1
|
Yoro E, Suzuki S, Akiyoshi N, Kofuji R, Sakakibara K. The transcription factor PpRKD evokes female developmental fate in the sexual reproductive organs of Physcomitrium patens. THE NEW PHYTOLOGIST 2025; 245:653-667. [PMID: 39574395 DOI: 10.1111/nph.20262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 10/11/2024] [Indexed: 12/20/2024]
Abstract
The sexual reproductive organs of bryophytes - in which gametes necessary for fertilization are produced, namely, male antheridia and female archegonia - are formed from vegetative haploid gametophytes. In dioicous bryophytes such as Marchantia polymorpha, the genes within the sex-determining regions in distinct sexual strains have been identified. However, in monoicous bryophytes such as Physcomitrium patens, how the two sex fates are specified on the same gametophyte remained unknown. Here, we identified an RWP-RK domain-containing transcription factor in P. patens, PpRKD, as a factor required for the development of female organs, based on the absence of archegonia in loss-of-function Pprkd mutants and the specific expression of PpRKD in archegonia. When ectopically induced, the expression of PpRKD resulted in the repression of antheridial development and the emergence of archegonium-like organs. Furthermore, the young primordia inside the antheridial bundle displayed typical archegonial division patterns, suggesting that PpRKD confer female fate to antheridium primordia. This study represents the first instance where the function of sex determination has been identified among RKD orthologs in land plants. This finding should provide a new framework for the molecular evolutionary context of the genes in the RKD family, considering the recent elucidation of their roles in algae.
Collapse
Affiliation(s)
- Emiko Yoro
- Department of Life Science, Rikkyo University, Tokyo, 171-8501, Japan
| | - Seiya Suzuki
- Department of Life Science, Rikkyo University, Tokyo, 171-8501, Japan
| | - Nobuhiro Akiyoshi
- Department of Life Science, Rikkyo University, Tokyo, 171-8501, Japan
| | - Rumiko Kofuji
- College of Science and Engineering, Kanazawa University, Kanazawa, 920-1192, Japan
| | - Keiko Sakakibara
- Department of Life Science, Rikkyo University, Tokyo, 171-8501, Japan
| |
Collapse
|
2
|
Huang X, Sun MX. Cell fate determination during sexual plant reproduction. THE NEW PHYTOLOGIST 2025; 245:480-495. [PMID: 39613727 DOI: 10.1111/nph.20230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 10/09/2024] [Indexed: 12/01/2024]
Abstract
The flowering plant life cycle is completed by an alternation of diploid and haploid generations. The diploid sporophytes produce initial cells that undergo meiosis and produce spores. From haploid spores, male or female gametophytes, which produce gametes, develop. The union of gametes at fertilization restores diploidy in the zygote that initiates a new cycle of diploid sporophyte development. During this complex process, cell fate determination occurs at each of the critical stages and necessarily underpins successful plant reproduction. Here, we summarize available knowledge on the regulatory mechanism of cell fate determination at these critical stages of sexual reproduction, including sporogenesis, gametogenesis, and early embryogenesis, with particular emphasis on regulatory pathways of both male and female gametes before fertilization, and both apical and basal cell lineages of a proembryo after fertilization. Investigations reveal that cell fate determination involves multiple regulatory factors, such as positional information, differential distribution of cell fate determinants, cell-to-cell communication, and cell type-specific transcription factors. These factors temporally and spatially act for different cell type differentiation to ensure successful sexual reproduction. These new insights into regulatory mechanisms underlying sexual cell fate determination not only updates our knowledge on sexual plant reproduction, but also provides new ideas and tools for crop breeding.
Collapse
Affiliation(s)
- Xiaorong Huang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, 361102, China
| | - Meng-Xiang Sun
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| |
Collapse
|
3
|
Zheng S, Wang F, Liu Z, Zhang H, Zhang L, Chen D. The Role of Female and Male Genes in Regulating Pollen Tube Guidance in Flowering Plants. Genes (Basel) 2024; 15:1367. [PMID: 39596567 PMCID: PMC11593715 DOI: 10.3390/genes15111367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 10/20/2024] [Accepted: 10/21/2024] [Indexed: 11/28/2024] Open
Abstract
In flowering plants, fertilization is a complex process governed by precise communication between the male and female gametophytes. This review focuses on the roles of various female gametophyte cells-synergid, central, and egg cells-in facilitating pollen tube guidance and ensuring successful fertilization. Synergid cells play a crucial role in attracting the pollen tube, while the central cell influences the direction of pollen tube growth, and the egg cell is responsible for preventing polyspermy, ensuring correct fertilization. The review also examines the role of the pollen tube in this communication, highlighting the mechanisms involved in its growth regulation, including the importance of pollen tube receptors, signal transduction pathways, cell wall dynamics, and ion homeostasis. The Ca2+ concentration gradient is identified as a key factor in guiding pollen tube growth toward the ovule. Moreover, the review briefly compares these communication processes in angiosperms with those in non-flowering plants, such as mosses, ferns, and early gymnosperms, providing evolutionary insights into gametophytic signaling. Overall, this review synthesizes the current understanding of male-female gametophyte interactions and outlines future directions for research in plant reproductive biology.
Collapse
Affiliation(s)
- Siyuan Zheng
- Hainan Institute, Zhejiang University, Sanya 572025, China; (S.Z.); (F.W.); (Z.L.)
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China;
| | - Feng Wang
- Hainan Institute, Zhejiang University, Sanya 572025, China; (S.Z.); (F.W.); (Z.L.)
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China;
| | - Zehui Liu
- Hainan Institute, Zhejiang University, Sanya 572025, China; (S.Z.); (F.W.); (Z.L.)
| | - Hongbin Zhang
- Sanya Nanfan Research Institute, Hainan University, Sanya 572025, China;
| | - Liangsheng Zhang
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China;
- Yazhouwan National Laboratory, Sanya 572025, China
| | - Dan Chen
- Hainan Institute, Zhejiang University, Sanya 572025, China; (S.Z.); (F.W.); (Z.L.)
| |
Collapse
|
4
|
Cheng T, Liu Z, Li H, Huang X, Wang W, Shi C, Zhang X, Chen H, Yao Z, Zhao P, Peng X, Sun MX. Sperm-origin paternal effects on root stem cell niche differentiation. Nature 2024; 634:220-227. [PMID: 39198649 DOI: 10.1038/s41586-024-07885-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 07/30/2024] [Indexed: 09/01/2024]
Abstract
Fertilization introduces parental genetic information into the zygote to guide embryogenesis. Parental contributions to postfertilization development have been discussed for decades, and the data available show that both parents contribute to the zygotic transcriptome, suggesting a paternal role in early embryogenesis1-6. However, because the specific paternal effects on postfertilization development and the molecular pathways underpinning these effects remain poorly understood, paternal contribution to early embryogenesis and plant development has not yet been adequately demonstrated7. Here our research shows that TREE1 and its homologue DAZ3 are expressed exclusively in Arabidopsis sperm. Despite presenting no evident defects in sperm development and fertilization, tree1 daz3 unexpectedly led to aberrant differentiation of the embryo root stem cell niche. This defect persisted in seedlings and disrupted root tip regeneration, comparable to congenital defects in animals. TREE1 and DAZ3 function by suppression of maternal RKD2 transcription, thus mitigating the detrimental maternal effects from RKD2 on root stem cell niche. Therefore, our findings illuminate how genetic deficiencies in sperm can exert enduring paternal effects on specific plant organ differentiation and how parental-of-origin genes interact to ensure normal embryogenesis. This work also provides a new concept of how gamete quality or genetic deficiency can affect specific plant organ formation.
Collapse
Affiliation(s)
- Tianhe Cheng
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| | - Zhenzhen Liu
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| | - Haiming Li
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| | - Xiaorong Huang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Wei Wang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| | - Ce Shi
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| | - Xuecheng Zhang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| | - Hong Chen
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| | - Zhuang Yao
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| | - Peng Zhao
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| | - Xiongbo Peng
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| | - Meng-Xiang Sun
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China.
| |
Collapse
|
5
|
Ren X, Zhang X, Qi X, Zhang T, Wang H, Twell D, Gong Y, Fu Y, Wang B, Kong H, Xu B. The BNB-GLID module regulates germline fate determination in Marchantia polymorpha. THE PLANT CELL 2024; 36:3824-3837. [PMID: 39041486 PMCID: PMC11371191 DOI: 10.1093/plcell/koae206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 06/05/2024] [Accepted: 07/15/2024] [Indexed: 07/24/2024]
Abstract
Germline fate determination is a critical event in sexual reproduction. Unlike animals, plants specify the germline by reprogramming somatic cells at the late stages of their development. However, the genetic basis of germline fate determination and how it evolved during the land plant evolution are still poorly understood. Here, we report that the plant homeodomain finger protein GERMLINE IDENTITY DETERMINANT (GLID) is a key regulator of the germline specification in liverwort, Marchantia polymorpha. Loss of the MpGLID function causes failure of germline initiation, leading to the absence of sperm and egg cells. Remarkably, the overexpression of MpGLID in M. polymorpha induces the ectopic formation of cells with male germline cell features exclusively in male thalli. We further show that MpBONOBO (BNB), with an evolutionarily conserved function, can induce the formation of male germ cell-like cells through the activation of MpGLID by directly binding to its promoter. The Arabidopsis (Arabidopsis thaliana) MpGLID ortholog, MALE STERILITY1 (AtMS1), fails to replace the germline specification function of MpGLID in M. polymorpha, demonstrating that a derived function of MpGLID orthologs has been restricted to tapetum development in flowering plants. Collectively, our findings suggest the presence of the BNB-GLID module in complex ancestral land plants that has been retained in bryophytes, but rewired in flowering plants for male germline fate determination.
Collapse
Affiliation(s)
- Xiaolong Ren
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaoxia Zhang
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
| | - Xiaotong Qi
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tian Zhang
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Huijie Wang
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - David Twell
- Department of Genetics and Genome Biology, University of Leicester, Leicester LE1 7RH, UK
| | - Yu Gong
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuan Fu
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Baichen Wang
- University of Chinese Academy of Sciences, Beijing 100049, China
- China National Botanical Garden, Beijing 100093, China
- Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Hongzhi Kong
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- China National Botanical Garden, Beijing 100093, China
| | - Bo Xu
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
| |
Collapse
|
6
|
Liu Q, Han D, Cheng D, Chen J, Tian S, Wang J, Liu M, Yuan L. AtRKD5 inhibits the parthenogenic potential mediated by AtBBM. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2024; 66:1517-1531. [PMID: 38818961 DOI: 10.1111/jipb.13678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/11/2024] [Accepted: 04/23/2024] [Indexed: 06/01/2024]
Abstract
Parthenogenesis, the development of unfertilized egg cells into embryos, is a key component of apomixis. AtBBM (BABY BOOM), a crucial regulator of embryogenesis in Arabidopsis, possesses the capacity to shift nutritional growth toward reproductive growth. However, the mechanisms underlying AtBBM-induced parthenogenesis remain largely unexplored in dicot plants. Our findings revealed that in order to uphold the order of sexual reproduction, the embryo-specific promoter activity of AtBBM as well as repressors that inhibit its expression in egg cells combine to limiting its ability to induce parthenogenesis. Notably, AtRKD5, a RWP-RK domain-containing (RKD) transcription factor, binds to the 3' end of AtBBM and is identified as one of the inhibitory factors for AtBBM expression in the egg cell. In the atrkd5 mutant, we successfully achieved enhanced ectopic expression of AtBBM in egg cells, resulting in the generation of haploid offspring via parthenogenesis at a rate of 0.28%. Furthermore, by introducing chimeric Arabidopsis and rice BBM genes into the egg cell, we achieved a significant 4.6-fold enhancement in haploid induction through the atdmp8/9 mutant. These findings lay a strong foundation for further exploration of the BBM-mediated parthenogenesis mechanism and the improvement of haploid breeding efficiency mediated by the dmp8/9 mutant.
