1
|
Xu H, Zuo Y, Wei J, Wang L. The Circadian Clock Coordinates the Tradeoff between Adaptation to Abiotic Stresses and Yield in Crops. BIOLOGY 2023; 12:1364. [PMID: 37997963 PMCID: PMC10669628 DOI: 10.3390/biology12111364] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 10/12/2023] [Accepted: 10/18/2023] [Indexed: 11/25/2023]
Abstract
Plants have evolved a circadian clock to adapt to ever-changing diel and seasonal environmental conditions. The circadian clock is generally considered an internal system that has evolved to adapt to cyclic environmental cues, especially diel light and temperature changes, which is essential for higher plants as they are sessile organisms. This system receives environmental signals as input pathways which are integrated by circadian core oscillators to synchronize numerous output pathways, such as photosynthesis, the abiotic stress response, metabolism, and development. Extreme temperatures, salinity, and drought stresses cause huge crop losses worldwide, imposing severe pressure on areas of agricultural land. In crop production, the circadian system plays a significant role in determining flowering time and responding to external abiotic stresses. Extensive studies over the last two decades have revealed that the circadian clock can help balance the tradeoff between crop yield-related agronomic traits and adaptation to stress. Herein, we focus on summarizing how the circadian clock coordinates abiotic stress responses and crop yield. We also propose that there might be an urgent need to better utilize circadian biology in the future design of crop breeding to achieve high yields under stress conditions.
Collapse
Affiliation(s)
- Hang Xu
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; (H.X.); (Y.Z.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yi Zuo
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; (H.X.); (Y.Z.)
| | - Jian Wei
- Center of Soybean, Jilin Agricultural University, Changchun 130117, China;
| | - Lei Wang
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; (H.X.); (Y.Z.)
- University of Chinese Academy of Sciences, Beijing 100049, China
- Academician Workstation of Agricultural High-Tech Industrial Area of the Yellow River Delta, National Center of Technology Innovation for Comprehensive Utilization of Saline-Alkali Land, Dongying 257300, China
- China National Botanical Garden, Beijing 100093, China
| |
Collapse
|
2
|
Noordally ZB, Hindle MM, Martin SF, Seaton DD, Simpson TI, Le Bihan T, Millar AJ. A phospho-dawn of protein modification anticipates light onset in the picoeukaryote Ostreococcus tauri. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:5514-5531. [PMID: 37481465 PMCID: PMC10540734 DOI: 10.1093/jxb/erad290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 07/20/2023] [Indexed: 07/24/2023]
Abstract
Diel regulation of protein levels and protein modification had been less studied than transcript rhythms. Here, we compare transcriptome data under light-dark cycles with partial proteome and phosphoproteome data, assayed using shotgun MS, from the alga Ostreococcus tauri, the smallest free-living eukaryote. A total of 10% of quantified proteins but two-thirds of phosphoproteins were rhythmic. Mathematical modelling showed that light-stimulated protein synthesis can account for the observed clustering of protein peaks in the daytime. Prompted by night-peaking and apparently dark-stable proteins, we also tested cultures under prolonged darkness, where the proteome changed less than under the diel cycle. Among the dark-stable proteins were prasinophyte-specific sequences that were also reported to accumulate when O. tauri formed lipid droplets. In the phosphoproteome, 39% of rhythmic phospho-sites reached peak levels just before dawn. This anticipatory phosphorylation suggests that a clock-regulated phospho-dawn prepares green cells for daytime functions. Acid-directed and proline-directed protein phosphorylation sites were regulated in antiphase, implicating the clock-related casein kinases 1 and 2 in phase-specific regulation, alternating with the CMGC protein kinase family. Understanding the dynamic phosphoprotein network should be facilitated by the minimal kinome and proteome of O. tauri. The data are available from ProteomeXchange, with identifiers PXD001734, PXD001735, and PXD002909.
Collapse
Affiliation(s)
- Zeenat B Noordally
- SynthSys and School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF, UK
| | - Matthew M Hindle
- SynthSys and School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF, UK
| | - Sarah F Martin
- SynthSys and School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF, UK
| | - Daniel D Seaton
- SynthSys and School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF, UK
| | - T Ian Simpson
- Institute for Adaptive and Neural Computation, School of Informatics, University of Edinburgh, Edinburgh EH8 9AB, UK
| | - Thierry Le Bihan
- SynthSys and School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF, UK
| | - Andrew J Millar
- SynthSys and School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF, UK
| |
Collapse
|
3
|
Kay H, Grünewald E, Feord HK, Gil S, Peak-Chew SY, Stangherlin A, O'Neill JS, van Ooijen G. Deep-coverage spatiotemporal proteome of the picoeukaryote Ostreococcus tauri reveals differential effects of environmental and endogenous 24-hour rhythms. Commun Biol 2021; 4:1147. [PMID: 34593975 PMCID: PMC8484446 DOI: 10.1038/s42003-021-02680-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 09/07/2021] [Indexed: 11/18/2022] Open
Abstract
The cellular landscape changes dramatically over the course of a 24 h day. The proteome responds directly to daily environmental cycles and is additionally regulated by the circadian clock. To quantify the relative contribution of diurnal versus circadian regulation, we mapped proteome dynamics under light:dark cycles compared with constant light. Using Ostreococcus tauri, a prototypical eukaryotic cell, we achieved 85% coverage, which allowed an unprecedented insight into the identity of proteins that facilitate rhythmic cellular functions. The overlap between diurnally- and circadian-regulated proteins was modest and these proteins exhibited different phases of oscillation between the two conditions. Transcript oscillations were generally poorly predictive of protein oscillations, in which a far lower relative amplitude was observed. We observed coordination between the rhythmic regulation of organelle-encoded proteins with the nuclear-encoded proteins that are targeted to organelles. Rhythmic transmembrane proteins showed a different phase distribution compared with rhythmic soluble proteins, indicating the existence of a circadian regulatory process specific to the biogenesis and/or degradation of membrane proteins. Our observations argue that the cellular spatiotemporal proteome is shaped by a complex interaction between intrinsic and extrinsic regulatory factors through rhythmic regulation at the transcriptional as well as post-transcriptional, translational, and post-translational levels. Holly Kay, Ellen Grünewald, et al. provide an in-depth examination of the proteome in the eukaryotic green alga, Ostreococcus tauri, under circadian constant light or cycling diurnal light-dark conditions. They observe that there is little overlap between mRNA and protein expression rhythms, or the diurnal and circadian proteome, suggesting that the cellular spatiotemporal proteome is shaped through rhythmic regulation at multiple stages of transcription and translation.
Collapse
Affiliation(s)
- Holly Kay
- School of Biological Sciences, University of Edinburgh, Max Born Crescent, Edinburgh, EH9 3BF, UK
| | - Ellen Grünewald
- School of Biological Sciences, University of Edinburgh, Max Born Crescent, Edinburgh, EH9 3BF, UK
| | - Helen K Feord
- School of Biological Sciences, University of Edinburgh, Max Born Crescent, Edinburgh, EH9 3BF, UK
| | - Sergio Gil
- School of Biological Sciences, University of Edinburgh, Max Born Crescent, Edinburgh, EH9 3BF, UK
| | - Sew Y Peak-Chew
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK
| | | | - John S O'Neill
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK
| | - Gerben van Ooijen
- School of Biological Sciences, University of Edinburgh, Max Born Crescent, Edinburgh, EH9 3BF, UK.
| |
Collapse
|
4
|
Lagercrantz U, Billhardt A, Rousku SN, Ljung K, Eklund DM. Nyctinastic thallus movement in the liverwort Marchantia polymorpha is regulated by a circadian clock. Sci Rep 2020; 10:8658. [PMID: 32457350 PMCID: PMC7251115 DOI: 10.1038/s41598-020-65372-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 04/29/2020] [Indexed: 11/24/2022] Open
Abstract
The circadian clock coordinates an organism's growth, development and physiology with environmental factors. One illuminating example is the rhythmic growth of hypocotyls and cotyledons in Arabidopsis thaliana. Such daily oscillations in leaf position are often referred to as sleep movements or nyctinasty. Here, we report that plantlets of the liverwort Marchantia polymorpha show analogous rhythmic movements of thallus lobes, and that the circadian clock controls this rhythm, with auxin a likely output pathway affecting these movements. The mechanisms of this circadian clock are partly conserved as compared to angiosperms, with homologs to the core clock genes PRR, RVE and TOC1 forming a core transcriptional feedback loop also in M. polymorpha.
Collapse
Affiliation(s)
- Ulf Lagercrantz
- Plant Ecology and Evolution, Department of Ecology and Genetics, Evolutionary Biology Centre, Uppsala University, Norbyvägen 18D, SE-75236, Uppsala, Sweden
- The Linnean Centre for Plant Biology in Uppsala, Uppsala, Sweden
| | - Anja Billhardt
- Plant Ecology and Evolution, Department of Ecology and Genetics, Evolutionary Biology Centre, Uppsala University, Norbyvägen 18D, SE-75236, Uppsala, Sweden
- The Linnean Centre for Plant Biology in Uppsala, Uppsala, Sweden
| | - Sabine N Rousku
- Plant Ecology and Evolution, Department of Ecology and Genetics, Evolutionary Biology Centre, Uppsala University, Norbyvägen 18D, SE-75236, Uppsala, Sweden
- The Linnean Centre for Plant Biology in Uppsala, Uppsala, Sweden
| | - Karin Ljung
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, 901 83, Umeå, Sweden
| | - D Magnus Eklund
- Plant Ecology and Evolution, Department of Ecology and Genetics, Evolutionary Biology Centre, Uppsala University, Norbyvägen 18D, SE-75236, Uppsala, Sweden.
