathway is activated at 12 °C, at which temperature there is no induction of VIN3 expression. Taken together, our data demonstrate that the responses to low temperatures leading to cold acclimation and vernalization are controlled by distinct signalling pathways.
Collapse
|
25
|
Abstract
Many plants respond to winter with epigenetic factors that gradually dampen repression of flowering so that they can flower in spring. The study of this process was important for the identification of the plant Polycomb group (PcG) of proteins and their role in the epigenetic control of plant gene expression. Fittingly, these studies continue to illuminate our understanding of PcG function. We discuss recent advances, particularly the role of noncoding RNA in the recruitment of PcG to target genes, and the role of the PcG in regulating the stem cell pool in flowers.
Collapse
Affiliation(s)
- Ralf Müller
- Institute of Molecular Plant Sciences, University of Edinburgh, Daniel Rutherford Building Mayfield Road, Edinburgh, EH9 3JH UK
| | | |
Collapse
|