Collapse
Affiliation(s)
- Qiyan Liu
- State Key Laboratory of Crop Stress Resistance and High-Efficiency Production, College of Horticulture, Northwest A&F University, Yangling, 712100, China
| | - Dongfen Han
- State Key Laboratory of Crop Stress Resistance and High-Efficiency Production, College of Horticulture, Northwest A&F University, Yangling, 712100, China
| | - Denghu Cheng
- State Key Laboratory of Crop Stress Resistance and High-Efficiency Production, College of Horticulture, Northwest A&F University, Yangling, 712100, China
| | - Jinfan Chen
- State Key Laboratory of Crop Stress Resistance and High-Efficiency Production, College of Horticulture, Northwest A&F University, Yangling, 712100, China
| | - Shujuan Tian
- State Key Laboratory of Crop Stress Resistance and High-Efficiency Production, College of Horticulture, Northwest A&F University, Yangling, 712100, China
| | - Jiafa Wang
- State Key Laboratory of Crop Stress Resistance and High-Efficiency Production, College of Horticulture, Northwest A&F University, Yangling, 712100, China
| | - Man Liu
- State Key Laboratory of Crop Stress Resistance and High-Efficiency Production, College of Horticulture, Northwest A&F University, Yangling, 712100, China
| | - Li Yuan
- State Key Laboratory of Crop Stress Resistance and High-Efficiency Production, College of Horticulture, Northwest A&F University, Yangling, 712100, China
| |
Collapse
|
7
|
Zheng X, Duan Y, Zheng H, Tang H, Zheng L, Yu X. Genome-Wide Identification and Characterization of the RWP-RK Proteins in Zanthoxylum armatum. Genes (Basel) 2024; 15:665. [PMID: 38927601 PMCID: PMC11202622 DOI: 10.3390/genes15060665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/13/2024] [Accepted: 05/21/2024] [Indexed: 06/28/2024] Open
Abstract
Apomixis is a common reproductive characteristic of Zanthoxylum plants, and RWP-RKs are plant-specific transcription factors known to regulate embryonic development. However, the genome-wide analysis and function prediction of RWP-RK family genes in Z. armatum are unclear. In this study, 36 ZaRWP-RK transcription factors were identified in the genome of Z. armatum, among which 15 genes belonged to the RKD subfamily and 21 belonged to the NLP subfamily. Duplication events of ZaRWP-RK genes were mainly segmental duplication, and synteny analysis revealed a close phylogenetic relationship between Z. armatum and Arabidopsis. The analysis of cis-elements indicated that ZaRWP-RK genes may be involved in the regulation of the embryonic development of Z. armatum by responding to plant hormones such as abscisic acid, auxin, and gibberellin. Results of a real-time PCR showed that the expression levels of most ZaRWP-RK genes were significantly increased from flowers to young fruits. Protein-protein interaction network analysis further revealed the potential roles of the ZaRWP-RK proteins in apomixis. Collectively, this study is expected to improve our understanding of ZaRWP-RK transcription factors and provide a theoretical basis for future investigations into the ZaRWP-RK genes and their regulatory mechanisms in the apomixis process of Z. armatum.
Collapse
Affiliation(s)
| | | | | | | | | | - Xiaobo Yu
- Southwest Research Center for Cross Breeding of Special Economic Plants, School of Life Science, Leshan Normal University, Leshan 614000, China; (X.Z.); (Y.D.); (H.Z.); (H.T.); (L.Z.)
| |
Collapse
|
8
|
Hojsgaard D, Nagel M, Feingold SE, Massa GA, Bradshaw JE. New Frontiers in Potato Breeding: Tinkering with Reproductive Genes and Apomixis. Biomolecules 2024; 14:614. [PMID: 38927018 PMCID: PMC11202281 DOI: 10.3390/biom14060614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/13/2024] [Accepted: 05/20/2024] [Indexed: 06/28/2024] Open
Abstract
Potato is the most important non-cereal crop worldwide, and, yet, genetic gains in potato have been traditionally delayed by the crop's biology, mostly the genetic heterozygosity of autotetraploid cultivars and the intricacies of the reproductive system. Novel site-directed genetic modification techniques provide opportunities for designing climate-smart cultivars, but they also pose new possibilities (and challenges) for breeding potato. As potato species show a remarkable reproductive diversity, and their ovules have a propensity to develop apomixis-like phenotypes, tinkering with reproductive genes in potato is opening new frontiers in potato breeding. Developing diploid varieties instead of tetraploid ones has been proposed as an alternative way to fill the gap in genetic gain, that is being achieved by using gene-edited self-compatible genotypes and inbred lines to exploit hybrid seed technology. In a similar way, modulating the formation of unreduced gametes and synthesizing apomixis in diploid or tetraploid potatoes may help to reinforce the transition to a diploid hybrid crop or enhance introgression schemes and fix highly heterozygous genotypes in tetraploid varieties. In any case, the induction of apomixis-like phenotypes will shorten the time and costs of developing new varieties by allowing the multi-generational propagation through true seeds. In this review, we summarize the current knowledge on potato reproductive phenotypes and underlying genes, discuss the advantages and disadvantages of using potato's natural variability to modulate reproductive steps during seed formation, and consider strategies to synthesize apomixis. However, before we can fully modulate the reproductive phenotypes, we need to understand the genetic basis of such diversity. Finally, we visualize an active, central role for genebanks in this endeavor by phenotyping properly genotyped genebank accessions and new introductions to provide scientists and breeders with reliable data and resources for developing innovations to exploit market opportunities.
Collapse
Affiliation(s)
- Diego Hojsgaard
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), 06466 Seeland, Germany;
| | - Manuela Nagel
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), 06466 Seeland, Germany;
| | - Sergio E. Feingold
- Laboratorio de Agrobiotecnología, EEA Balcarce-IPADS (UEDD INTA–CONICET), Instituto Nacional de Tecnología Agropecuaria (INTA), Balcarce B7620, Argentina; (S.E.F.); (G.A.M.)
| | - Gabriela A. Massa
- Laboratorio de Agrobiotecnología, EEA Balcarce-IPADS (UEDD INTA–CONICET), Instituto Nacional de Tecnología Agropecuaria (INTA), Balcarce B7620, Argentina; (S.E.F.); (G.A.M.)
- Facultad de Ciencias Agrarias, Universidad Nacional de Mar del Plata, Balcarce B7620, Argentina
| | | |
Collapse
|
9
|
Yuan HY, Kagale S, Ferrie AMR. Multifaceted roles of transcription factors during plant embryogenesis. FRONTIERS IN PLANT SCIENCE 2024; 14:1322728. [PMID: 38235196 PMCID: PMC10791896 DOI: 10.3389/fpls.2023.1322728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 12/11/2023] [Indexed: 01/19/2024]
Abstract
Transcription factors (TFs) are diverse groups of regulatory proteins. Through their specific binding domains, TFs bind to their target genes and regulate their expression, therefore TFs play important roles in various growth and developmental processes. Plant embryogenesis is a highly regulated and intricate process during which embryos arise from various sources and undergo development; it can be further divided into zygotic embryogenesis (ZE) and somatic embryogenesis (SE). TFs play a crucial role in the process of plant embryogenesis with a number of them acting as master regulators in both ZE and SE. In this review, we focus on the master TFs involved in embryogenesis such as BABY BOOM (BBM) from the APETALA2/Ethylene-Responsive Factor (AP2/ERF) family, WUSCHEL and WUSCHEL-related homeobox (WOX) from the homeobox family, LEAFY COTYLEDON 2 (LEC2) from the B3 family, AGAMOUS-Like 15 (AGL15) from the MADS family and LEAFY COTYLEDON 1 (LEC1) from the Nuclear Factor Y (NF-Y) family. We aim to present the recent progress pertaining to the diverse roles these master TFs play in both ZE and SE in Arabidopsis, as well as other plant species including crops. We also discuss future perspectives in this context.
Collapse
Affiliation(s)
| | | | - Alison M. R. Ferrie
- Aquatic and Crop Resource Development Research Center, National Research Council Canada, Saskatoon, SK, Canada
| |
Collapse
|
10
|
Liu L, Trendel J, Jiang G, Liu Y, Bruckmann A, Küster B, Sprunck S, Dresselhaus T, Bleckmann A. RBPome identification in egg-cell like callus of Arabidopsis. Biol Chem 2023; 404:1137-1149. [PMID: 37768858 DOI: 10.1515/hsz-2023-0195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Accepted: 09/11/2023] [Indexed: 09/30/2023]
Abstract
RNA binding proteins (RBPs) have multiple and essential roles in transcriptional and posttranscriptional regulation of gene expression in all living organisms. Their biochemical identification in the proteome of a given cell or tissue requires significant protein amounts, which limits studies in rare and highly specialized cells. As a consequence, we know almost nothing about the role(s) of RBPs in reproductive processes such as egg cell development, fertilization and early embryogenesis in flowering plants. To systematically identify the RBPome of egg cells in the model plant Arabidopsis, we performed RNA interactome capture (RIC) experiments using the egg cell-like RKD2-callus and were able to identify 728 proteins associated with poly(A+)-RNA. Transcripts for 97 % of identified proteins could be verified in the egg cell transcriptome. 46 % of identified proteins can be associated with the RNA life cycle. Proteins involved in mRNA binding, RNA processing and metabolism are highly enriched. Compared with the few available RBPome datasets of vegetative plant tissues, we identified 475 egg cell-enriched RBPs, which will now serve as a resource to study RBP function(s) during egg cell development, fertilization and early embryogenesis. First candidates were already identified showing an egg cell-specific expression pattern in ovules.
Collapse
Affiliation(s)
- Liping Liu
- Cell Biology and Plant Biochemistry, University of Regensburg, D-93053 Regensburg, Germany
| | - Jakob Trendel
- Chair of Proteomics and Bioanalytics, Technical University of Munich (TUM), D-85354 Freising, Germany
| | - Guojing Jiang
- Cell Biology and Plant Biochemistry, University of Regensburg, D-93053 Regensburg, Germany
| | - Yanhui Liu
- College of Life Science, Longyan University, Longyan 364012, China
| | - Astrid Bruckmann
- Biochemistry I, University of Regensburg, D-93053 Regensburg, Germany
| | - Bernhard Küster
- Chair of Proteomics and Bioanalytics, Technical University of Munich (TUM), D-85354 Freising, Germany
| | - Stefanie Sprunck
- Cell Biology and Plant Biochemistry, University of Regensburg, D-93053 Regensburg, Germany
| | - Thomas Dresselhaus
- Cell Biology and Plant Biochemistry, University of Regensburg, D-93053 Regensburg, Germany
| | - Andrea Bleckmann
- Cell Biology and Plant Biochemistry, University of Regensburg, D-93053 Regensburg, Germany
| |
Collapse
|
11
|
Chettoor AM, Yang B, Evans MMS. Control of cellularization, nuclear localization, and antipodal cell cluster development in maize embryo sacs. Genetics 2023; 225:iyad101. [PMID: 37232380 DOI: 10.1093/genetics/iyad101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 03/30/2023] [Accepted: 05/15/2023] [Indexed: 05/27/2023] Open
Abstract
The maize female gametophyte contains four cell types: two synergids, an egg cell, a central cell, and a variable number of antipodal cells. In maize, these cells are produced after three rounds of free-nuclear divisions followed by cellularization, differentiation, and proliferation of the antipodal cells. Cellularization of the eight-nucleate syncytium produces seven cells with two polar nuclei in the central cell. Nuclear localization is tightly controlled in the embryo sac. This leads to precise allocation of the nuclei into the cells upon cellularization. Nuclear positioning within the syncytium is highly correlated with their identity after cellularization. Two mutants are described with extra polar nuclei, abnormal antipodal cell morphology, and reduced antipodal cell number, as well as frequent loss of antipodal cell marker expression. Mutations in one of these genes, indeterminate gametophyte2 encoding a MICROTUBULE ASSOCIATED PROTEIN65-3 homolog, shows a requirement for MAP65-3 in cellularization of the syncytial embryo sac as well as for normal seed development. The timing of the effects of ig2 suggests that the identity of the nuclei in the syncytial female gametophyte can be changed very late before cellularization.