- The Linnean Centre for Plant Biology in Uppsala, Uppsala, Sweden.
| |
Collapse
|
5
|
Urquiza-García U, Millar AJ. Expanding the bioluminescent reporter toolkit for plant science with NanoLUC. PLANT METHODS 2019; 15:68. [PMID: 31316580 PMCID: PMC6613265 DOI: 10.1186/s13007-019-0454-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 06/28/2019] [Indexed: 05/30/2023]
Abstract
BACKGROUND Protein data over circadian time scale is scarce for clock transcription factors. Further work in this direction is required for refining quantitative clock models. However, gathering highly resolved dynamics of low-abundance transcription factors has been a major challenge in the field. In this work we provide a new tool that could help this major issue. Bioluminescence is an important tool for gathering data on circadian gene expression. It allows data collection over extended time periods for low signal levels, thanks to a large signal-to-noise ratio. However, the main reporter so far used, firefly luciferase (FLUC), presents some disadvantages for reporting total protein levels. For example, the rapid, post-translational inactivation of this luciferase will result in underestimation of protein numbers. A more stable reporter protein could in principle tackle this issue. We noticed that NanoLUC might fill this gap, given its reported brightness and the stability of both enzyme and substrate. However, no data in plant systems on the circadian time scale had been reported. RESULTS We tested NanoLUC activity under different scenarios that will be important for generating highly quantitative data. These include enzyme purification for calibration curves, expression in transient plant systems, stable transgenic plants and in planta time series over circadian time scales. Furthermore, we show that the difference in substrate use between firefly luciferase and NanoLUC allows tracking of two different reporters from the same samples. We show this by exploring the impact of a BOAp:BOA-NanoLUC construct transformed into a Col-0 CCA1p:FLUC background. CONCLUSIONS We concluded that NanoLUC reporters are compatible with established instrumentation and protocols for firefly luciferase. Overall, our results provide guidelines for researchers gathering dynamic protein data over different time scales and experimental setups.
Collapse
Affiliation(s)
- Uriel Urquiza-García
- SynthSys and School of Biological Sciences, University of Edinburgh, C. H. Waddington Building, King’s Buildings, Max Born Crescent, Edinburgh, EH9 3BF Scotland, UK
- Institute for Molecular Plant Sciences, University of Edinburgh, D. Rutherford Building, King’s Buildings, Edinburgh, EH9 3BF UK
| | - Andrew J. Millar
- SynthSys and School of Biological Sciences, University of Edinburgh, C. H. Waddington Building, King’s Buildings, Max Born Crescent, Edinburgh, EH9 3BF Scotland, UK
| |
Collapse
|
6
|
Feord HK, Dear FEG, Obbard DJ, van Ooijen G. A Magnesium Transport Protein Related to Mammalian SLC41 and Bacterial MgtE Contributes to Circadian Timekeeping in a Unicellular Green Alga. Genes (Basel) 2019; 10:genes10020158. [PMID: 30791470 PMCID: PMC6410215 DOI: 10.3390/genes10020158] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 01/29/2019] [Accepted: 02/12/2019] [Indexed: 11/16/2022] Open
Abstract
Circadian clocks in eukaryotes involve both transcriptional-translational feedback loops, post-translational regulation, and metabolic, non-transcriptional oscillations. We recently identified the involvement of circadian oscillations in the intracellular concentrations of magnesium ions (Mg2+i) that were conserved in three eukaryotic kingdoms. Mg2+i in turn contributes to transcriptional clock properties of period and amplitude, and can function as a zeitgeber to define phase. However, the mechanism-or mechanisms-responsible for the generation of Mg2+i oscillations, and whether these are functionally conserved across taxonomic groups, remain elusive. We employed the cellular clock model Ostreococcustauri to provide a first study of an MgtE domain-containing protein in the green lineage. OtMgtE shares homology with the mammalian SLC41A1 magnesium/sodium antiporter, which has previously been implicated in maintaining clock period. Using genetic overexpression, we found that OtMgtE contributes to both timekeeping and daily changes in Mg2+i. However, pharmacological experiments and protein sequence analyses indicated that critical differences exist between OtMgtE and either the ancestral MgtE channel or the mammalian SLC41 antiporters. We concluded that even though MgtE domain-containing proteins are only distantly related, these proteins retain a shared role in contributing to cellular timekeeping and the regulation of Mg2+i.
Collapse
Affiliation(s)
- Helen K Feord
- School of Biological Sciences, University of Edinburgh, Edinburgh, EH9 3BF, UK.
| | - Frederick E G Dear
- School of Biological Sciences, University of Edinburgh, Edinburgh, EH9 3BF, UK.
| | - Darren J Obbard
- School of Biological Sciences, University of Edinburgh, Edinburgh, EH9 3BF, UK.
| | - Gerben van Ooijen
- School of Biological Sciences, University of Edinburgh, Edinburgh, EH9 3BF, UK.
| |
Collapse
|
7
|
Kabbara S, Hérivaux A, Dugé de Bernonville T, Courdavault V, Clastre M, Gastebois A, Osman M, Hamze M, Cock JM, Schaap P, Papon N. Diversity and Evolution of Sensor Histidine Kinases in Eukaryotes. Genome Biol Evol 2019; 11:86-108. [PMID: 30252070 PMCID: PMC6324907 DOI: 10.1093/gbe/evy213] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/24/2018] [Indexed: 12/20/2022] Open
Abstract
Histidine kinases (HKs) are primary sensor proteins that act in cell signaling pathways generically referred to as "two-component systems" (TCSs). TCSs are among the most widely distributed transduction systems used by both prokaryotic and eukaryotic organisms to detect and respond to a broad range of environmental cues. The structure and distribution of HK proteins are now well documented in prokaryotes, but information is still fragmentary for eukaryotes. Here, we have taken advantage of recent genomic resources to explore the structural diversity and the phylogenetic distribution of HKs in the prominent eukaryotic supergroups. Searches of the genomes of 67 eukaryotic species spread evenly throughout the phylogenetic tree of life identified 748 predicted HK proteins. Independent phylogenetic analyses of predicted HK proteins were carried out for each of the major eukaryotic supergroups. This allowed most of the compiled sequences to be categorized into previously described HK groups. Beyond the phylogenetic analysis of eukaryotic HKs, this study revealed some interesting findings: 1) characterization of some previously undescribed eukaryotic HK groups with predicted functions putatively related to physiological traits; 2) discovery of HK groups that were previously believed to be restricted to a single kingdom in additional supergroups, and 3) indications that some evolutionary paths have led to the appearance, transfer, duplication, and loss of HK genes in some phylogenetic lineages. This study provides an unprecedented overview of the structure and distribution of HKs in the Eukaryota and represents a first step toward deciphering the evolution of TCS signaling in living organisms.
Collapse
Affiliation(s)
- Samar Kabbara
- Groupe d’Etude des Interactions Hôte-Pathogène, GEIHP, EA3142, Université d’Angers, SFR 4208 ICAT, France
| | - Anaïs Hérivaux
- Groupe d’Etude des Interactions Hôte-Pathogène, GEIHP, EA3142, Université d’Angers, SFR 4208 ICAT, France
| | | | - Vincent Courdavault
- Biomolécules et Biotechnologies Végétales, BBV, EA2106, Université François Rabelais de Tours, France
| | - Marc Clastre
- Biomolécules et Biotechnologies Végétales, BBV, EA2106, Université François Rabelais de Tours, France
| | - Amandine Gastebois
- Groupe d’Etude des Interactions Hôte-Pathogène, GEIHP, EA3142, Université d’Angers, SFR 4208 ICAT, France
| | - Marwan Osman
- Laboratoire Microbiologie Santé et Environnement, Faculté de Santé Publique, Université Libanaise, Tripoli, Lebanon
| | - Monzer Hamze
- Laboratoire Microbiologie Santé et Environnement, Faculté de Santé Publique, Université Libanaise, Tripoli, Lebanon
| | - J Mark Cock
- Algal Genetics Group, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, Sorbonne Université, UPMC Université Paris 06, CNRS, Roscoff, France
| | - Pauline Schaap
- School of Life Sciences, University of Dundee, United Kingdom
| | - Nicolas Papon
- Groupe d’Etude des Interactions Hôte-Pathogène, GEIHP, EA3142, Université d’Angers, SFR 4208 ICAT, France
| |
Collapse
|
8
|
Linde A, Eklund DM, Kubota A, Pederson ERA, Holm K, Gyllenstrand N, Nishihama R, Cronberg N, Muranaka T, Oyama T, Kohchi T, Lagercrantz U. Early evolution of the land plant circadian clock. THE NEW PHYTOLOGIST 2017; 216:576-590. [PMID: 28244104 PMCID: PMC5638080 DOI: 10.1111/nph.14487] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Accepted: 01/18/2017] [Indexed: 05/21/2023]
Abstract
While angiosperm clocks can be described as an intricate network of interlocked transcriptional feedback loops, clocks of green algae have been modelled as a loop of only two genes. To investigate the transition from a simple clock in algae to a complex one in angiosperms, we performed an inventory of circadian clock genes in bryophytes and charophytes. Additionally, we performed functional characterization of putative core clock genes in the liverwort Marchantia polymorpha and the hornwort Anthoceros agrestis. Phylogenetic construction was combined with studies of spatiotemporal expression patterns and analysis of M. polymorpha clock gene mutants. Homologues to core clock genes identified in Arabidopsis were found not only in bryophytes but also in charophytes, albeit in fewer copies. Circadian rhythms were detected for most identified genes in M. polymorpha and A. agrestis, and mutant analysis supports a role for putative clock genes in M. polymorpha. Our data are in line with a recent hypothesis that adaptation to terrestrial life occurred earlier than previously expected in the evolutionary history of charophyte algae. Both gene duplication and acquisition of new genes was important in the evolution of the plant circadian clock, but gene loss has also contributed to shaping the clock of bryophytes.