Collapse
Affiliation(s)
- Antony M Chettoor
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA 94305, USA
| | - Bing Yang
- Donald Danforth Plant Science Center, St. Louis, MO 63132, USA
- Division of Plant Science and Technology, Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA
| | - Matthew M S Evans
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA 94305, USA
| |
Collapse
|
12
|
Jin Y, Luo J, Yang Y, Jia J, Sun M, Wang X, Khan I, Huang D, Huang L. The evolution and expansion of RWP-RK gene family improve the heat adaptability of elephant grass (Pennisetum purpureum Schum.). BMC Genomics 2023; 24:510. [PMID: 37653366 PMCID: PMC10472707 DOI: 10.1186/s12864-023-09550-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Accepted: 08/02/2023] [Indexed: 09/02/2023] Open
Abstract
BACKGROUND Along with global warming, resulting in crop production, exacerbating the global food crisis. Therefore, it is urgent to study the mechanism of plant heat resistance. However, crop resistance genes were lost due to long-term artificial domestication. By analyzing the potential heat tolerance genes and molecular mechanisms in other wild materials, more genetic resources can be provided for improving the heat tolerance of crops. Elephant grass (Pennisetum purpureum Schum.) has strong adaptability to heat stress and contains abundant heat-resistant gene resources. RESULTS Through sequence structure analysis, a total of 36 RWP-RK members were identified in elephant grass. Functional analysis revealed their close association with heat stress. Four randomly selected RKDs (RKD1.1, RKD4.3, RKD6.6, and RKD8.1) were analyzed for expression, and the results showed upregulation under high temperature conditions, suggesting their active role in response to heat stress. The members of RWP-RK gene family (36 genes) in elephant grass were 2.4 times higher than that of related tropical crops, rice (15 genes) and sorghum (15 genes). The 36 RWPs of elephant grass contain 15 NLPs and 21 RKDs, and 73% of RWPs are related to WGD. Among them, combined with the DAP-seq results, it was found that RWP-RK gene family expansion could improve the heat adaptability of elephant grass by enhancing nitrogen use efficiency and peroxidase gene expression. CONCLUSIONS RWP-RK gene family expansion in elephant grass is closely related to thermal adaptation evolution and speciation. The RKD subgroup showed a higher responsiveness than the NLP subgroup when exposed to high temperature stress. The promoter region of the RKD subgroup contains a significant number of MeJA and ABA responsive elements, which may contribute to their positive response to heat stress. These results provided a scientific basis for analyzing the heat adaptation mechanism of elephant grass and improving the heat tolerance of other crops.
Collapse
Affiliation(s)
- Yarong Jin
- Herbivorous Livestock Research Institute, Chongqing Academy of Animal Sciences, Chongqing, 402460, China
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Jinchan Luo
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yuchen Yang
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Jiyuan Jia
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Min Sun
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Xiaoshan Wang
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Imran Khan
- State Key Laboratory of Grassland Agro-Ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, China
| | - Dejun Huang
- Herbivorous Livestock Research Institute, Chongqing Academy of Animal Sciences, Chongqing, 402460, China.
| | - Linkai Huang
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China.
| |
Collapse
|
13
|
Lin C, Guo X, Yu X, Li S, Li W, Yu X, An F, Zhao P, Ruan M. Genome-Wide Survey of the RWP-RK Gene Family in Cassava ( Manihot esculenta Crantz) and Functional Analysis. Int J Mol Sci 2023; 24:12925. [PMID: 37629106 PMCID: PMC10454212 DOI: 10.3390/ijms241612925] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 08/12/2023] [Accepted: 08/16/2023] [Indexed: 08/27/2023] Open
Abstract
The plant-specific RWP-RK transcription factor family plays a central role in the regulation of nitrogen response and gametophyte development. However, little information is available regarding the evolutionary relationships and characteristics of the RWP-RK family genes in cassava, an important tropical crop. Herein, 13 RWP-RK proteins identified in cassava were unevenly distributed across 9 of the 18 chromosomes (Chr), and these proteins were divided into two clusters based on their phylogenetic distance. The NLP subfamily contained seven cassava proteins including GAF, RWP-RK, and PB1 domains; the RKD subfamily contained six cassava proteins including the RWP-RK domain. Genes of the NLP subfamily had a longer sequence and more introns than the RKD subfamily. A large number of hormone- and stress-related cis-acting elements were found in the analysis of RWP-RK promoters. Real-time quantitative PCR revealed that all MeNLP1-7 and MeRKD1/3/5 genes responded to different abiotic stressors (water deficit, cold temperature, mannitol, polyethylene glycol, NaCl, and H2O2), hormonal treatments (abscisic acid and methyl jasmonate), and nitrogen starvation. MeNLP3/4/5/6/7 and MeRKD3/5, which can quickly and efficiently respond to different stresses, were found to be important candidate genes for further functional assays in cassava. The MeRKD5 and MeNLP6 proteins were localized to the cell nucleus in tobacco leaf. Five and one candidate proteins interacting with MeRKD5 and MeNLP6, respectively, were screened from the cassava nitrogen starvation library, including agamous-like mads-box protein AGL14, metallothionein 2, Zine finger FYVE domain containing protein, glyceraldehyde-3-phosphate dehydrogenase, E3 Ubiquitin-protein ligase HUWE1, and PPR repeat family protein. These results provided a solid basis to understand abiotic stress responses and signal transduction mediated by RWP-RK genes in cassava.
Collapse
Affiliation(s)
- Chenyu Lin
- School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China; (C.L.); (X.G.); (X.Y.)
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; (S.L.); (W.L.); (X.Y.)
| | - Xin Guo
- School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China; (C.L.); (X.G.); (X.Y.)
| | - Xiaohui Yu
- School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China; (C.L.); (X.G.); (X.Y.)
| | - Shuxia Li
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; (S.L.); (W.L.); (X.Y.)
| | - Wenbin Li
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; (S.L.); (W.L.); (X.Y.)
| | - Xiaoling Yu
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; (S.L.); (W.L.); (X.Y.)
| | - Feng An
- Hainan Danzhou Agro-Ecosystem National Observation and Research Station, Rubber Research Institute of Chinese Academy of Tropical Agricultural Sciences, Danzhou 571737, China;
| | - Pingjuan Zhao
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; (S.L.); (W.L.); (X.Y.)
| | - Mengbin Ruan
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; (S.L.); (W.L.); (X.Y.)
| |
Collapse
|
14
|
Geng S, Hamaji T, Ferris PJ, Gao M, Nishimura Y, Umen J. A conserved RWP-RK transcription factor VSR1 controls gametic differentiation in volvocine algae. Proc Natl Acad Sci U S A 2023; 120:e2305099120. [PMID: 37436957 PMCID: PMC10629530 DOI: 10.1073/pnas.2305099120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 06/12/2023] [Indexed: 07/14/2023] Open
Abstract
Volvocine green algae are a model for understanding the evolution of mating types and sexes. They are facultatively sexual, with gametic differentiation occurring in response to nitrogen starvation (-N) in most genera and to sex inducer hormone in Volvox. The conserved RWP-RK family transcription factor (TF) MID is encoded by the minus mating-type locus or male sex-determining region of heterothallic volvocine species and dominantly determines minus or male gametic differentiation. However, the factor(s) responsible for establishing the default plus or female differentiation programs have remained elusive. We performed a phylo-transcriptomic screen for autosomal RWP-RK TFs induced during gametogenesis in unicellular isogamous Chlamydomonas reinhardtii (Chlamydomonas) and in multicellular oogamous Volvox carteri (Volvox) and identified a single conserved ortho-group we named Volvocine Sex Regulator 1 (VSR1). Chlamydomonas vsr1 mutants of either mating type failed to mate and could not induce expression of key mating-type-specific genes. Similarly, Volvox vsr1 mutants in either sex could initiate sexual embryogenesis, but the presumptive eggs or androgonidia (sperm packet precursors) were infertile and unable to express key sex-specific genes. Yeast two-hybrid assays identified a conserved domain in VSR1 capable of self-interaction or interaction with the conserved N terminal domain of MID. In vivo coimmunoprecipitation experiments demonstrated association of VSR1 and MID in both Chlamydomonas and Volvox. These data support a new model for volvocine sexual differentiation where VSR1 homodimers activate expression of plus/female gamete-specific-genes, but when MID is present, MID-VSR1 heterodimers are preferentially formed and activate minus/male gamete-specific-genes.
Collapse
Affiliation(s)
- Sa Geng
- Donald Danforth Plant Science Center, St Louis, MO63132
| | - Takashi Hamaji
- Donald Danforth Plant Science Center, St Louis, MO63132
- Department of Botany, Graduate School of Science, Kyoto University, Kyoto606-8502, Japan
- Research and Development Initiative, Chuo University, Bunkyo-ku, Tokyo112-8551, Japan
| | | | - Minglu Gao
- Donald Danforth Plant Science Center, St Louis, MO63132
| | - Yoshiki Nishimura
- Department of Botany, Graduate School of Science, Kyoto University, Kyoto606-8502, Japan
| | - James Umen
- Donald Danforth Plant Science Center, St Louis, MO63132
| |
Collapse
|
15
|
Misra CS, Sousa AGG, Barros PM, Kermanov A, Becker JD. Cell-type-specific alternative splicing in the Arabidopsis germline. PLANT PHYSIOLOGY 2023; 192:85-101. [PMID: 36515615 PMCID: PMC10152659 DOI: 10.1093/plphys/kiac574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 09/30/2022] [Accepted: 11/23/2022] [Indexed: 05/03/2023]
Abstract
During sexual reproduction in flowering plants, the two haploid sperm cells (SCs) embedded within the cytoplasm of a growing pollen tube are carried to the embryo sac for double fertilization. Pollen development in flowering plants is a dynamic process that encompasses changes at transcriptome and epigenome levels. While the transcriptome of pollen and SCs in Arabidopsis (Arabidopsis thaliana) is well documented, previous analyses have mostly been based on gene-level expression. In-depth transcriptome analysis, particularly the extent of alternative splicing (AS) at the resolution of SC and vegetative nucleus (VN), is still lacking. Therefore, we performed RNA-seq analysis to generate a spliceome map of Arabidopsis SCs and VN isolated from mature pollen grains. Based on our de novo transcriptome assembly, we identified 58,039 transcripts, including 9,681 novel transcripts, of which 2,091 were expressed in SCs and 3,600 in VN. Four hundred and sixty-eight genes were regulated both at gene and splicing levels, with many having functions in mRNA splicing, chromatin modification, and protein localization. Moreover, a comparison with egg cell RNA-seq data uncovered sex-specific regulation of transcription and splicing factors. Our study provides insights into a gamete-specific AS landscape at unprecedented resolution.
Collapse
Affiliation(s)
- Chandra Shekhar Misra
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa (ITQB NOVA), 2780-157 Oeiras, Portugal
- Instituto Gulbenkian de Ciência, 2780-156 Oeiras, Portugal
| | | | - Pedro M Barros
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa (ITQB NOVA), 2780-157 Oeiras, Portugal
| | - Anton Kermanov
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa (ITQB NOVA), 2780-157 Oeiras, Portugal
- Instituto Gulbenkian de Ciência, 2780-156 Oeiras, Portugal
| | - Jörg D Becker
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa (ITQB NOVA), 2780-157 Oeiras, Portugal
- Instituto Gulbenkian de Ciência, 2780-156 Oeiras, Portugal
| |
Collapse
|
16
|
Purwestri YA, Lee YS, Meehan C, Mose W, Susanto FA, Wijayanti P, Fauzia AN, Nuringtyas TR, Hussain N, Putra HL, Gutierrez-Marcos J. RWP-RK Domain 3 (OsRKD3) induces somatic embryogenesis in black rice. BMC PLANT BIOLOGY 2023; 23:202. [PMID: 37076789 PMCID: PMC10114336 DOI: 10.1186/s12870-023-04220-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 04/07/2023] [Indexed: 05/03/2023]
Abstract
BACKGROUND Plants have the unique capability to form embryos from both gametes and somatic cells, with the latter process known as somatic embryogenesis. Somatic embryogenesis (SE) can be induced by exposing plant tissues to exogenous growth regulators or by the ectopic activation of embryogenic transcription factors. Recent studies have revealed that a discrete group of RWP-RK DOMAIN-CONTAINING PROTEIN (RKD) transcription factors act as key regulators of germ cell differentiation and embryo development in land plants. The ectopic overexpression of reproductive RKDs is associated with increased cellular proliferation and the formation of somatic embryo-like structures that bypass the need for exogenous growth regulators. However, the precise molecular mechanisms implicated in the induction of somatic embryogenesis by RKD transcription factors remains unknown. RESULTS In silico analyses have identified a rice RWP-RK transcription factor, named Oryza sativa RKD3 (OsRKD3), which is closely related to Arabidopsis thaliana RKD4 (AtRKD4) and Marchantia polymorpha RKD (MpRKD) proteins. Our study demonstrates that the ectopic overexpression of OsRKD3, which is expressed preferentially in reproductive tissues, can trigger the formation of somatic embryos in an Indonesian black rice landrace (Cempo Ireng) that is normally resistant to somatic embryogenesis. By analyzing the transcriptome of induced tissue, we identified 5,991 genes that exhibit differential expression in response to OsRKD3 induction. Among these genes, 50% were up-regulated while the other half were down-regulated. Notably, approximately 37.5% of the up-regulated genes contained a sequence motif in their promoter region, which was also observed in RKD targets from Arabidopsis. Furthermore, OsRKD3 was shown to mediate the transcriptional activation of a discrete gene network, which includes several transcription factors such as APETALA 2-like (AP2-like)/ETHYLENE RESPONSE FACTOR (ERF), MYB and CONSTANS-like (COL), and chromatin remodeling factors associated with hormone signal transduction, stress responses and post-embryonic pathways. CONCLUSIONS Our data show that OsRKD3 modulates an extensive gene network and its activation is associated with the initiation of a somatic embryonic program that facilitates genetic transformation in black rice. These findings hold substantial promise for improving crop productivity and advancing agricultural practices in black rice.
Collapse
Affiliation(s)
- Yekti Asih Purwestri
- Research Center for Biotechnology, Universitas Gadjah Mada Jl. Teknika Utara, Depok, Sleman, Yogyakarta, Indonesia, 55281.
- Department of Tropical Biology, Faculty of Biology, Universitas Gadjah Mada Jl. Teknika Selatan, Sekip Utara, Yogyakarta, Indonesia, 55281.
| | - Yang-Seok Lee
- School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK
| | - Cathal Meehan
- School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK
| | - Windi Mose
- Research Center for Biotechnology, Universitas Gadjah Mada Jl. Teknika Utara, Depok, Sleman, Yogyakarta, Indonesia, 55281
- Department of Tropical Biology, Faculty of Biology, Universitas Gadjah Mada Jl. Teknika Selatan, Sekip Utara, Yogyakarta, Indonesia, 55281
- School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK
| | - Febri Adi Susanto
- Research Center for Biotechnology, Universitas Gadjah Mada Jl. Teknika Utara, Depok, Sleman, Yogyakarta, Indonesia, 55281
| | - Putri Wijayanti
- Department of Tropical Biology, Faculty of Biology, Universitas Gadjah Mada Jl. Teknika Selatan, Sekip Utara, Yogyakarta, Indonesia, 55281
| | - Anisa Nazera Fauzia
- Research Center for Biotechnology, Universitas Gadjah Mada Jl. Teknika Utara, Depok, Sleman, Yogyakarta, Indonesia, 55281
| | - Tri Rini Nuringtyas
- Research Center for Biotechnology, Universitas Gadjah Mada Jl. Teknika Utara, Depok, Sleman, Yogyakarta, Indonesia, 55281
- Department of Tropical Biology, Faculty of Biology, Universitas Gadjah Mada Jl. Teknika Selatan, Sekip Utara, Yogyakarta, Indonesia, 55281
| | - Nosheen Hussain
- School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK
| | - Hadi Lanang Putra
- School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK
| | | |
Collapse
|
17
|
Zhang Q, Li J, Wen X, Deng C, Yang X, Dai S. Genome-wide identification and characterization analysis of RWP-RK family genes reveal their role in flowering time of Chrysanthemum lavandulifolium. BMC PLANT BIOLOGY 2023; 23:197. [PMID: 37061708 PMCID: PMC10105424 DOI: 10.1186/s12870-023-04201-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 03/29/2023] [Indexed: 06/19/2023]
Abstract
BACKGROUND RWP-RKs are plant specific transcription factors, which are widely distributed in plants in the form of polygenic families and play key role in nitrogen absorption and utilization, and are crucial to plant growth and development. However, the genome-wide identification and function of RWP-RK in Compositae plants are widely unknown. RESULTS In this study, 101 RWP-RKs in Chrysanthemum lavandulifolium were identified and tandem repeat was an important way for the expansion of RWP-RKs in Compositae species. 101 RWP-RKs contain 38 NIN-like proteins (NLPs) and 31 RWP- RK domain proteins (RKDs), as well as 32 specific expansion members. qRT-PCR results showed that 7 ClNLPs in leaves were up-regulated at the floral transition stage, 10 ClNLPs were negatively regulated by low nitrate conditions, and 3 of them were up-regulated by optimal nitrate conditions. In addition, the flowering time of Chrysanthemum lavandulifolium was advanced under optimal nitrate conditions, the expression level of Cryptochromes (ClCRYs), phytochrome C (ClPHYC) and the floral integration genes GIGANTEA (ClGI), CONSTANS-LIKE (ClCOL1, ClCOL4, ClCOL5), FLOWERING LOCUS T (ClFT), FLOWERING LOCUS C (ClFLC), SUPPRESSOR OF OVER-EXPRESSION OF CONSTANS 1 (ClSOC1) also were up-regulated. The expression level of ClCRY1a, ClCRY1c, ClCRY2a and ClCRY2c in the vegetative growth stage induced by optimal nitrate reached the expression level induced by short-day in the reproductive growth stage, which supplemented the induction effect of short-day on the transcription level of floral-related genes in advance. CONCLUSIONS It was speculated that ClNLPs may act on the photoperiodic pathway under optimal nitrate environment, and ultimately regulate the flowering time by up-regulating the transcription level of ClCRYs. These results provide new perspective for exploring the mechanism of nitrate/nitrogen affecting flowering in higher plants.
Collapse
Affiliation(s)
- Qiuling Zhang
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Education Ministry, School of Landscape Architecture, Beijing Forestry University, Beijing, 100083, China
| | - Junzhuo Li
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Education Ministry, School of Landscape Architecture, Beijing Forestry University, Beijing, 100083, China
| | - Xiaohui Wen
- Zhejiang University, No. 866 Yuhangtang Road, Hangzhou, 310058, China
| | | | - Xiuzhen Yang
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Education Ministry, School of Landscape Architecture, Beijing Forestry University, Beijing, 100083, China
| | - Silan Dai
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Education Ministry, School of Landscape Architecture, Beijing Forestry University, Beijing, 100083, China.
- School of Landscape Architecture, Beijing Forestry University, Beijing, 100083, China.
| |
Collapse
|
18
|
Sekimoto H, Komiya A, Tsuyuki N, Kawai J, Kanda N, Ootsuki R, Suzuki Y, Toyoda A, Fujiyama A, Kasahara M, Abe J, Tsuchikane Y, Nishiyama T. A divergent RWP-RK transcription factor determines mating type in heterothallic Closterium. THE NEW PHYTOLOGIST 2023; 237:1636-1651. [PMID: 36533897 DOI: 10.1111/nph.18662] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 11/28/2022] [Indexed: 06/17/2023]
Abstract
The Closterium peracerosum-strigosum-littorale complex (Closterium, Zygnematophyceae) has an isogamous mating system. Members of the Zygnematophyceae are the closest relatives to extant land plants and are distantly related to chlorophytic models, for which a genetic basis of mating type (MT) determination has been reported. We thus investigated MT determination in Closterium. We sequenced genomes representing the two MTs, mt+ and mt-, in Closterium and identified CpMinus1, a gene linked to the mt- phenotype. We analyzed its function using reverse genetics methods. CpMinus1 encodes a divergent RWP-RK domain-containing-like transcription factor and is specifically expressed during gamete differentiation. Introduction of CpMinus1 into an mt+ strain was sufficient to convert it to a phenotypically mt- strain, while CpMinus1-knockout mt- strains were phenotypically mt+. We propose that CpMinus1 is the major MT determinant that acts by evoking the mt- phenotype and suppressing the mt+ phenotype in heterothallic Closterium. CpMinus1 likely evolved independently in the Zygnematophyceae lineage, which lost an egg-sperm anisogamous mating system. mt- specific regions possibly constitute an MT locus flanked by common sequences that undergo some recombination.
Collapse
Affiliation(s)
- Hiroyuki Sekimoto
- Division of Material and Biological Sciences, Graduate School of Science, Japan Women's University, 2-8-1 Mejirodai, Bunkyo-ku, Tokyo, 112-8681, Japan
- Department of Chemical and Biological Sciences, Faculty of Science, Japan Women's University, 2-8-1 Mejirodai, Bunkyo-ku, Tokyo, 112-8681, Japan
| | - Ayumi Komiya
- Division of Material and Biological Sciences, Graduate School of Science, Japan Women's University, 2-8-1 Mejirodai, Bunkyo-ku, Tokyo, 112-8681, Japan
| | - Natsumi Tsuyuki
- Division of Material and Biological Sciences, Graduate School of Science, Japan Women's University, 2-8-1 Mejirodai, Bunkyo-ku, Tokyo, 112-8681, Japan
| | - Junko Kawai
- Department of Chemical and Biological Sciences, Faculty of Science, Japan Women's University, 2-8-1 Mejirodai, Bunkyo-ku, Tokyo, 112-8681, Japan
| | - Naho Kanda
- Division of Material and Biological Sciences, Graduate School of Science, Japan Women's University, 2-8-1 Mejirodai, Bunkyo-ku, Tokyo, 112-8681, Japan
| | - Ryo Ootsuki
- Department of Chemical and Biological Sciences, Faculty of Science, Japan Women's University, 2-8-1 Mejirodai, Bunkyo-ku, Tokyo, 112-8681, Japan
| | - Yutaka Suzuki
- Graduate School of Frontier Sciences, University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba, 277-8568, Japan
| | - Atsushi Toyoda
- Comparative Genomics Laboratory, National Institute of Genetics, 1111 Yata, Mishima, Shizuoka, 411-8540, Japan
| | - Asao Fujiyama
- Comparative Genomics Laboratory, National Institute of Genetics, 1111 Yata, Mishima, Shizuoka, 411-8540, Japan
| | - Masahiro Kasahara
- Graduate School of Frontier Sciences, University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba, 277-8568, Japan
| | - Jun Abe
- Department of Chemical and Biological Sciences, Faculty of Science, Japan Women's University, 2-8-1 Mejirodai, Bunkyo-ku, Tokyo, 112-8681, Japan
| | - Yuki Tsuchikane
- Department of Chemical and Biological Sciences, Faculty of Science, Japan Women's University, 2-8-1 Mejirodai, Bunkyo-ku, Tokyo, 112-8681, Japan
- Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Tomoaki Nishiyama
- Research Center for Experimental Modeling of Human Disease, Kanazawa University, Kakumacho, Kanazawa, Ishikawa, 920-1192, Japan
| |
Collapse
|
19
|
Amin N, Ahmad N, Khalifa MAS, Du Y, Mandozai A, Khattak AN, Piwu W. Identification and Molecular Characterization of RWP-RK Transcription Factors in Soybean. Genes (Basel) 2023; 14:369. [PMID: 36833296 PMCID: PMC9956977 DOI: 10.3390/genes14020369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 01/26/2023] [Accepted: 01/28/2023] [Indexed: 02/04/2023] Open
Abstract
The RWP-RK is a small family of plant-specific transcription factors that are mainly involved in nitrate starvation responses, gametogenesis, and root nodulation. To date, the molecular mechanisms underpinning nitrate-regulated gene expression in many plant species have been extensively studied. However, the regulation of nodulation-specific NIN proteins during nodulation and rhizobial infection under nitrogen starvation in soybean still remain unclear. Here, we investigated the genome-wide identification of RWP-RK transcription factors and their essential role in nitrate-inducible and stress-responsive gene expression in soybean. In total, 28 RWP-RK genes were identified from the soybean genome, which were unevenly distributed on 20 chromosomes from 5 distinct groups during phylogeny classification. The conserved topology of RWP-RK protein motifs, cis-acting elements, and functional annotation has led to their potential as key regulators during plant growth, development, and diverse stress responses. The RNA-seq data revealed that the up-regulation of GmRWP-RK genes in the nodules indicated that these genes might play crucial roles during root nodulation in soybean. Furthermore, qRT-PCR analysis revealed that most GmRWP-RK genes under Phytophthora sojae infection and diverse environmental conditions (such as heat, nitrogen, and salt) were significantly induced, thus opening a new window of possibilities into their regulatory roles in adaptation mechanisms that allow soybean to tolerate biotic and abiotic stress. In addition, the dual luciferase assay indicated that GmRWP-RK1 and GmRWP-RK2 efficiently bind to the promoters of GmYUC2, GmSPL9, and GmNIN, highlighting their possible involvement in nodule formation. Together, our findings provide novel insights into the functional role of the RWP-RK family during defense responses and root nodulation in soybean.