Collapse
Affiliation(s)
- Anna‐Malin Linde
- Department of Plant Ecology and EvolutionEvolutionary Biology CentreUppsala UniversityNorbyvägen 18DSE‐75236UppsalaSweden
- The Linnean Centre for Plant Biology in UppsalaUppsalaSweden
| | - D. Magnus Eklund
- Department of Plant Ecology and EvolutionEvolutionary Biology CentreUppsala UniversityNorbyvägen 18DSE‐75236UppsalaSweden
- The Linnean Centre for Plant Biology in UppsalaUppsalaSweden
| | - Akane Kubota
- Graduate School of BiostudiesKyoto UniversityKyoto606‐8502Japan
| | - Eric R. A. Pederson
- Department of Plant Ecology and EvolutionEvolutionary Biology CentreUppsala UniversityNorbyvägen 18DSE‐75236UppsalaSweden
- The Linnean Centre for Plant Biology in UppsalaUppsalaSweden
| | - Karl Holm
- Department of Plant Ecology and EvolutionEvolutionary Biology CentreUppsala UniversityNorbyvägen 18DSE‐75236UppsalaSweden
- The Linnean Centre for Plant Biology in UppsalaUppsalaSweden
| | - Niclas Gyllenstrand
- Department of Plant Ecology and EvolutionEvolutionary Biology CentreUppsala UniversityNorbyvägen 18DSE‐75236UppsalaSweden
- The Linnean Centre for Plant Biology in UppsalaUppsalaSweden
| | | | - Nils Cronberg
- Department of BiologyLund UniversityEcology BuildingSE‐22362LundSweden
| | | | - Tokitaka Oyama
- Graduate School of ScienceKyoto UniversityKyoto606‐8502Japan
| | - Takayuki Kohchi
- Graduate School of BiostudiesKyoto UniversityKyoto606‐8502Japan
| | - Ulf Lagercrantz
- Department of Plant Ecology and EvolutionEvolutionary Biology CentreUppsala UniversityNorbyvägen 18DSE‐75236UppsalaSweden
- The Linnean Centre for Plant Biology in UppsalaUppsalaSweden
| |
Collapse
|
9
|
Bhadra U, Thakkar N, Das P, Pal Bhadra M. Evolution of circadian rhythms: from bacteria to human. Sleep Med 2017; 35:49-61. [DOI: 10.1016/j.sleep.2017.04.008] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Revised: 04/07/2017] [Accepted: 04/18/2017] [Indexed: 12/20/2022]
|
10
|
Modeling the photoperiodic entrainment of the plant circadian clock. J Theor Biol 2017; 420:220-231. [DOI: 10.1016/j.jtbi.2017.03.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 01/12/2017] [Accepted: 03/07/2017] [Indexed: 11/21/2022]
|
11
|
Derbidge R, Baumgartner S, Heusser P. Mistletoe Berry Outline Mapping with a Path Curve Function and Recording the Circadian Rhythm of Their Phenotypic Shape Change. FRONTIERS IN PLANT SCIENCE 2016; 7:1749. [PMID: 27933073 PMCID: PMC5122707 DOI: 10.3389/fpls.2016.01749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Accepted: 11/07/2016] [Indexed: 06/06/2023]
Abstract
This paper presents a discovery: the change of the outline shape of mistletoe (Viscum album ssp. album) berries in vivo and in situ during ripening. It was found that a plant organ that is usually considered to merely increase in size actually changes shape in a specific rhythmic fashion. We introduce a new approach to chronobiological research on a macro-phenotypic scale to trace changes over long periods of time (with a resolution from hours to months) by using a dynamic form-determining parameter called Lambda (λ). λ is known in projective geometry as a measure for pertinent features of the outline shapes of egg-like forms, so called path curves. Ascertained circadian changes of form were analyzed for their correlation with environmental factors such as light, temperature, and other weather influences. Certain weather conditions such as sky cover, i.e., sunshine minutes per hour, have an impact on the amplitude of the daily change in form. The present paper suggests a possible supplement to established methods in chronobiology, as in this case the dynamic of form-change becomes a measurable feature, displaying a convincing accordance between mathematical rule and plant shape.
Collapse
Affiliation(s)
- Renatus Derbidge
- Institute of Integrative Medicine, University of Witten/HerdeckeWitten, Germany
- Research Institute at the Goetheanum, Science SectionDornach, Switzerland
| | - Stephan Baumgartner
- Institute of Integrative Medicine, University of Witten/HerdeckeWitten, Germany
- Hiscia Institute, Society for Cancer ResearchArlesheim, Switzerland
| | - Peter Heusser
- Institute of Integrative Medicine, University of Witten/HerdeckeWitten, Germany
| |
Collapse
|
12
|
Flis A, Fernández AP, Zielinski T, Mengin V, Sulpice R, Stratford K, Hume A, Pokhilko A, Southern MM, Seaton DD, McWatters HG, Stitt M, Halliday KJ, Millar AJ. Defining the robust behaviour of the plant clock gene circuit with absolute RNA timeseries and open infrastructure. Open Biol 2016; 5:rsob.150042. [PMID: 26468131 PMCID: PMC4632509 DOI: 10.1098/rsob.150042] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Our understanding of the complex, transcriptional feedback loops in the circadian clock mechanism has depended upon quantitative, timeseries data from disparate sources. We measure clock gene RNA profiles in Arabidopsis thaliana seedlings, grown with or without exogenous sucrose, or in soil-grown plants and in wild-type and mutant backgrounds. The RNA profiles were strikingly robust across the experimental conditions, so current mathematical models are likely to be broadly applicable in leaf tissue. In addition to providing reference data, unexpected behaviours included co-expression of PRR9 and ELF4, and regulation of PRR5 by GI. Absolute RNA quantification revealed low levels of PRR9 transcripts (peak approx. 50 copies cell−1) compared with other clock genes, and threefold higher levels of LHY RNA (more than 1500 copies cell−1) than of its close relative CCA1. The data are disseminated from BioDare, an online repository for focused timeseries data, which is expected to benefit mechanistic modelling. One data subset successfully constrained clock gene expression in a complex model, using publicly available software on parallel computers, without expert tuning or programming. We outline the empirical and mathematical justification for data aggregation in understanding highly interconnected, dynamic networks such as the clock, and the observed design constraints on the resources required to make this approach widely accessible.
Collapse
Affiliation(s)
- Anna Flis
- Max Planck Institute of Molecular Plant Physiology, Am Muehlenberg 1, 14476 Potsdam-Golm, Germany
| | - Aurora Piñas Fernández
- SynthSys and School of Biological Sciences, University of Edinburgh, C.H. Waddington Building, Edinburgh EH9 3JD, UK
| | - Tomasz Zielinski
- SynthSys and School of Biological Sciences, University of Edinburgh, C.H. Waddington Building, Edinburgh EH9 3JD, UK
| | - Virginie Mengin
- Max Planck Institute of Molecular Plant Physiology, Am Muehlenberg 1, 14476 Potsdam-Golm, Germany
| | - Ronan Sulpice
- Max Planck Institute of Molecular Plant Physiology, Am Muehlenberg 1, 14476 Potsdam-Golm, Germany
| | - Kevin Stratford
- EPCC, University of Edinburgh, James Clerk Maxwell Building, Edinburgh EH9 3JZ, UK
| | - Alastair Hume
- SynthSys and School of Biological Sciences, University of Edinburgh, C.H. Waddington Building, Edinburgh EH9 3JD, UK EPCC, University of Edinburgh, James Clerk Maxwell Building, Edinburgh EH9 3JZ, UK
| | - Alexandra Pokhilko
- SynthSys and School of Biological Sciences, University of Edinburgh, C.H. Waddington Building, Edinburgh EH9 3JD, UK Institute of Molecular Cell and Systems Biology, University of Glasgow, Bower Building, Glasgow G12 8QQ, UK
| | - Megan M Southern
- Department of Biological Sciences, University of Warwick, Coventry CV4 7AL, UK
| | - Daniel D Seaton
- SynthSys and School of Biological Sciences, University of Edinburgh, C.H. Waddington Building, Edinburgh EH9 3JD, UK
| | - Harriet G McWatters
- SynthSys and School of Biological Sciences, University of Edinburgh, C.H. Waddington Building, Edinburgh EH9 3JD, UK
| | - Mark Stitt
- Max Planck Institute of Molecular Plant Physiology, Am Muehlenberg 1, 14476 Potsdam-Golm, Germany
| | - Karen J Halliday
- SynthSys and School of Biological Sciences, University of Edinburgh, C.H. Waddington Building, Edinburgh EH9 3JD, UK
| | - Andrew J Millar
- SynthSys and School of Biological Sciences, University of Edinburgh, C.H. Waddington Building, Edinburgh EH9 3JD, UK
| |
Collapse
|
13
|
Millar AJ. The Intracellular Dynamics of Circadian Clocks Reach for the Light of Ecology and Evolution. ANNUAL REVIEW OF PLANT BIOLOGY 2016; 67:595-618. [PMID: 26653934 DOI: 10.1146/annurev-arplant-043014-115619] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
A major challenge for biology is to extend our understanding of molecular regulation from the simplified conditions of the laboratory to ecologically relevant environments. Tractable examples are essential to make these connections for complex, pleiotropic regulators and, to go further, to link relevant genome sequences to field traits. Here, I review the case for the biological clock in higher plants. The gene network of the circadian clock drives pervasive, 24-hour rhythms in metabolism, behavior, and physiology across the eukaryotes and in some prokaryotes. In plants, the scope of chronobiology is now extending from the most tractable, intracellular readouts to the clock's many effects at the whole-organism level and across the life cycle, including biomass and flowering. I discuss five research areas where recent progress might be integrated in the future, to understand not only circadian functions in natural conditions but also the evolution of the clock's molecular mechanisms.
Collapse
Affiliation(s)
- Andrew J Millar
- SynthSys and School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF, Scotland, United Kingdom;
| |
Collapse
|
14
|
De Caluwé J, Xiao Q, Hermans C, Verbruggen N, Leloup JC, Gonze D. A Compact Model for the Complex Plant Circadian Clock. FRONTIERS IN PLANT SCIENCE 2016; 7:74. [PMID: 26904049 PMCID: PMC4742534 DOI: 10.3389/fpls.2016.00074] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2015] [Accepted: 01/16/2016] [Indexed: 05/23/2023]
Abstract
The circadian clock is an endogenous timekeeper that allows organisms to anticipate and adapt to the daily variations of their environment. The plant clock is an intricate network of interlocked feedback loops, in which transcription factors regulate each other to generate oscillations with expression peaks at specific times of the day. Over the last decade, mathematical modeling approaches have been used to understand the inner workings of the clock in the model plant Arabidopsis thaliana. Those efforts have produced a number of models of ever increasing complexity. Here, we present an alternative model that combines a low number of equations and parameters, similar to the very earliest models, with the complex network structure found in more recent ones. This simple model describes the temporal evolution of the abundance of eight clock gene mRNA/protein and captures key features of the clock on a qualitative level, namely the entrained and free-running behaviors of the wild type clock, as well as the defects found in knockout mutants (such as altered free-running periods, lack of entrainment, or changes in the expression of other clock genes). Additionally, our model produces complex responses to various light cues, such as extreme photoperiods and non-24 h environmental cycles, and can describe the control of hypocotyl growth by the clock. Our model constitutes a useful tool to probe dynamical properties of the core clock as well as clock-dependent processes.