Collapse
Affiliation(s)
- Nooral Amin
- Plant Biotechnology Centre, College of Agronomy, Jilin Agricultural University, Changchun 130118, China
| | - Naveed Ahmad
- Joint Center for Single Cell Biology, Shanghai Collaborative Innovation Center of Agri-Seeds, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Mohamed A. S. Khalifa
- Plant Biotechnology Centre, College of Agronomy, Jilin Agricultural University, Changchun 130118, China
- Faculty of Agriculture, Cairo University, Giza 12613, Egypt
| | - Yeyao Du
- Plant Biotechnology Centre, College of Agronomy, Jilin Agricultural University, Changchun 130118, China
| | - Ajmal Mandozai
- Plant Biotechnology Centre, College of Agronomy, Jilin Agricultural University, Changchun 130118, China
| | - Aimal Nawaz Khattak
- Institute of Crop Science Chinese Academy of Agriculture Sciences, Beijing 100000, China
| | - Wang Piwu
- Plant Biotechnology Centre, College of Agronomy, Jilin Agricultural University, Changchun 130118, China
| |
Collapse
|
20
|
Zhu M, Tao L, Zhang J, Liu R, Tian H, Hu C, Zhu Y, Li M, Wei Z, Yi J, Li J, Gou X. The type-B response regulators ARR10, ARR12, and ARR18 specify the central cell in Arabidopsis. THE PLANT CELL 2022; 34:4714-4737. [PMID: 36130292 PMCID: PMC9709988 DOI: 10.1093/plcell/koac285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 09/15/2022] [Indexed: 06/15/2023]
Abstract
In Arabidopsis thaliana, the female gametophyte consists of two synergid cells, an egg cell, a diploid central cell, and three antipodal cells. CYTOKININ INDEPENDENT 1 (CKI1), a histidine kinase constitutively activating the cytokinin signaling pathway, specifies the central cell and restricts the egg cell. However, the mechanism regulating CKI1-dependent central cell specification is largely unknown. Here, we showed that the type-B ARABIDOPSIS RESPONSE REGULATORS10, 12, and 18 (ARR10/12/18) localize at the chalazal pole of the female gametophyte. Phenotypic analysis showed that the arr10 12 18 triple mutant is female sterile. We examined the expression patterns of embryo sac marker genes and found that the embryo sac of arr10 12 18 plants had lost central cell identity, a phenotype similar to that of the Arabidopsis cki1 mutant. Genetic analyses demonstrated that ARR10/12/18, CKI1, and ARABIDOPSIS HISTIDINE PHOSPHOTRANSFER PROTEIN2, 3, and 5 (AHP2/3/5) function in a common pathway to regulate female gametophyte development. In addition, constitutively activated ARR10/12/18 in the cki1 embryo sac partially restored the fertility of cki1. Results of transcriptomic analysis supported the conclusion that ARR10/12/18 and CKI1 function together to regulate the identity of the central cell. Our results demonstrated that ARR10/12/18 function downstream of CKI1-AHP2/3/5 as core factors to determine cell fate of the female gametophyte.
Collapse
Affiliation(s)
- Mingsong Zhu
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Liang Tao
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Jinghua Zhang
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Ruini Liu
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Hongai Tian
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Chong Hu
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Yafen Zhu
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Meizhen Li
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Zhuoyun Wei
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Jing Yi
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Jia Li
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Xiaoping Gou
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
21
|
Wu H, Zhang K, Zhang Z, Wang J, Jia P, Cong L, Li J, Duan Y, Ke F, Zhang F, Liu Z, Lu F, Wang Y, Li Z, Chang M, Zou J, Zhu K. Cell-penetrating peptide: A powerful delivery tool for DNA-free crop genome editing. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 324:111436. [PMID: 36037982 DOI: 10.1016/j.plantsci.2022.111436] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 07/24/2022] [Accepted: 08/23/2022] [Indexed: 06/15/2023]
Abstract
Genome editing system based on the CRISPR/Cas (clustered regularly interspaced short palindromic repeats) technology is a milestone for biology. However, public concerns regarding genetically modified organisms (GMOs) and recalcitrance in the crop of choice for regeneration have limited its application. Cell-penetrating peptides (CPPs) are derived from protein transduction domains (PTDs) that can take on various cargoes across the plant wall, and membrane of target cells. Selected CPPs show mild cytotoxicity and are a suitable delivery tool for DNA-free genome editing. Moreover, CPPs may also be applied for the transient delivery of morphogenic transcription factors, also known as developmental regulators (DRs), to overcome the bottleneck of the crop of choice regeneration. In this review, we introduce a brief history of cell-penetrating peptides and discuss the practice of CPP-mediated DNA-free transfection and the prospects of this potential delivery tool for improving crop genome editing.
Collapse
Affiliation(s)
- Han Wu
- Sorghum Research Institute, Liaoning Academy of Agricultural Sciences, Shenyang 110161, Liaoning Province, China.
| | - Kuangye Zhang
- Sorghum Research Institute, Liaoning Academy of Agricultural Sciences, Shenyang 110161, Liaoning Province, China
| | - Zhipeng Zhang
- Sorghum Research Institute, Liaoning Academy of Agricultural Sciences, Shenyang 110161, Liaoning Province, China
| | - Jiaxu Wang
- Sorghum Research Institute, Liaoning Academy of Agricultural Sciences, Shenyang 110161, Liaoning Province, China
| | - Pengxiang Jia
- Zhejiang Wanli University, 315100 Ningbo, Zhejiang Province, China
| | - Ling Cong
- Sorghum Research Institute, Liaoning Academy of Agricultural Sciences, Shenyang 110161, Liaoning Province, China
| | - Jia Li
- Sorghum Research Institute, Liaoning Academy of Agricultural Sciences, Shenyang 110161, Liaoning Province, China
| | - Youhou Duan
- Sorghum Research Institute, Liaoning Academy of Agricultural Sciences, Shenyang 110161, Liaoning Province, China
| | - Fulai Ke
- Sorghum Research Institute, Liaoning Academy of Agricultural Sciences, Shenyang 110161, Liaoning Province, China
| | - Fei Zhang
- Sorghum Research Institute, Liaoning Academy of Agricultural Sciences, Shenyang 110161, Liaoning Province, China
| | - Zhiqiang Liu
- Sorghum Research Institute, Liaoning Academy of Agricultural Sciences, Shenyang 110161, Liaoning Province, China
| | - Feng Lu
- Sorghum Research Institute, Liaoning Academy of Agricultural Sciences, Shenyang 110161, Liaoning Province, China
| | - Yanqiu Wang
- Sorghum Research Institute, Liaoning Academy of Agricultural Sciences, Shenyang 110161, Liaoning Province, China
| | - Zhihua Li
- Sorghum Research Institute, Liaoning Academy of Agricultural Sciences, Shenyang 110161, Liaoning Province, China
| | - Ming Chang
- The Key Laboratory of Bio-interactions and Plant Health, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Jianqiu Zou
- Sorghum Research Institute, Liaoning Academy of Agricultural Sciences, Shenyang 110161, Liaoning Province, China.
| | - Kai Zhu
- Sorghum Research Institute, Liaoning Academy of Agricultural Sciences, Shenyang 110161, Liaoning Province, China.
| |
Collapse
|
22
|
Chen Y, Wang J, Nguyen NK, Hwang BK, Jwa NS. The NIN-Like Protein OsNLP2 Negatively Regulates Ferroptotic Cell Death and Immune Responses to Magnaporthe oryzae in Rice. Antioxidants (Basel) 2022; 11:antiox11091795. [PMID: 36139868 PMCID: PMC9495739 DOI: 10.3390/antiox11091795] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/08/2022] [Accepted: 09/08/2022] [Indexed: 12/03/2022] Open
Abstract
Nodule inception (NIN)-like proteins (NLPs) have a central role in nitrate signaling to mediate plant growth and development. Here, we report that OsNLP2 negatively regulates ferroptotic cell death and immune responses in rice during Magnaporthe oryzae infection. OsNLP2 was localized to the plant cell nucleus, suggesting that it acts as a transcription factor. OsNLP2 expression was involved in susceptible disease development. ΔOsnlp2 knockout mutants exhibited reactive oxygen species (ROS) and iron-dependent ferroptotic hypersensitive response (HR) cell death in response to M. oryzae. Treatments with the iron chelator deferoxamine, lipid-ROS scavenger ferrostatin-1, actin polymerization inhibitor cytochalasin A, and NADPH oxidase inhibitor diphenyleneiodonium suppressed the accumulation of ROS and ferric ions, lipid peroxidation, and HR cell death, which ultimately led to successful M. oryzae colonization in ΔOsnlp2 mutants. The loss-of-function of OsNLP2 triggered the expression of defense-related genes including OsPBZ1, OsPIP-3A, OsWRKY104, and OsRbohB in ΔOsnlp2 mutants. ΔOsnlp2 mutants exhibited broad-spectrum, nonspecific resistance to diverse M. oryzae strains. These combined results suggest that OsNLP2 acts as a negative regulator of ferroptotic HR cell death and defense responses in rice, and may be a valuable gene source for molecular breeding of rice with broad-spectrum resistance to blast disease.
Collapse
Affiliation(s)
- Yafei Chen
- Division of Integrative Bioscience and Biotechnology, College of Life Sciences, Sejong University, Seoul 05006, Korea
- State Key Laboratory of Agricultural Microbiology and Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Juan Wang
- Division of Integrative Bioscience and Biotechnology, College of Life Sciences, Sejong University, Seoul 05006, Korea
| | - Nam Khoa Nguyen
- Division of Integrative Bioscience and Biotechnology, College of Life Sciences, Sejong University, Seoul 05006, Korea
| | - Byung Kook Hwang
- Division of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 06213, Korea
| | - Nam Soo Jwa
- Division of Integrative Bioscience and Biotechnology, College of Life Sciences, Sejong University, Seoul 05006, Korea
- Correspondence:
| |
Collapse
|
23
|
Sakuraba Y, Zhuo M, Yanagisawa S. RWP-RK domain-containing transcription factors in the Viridiplantae: biology and phylogenetic relationships. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:4323-4337. [PMID: 35605260 DOI: 10.1093/jxb/erac229] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 05/19/2022] [Indexed: 06/15/2023]
Abstract
The RWP-RK protein family is a group of transcription factors containing the RWP-RK DNA-binding domain. This domain is an ancient motif that emerged before the establishment of the Viridiplantae-the green plants, consisting of green algae and land plants. The domain is mostly absent in other kingdoms but widely distributed in Viridiplantae. In green algae, a liverwort, and several angiosperms, RWP-RK proteins play essential roles in nitrogen responses and sexual reproduction-associated processes, which are seemingly unrelated phenomena but possibly interdependent in autotrophs. Consistent with related but diversified roles of the RWP-RK proteins in these organisms, the RWP-RK protein family appears to have expanded intensively, but independently, in the algal and land plant lineages. Thus, bryophyte RWP-RK proteins occupy a unique position in the evolutionary process of establishing the RWP-RK protein family. In this review, we summarize current knowledge of the RWP-RK protein family in the Viridiplantae, and discuss the significance of bryophyte RWP-RK proteins in clarifying the relationship between diversification in the RWP-RK protein family and procurement of sophisticated mechanisms for adaptation to the terrestrial environment.