Collapse
Affiliation(s)
- Joëlle De Caluwé
- Unité de Chronobiologie Théorique, Faculté des Sciences, Université Libre de BruxellesBrussels, Belgium
| | - Qiying Xiao
- Laboratory of Plant Physiology and Molecular Genetics, Faculté des Sciences, Université Libre de BruxellesBrussels, Belgium
| | - Christian Hermans
- Laboratory of Plant Physiology and Molecular Genetics, Faculté des Sciences, Université Libre de BruxellesBrussels, Belgium
| | - Nathalie Verbruggen
- Laboratory of Plant Physiology and Molecular Genetics, Faculté des Sciences, Université Libre de BruxellesBrussels, Belgium
| | - Jean-Christophe Leloup
- Unité de Chronobiologie Théorique, Faculté des Sciences, Université Libre de BruxellesBrussels, Belgium
| | - Didier Gonze
- Unité de Chronobiologie Théorique, Faculté des Sciences, Université Libre de BruxellesBrussels, Belgium
| |
Collapse
|
15
|
Mock T, Daines SJ, Geider R, Collins S, Metodiev M, Millar AJ, Moulton V, Lenton TM. Bridging the gap between omics and earth system science to better understand how environmental change impacts marine microbes. GLOBAL CHANGE BIOLOGY 2016; 22:61-75. [PMID: 25988950 PMCID: PMC4949645 DOI: 10.1111/gcb.12983] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Revised: 05/05/2015] [Accepted: 05/12/2015] [Indexed: 05/17/2023]
Abstract
The advent of genomic-, transcriptomic- and proteomic-based approaches has revolutionized our ability to describe marine microbial communities, including biogeography, metabolic potential and diversity, mechanisms of adaptation, and phylogeny and evolutionary history. New interdisciplinary approaches are needed to move from this descriptive level to improved quantitative, process-level understanding of the roles of marine microbes in biogeochemical cycles and of the impact of environmental change on the marine microbial ecosystem. Linking studies at levels from the genome to the organism, to ecological strategies and organism and ecosystem response, requires new modelling approaches. Key to this will be a fundamental shift in modelling scale that represents micro-organisms from the level of their macromolecular components. This will enable contact with omics data sets and allow acclimation and adaptive response at the phenotype level (i.e. traits) to be simulated as a combination of fitness maximization and evolutionary constraints. This way forward will build on ecological approaches that identify key organism traits and systems biology approaches that integrate traditional physiological measurements with new insights from omics. It will rely on developing an improved understanding of ecophysiology to understand quantitatively environmental controls on microbial growth strategies. It will also incorporate results from experimental evolution studies in the representation of adaptation. The resulting ecosystem-level models can then evaluate our level of understanding of controls on ecosystem structure and function, highlight major gaps in understanding and help prioritize areas for future research programs. Ultimately, this grand synthesis should improve predictive capability of the ecosystem response to multiple environmental drivers.
Collapse
Affiliation(s)
- Thomas Mock
- School of Environmental SciencesUniversity of East AngliaNorwich Research ParkNR4 7TJNorwichUK
| | - Stuart J. Daines
- College of Life and Environmental SciencesUniversity of ExeterEX4 4QEExeterUK
| | - Richard Geider
- School of Biological SciencesUniversity of EssexWivenhoe ParkColchesterCO4 3SQUK
| | - Sinead Collins
- Ashworth LaboratoriesEdinburgh UniversityEH9 3JFEdinburghUK
| | - Metodi Metodiev
- School of Biological SciencesUniversity of EssexWivenhoe ParkColchesterCO4 3SQUK
| | - Andrew J. Millar
- SynthSys and School of Biological SciencesEdinburgh UniversityEH9 3BFEdinburghUK
| | - Vincent Moulton
- School of Computing SciencesUniversity of East AngliaNorwich Research ParkNR4 7TJNorwichUK
| | - Timothy M. Lenton
- College of Life and Environmental SciencesUniversity of ExeterEX4 4QEExeterUK
| |
Collapse
|
16
|
Schnoerr D, Sanguinetti G, Grima R. Comparison of different moment-closure approximations for stochastic chemical kinetics. J Chem Phys 2015; 143:185101. [DOI: 10.1063/1.4934990] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- David Schnoerr
- School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
- School of Informatics, University of Edinburgh, Edinburgh, United Kingdom
| | - Guido Sanguinetti
- School of Informatics, University of Edinburgh, Edinburgh, United Kingdom
| | - Ramon Grima
- School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
17
|
Ohara T, Fukuda H, Tokuda IT. An extended mathematical model for reproducing the phase response of Arabidopsis thaliana under various light conditions. J Theor Biol 2015; 382:337-44. [PMID: 26231414 DOI: 10.1016/j.jtbi.2015.07.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Revised: 07/17/2015] [Accepted: 07/18/2015] [Indexed: 01/10/2023]
Abstract
Experimental studies showed that light qualities such as color and strength influence the phase response properties of plant circadian systems. These effects, however, have yet to be properly addressed in theoretical models of plant circadian systems. To fill this gap, the present paper develops a mathematical model of a plant circadian clock that takes into account the intensity and wavelength of the input light. Based on experimental knowledge, we model three photoreceptors, Phytochrome A, Phytochrome B, and Cryptochrome 1, which respond to red and/or blue light, in Arabidopsis thaliana. The three photoreceptors are incorporated into a standard mathematical model of the plant system, in which activator and repressor genes form a single feedback loop. The model capability is examined by a phase response curve (PRC), which plots the phase shifts elicited by the light perturbation as a function of the perturbation phase. Numerical experiments demonstrate that the extended model reproduces the essential features of the PRCs measured experimentally under various light conditions. Particularly, unlike conventional models, the model generates the inherent shape of the PRC under dark pulse stimuli. The outcome of our modeling approach may motivate future theoretical and experimental studies of plant circadian rhythms.
Collapse
Affiliation(s)
- Takayuki Ohara
- Graduate School of Science and Engineering, Ritsumeikan University, Noji-higashi, Kusatsu, Shiga 525-8577, Japan
| | - Hirokazu Fukuda
- Graduate School of Engineering, Osaka Prefecture University, Gakuen-cho, Nakaku, Sakai, Osaka 599-8531, Japan
| | - Isao T Tokuda
- Graduate School of Science and Engineering, Ritsumeikan University, Noji-higashi, Kusatsu, Shiga 525-8577, Japan.
| |
Collapse
|
18
|
Circadian systems biology: When time matters. Comput Struct Biotechnol J 2015; 13:417-26. [PMID: 26288701 PMCID: PMC4534520 DOI: 10.1016/j.csbj.2015.07.001] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2015] [Revised: 07/09/2015] [Accepted: 07/10/2015] [Indexed: 01/08/2023] Open
Abstract
The circadian clock is a powerful endogenous timing system, which allows organisms to fine-tune their physiology and behaviour to the geophysical time. The interplay of a distinct set of core-clock genes and proteins generates oscillations in expression of output target genes which temporally regulate numerous molecular and cellular processes. The study of the circadian timing at the organismal as well as at the cellular level outlines the field of chronobiology, which has been highly interdisciplinary ever since its origins. The development of high-throughput approaches enables the study of the clock at a systems level. In addition to experimental approaches, computational clock models exist which allow the analysis of rhythmic properties of the clock network. Such mathematical models aid mechanistic understanding and can be used to predict outcomes of distinct perturbations in clock components, thereby generating new hypotheses regarding the putative function of particular clock genes. Perturbations in the circadian timing system are linked to numerous molecular dysfunctions and may result in severe pathologies including cancer. A comprehensive knowledge regarding the mechanistic of the circadian system is crucial to develop new procedures to investigate pathologies associated with a deregulated clock. In this manuscript we review the combination of experimental methodologies, bioinformatics and theoretical models that have been essential to explore this remarkable timing-system. Such an integrative and interdisciplinary approach may provide new strategies with regard to chronotherapeutic treatment and new insights concerning the restoration of the circadian timing in clock-associated diseases.
Collapse
|
19
|
Le Bihan T, Hindle M, Martin SF, Barrios-Llerena ME, Krahmer J, Kis K, Millar AJ, van Ooijen G. Label-free quantitative analysis of the casein kinase 2-responsive phosphoproteome of the marine minimal model species Ostreococcus tauri. Proteomics 2015; 15:4135-44. [PMID: 25930153 PMCID: PMC4716292 DOI: 10.1002/pmic.201500086] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Revised: 03/25/2015] [Accepted: 04/24/2015] [Indexed: 11/06/2022]
Abstract
Casein kinase 2 (CK2) is a protein kinase that phosphorylates a plethora of cellular target proteins involved in processes including DNA repair, cell cycle control, and circadian timekeeping. CK2 is functionally conserved across eukaryotes, although the substrate proteins identified in a range of complex tissues are often different. The marine alga Ostreococcus tauri is a unicellular eukaryotic model organism ideally suited to efficiently study generic roles of CK2 in the cellular circadian clock. Overexpression of CK2 leads to a slow circadian rhythm, verifying functional conservation of CK2 in timekeeping. The proteome was analysed in wild-type and CK2-overexpressing algae at dawn and dusk, revealing that differential abundance of the global proteome across the day is largely unaffected by overexpression. However, CK2 activity contributed more strongly to timekeeping at dusk than at dawn. The phosphoproteome of a CK2 overexpression line and cells treated with CK2 inhibitor was therefore analysed and compared to control cells at dusk. We report an extensive catalogue of 447 unique CK2-responsive differential phosphopeptide motifs to inform future studies into CK2 activity in the circadian clock of more complex tissues. All MS data have been deposited in the ProteomeXchange with identifier PXD000975 (http://proteomecentral.proteomexchange.org/dataset/PXD000975).
Collapse
Affiliation(s)
- Thierry Le Bihan
- School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Matthew Hindle
- School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Sarah F Martin
- School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | | | - Johanna Krahmer
- School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Katalin Kis
- School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Andrew J Millar
- School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Gerben van Ooijen
- School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
20
|
Thommen Q, Pfeuty B, Schatt P, Bijoux A, Bouget FY, Lefranc M. Probing entrainment of Ostreococcus tauri circadian clock by green and blue light through a mathematical modeling approach. Front Genet 2015; 6:65. [PMID: 25774167 PMCID: PMC4343026 DOI: 10.3389/fgene.2015.00065] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2014] [Accepted: 02/09/2015] [Indexed: 12/22/2022] Open
Abstract
Most organisms anticipate daily environmental variations and orchestrate cellular functions thanks to a circadian clock which entrains robustly to the day/night cycle, despite fluctuations in light intensity due to weather or seasonal variations. Marine organisms are also subjected to fluctuations in light spectral composition as their depth varies, due to differential absorption of different wavelengths by sea water. Studying how light input pathways contribute to circadian clock robustness is therefore important. Ostreococcus tauri, a unicellular picoplanktonic marine green alga with low genomic complexity and simple cellular organization, has become a promising model organism for systems biology. Functional and modeling approaches have shown that a core circadian oscillator based on orthologs of Arabidopsis TOC1 and CCA1 clock genes accounts for most experimental data acquired under a wide range of conditions. Some evidence points at putative light input pathway(s) consisting of a two-component signaling system (TCS) controlled by the only two histidine kinases (HK) of O. tauri. LOV-HK is a blue light photoreceptor under circadian control, that is required for circadian clock function. An involvement of Rhodopsin-HK (Rhod-HK) is also conceivable since rhodopsin photoreceptors mediate blue to green light input in animal circadian clocks. Here, we probe the role of LOV-HK and Rhod-HK in mediating light input to the TOC1-CCA1 oscillator using a mathematical model incorporating the TCS hypothesis. This model agrees with clock gene expression time series representative of multiple environmental conditions in blue or green light, characterizing entrainment by light/dark cycles, free-running in constant light, and resetting. Experimental and theoretical results indicate that both blue and green light can reset O. tauri circadian clock. Moreover, our mathematical analysis suggests that Rhod-HK is a blue-green light receptor and drives the clock together with LOV-HK.
Collapse
Affiliation(s)
- Quentin Thommen
- Laboratoire de Physique, Lasers, Atomes, Molécules, Université Lille 1 Sciences et Technologies, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 8523 Villeneuve d'Ascq, France
| | - Benjamin Pfeuty
- Laboratoire de Physique, Lasers, Atomes, Molécules, Université Lille 1 Sciences et Technologies, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 8523 Villeneuve d'Ascq, France
| | - Philippe Schatt
- Unité Mixte de Recherche 7621, Laboratoire d'Océanographie Microbienne, Observatoire Océanologique de Banyuls, Centre National de la Recherche Scientifique, Université Pierre et Marie Curie (Paris 06), Sorbonne Universités Banyuls sur Mer, France
| | - Amandine Bijoux
- Unité Mixte de Recherche 7621, Laboratoire d'Océanographie Microbienne, Observatoire Océanologique de Banyuls, Centre National de la Recherche Scientifique, Université Pierre et Marie Curie (Paris 06), Sorbonne Universités Banyuls sur Mer, France
| | - François-Yves Bouget
- Unité Mixte de Recherche 7621, Laboratoire d'Océanographie Microbienne, Observatoire Océanologique de Banyuls, Centre National de la Recherche Scientifique, Université Pierre et Marie Curie (Paris 06), Sorbonne Universités Banyuls sur Mer, France
| | - Marc Lefranc
- Laboratoire de Physique, Lasers, Atomes, Molécules, Université Lille 1 Sciences et Technologies, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 8523 Villeneuve d'Ascq, France
| |
Collapse
|
21
|
Abstract
As major contributors to global oxygen levels and producers of fatty acids, carotenoids, sterols, and phycocolloids, algae have significant ecological and commercial roles. Early algal models have contributed much to our understanding of circadian clocks at physiological and biochemical levels. The genetic and molecular approaches that identified clock components in other taxa have not been as widely applied to algae. We review results from seven species: the chlorophytes Chlamydomonas reinhardtii, Ostreococcus tauri, and Acetabularia spp.; the dinoflagellates Lingulodinium polyedrum and Symbiodinium spp.; the euglenozoa Euglena gracilis; and the red alga Cyanidioschyzon merolae. The relative simplicity, experimental tractability, and ecological and evolutionary diversity of algal systems may now make them particularly useful in integrating quantitative data from "omic" technologies (e.g., genomics, transcriptomics, metabolomics, and proteomics) with computational and mathematical methods.
Collapse
Affiliation(s)
- Zeenat B Noordally
- SynthSys and School of Biological Sciences, University of Edinburgh , Edinburgh EH9 3BF, United Kingdom
| | | |
Collapse
|
22
|
Kjaer KH, Clausen MR, Sundekilde UK, Petersen BO, Bertram HC, Ottosen CO. Photoperiodic variations induce shifts in the leaf metabolic profile of Chrysanthemum morifolium. FUNCTIONAL PLANT BIOLOGY : FPB 2014; 41:1310-1322. [PMID: 32481079 DOI: 10.1071/fp14012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Accepted: 06/09/2014] [Indexed: 06/11/2023]
Abstract
Plants have a high ability to adjust their metabolism, growth and development to changes in the light environment and to photoperiodic variation, but the current knowledge on how changes in metabolite contents are associated with growth and development is limited. We investigated the effect of three different photoperiodic treatments with similar daily light integral (DLI) on the growth responses and diurnal patterns in detected leaf metabolites in the short day plant Chrysanthemum×morifolium Ramat. Treatments were long day (LD, 18h light/6h dark), short day (SD, 12h light/12h dark) and short day with irregular night interruptions (NI-SD,12h light/12h dark, applied in a weekly pattern, shifting from day-to-day). Photoperiodic variation resulted in changes in the phenotypic development of the plants. The plants grown in the SD treatment started to initiate reproductive development of the meristems and a decrease in leaf expansion resulted in lower leaf area of expanding leaves. In contrast, plants in the NI-SD and LD treatments did not show reproductive development at any stage and final leaf area of the expanding leaves was intermediate for the NI-SD plants and largest for the LD plants. Photoperiodic variation also resulted in changes in the leaf metabolic profile for most of the analysed metabolites, but only carbohydrates, citrate and some amino acids displayed a shift in their diurnal pattern. Further, our results illustrated that short days (SD) increased the diurnal turnover of 1-kestose after 2 weeks, and decreased the overall contents of leaf hexoses after 3 weeks. In the two other treatments a diurnal turnover of 1-kestose was not stimulated before after 3 weeks, and hexoses together with the hexose:sucrose ratio steadily increased during the experiment. Our results enlighten the plasticity of leaf growth and metabolism to environmental changes, and demonstrate that diurnally regulated metabolites not always respond to photoperiodic variation.
Collapse
Affiliation(s)
| | | | | | - Bent Ole Petersen
- Carlsberg Laboratory, Gamle Carlsberg vej 10, 1799 Copenhagen V, Denmark
| | | | | |
Collapse
|
23
|
Guerriero ML, Akman OE, van Ooijen G. Stochastic models of cellular circadian rhythms in plants help to understand the impact of noise on robustness and clock structure. FRONTIERS IN PLANT SCIENCE 2014; 5:564. [PMID: 25374576 PMCID: PMC4204444 DOI: 10.3389/fpls.2014.00564] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2014] [Accepted: 09/30/2014] [Indexed: 05/25/2023]
Abstract
Rhythmic behavior is essential for plants; for example, daily (circadian) rhythms control photosynthesis and seasonal rhythms regulate their life cycle. The core of the circadian clock is a genetic network that coordinates the expression of specific clock genes in a circadian rhythm reflecting the 24-h day/night cycle. Circadian clocks exhibit stochastic noise due to the low copy numbers of clock genes and the consequent cell-to-cell variation: this intrinsic noise plays a major role in circadian clocks by inducing more robust oscillatory behavior. Another source of noise is the environment, which causes variation in temperature and light intensity: this extrinsic noise is part of the requirement for the structural complexity of clock networks. Advances in experimental techniques now permit single-cell measurements and the development of single-cell models. Here we present some modeling studies showing the importance of considering both types of noise in understanding how plants adapt to regular and irregular light variations. Stochastic models have proven useful for understanding the effect of regular variations. By contrast, the impact of irregular variations and the interaction of different noise sources are less well studied.
Collapse
Affiliation(s)
| | - Ozgur E. Akman
- Centre for Systems, Dynamics and Control, College of Engineering, Mathematics and Physical Sciences, University of ExeterExeter, UK
| | - Gerben van Ooijen
- Institute of Molecular Plant Sciences, University of EdinburghEdinburgh, UK
| |
Collapse
|
24
|
Hasegawa Y, Arita M. Optimal implementations for reliable circadian clocks. PHYSICAL REVIEW LETTERS 2014; 113:108101. [PMID: 25238386 DOI: 10.1103/physrevlett.113.108101] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Indexed: 06/03/2023]
Abstract
Circadian rhythms are acquired through evolution to increase the chances for survival through synchronizing with the daylight cycle. Reliable synchronization is realized through two trade-off properties: regularity to keep time precisely, and entrainability to synchronize the internal time with daylight. We find by using a phase model with multiple inputs that achieving the maximal limit of regularity and entrainability entails many inherent features of the circadian mechanism. At the molecular level, we demonstrate the role sharing of two light inputs, phase advance and delay, as is well observed in mammals. At the behavioral level, the optimal phase-response curve inevitably contains a dead zone, a time during which light pulses neither advance nor delay the clock. We reproduce the results of phase-controlling experiments entrained by two types of periodic light pulses. Our results indicate that circadian clocks are designed optimally for reliable clockwork through evolution.
Collapse
Affiliation(s)
- Yoshihiko Hasegawa
- Department of Biophysics and Biochemistry, Graduate School of Science, The University of Tokyo, Tokyo 113-0033, Japan
| | - Masanori Arita
- Center for Information Biology, National Institute of Genetics, Shizuoka 411-8540, Japan and RIKEN Center for Sustainable Resource Science, Kanagawa 230-0045, Japan
| |
Collapse
|
25
|
Abstract
The circadian timekeeping system appears more complex in birds than in mammals. In mammals, the main pacemaker is centralized in the suprachiasmatic nuclei, whereas in birds, the pacemaker involves the interplay between the pineal and hypothalamic oscillators. In order to investigate the consequence of this complex mechanism, we propose here a mathematical model for the bird circadian clock. The model is based on the internal resonance between the pineal and hypothalamic oscillators, each described by Goodwin-like equations. We show that, consistently with experimental observations, self-sustained oscillations can be generated by mutual inhibitory coupling of the 2 clocks, even if individual oscillators present damped oscillations. We study the effect of constant and periodic administrations of melatonin, which, in intact birds, acts as the coupling variable between the pineal and the hypothalamus, and compare the prediction of the model with the experiments performed in pinealectomized birds. We also assess the entrainment properties when the system is subject to light-dark cycles. Analyses of the entrainment range, resynchronization time after jet lag, and entrainment phase with respect to the photoperiod lead us to formulate hypotheses about the physiological advantage of the particular architecture of the avian circadian clock. Although minimal, our model opens promising perspectives in modeling and understanding the bird circadian clock.