Collapse
Affiliation(s)
- Yasuhito Sakuraba
- Plant Functional Biotechnology, Agro-Biotechnology Research Center, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Mengna Zhuo
- Plant Functional Biotechnology, Agro-Biotechnology Research Center, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Shuichi Yanagisawa
- Plant Functional Biotechnology, Agro-Biotechnology Research Center, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-8657, Japan
| |
Collapse
|
24
|
Sanchez-Vera V, Landberg K, Lopez-Obando M, Thelander M, Lagercrantz U, Muñoz-Viana R, Schmidt A, Grossniklaus U, Sundberg E. The Physcomitrium patens egg cell expresses several distinct epigenetic components and utilizes homologues of BONOBO genes for cell specification. THE NEW PHYTOLOGIST 2022; 233:2614-2628. [PMID: 34942024 DOI: 10.1111/nph.17938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 12/14/2021] [Indexed: 06/14/2023]
Abstract
Although land plant germ cells have received much attention, knowledge about their specification is still limited. We thus identified transcripts enriched in egg cells of the bryophyte model species Physcomitrium patens, compared the results with angiosperm egg cells, and selected important candidate genes for functional analysis. We used laser-assisted microdissection to perform a cell-type-specific transcriptome analysis on egg cells for comparison with available expression profiles of vegetative tissues and male reproductive organs. We made reporter lines and knockout mutants of the two BONOBO (PbBNB) genes and studied their role in reproduction. We observed an overlap in gene activity between bryophyte and angiosperm egg cells, but also clear differences. Strikingly, several processes that are male-germline specific in Arabidopsis are active in the P. patens egg cell. Among those were the moss PbBNB genes, which control proliferation and identity of both female and male germlines. Pathways shared between male and female germlines were most likely present in the common ancestors of land plants, besides sex-specifying factors. A set of genes may also be involved in the switches between the diploid and haploid moss generations. Nonangiosperm gene networks also contribute to the specification of the P. patens egg cell.
Collapse
Affiliation(s)
- Victoria Sanchez-Vera
- Department of Plant Biology, The Linnean Centre of Plant Biology in Uppsala, Swedish University of Agricultural Sciences, PO Box 7080, Uppsala, SE-75007, Sweden
| | - Katarina Landberg
- Department of Plant Biology, The Linnean Centre of Plant Biology in Uppsala, Swedish University of Agricultural Sciences, PO Box 7080, Uppsala, SE-75007, Sweden
| | - Mauricio Lopez-Obando
- Department of Plant Biology, The Linnean Centre of Plant Biology in Uppsala, Swedish University of Agricultural Sciences, PO Box 7080, Uppsala, SE-75007, Sweden
| | - Mattias Thelander
- Department of Plant Biology, The Linnean Centre of Plant Biology in Uppsala, Swedish University of Agricultural Sciences, PO Box 7080, Uppsala, SE-75007, Sweden
| | - Ulf Lagercrantz
- Department of Ecology and Genetics, Uppsala University, Norbyvägen 18 D, Uppsala, SE-752 36, Sweden
| | - Rafael Muñoz-Viana
- Department of Plant Biology, The Linnean Centre of Plant Biology in Uppsala, Swedish University of Agricultural Sciences, PO Box 7080, Uppsala, SE-75007, Sweden
| | - Anja Schmidt
- Department of Plant and Microbial Biology & Zurich-Basel Plant Science Center, University of Zurich, Zollikerstrasse 107, Zurich, CH-8008, Switzerland
| | - Ueli Grossniklaus
- Department of Plant and Microbial Biology & Zurich-Basel Plant Science Center, University of Zurich, Zollikerstrasse 107, Zurich, CH-8008, Switzerland
| | - Eva Sundberg
- Department of Plant Biology, The Linnean Centre of Plant Biology in Uppsala, Swedish University of Agricultural Sciences, PO Box 7080, Uppsala, SE-75007, Sweden
| |
Collapse
|
25
|
Zhang Y, Li J, Li C, Chen S, Tang Q, Xiao Y, Zhong L, Chen Y, Chen B. Gene expression programs during callus development in tissue culture of two Eucalyptus species. BMC PLANT BIOLOGY 2022; 22:1. [PMID: 34979920 PMCID: PMC8722213 DOI: 10.1186/s12870-021-03391-x] [Citation(s) in RCA: 81] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 12/09/2021] [Indexed: 05/09/2023]
Abstract
BACKGROUND Eucalyptus is a highly diverse genus of the Myrtaceae family and widely planted in the world for timber and pulp production. Tissue culture induced callus has become a common tool for Eucalyptus breeding, however, our knowledge about the genes related to the callus maturation and shoot regeneration is still poor. RESULTS We set up an experiment to monitor the callus induction and callus development of two Eucalyptus species - E. camaldulensis (high embryogenic potential) and E. grandis x urophylla (low embryogenic potential). Then, we performed transcriptome sequencing for primary callus, mature callus, shoot regeneration stage callus and senescence callus. We identified 707 upregulated and 694 downregulated genes during the maturation process of the two Eucalyptus species and most of them were involved in the signaling pathways like plant hormone and MAPK. Next, we identified 135 and 142 genes that might play important roles during the callus development of E. camaldulensis and E. grandis x urophylla, respectively. Further, we found 15 DEGs shared by these two Eucalyptus species during the callus development, including Eucgr.D00640 (stem-specific protein TSJT1), Eucgr.B00171 (BTB/POZ and TAZ domain-containing protein 1), Eucgr.C00948 (zinc finger CCCH domain-containing protein 20), Eucgr.K01667 (stomatal closure-related actinbinding protein 3), Eucgr.C00663 (glutaredoxin-C10) and Eucgr.C00419 (UPF0481 protein At3g47200). Interestingly, the expression patterns of these genes displayed "N" shape in the samples. Further, we found 51 genes that were dysregulated during the callus development of E. camaldulensis but without changes in E. grandis x urophylla, such as Eucgr.B02127 (GRF1-interacting factor 1), Eucgr.C00947 (transcription factor MYB36), Eucgr.B02752 (laccase-7), Eucgr.B03985 (transcription factor MYB108), Eucgr.D00536 (GDSL esterase/lipase At5g45920) and Eucgr.B02347 (scarecrow-like protein 34). These 51 genes might be associated with the high propagation ability of Eucalyptus and 22 might be induced after the dedifferentiation. Last, we performed WGCNA to identify the co-expressed genes during the callus development of Eucalyptus and qRT-PCR experiment to validate the gene expression patterns. CONCLUSIONS This is the first time to globally study the gene profiles during the callus development of Eucalyptus. The results will improve our understanding of gene regulation and molecular mechanisms in the callus maturation and shoot regeneration.
Collapse
Affiliation(s)
- Ye Zhang
- Guangxi Key Laboratory of Superior Timber Trees Resource Cultivation, Guangxi Forestry Research Institute, 23 Yongwu Road, Nanning, 530002 Guangxi China
| | - Junji Li
- Guangxi Key Laboratory of Superior Timber Trees Resource Cultivation, Guangxi Forestry Research Institute, 23 Yongwu Road, Nanning, 530002 Guangxi China
| | - Changrong Li
- Guangxi Key Laboratory of Superior Timber Trees Resource Cultivation, Guangxi Forestry Research Institute, 23 Yongwu Road, Nanning, 530002 Guangxi China
| | - Shengkan Chen
- Guangxi Key Laboratory of Superior Timber Trees Resource Cultivation, Guangxi Forestry Research Institute, 23 Yongwu Road, Nanning, 530002 Guangxi China
| | - Qinglan Tang
- Guangxi Key Laboratory of Superior Timber Trees Resource Cultivation, Guangxi Forestry Research Institute, 23 Yongwu Road, Nanning, 530002 Guangxi China
| | - Yufei Xiao
- Guangxi Key Laboratory of Superior Timber Trees Resource Cultivation, Guangxi Forestry Research Institute, 23 Yongwu Road, Nanning, 530002 Guangxi China
| | - Lianxiang Zhong
- Guangxi Key Laboratory of Superior Timber Trees Resource Cultivation, Guangxi Forestry Research Institute, 23 Yongwu Road, Nanning, 530002 Guangxi China
| | - Yingying Chen
- Guangxi Key Laboratory of Superior Timber Trees Resource Cultivation, Guangxi Forestry Research Institute, 23 Yongwu Road, Nanning, 530002 Guangxi China
| | - Bowen Chen
- Guangxi Key Laboratory of Superior Timber Trees Resource Cultivation, Guangxi Forestry Research Institute, 23 Yongwu Road, Nanning, 530002 Guangxi China
| |
Collapse
|
26
|
Jia HH, Xu YT, Yin ZP, Wu XM, Qing M, Fan YJ, Song X, Xie KD, Xie ZZ, Xu Q, Deng XX, Guo WW. Transcriptomes and DNA methylomes in apomictic cells delineate nucellar embryogenesis initiation in citrus. DNA Res 2021; 28:6356518. [PMID: 34424285 PMCID: PMC8476932 DOI: 10.1093/dnares/dsab014] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 08/20/2021] [Indexed: 12/13/2022] Open
Abstract
Citrus nucellar poly-embryony (NPE) is a mode of sporophytic apomixis that asexual embryos formed in the seed through adventitious embryogenesis from the somatic nucellar cells. NPE allows clonal propagation of rootstocks, but it impedes citrus cross breeding. To understand the cellular processes involved in NPE initiation, we profiled the transcriptomes and DNA methylomes in laser microdissection captured citrus apomictic cells. In apomictic cells, ribosome biogenesis and protein degradation were activated, whereas auxin polar transport was repressed. Reactive oxygen species (ROS) accumulated in the poly-embryonic ovules, and response to oxidative stress was provoked. The global DNA methylation level, especially that of CHH context, was decreased, whereas the methylation level of the NPE-controlling key gene CitRWP was increased. A C2H2 domain-containing transcription factor gene and CitRWP co-expressed specifically in apomictic cells may coordinate to initiate NPE. The activated embryogenic development and callose deposition processes indicated embryogenic fate of nucellar embryo initial (NEI) cells. In our working model for citrus NPE initiation, DNA hyper-methylation may activate transcription of CitRWP, which increases C2H2 expression and ROS accumulation, triggers epigenetic regulation and regulates cell fate transition and NEI cell identity in the apomictic cells.
Collapse
Affiliation(s)
- Hui-Hui Jia
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yuan-Tao Xu
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Zhao-Ping Yin
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xiao-Meng Wu
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Mei Qing
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yan-Jie Fan
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xin Song
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Kai-Dong Xie
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Zong-Zhou Xie
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Qiang Xu
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xiu-Xin Deng
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Wen-Wu Guo
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| |
Collapse
|
27
|
Kao P, Schon MA, Mosiolek M, Enugutti B, Nodine MD. Gene expression variation in Arabidopsis embryos at single-nucleus resolution. Development 2021; 148:dev199589. [PMID: 34142712 PMCID: PMC8276985 DOI: 10.1242/dev.199589] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 05/24/2021] [Indexed: 12/17/2022]
Abstract
Soon after fertilization of egg and sperm, plant genomes become transcriptionally activated and drive a series of coordinated cell divisions to form the basic body plan during embryogenesis. Early embryonic cells rapidly diversify from each other, and investigation of the corresponding gene expression dynamics can help elucidate underlying cellular differentiation programs. However, current plant embryonic transcriptome datasets either lack cell-specific information or have RNA contamination from surrounding non-embryonic tissues. We have coupled fluorescence-activated nuclei sorting together with single-nucleus mRNA-sequencing to construct a gene expression atlas of Arabidopsis thaliana early embryos at single-cell resolution. In addition to characterizing cell-specific transcriptomes, we found evidence that distinct epigenetic and transcriptional regulatory mechanisms operate across emerging embryonic cell types. These datasets and analyses, as well as the approach we devised, are expected to facilitate the discovery of molecular mechanisms underlying pattern formation in plant embryos. This article has an associated 'The people behind the papers' interview.
Collapse
Affiliation(s)
- Ping Kao
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna Bio Center (VBC), Dr Bohr-Gasse 3, 1030 Vienna, Austria
| | - Michael A. Schon
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna Bio Center (VBC), Dr Bohr-Gasse 3, 1030 Vienna, Austria
| | - Magdalena Mosiolek
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna Bio Center (VBC), Dr Bohr-Gasse 3, 1030 Vienna, Austria
| | - Balaji Enugutti
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna Bio Center (VBC), Dr Bohr-Gasse 3, 1030 Vienna, Austria
| | - Michael D. Nodine
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna Bio Center (VBC), Dr Bohr-Gasse 3, 1030 Vienna, Austria
- Laboratory of Molecular Biology, Wageningen University, Wageningen 6708 PB, The Netherlands
| |
Collapse
|
28
|
Geng H, Wang M, Gong J, Xu Y, Ma S. An Arabidopsis expression predictor enables inference of transcriptional regulators for gene modules. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 107:597-612. [PMID: 33974299 DOI: 10.1111/tpj.15315] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 03/08/2021] [Accepted: 05/05/2021] [Indexed: 06/12/2023]
Abstract
The regulation of gene expression by transcription factors (TFs) has been studied for a long time, but no model that can accurately predict transcriptome profiles based on TF activities currently exists. Here, we developed a computational approach, named EXPLICIT (Expression Prediction via Log-linear Combination of Transcription Factors), to construct a universal predictor for Arabidopsis to predict the expression of 29 182 non-TF genes using 1678 TFs. When applied to RNA-Seq samples from diverse tissues, EXPLICIT generated accurate predicted transcriptomes correlating well with actual expression, with an average correlation coefficient of 0.986. After recapitulating the quantitative relationships between TFs and their target genes, EXPLICIT enabled downstream inference of TF regulators for genes and gene modules functioning in diverse plant pathways, including those involved in suberin, flavonoid, glucosinolate metabolism, lateral root, xylem, secondary cell wall development or endoplasmic reticulum stress response. Our approach showed a better ability to recover the correct TF regulators when compared with existing plant tools, and provides an innovative way to study transcriptional regulation.