Collapse
Affiliation(s)
- Aurore Woller
- Unité de Chronobiologie Théorique, CP 231, Faculté des Sciences, Université Libre de Bruxelles, Bruxelles, Belgium
| | | |
Collapse
|
26
|
Hindle MM, Martin SF, Noordally ZB, van Ooijen G, Barrios-Llerena ME, Simpson TI, Le Bihan T, Millar AJ. The reduced kinome of Ostreococcus tauri: core eukaryotic signalling components in a tractable model species. BMC Genomics 2014; 15:640. [PMID: 25085202 PMCID: PMC4143559 DOI: 10.1186/1471-2164-15-640] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Accepted: 07/08/2014] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND The current knowledge of eukaryote signalling originates from phenotypically diverse organisms. There is a pressing need to identify conserved signalling components among eukaryotes, which will lead to the transfer of knowledge across kingdoms. Two useful properties of a eukaryote model for signalling are (1) reduced signalling complexity, and (2) conservation of signalling components. The alga Ostreococcus tauri is described as the smallest free-living eukaryote. With less than 8,000 genes, it represents a highly constrained genomic palette. RESULTS Our survey revealed 133 protein kinases and 34 protein phosphatases (1.7% and 0.4% of the proteome). We conducted phosphoproteomic experiments and constructed domain structures and phylogenies for the catalytic protein-kinases. For each of the major kinases families we review the completeness and divergence of O. tauri representatives in comparison to the well-studied kinomes of the laboratory models Arabidopsis thaliana and Saccharomyces cerevisiae, and of Homo sapiens. Many kinase clades in O. tauri were reduced to a single member, in preference to the loss of family diversity, whereas TKL and ABC1 clades were expanded. We also identified kinases that have been lost in A. thaliana but retained in O. tauri. For three, contrasting eukaryotic pathways - TOR, MAPK, and the circadian clock - we established the subset of conserved components and demonstrate conserved sites of substrate phosphorylation and kinase motifs. CONCLUSIONS We conclude that O. tauri satisfies our two central requirements. Several of its kinases are more closely related to H. sapiens orthologs than S. cerevisiae is to H. sapiens. The greatly reduced kinome of O. tauri is therefore a suitable model for signalling in free-living eukaryotes.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Andrew J Millar
- SynthSys and School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3JD, UK.
| |
Collapse
|
27
|
Dixon LE, Hodge SK, van Ooijen G, Troein C, Akman OE, Millar AJ. Light and circadian regulation of clock components aids flexible responses to environmental signals. THE NEW PHYTOLOGIST 2014; 203:568-577. [PMID: 24842166 PMCID: PMC4286021 DOI: 10.1111/nph.12853] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2013] [Accepted: 03/24/2014] [Indexed: 05/08/2023]
Abstract
The circadian clock measures time across a 24 h period, increasing fitness by phasing biological processes to the most appropriate time of day. The interlocking feedback loop mechanism of the clock is conserved across species; however, the number of loops varies. Mathematical and computational analyses have suggested that loop complexity affects the overall flexibility of the oscillator, including its responses to entrainment signals. We used a discriminating experimental assay, at the transition between different photoperiods, in order to test this proposal in a minimal circadian network (in Ostreococcus tauri) and a more complex network (in Arabidopsis thaliana). Transcriptional and translational reporters in O. tauri primarily tracked dawn or dusk, whereas in A. thaliana, a wider range of responses were observed, consistent with its more flexible clock. Model analysis supported the requirement for this diversity of responses among the components of the more complex network. However, these and earlier data showed that the O. tauri network retains surprising flexibility, despite its simple circuit. We found that models constructed from experimental data can show flexibility either from multiple loops and/or from multiple light inputs. Our results suggest that O. tauri has adopted the latter strategy, possibly as a consequence of genomic reduction.
Collapse
Affiliation(s)
- Laura E Dixon
- SynthSys, University of Edinburgh, Kings Buildings, Mayfield Road, Edinburgh, EH9 3JD, UK
- Department of Crop Genetics, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Sarah K Hodge
- SynthSys, University of Edinburgh, Kings Buildings, Mayfield Road, Edinburgh, EH9 3JD, UK
| | - Gerben van Ooijen
- SynthSys, University of Edinburgh, Kings Buildings, Mayfield Road, Edinburgh, EH9 3JD, UK
| | - Carl Troein
- Department of Astronomy and Theoretical Physics, Lund University, 223 62, Lund, Sweden
| | - Ozgur E Akman
- SynthSys, University of Edinburgh, Kings Buildings, Mayfield Road, Edinburgh, EH9 3JD, UK
- Centre for Systems, Dynamics and Control, College of Engineering, Mathematics & Physical Sciences, University of Exeter, Exeter, EX4 4QF, UK
| | - Andrew J Millar
- SynthSys, University of Edinburgh, Kings Buildings, Mayfield Road, Edinburgh, EH9 3JD, UK
| |
Collapse
|
28
|
Bouget FY, Lefranc M, Thommen Q, Pfeuty B, Lozano JC, Schatt P, Botebol H, Vergé V. Transcriptional versus non-transcriptional clocks: A case study in Ostreococcus. Mar Genomics 2014; 14:17-22. [DOI: 10.1016/j.margen.2014.01.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2013] [Revised: 01/06/2014] [Accepted: 01/23/2014] [Indexed: 12/20/2022]
|
29
|
Karayekov E, Sellaro R, Legris M, Yanovsky MJ, Casal JJ. Heat shock-induced fluctuations in clock and light signaling enhance phytochrome B-mediated Arabidopsis deetiolation. THE PLANT CELL 2013; 25:2892-906. [PMID: 23933882 PMCID: PMC3784587 DOI: 10.1105/tpc.113.114306] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2013] [Revised: 07/01/2013] [Accepted: 07/16/2013] [Indexed: 05/20/2023]
Abstract
Moderately warm constant ambient temperatures tend to oppose light signals in the control of plant architecture. By contrast, here we show that brief heat shocks enhance the inhibition of hypocotyl growth induced by light perceived by phytochrome B in deetiolating Arabidopsis thaliana seedlings. In darkness, daily heat shocks transiently increased the expression of pseudo-response regulator7 (PRR7) and PRR9 and markedly enhanced the amplitude of the rhythms of late elongated hypocotyl (LHY) and circadian clock associated1 (CCA1) expression. In turn, these rhythms gated the hypocotyl response to red light, in part by changing the expression of phytochrome interacting FACTOR4 (PIF4) and PIF5. After light exposure, heat shocks also reduced the nuclear abundance of constitutive photomorphogenic1 (COP1) and increased the abundance of its target elongated hypocotyl5 (HY5). The synergism between light and heat shocks was deficient in the prr7 prr9, lhy cca1, pif4 pif5, cop1, and hy5 mutants. The evening element (binding site of LHY and CCA1) and G-box promoter motifs (binding site of PIFs and HY5) were overrepresented among genes with expression controlled by both heat shock and red light. The heat shocks experienced by buried seedlings approaching the surface of the soil prepare the seedlings for the impending exposure to light by rhythmically lowering LHY, CCA1, PIF4, and PIF5 expression and by enhancing HY5 stability.
Collapse
Affiliation(s)
- Elizabeth Karayekov
- IFEVA, Facultad de Agronomía, Universidad de Buenos Aires and the National Research Council of Argentina (CONICET), 1417 Buenos Aires, Argentina
| | - Romina Sellaro
- IFEVA, Facultad de Agronomía, Universidad de Buenos Aires and the National Research Council of Argentina (CONICET), 1417 Buenos Aires, Argentina
| | - Martina Legris
- Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires–CONICET, 1405 Buenos Aires, Argentina
| | - Marcelo J. Yanovsky
- IFEVA, Facultad de Agronomía, Universidad de Buenos Aires and the National Research Council of Argentina (CONICET), 1417 Buenos Aires, Argentina
- Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires–CONICET, 1405 Buenos Aires, Argentina
| | - Jorge J. Casal
- IFEVA, Facultad de Agronomía, Universidad de Buenos Aires and the National Research Council of Argentina (CONICET), 1417 Buenos Aires, Argentina
- Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires–CONICET, 1405 Buenos Aires, Argentina
- Address correspondence to
| |
Collapse
|
30
|
An overview of natural variation studies in the Arabidopsis thaliana circadian clock. Semin Cell Dev Biol 2013; 24:422-9. [PMID: 23558216 DOI: 10.1016/j.semcdb.2013.03.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2013] [Revised: 03/18/2013] [Accepted: 03/19/2013] [Indexed: 01/20/2023]
Abstract
Circadian clocks are ubiquitous mechanisms that provide an adaptive advantage by predicting subsequent environmental changes. In the model plant Arabidopsis thaliana (Arabidopsis), our understanding of the complex genetic network among clock components has considerably increased during these past years. Modeling has predicted the possibility of additional component to systematically and functionally complete the clock system. Mutagenesis screens have in the past been successfully employed to detect such novel components. With the advancement in sequencing technologies and improvements in statistical approaches, the extensive natural variation present in Arabidopsis accessions has emerged as a powerful alternative in functional gene discovery. In this review article, we review the previous efforts in mapping natural alleles affecting various clock parameters and will discuss further potentials of such natural-variation studies in physiological and ecological contexts.
Collapse
|
31
|
Bolouri Moghaddam MR, Van den Ende W. Sweet immunity in the plant circadian regulatory network. JOURNAL OF EXPERIMENTAL BOTANY 2013; 64:1439-49. [PMID: 23564957 DOI: 10.1093/jxb/ert046] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
All organisms have an internal timing mechanism, termed the circadian clock, to anticipate the light/dark cycle. The clock, with an oscillating rhythm that approximates 24h, is a rather robust system persisting to a great extent in continuous light and dark. It is widely accepted that plant growth and development are regulated by the clock, hormones, and sugar signals. On the one hand, sugar signalling can affect circadian rhythms by altering the expression pattern of clock-regulated genes. More in particular, the clock seems to be particularly sensitive to sucrose-mediated signalling which is also associated with immunity and abiotic stress responses. Also, hormonal interaction with the clock can contribute to appropriate plant immune responses. Recent data show a prominent role for the clock in growth and stress responses. On the other hand, the clock seems to be essential in controlling the gene expression and activity of an array of carbohydrate-metabolizing enzymes, suggesting a complex reciprocal relationship between the clock and metabolic signalling processes. Therefore, the clock fulfils a crucial role at the heart of cellular networks. The players involved in the complex plant circadian network and their possible contribution to the novel 'sweet immunity' concept are discussed.
Collapse
|
32
|
McClung CR. Beyond Arabidopsis: the circadian clock in non-model plant species. Semin Cell Dev Biol 2013; 24:430-6. [PMID: 23466287 DOI: 10.1016/j.semcdb.2013.02.007] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2012] [Revised: 02/13/2013] [Accepted: 02/15/2013] [Indexed: 01/26/2023]
Abstract
Circadian clocks allow plants to temporally coordinate many aspects of their biology with the diurnal cycle derived from the rotation of Earth on its axis. Although there is a rich history of the study of clocks in many plant species, in recent years much progress in elucidating the architecture and function of the plant clock has emerged from studies of the model plant, Arabidopsis thaliana. There is considerable interest in extending this knowledge of the circadian clock into diverse plant species in order to address its role in topics as varied as agricultural productivity and the responses of individual species and plant communities to global climate change and environmental degradation. The analysis of circadian clocks in the green lineage provides insight into evolutionary processes in plants and throughout the eukaryotes.
Collapse
Affiliation(s)
- C Robertson McClung
- Department of Biological Sciences, Dartmouth College, Class of 1978 Life Sciences Center, Hanover, NH 03755, USA.
| |
Collapse
|
33
|
Ocone A, Millar AJ, Sanguinetti G. Hybrid regulatory models: a statistically tractable approach to model regulatory network dynamics. Bioinformatics 2013; 29:910-6. [DOI: 10.1093/bioinformatics/btt069] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
|
34
|
Luck M, Mathes T, Bruun S, Fudim R, Hagedorn R, Tran Nguyen TM, Kateriya S, Kennis JTM, Hildebrandt P, Hegemann P. A photochromic histidine kinase rhodopsin (HKR1) that is bimodally switched by ultraviolet and blue light. J Biol Chem 2012; 287:40083-90. [PMID: 23027869 DOI: 10.1074/jbc.m112.401604] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Rhodopsins are light-activated chromoproteins that mediate signaling processes via transducer proteins or promote active or passive ion transport as ion pumps or directly light-activated channels. Here, we provide spectroscopic characterization of a rhodopsin from the Chlamydomonas eyespot. It belongs to a recently discovered but so far uncharacterized family of histidine kinase rhodopsins (HKRs). These are modular proteins consisting of rhodopsin, a histidine kinase, a response regulator, and in some cases an effector domain such as an adenylyl or guanylyl cyclase, all encoded in a single protein as a two-component system. The recombinant rhodopsin fragment, Rh, of HKR1 is a UVA receptor (λ(max) = 380 nm) that is photoconverted by UV light into a stable blue light-absorbing meta state Rh-Bl (λ(max) = 490 nm). Rh-Bl is converted back to Rh-UV by blue light. Raman spectroscopy revealed that the Rh-UV chromophore is in an unusual 13-cis,15-anti configuration, which explains why the chromophore is deprotonated. The excited state lifetime of Rh-UV is exceptionally stable, probably caused by a relatively unpolar retinal binding pocket, converting into the photoproduct within about 100 ps, whereas the blue form reacts 100 times faster. We propose that the photochromic HKR1 plays a role in the adaptation of behavioral responses in the presence of UVA light.
Collapse
Affiliation(s)
- Meike Luck
- Institute of Biology, Experimental Biophysics, Humboldt-Universität zu Berlin, 10115 Berlin, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
van Ooijen G, Millar AJ. Non-transcriptional oscillators in circadian timekeeping. Trends Biochem Sci 2012; 37:484-92. [PMID: 22917814 DOI: 10.1016/j.tibs.2012.07.006] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2012] [Revised: 07/20/2012] [Accepted: 07/26/2012] [Indexed: 01/10/2023]
Abstract
Circadian clocks have evolved as an adaptation to life on a rotating planet, and orchestrate rhythmic changes in physiology to match the time of day. For decades, cellular circadian rhythms were considered to solely result from feedback between the products of rhythmically expressed genes. These transcriptional/translational feedback loops (TTFLs) have been ubiquitously studied, and explain the majority of circadian outputs. In recent years, however, non-transcriptional processes were shown to be major contributors to circadian rhythmicity. These key findings have profound implications on our understanding of the evolution and mechanistic basis of cellular circadian timekeeping. This review summarises and discusses these results and the experimental and theoretical evidence of a possible relation between non-transcriptional oscillator (NTO) mechanisms and TTFL oscillations.
Collapse
Affiliation(s)
- Gerben van Ooijen
- SynthSys, University of Edinburgh, The Kings Buildings, Mayfield Road, EH9 3JD, Edinburgh, UK
| | | |
Collapse
|
36
|
Pfeuty B, Thommen Q, Corellou F, Djouani-Tahri EB, Bouget FY, Lefranc M. Circadian clocks in changing weather and seasons: Lessons from the picoalgaOstreococcus tauri. Bioessays 2012; 34:781-90. [DOI: 10.1002/bies.201200012] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
37
|
Thommen Q, Pfeuty B, Corellou F, Bouget FY, Lefranc M. Robust and flexible response of theOstreococcus tauricircadian clock to light/dark cycles of varying photoperiod. FEBS J 2012; 279:3432-48. [DOI: 10.1111/j.1742-4658.2012.08666.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
38
|
van Ooijen G, Knox K, Kis K, Bouget FY, Millar AJ. Genomic transformation of the picoeukaryote Ostreococcus tauri. J Vis Exp 2012:e4074. [PMID: 22825291 PMCID: PMC3476405 DOI: 10.3791/4074] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Common problems hindering rapid progress in Plant Sciences include cellular, tissue and whole organism complexity, and notably the high level of genomic redundancy affecting simple genetics in higher plants. The novel model organism Ostreococcus tauri is the smallest free-living eukaryote known to date, and possesses a greatly reduced genome size and cellular complexity1,2, manifested by the presence of just one of most organelles (mitochondrion, chloroplast, golgi stack) per cell, and a genome containing only ~8000 genes. Furthermore, the combination of unicellularity and easy culture provides a platform amenable to chemical biology approaches. Recently, Ostreococcus has been successfully employed to study basic mechanisms underlying circadian timekeeping3-6. Results from this model organism have impacted not only plant science, but also mammalian biology7. This example highlights how rapid experimentation in a simple eukaryote from the green lineage can accelerate research in more complex organisms by generating testable hypotheses using methods technically feasible only in this background of reduced complexity. Knowledge of a genome and the possibility to modify genes are essential tools in any model species. Genomic1, Transcriptomic8, and Proteomic9 information for this species is freely available, whereas the previously reported methods6,10 to genetically transform Ostreococcus are known to few laboratories worldwide. In this article, the experimental methods to genetically transform this novel model organism with an overexpression construct by means of electroporation are outlined in detail, as well as the method of inclusion of transformed cells in low percentage agarose to allow selection of transformed lines originating from a single transformed cell. Following the successful application of Ostreococcus to circadian research, growing interest in Ostreococcus can be expected from diverse research areas within and outside plant sciences, including biotechnological areas. Researchers from a broad range of biological and medical sciences that work on conserved biochemical pathways may consider pursuing research in Ostreococcus, free from the genomic and organismal complexity of larger model species.
Collapse
|
39
|
Seung D, Risopatron JPM, Jones BJ, Marc J. Circadian clock-dependent gating in ABA signalling networks. PROTOPLASMA 2012; 249:445-57. [PMID: 21773710 DOI: 10.1007/s00709-011-0304-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2011] [Accepted: 07/01/2011] [Indexed: 05/08/2023]
Abstract
Plant growth and development are intimately attuned to fluctuations in environmental variables such as light, temperature and water availability. A broad range of signalling and dynamic response mechanisms allows them to adjust their physiology so that growth and reproductive capacity are optimised for the prevailing conditions. Many of the response mechanisms are mediated by the plant hormones. The hormone abscisic acid (ABA) plays a dominant role in fundamental processes such as seed dormancy and germination, regulation of stomatal movements and enhancing drought tolerance in response to the osmotic stresses that result from water deficit, salinity and freezing. Whereas plants maintain a constant vigilance, there is emerging evidence that the capacity to respond is gated by the circadian clock so that it varies with diurnal fluctuations in light, temperature and water status. Clock regulation enables plants to anticipate regular diurnal fluctuations and thereby presumably to maximise metabolic efficiency. Circadian clock-dependent gating appears to regulate the ABA signalling network at numerous points, including metabolism, transport, perception and activity of the hormone. In this review, we summarise the basic principles and recent progress in elucidating the molecular mechanisms of circadian gating of the ABA response network and how it can affect fundamental processes in plant growth and development.
Collapse
Affiliation(s)
- David Seung
- School of Biological Sciences, The University of Sydney, Sydney, Australia
| | | | | | | |
Collapse
|
40
|
Lou P, Wu J, Cheng F, Cressman LG, Wang X, McClung CR. Preferential retention of circadian clock genes during diploidization following whole genome triplication in Brassica rapa. THE PLANT CELL 2012; 24:2415-26. [PMID: 22685167 PMCID: PMC3406906 DOI: 10.1105/tpc.112.099499] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2012] [Revised: 05/15/2012] [Accepted: 05/29/2012] [Indexed: 05/18/2023]
Abstract
Much has been learned about the architecture and function of the circadian clock of Arabidopsis thaliana, a model for plant circadian rhythms. Circadian rhythms contribute to evolutionary fitness, suggesting that circadian rhythmicity may also contribute to agricultural productivity. Therefore, we extend our study of the plant circadian clock to Brassica rapa, an agricultural crop. Since its separation from Arabidopsis, B. rapa has undergone whole genome triplication and subsequent diploidization that has involved considerable gene loss. We find that circadian clock genes are preferentially retained relative to comparison groups of their neighboring genes, a set of randomly chosen genes, and a set of housekeeping genes broadly conserved in eukaryotes. The preferential retention of clock genes is consistent with the gene dosage hypothesis, which predicts preferential retention of highly networked or dose-sensitive genes. Two gene families encoding transcription factors that play important roles in the plant core oscillator--the PSEUDO-RESPONSE REGULATORS, including TIMING OF CAB EXPRESSION1, and the REVEILLE family, including CIRCADIAN CLOCK ASSOCIATED1 and LATE ELONGATED HYPOCOTYL--exhibit preferential retention consistent with the gene dosage hypothesis, but a third gene family, including ZEITLUPE, that encodes F-Box proteins that regulate posttranslational protein stability offers an exception.