Collapse
Affiliation(s)
- Haiying Geng
- School of Life Sciences and Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Innovation Academy for Seed Design, Chinese Academy of Sciences, Hefei, China
| | - Meng Wang
- School of Life Sciences and Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Innovation Academy for Seed Design, Chinese Academy of Sciences, Hefei, China
| | - Jiazhen Gong
- School of Life Sciences and Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Innovation Academy for Seed Design, Chinese Academy of Sciences, Hefei, China
| | - Yupu Xu
- School of Life Sciences and Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Innovation Academy for Seed Design, Chinese Academy of Sciences, Hefei, China
| | - Shisong Ma
- School of Life Sciences and Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Innovation Academy for Seed Design, Chinese Academy of Sciences, Hefei, China
- School of Data Science, University of Science and Technology of China, Hefei, China
| |
Collapse
|
29
|
Abstract
The gametophyte represents the sexual phase in the alternation of generations in plants; the other, nonsexual phase is the sporophyte. Here, we review the evolutionary origins of the male gametophyte among land plants and, in particular, its ontogenesis in flowering plants. The highly reduced male gametophyte of angiosperm plants is a two- or three-celled pollen grain. Its task is the production of two male gametes and their transport to the female gametophyte, the embryo sac, where double fertilization takes place. We describe two phases of pollen ontogenesis-a developmental phase leading to the differentiation of the male germline and the formation of a mature pollen grain and a functional phase representing the pollen tube growth, beginning with the landing of the pollen grain on the stigma and ending with double fertilization. We highlight recent advances in the complex regulatory mechanisms involved, including posttranscriptional regulation and transcript storage, intracellular metabolic signaling, pollen cell wall structure and synthesis, protein secretion, and phased cell-cell communication within the reproductive tissues.
Collapse
Affiliation(s)
- Said Hafidh
- Laboratory of Pollen Biology, Institute of Experimental Botany of the Czech Academy of Sciences, 165 02 Prague 6, Czech Republic; ,
| | - David Honys
- Laboratory of Pollen Biology, Institute of Experimental Botany of the Czech Academy of Sciences, 165 02 Prague 6, Czech Republic; ,
| |
Collapse
|
30
|
Kohchi T, Yamato KT, Ishizaki K, Yamaoka S, Nishihama R. Development and Molecular Genetics of Marchantia polymorpha. ANNUAL REVIEW OF PLANT BIOLOGY 2021; 72:677-702. [PMID: 33684298 DOI: 10.1146/annurev-arplant-082520-094256] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Bryophytes occupy a basal position in the monophyletic evolution of land plants and have a life cycle in which the gametophyte generation dominates over the sporophyte generation, offering a significant advantage in conducting genetics. Owing to its low genetic redundancy and the availability of an array of versatile molecular tools, including efficient genome editing, the liverwort Marchantia polymorpha has become a model organism of choice that provides clues to the mechanisms underlying eco-evo-devo biology in plants. Recent analyses of developmental mutants have revealed that key genes in developmental processes are functionally well conserved in plants, despite their morphological differences, and that lineage-specific evolution occurred by neo/subfunctionalization of common ancestral genes. We suggest that M. polymorpha is an excellent platform to uncover the conserved and diversified mechanisms underlying land plant development.
Collapse
Affiliation(s)
- Takayuki Kohchi
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan; , ,
| | - Katsuyuki T Yamato
- Faculty of Biology-Oriented Science and Technology, Kindai University, Kinokawa 649-6493, Japan;
| | | | - Shohei Yamaoka
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan; , ,
| | - Ryuichi Nishihama
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan; , ,
| |
Collapse
|
31
|
Dresselhaus T, Jürgens G. Comparative Embryogenesis in Angiosperms: Activation and Patterning of Embryonic Cell Lineages. ANNUAL REVIEW OF PLANT BIOLOGY 2021; 72:641-676. [PMID: 33606951 DOI: 10.1146/annurev-arplant-082520-094112] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Following fertilization in flowering plants (angiosperms), egg and sperm cells unite to form the zygote, which generates an entire new organism through a process called embryogenesis. In this review, we provide a comparative perspective on early zygotic embryogenesis in flowering plants by using the Poaceae maize and rice as monocot grass and crop models as well as Arabidopsis as a eudicot model of the Brassicaceae family. Beginning with the activation of the egg cell, we summarize and discuss the process of maternal-to-zygotic transition in plants, also taking recent work on parthenogenesis and haploid induction into consideration. Aspects like imprinting, which is mainly associated with endosperm development and somatic embryogenesis, are not considered. Controversial findings about the timing of zygotic genome activation as well as maternal versus paternal contribution to zygote and early embryo development are highlighted. The establishment of zygotic polarity, asymmetric division, and apical and basal cell lineages represents another chapter in which we also examine and compare the role of major signaling pathways, cell fate genes, and hormones in early embryogenesis. Except for the model Arabidopsis, little is known about embryopatterning and the establishment of the basic body plan in angiosperms. Using available in situ hybridization, RNA-sequencing, and marker data, we try to compare how and when stem cell niches are established. Finally, evolutionary aspects of plant embryo development are discussed.
Collapse
Affiliation(s)
- Thomas Dresselhaus
- Department of Cell Biology and Plant Biochemistry, University of Regensburg, D-93053 Regensburg, Germany;
| | - Gerd Jürgens
- Department of Cell Biology, Max Planck Institute for Developmental Biology, D-72076 Tübingen, Germany
- Center for Plant Molecular Biology, University of Tübingen, D-72076 Tübingen, Germany;
| |
Collapse
|
32
|
Susaki D, Suzuki T, Maruyama D, Ueda M, Higashiyama T, Kurihara D. Dynamics of the cell fate specifications during female gametophyte development in Arabidopsis. PLoS Biol 2021; 19:e3001123. [PMID: 33770073 PMCID: PMC7997040 DOI: 10.1371/journal.pbio.3001123] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 01/29/2021] [Indexed: 01/10/2023] Open
Abstract
The female gametophytes of angiosperms contain cells with distinct functions, such as those that enable reproduction via pollen tube attraction and fertilization. Although the female gametophyte undergoes unique developmental processes, such as several rounds of nuclear division without cell plate formation and final cellularization, it remains unknown when and how the cell fate is determined during development. Here, we visualized the living dynamics of female gametophyte development and performed transcriptome analysis of individual cell types to assess the cell fate specifications in Arabidopsis thaliana. We recorded time lapses of the nuclear dynamics and cell plate formation from the 1-nucleate stage to the 7-cell stage after cellularization using an in vitro ovule culture system. The movies showed that the nuclear division occurred along the micropylar–chalazal (distal–proximal) axis. During cellularization, the polar nuclei migrated while associating with the forming edge of the cell plate, and then, migrated toward each other to fuse linearly. We also tracked the gene expression dynamics and identified that the expression of MYB98pro::GFP–MYB98, a synergid-specific marker, was initiated just after cellularization in the synergid, egg, and central cells and was then restricted to the synergid cells. This indicated that cell fates are determined immediately after cellularization. Transcriptome analysis of the female gametophyte cells of the wild-type and myb98 mutant revealed that the myb98 synergid cells had egg cell–like gene expression profiles. Although in myb98, egg cell–specific gene expression was properly initiated in the egg cells only after cellularization, but subsequently expressed ectopically in one of the 2 synergid cells. These results, together with the various initiation timings of the egg cell–specific genes, suggest complex regulation of the individual gametophyte cells, such as cellularization-triggered fate initiation, MYB98-dependent fate maintenance, cell morphogenesis, and organelle positioning. Our system of live-cell imaging and cell type–specific gene expression analysis provides insights into the dynamics and mechanisms of cell fate specifications in the development of female gametophytes in plants. The female gametophytes of angiosperms contain cells with distinct functions, such as those that enable reproduction via pollen tube attraction and fertilization. Live-cell imaging and transcriptome analysis of single female gametophyte cell reveal novel insights into the dynamics and mechanisms of cell fate specifications in the model plant Arabidopsis.
Collapse
Affiliation(s)
- Daichi Susaki
- Kihara Institute for Biological Research, Yokohama City University, Yokohama, Japan
| | - Takamasa Suzuki
- Department of Biological Chemistry, College of Bioscience and Biotechnology, Chubu University, Kasugai, Japan
| | - Daisuke Maruyama
- Kihara Institute for Biological Research, Yokohama City University, Yokohama, Japan
| | - Minako Ueda
- Institute of Transformative Bio-Molecules (ITbM), Nagoya University, Nagoya, Japan
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya, Japan
| | - Tetsuya Higashiyama
- Institute of Transformative Bio-Molecules (ITbM), Nagoya University, Nagoya, Japan
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya, Japan
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Tokyo, Japan
- * E-mail: (TH); (DK)
| | - Daisuke Kurihara
- Institute of Transformative Bio-Molecules (ITbM), Nagoya University, Nagoya, Japan
- JST, PRESTO, Nagoya, Japan
- * E-mail: (TH); (DK)
| |
Collapse
|
33
|
Susaki D, Suzuki T, Maruyama D, Ueda M, Higashiyama T, Kurihara D. Dynamics of the cell fate specifications during female gametophyte development in Arabidopsis. PLoS Biol 2021; 19:e3001123. [PMID: 33770073 DOI: 10.1101/2020.04.07.023028] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 01/29/2021] [Indexed: 05/22/2023] Open
Abstract
The female gametophytes of angiosperms contain cells with distinct functions, such as those that enable reproduction via pollen tube attraction and fertilization. Although the female gametophyte undergoes unique developmental processes, such as several rounds of nuclear division without cell plate formation and final cellularization, it remains unknown when and how the cell fate is determined during development. Here, we visualized the living dynamics of female gametophyte development and performed transcriptome analysis of individual cell types to assess the cell fate specifications in Arabidopsis thaliana. We recorded time lapses of the nuclear dynamics and cell plate formation from the 1-nucleate stage to the 7-cell stage after cellularization using an in vitro ovule culture system. The movies showed that the nuclear division occurred along the micropylar-chalazal (distal-proximal) axis. During cellularization, the polar nuclei migrated while associating with the forming edge of the cell plate, and then, migrated toward each other to fuse linearly. We also tracked the gene expression dynamics and identified that the expression of MYB98pro::GFP-MYB98, a synergid-specific marker, was initiated just after cellularization in the synergid, egg, and central cells and was then restricted to the synergid cells. This indicated that cell fates are determined immediately after cellularization. Transcriptome analysis of the female gametophyte cells of the wild-type and myb98 mutant revealed that the myb98 synergid cells had egg cell-like gene expression profiles. Although in myb98, egg cell-specific gene expression was properly initiated in the egg cells only after cellularization, but subsequently expressed ectopically in one of the 2 synergid cells. These results, together with the various initiation timings of the egg cell-specific genes, suggest complex regulation of the individual gametophyte cells, such as cellularization-triggered fate initiation, MYB98-dependent fate maintenance, cell morphogenesis, and organelle positioning. Our system of live-cell imaging and cell type-specific gene expression analysis provides insights into the dynamics and mechanisms of cell fate specifications in the development of female gametophytes in plants.