Collapse
Affiliation(s)
- Ping Lou
- Department of Biological Sciences, Dartmouth College, Hanover, New Hampshire 03755
| | - Jian Wu
- Key Laboratory of Horticultural Crop Genetic Improvement, Ministry of Agriculture and Sino-Dutch Joint Lab of Horticultural Genomics Technology, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Feng Cheng
- Key Laboratory of Horticultural Crop Genetic Improvement, Ministry of Agriculture and Sino-Dutch Joint Lab of Horticultural Genomics Technology, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Laura G. Cressman
- Department of Biological Sciences, Dartmouth College, Hanover, New Hampshire 03755
| | - Xiaowu Wang
- Key Laboratory of Horticultural Crop Genetic Improvement, Ministry of Agriculture and Sino-Dutch Joint Lab of Horticultural Genomics Technology, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - C. Robertson McClung
- Department of Biological Sciences, Dartmouth College, Hanover, New Hampshire 03755
- Address correspondence to
| |
Collapse
|
41
|
Guerriero ML, Pokhilko A, Fernández AP, Halliday KJ, Millar AJ, Hillston J. Stochastic properties of the plant circadian clock. J R Soc Interface 2012; 9:744-56. [PMID: 21880617 PMCID: PMC3284129 DOI: 10.1098/rsif.2011.0378] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2011] [Accepted: 08/08/2011] [Indexed: 11/12/2022] Open
Abstract
Circadian clocks are gene regulatory networks whose role is to help the organisms to cope with variations in environmental conditions such as the day/night cycle. In this work, we explored the effects of molecular noise in single cells on the behaviour of the circadian clock in the plant model species Arabidopsis thaliana. The computational modelling language Bio-PEPA enabled us to give a stochastic interpretation of an existing deterministic model of the clock, and to easily compare the results obtained via stochastic simulation and via numerical solution of the deterministic model. First, the introduction of stochasticity in the model allowed us to estimate the unknown size of the system. Moreover, stochasticity improved the description of the available experimental data in several light conditions: noise-induced fluctuations yield a faster entrainment of the plant clock under certain photoperiods and are able to explain the experimentally observed dampening of the oscillations in plants under constant light conditions. The model predicts that the desynchronization between noisy oscillations in single cells contributes to the observed damped oscillations at the level of the cell population. Analysis of the phase, period and amplitude distributions under various light conditions demonstrated robust entrainment of the plant clock to light/dark cycles which closely matched the available experimental data.
Collapse
Affiliation(s)
- Maria Luisa Guerriero
- Centre for Systems Biology at Edinburgh, University of Edinburgh, C. H. Waddington Building, King's Buildings Campus, Mayfield Road, Edinburgh EH9 3JD, UK.
| | | | | | | | | | | |
Collapse
|
42
|
Djouani-Tahri EB, Sanchez F, Lozano JC, Bouget FY. A phosphate-regulated promoter for fine-tuned and reversible overexpression in Ostreococcus: application to circadian clock functional analysis. PLoS One 2011; 6:e28471. [PMID: 22174815 PMCID: PMC3236181 DOI: 10.1371/journal.pone.0028471] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2011] [Accepted: 11/08/2011] [Indexed: 11/23/2022] Open
Abstract
Background The green picoalga Ostreococcus tauri (Prasinophyceae), which has been described as the smallest free-living eukaryotic organism, has minimal cellular ultra-structure and a very small genome. In recent years, O. tauri has emerged as a novel model organism for systems biology approaches that combine functional genomics and mathematical modeling, with a strong emphasis on light regulated processes and circadian clock. These approaches were made possible through the implementation of a minimal molecular toolbox for gene functional analysis including overexpression and knockdown strategies. We have previously shown that the promoter of the High Affinity Phosphate Transporter (HAPT) gene drives the expression of a luciferase reporter at high and constitutive levels under constant light. Methodology/Principal Findings Here we report, using a luciferase reporter construct, that the HAPT promoter can be finely and reversibly tuned by modulating the level and nature of phosphate in culture medium. This HAPT regulation was additionally used to analyze the circadian clock gene Time of Cab expression 1 (TOC1). The phenotype of a TOC1ox/CCA1:Luc line was reverted from arrhythmic to rhythmic simply by adding phosphate to the culture medium. Furthermore, since the time of phosphate injection had no effect on the phase of CCA1:Luc expression, this study suggests further that TOC1 is a central clock gene in Ostreococcus. Conclusions/Perspectives We have developed a phosphate-regulated expression system that allows fine gene function analysis in Ostreococcus. Recently, there has been a growing interest in microalgae as cell factories. This non-toxic phosphate-regulated system may prove useful in tuning protein expression levels quantitatively and temporally for biotechnological applications.
Collapse
Affiliation(s)
- El Batoul Djouani-Tahri
- Universite Pierre et Marie Curie (Paris 06), Observatoire Océanologique, Banyuls/mer, France
- Centre national de la Recherche Scientifique, Unité Mixte de Recherche, UMR7621, LOMIC, Laboratoire d'océanographie microbienne, Banyuls/mer, France
| | - Frédéric Sanchez
- Universite Pierre et Marie Curie (Paris 06), Observatoire Océanologique, Banyuls/mer, France
- Centre national de la Recherche Scientifique, Unité Mixte de Recherche, UMR7621, LOMIC, Laboratoire d'océanographie microbienne, Banyuls/mer, France
| | - Jean-Claude Lozano
- Universite Pierre et Marie Curie (Paris 06), Observatoire Océanologique, Banyuls/mer, France
- Centre national de la Recherche Scientifique, Unité Mixte de Recherche, UMR7621, LOMIC, Laboratoire d'océanographie microbienne, Banyuls/mer, France
| | - François-Yves Bouget
- Universite Pierre et Marie Curie (Paris 06), Observatoire Océanologique, Banyuls/mer, France
- Centre national de la Recherche Scientifique, Unité Mixte de Recherche, UMR7621, LOMIC, Laboratoire d'océanographie microbienne, Banyuls/mer, France
- * E-mail:
| |
Collapse
|
43
|
Bouget FY. [A new type of non genetic eukaryotic circadian clock]. Med Sci (Paris) 2011; 27:481-3. [PMID: 21609668 DOI: 10.1051/medsci/2011275012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
44
|
|
45
|
van Ooijen G, Dixon LE, Troein C, Millar AJ. Proteasome function is required for biological timing throughout the twenty-four hour cycle. Curr Biol 2011; 21:869-75. [PMID: 21530263 PMCID: PMC3102177 DOI: 10.1016/j.cub.2011.03.060] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2010] [Revised: 02/24/2011] [Accepted: 03/22/2011] [Indexed: 01/06/2023]
Abstract
Circadian clocks were, until recently, seen as a consequence of rhythmic transcription of clock components, directed by transcriptional/translational feedback loops (TTFLs). Oscillations of protein modification were then discovered in cyanobacteria. Canonical posttranslational signaling processes have known importance for clocks across taxa. More recently, evidence from the unicellular eukaryote Ostreococcus tauri revealed a transcription-independent, rhythmic protein modification shared in anucleate human cells. In this study, the Ostreococcus system reveals a central role for targeted protein degradation in the mechanism of circadian timing. The Ostreococcus clockwork contains a TTFL involving the morning-expressed CCA1 and evening-expressed TOC1 proteins. Cellular CCA1 and TOC1 protein content and degradation rates are analyzed qualitatively and quantitatively using luciferase reporter fusion proteins. CCA1 protein degradation rates, measured in high time resolution, feature a sharp clock-regulated peak under constant conditions. TOC1 degradation peaks in response to darkness. Targeted protein degradation, unlike transcription and translation, is shown to be essential to sustain TTFL rhythmicity throughout the circadian cycle. Although proteasomal degradation is not necessary for sustained posttranslational oscillations in transcriptionally inactive cells, TTFL and posttranslational oscillators are normally coupled, and proteasome function is crucial to sustain both.
Collapse
Affiliation(s)
- Gerben van Ooijen
- School of Biological Sciences and Centre for Systems Biology at Edinburgh, University of Edinburgh, The King's Buildings, Mayfield Road, Edinburgh EH9 3JD, UK.
| | | | | | | |
Collapse
|
46
|
McWatters HG, Devlin PF. Timing in plants - A rhythmic arrangement. FEBS Lett 2011; 585:1474-84. [DOI: 10.1016/j.febslet.2011.03.051] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2010] [Revised: 03/14/2011] [Accepted: 03/23/2011] [Indexed: 12/16/2022]
|
47
|
Abstract
The rotation of the earth on its axis confers the property of dramatic, recurrent, rhythmic environmental change. The rhythmicity of this change from day to night and again to day imparts predictability. As a consequence, most organisms have acquired the capacity to measure time to use this time information to temporally regulate their biology to coordinate with their environment in anticipation of coming change. Circadian rhythms, endogenous rhythms with periods of ∼24h, are driven by an internal circadian clock. This clock integrates temporal information and coordinates of many aspects of biology, including basic metabolism, hormone signaling and responses, and responses to biotic and abiotic stress, making clocks central to "systems biology." This review will first address the extent to which the clock regulates many biological processes. The architecture and mechanisms of the plant circadian oscillator, emphasizing what has been learned from intensive study of the circadian clock in the model plant, Arabidopsis thaliana, will be considered. The conservation of clock components in other species will address the extent to which the Arabidopsis model will inform our consideration of plants in general. Finally, studies addressing the role of clocks in fitness will be discussed. Accumulating evidence indicates that the consonance of the endogenous circadian clock with environmental cycles enhances fitness, including both biomass accumulation and reproductive performance. Thus, increased understanding of plant responses to environmental input and to endogenous temporal cues has ecological and agricultural importance.
Collapse
Affiliation(s)
- C Robertson McClung
- Department of Biological Sciences, Dartmouth College, Hanover, New Hampshire, USA
| |
Collapse
|