Collapse
Affiliation(s)
- Daichi Susaki
- Kihara Institute for Biological Research, Yokohama City University, Yokohama, Japan
| | - Takamasa Suzuki
- Department of Biological Chemistry, College of Bioscience and Biotechnology, Chubu University, Kasugai, Japan
| | - Daisuke Maruyama
- Kihara Institute for Biological Research, Yokohama City University, Yokohama, Japan
| | - Minako Ueda
- Institute of Transformative Bio-Molecules (ITbM), Nagoya University, Nagoya, Japan
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya, Japan
| | - Tetsuya Higashiyama
- Institute of Transformative Bio-Molecules (ITbM), Nagoya University, Nagoya, Japan
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya, Japan
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Tokyo, Japan
| | - Daisuke Kurihara
- Institute of Transformative Bio-Molecules (ITbM), Nagoya University, Nagoya, Japan
- JST, PRESTO, Nagoya, Japan
| |
Collapse
|
34
|
Xu Y, Jia H, Wu X, Koltunow AM, Deng X, Xu Q. Regulation of nucellar embryony, a mode of sporophytic apomixis in Citrus resembling somatic embryogenesis. CURRENT OPINION IN PLANT BIOLOGY 2021; 59:101984. [PMID: 33418404 DOI: 10.1016/j.pbi.2020.101984] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 11/28/2020] [Accepted: 12/02/2020] [Indexed: 06/12/2023]
Abstract
Apomixis, is an asexual mode of seed formation resulting in genetically identical or clonal seed with a maternal genotype. Apomixis has not been reported in seed crops where its flexible application in plant breeding could accelerate delivery of new varieties. By contrast, a sporophytic form of apomixis termed nucellar or adventitious embryony is common in the Rutaceae containing Citrus crop species. Here, multiple embryos develop from the maternal, somatic, nucellar cells of the ovule. They are incorporated into the enlarging embryo sac containing the sexually derived zygotic embryo and endosperm, which are products of double fertilization. Recent research has provided insights to the molecular basis for nucellar embryony. Here, we review the current understanding of the initiation, genetic basis and evolution of nucellar embryony in Citrus, and discuss prospects for future study and breeding applications of Citrus sporophytic apomixis.
Collapse
Affiliation(s)
- Yuantao Xu
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| | - Huihui Jia
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| | - Xiaomeng Wu
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| | - Anna Mg Koltunow
- Centre for Crop Sciences, Queensland Alliance for Agriculture and Food Innovation (QAAFI), The University of Queensland, Brisbane, Queensland, 4702, Australia.
| | - Xiuxin Deng
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| | - Qiang Xu
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan, Hubei 430070, PR China.
| |
Collapse
|
35
|
Tian R, Paul P, Joshi S, Perry SE. Genetic activity during early plant embryogenesis. Biochem J 2020; 477:3743-3767. [PMID: 33045058 PMCID: PMC7557148 DOI: 10.1042/bcj20190161] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 09/19/2020] [Accepted: 09/21/2020] [Indexed: 12/13/2022]
Abstract
Seeds are essential for human civilization, so understanding the molecular events underpinning seed development and the zygotic embryo it contains is important. In addition, the approach of somatic embryogenesis is a critical propagation and regeneration strategy to increase desirable genotypes, to develop new genetically modified plants to meet agricultural challenges, and at a basic science level, to test gene function. We briefly review some of the transcription factors (TFs) involved in establishing primary and apical meristems during zygotic embryogenesis, as well as TFs necessary and/or sufficient to drive somatic embryo programs. We focus on the model plant Arabidopsis for which many tools are available, and review as well as speculate about comparisons and contrasts between zygotic and somatic embryo processes.
Collapse
Affiliation(s)
- Ran Tian
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, KY 40546-0312, U.S.A
| | - Priyanka Paul
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, KY 40546-0312, U.S.A
| | - Sanjay Joshi
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, KY 40546-0312, U.S.A
| | - Sharyn E. Perry
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, KY 40546-0312, U.S.A
| |
Collapse
|
36
|
Zhang Z, Conner J, Guo Y, Ozias-Akins P. Haploidy in Tobacco Induced by PsASGR-BBML Transgenes via Parthenogenesis. Genes (Basel) 2020; 11:E1072. [PMID: 32932590 PMCID: PMC7564442 DOI: 10.3390/genes11091072] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 09/10/2020] [Accepted: 09/10/2020] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Engineering apomixis in sexually reproducing plants has been long desired because of the potential to fix hybrid vigor. Validating the functionality of genes originated from apomictic species that contribute to apomixis upon transfer to sexually reproducing species is an important step. The PsASGR-BABYBOOM-like (PsASGR-BBML) gene from Pennisetum squamulatum confers parthenogenesis in this apomict, and its functionality was demonstrated in several sexually reproducing monocots but not in any dicots. METHODS We introduced the PsASGR-BBML gene regulated by egg cell-specific promoters, either AtDD45 or AtRKD2, into tobacco, and analyzed progeny of the transgenic lines resulting from self-pollination and crossing by flow cytometry. RESULTS We identified haploid progeny at a frequency lower than 1% in the AtDD45pro lines, while at a frequency of 9.3% for an octoploid (2n = 8x) AtRKD2pro line. Haploid production in the T2 generation, derived from the tetraploid T1 offspring of this original octoploid AtRKD2pro line, was also observed. Pollinated by homozygous transgenic tobacco carrying a DsRed marker gene, 4x progeny of the AtRKD2pro line yielded parthenogenetic embryos identified as DsRed negative. We verified that the DsRed negative seedlings recovered were haploid (2x). CONCLUSION The PsASGR-BBML gene regulated by egg cell-specific promoters could enable parthenogenesis in tobacco, a dicotyledon species.
Collapse
Affiliation(s)
| | | | | | - Peggy Ozias-Akins
- Department of Horticulture and Institute of Plant Breeding, Genetics & Genomics, University of Georgia, Tifton, GA 31793, USA; (Z.Z.); (J.C.); (Y.G.)
| |
Collapse
|
37
|
Characterization and Comparative Analysis of RWP-RK Proteins from Arachis duranensis, Arachis ipaensis, and Arachis hypogaea. Int J Genomics 2020; 2020:2568640. [PMID: 32908854 PMCID: PMC7474775 DOI: 10.1155/2020/2568640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 07/30/2020] [Accepted: 08/07/2020] [Indexed: 11/17/2022] Open
Abstract
RWP-RK proteins are important factors involved in nitrate response and gametophyte development in plants, and the functions of RWP-RK proteins have been analyzed in many species. However, the characterization of peanut RWP-RK proteins is limited. In this study, we identified 16, 19, and 32 RWP-RK members from Arachis duranensis, Arachis ipaensis, and Arachis hypogaea, respectively, and investigated their evolution relationships. The RWP-RK proteins were classified into two groups, RWP-RK domain proteins and NODULE-INCEPTION-like proteins. Chromosomal distributions, gene structures, and conserved motifs of RWP-RK genes were compared among wild and cultivated peanuts. In addition, we identified 12 orthologous gene pairs from the two wild peanut species, 13 from A. duranensis and A. hypogaea, and 13 from A. ipaensis and A. hypogaea. One, one, and seventeen duplicated gene pairs were identified within the A. duranensis, A. ipaensis, and A. hypogaea genomes, respectively. Moreover, different numbers of cis-acting elements in the RWP-RK promoters were found in wild and cultivated species (87 in A. duranensis, 89 in A. ipaensis, and 92 in A. hypogaea), and as a result, many RWP-RK genes showed distinct expression patterns in different tissues. Our study will provide useful information for further functional and evolutionary analysis of the RWP-RK genes.
Collapse
|
38
|
Wu Z, Liu H, Huang W, Yi L, Qin E, Yang T, Wang J, Qin R. Genome-Wide Identification, Characterization, and Regulation of RWP-RK Gene Family in the Nitrogen-Fixing Clade. PLANTS (BASEL, SWITZERLAND) 2020; 9:E1178. [PMID: 32932820 PMCID: PMC7569760 DOI: 10.3390/plants9091178] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 09/09/2020] [Accepted: 09/09/2020] [Indexed: 12/12/2022]
Abstract
RWP-RK is a plant-specific family of transcription factors, involved in nitrate response, gametogenesis, and nodulation. However, genome-wide characterization, phylogeny, and the regulation of RWP-RK genes in the nodulating and non-nodulating plant species of nitrogen-fixing clade (NFC) are widely unknown. Therefore, we identified a total of 292 RWP-RKs, including 278 RWP-RKs from 25 NFC species and 14 RWP-RKs from the outgroup, Arabidopsis thaliana. We classified the 292 RWP-RKs in two subfamilies: the NIN-like proteins (NLPs) and the RWP-RK domain proteins (RKDs). The transcriptome and phylogenetic analysis of RWP-RKs suggested that, compared to RKD genes, the NLP genes were just upregulated in nitrate response and nodulation. Moreover, nodule-specific NLP genes of some nodulating NFC species may have a common ancestor (OG0002084) with AtNLP genes in A. thaliana. Further, co-expression networks of A.thaliana under N-starvation and N-supplementation conditions revealed that there is a higher correlation between expression of AtNLP genes and symbiotic genes during N-starvation. In P. vulgaris, we confirmed that N-starvation stimulated nodulation by regulating expression of PvNLP2, closely related to AtNLP6 and AtNLP7 with another common origin (OG0004041). Taken together, we concluded that different origins of the NLP genes involved in both N-starvation response and specific expression of nodulation would contribute to the evolution of nodulation in NFC plant species. Our results shed light on the phylogenetic relationships of NLP genes and their differential regulation in nitrate response of A. thaliana and nodulation of NFC.
Collapse
Affiliation(s)
- Zhihua Wu
- Hubei Provincial Key Laboratory for Protection and Application of Special Plant Germplasm in Wuling Area of China & Key Laboratory of State Ethnic Affairs Commission for Biological Technology, College of Life Sciences, South-Central University for Nationalities, Wuhan 430074, China; (Z.W.); (H.L.); (W.H.); (L.Y.); (E.Q.); (T.Y.)
| | - Hong Liu
- Hubei Provincial Key Laboratory for Protection and Application of Special Plant Germplasm in Wuling Area of China & Key Laboratory of State Ethnic Affairs Commission for Biological Technology, College of Life Sciences, South-Central University for Nationalities, Wuhan 430074, China; (Z.W.); (H.L.); (W.H.); (L.Y.); (E.Q.); (T.Y.)
| | - Wen Huang
- Hubei Provincial Key Laboratory for Protection and Application of Special Plant Germplasm in Wuling Area of China & Key Laboratory of State Ethnic Affairs Commission for Biological Technology, College of Life Sciences, South-Central University for Nationalities, Wuhan 430074, China; (Z.W.); (H.L.); (W.H.); (L.Y.); (E.Q.); (T.Y.)
| | - Lisha Yi
- Hubei Provincial Key Laboratory for Protection and Application of Special Plant Germplasm in Wuling Area of China & Key Laboratory of State Ethnic Affairs Commission for Biological Technology, College of Life Sciences, South-Central University for Nationalities, Wuhan 430074, China; (Z.W.); (H.L.); (W.H.); (L.Y.); (E.Q.); (T.Y.)
| | - Erdai Qin
- Hubei Provincial Key Laboratory for Protection and Application of Special Plant Germplasm in Wuling Area of China & Key Laboratory of State Ethnic Affairs Commission for Biological Technology, College of Life Sciences, South-Central University for Nationalities, Wuhan 430074, China; (Z.W.); (H.L.); (W.H.); (L.Y.); (E.Q.); (T.Y.)
| | - Tiange Yang
- Hubei Provincial Key Laboratory for Protection and Application of Special Plant Germplasm in Wuling Area of China & Key Laboratory of State Ethnic Affairs Commission for Biological Technology, College of Life Sciences, South-Central University for Nationalities, Wuhan 430074, China; (Z.W.); (H.L.); (W.H.); (L.Y.); (E.Q.); (T.Y.)
| | - Jing Wang
- Institute of Food and Nutrition Development, Ministry of Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China;
| | - Rui Qin
- Hubei Provincial Key Laboratory for Protection and Application of Special Plant Germplasm in Wuling Area of China & Key Laboratory of State Ethnic Affairs Commission for Biological Technology, College of Life Sciences, South-Central University for Nationalities, Wuhan 430074, China; (Z.W.); (H.L.); (W.H.); (L.Y.); (E.Q.); (T.Y.)
| |
Collapse
|
39
|
Song Q, Ando A, Jiang N, Ikeda Y, Chen ZJ. Single-cell RNA-seq analysis reveals ploidy-dependent and cell-specific transcriptome changes in Arabidopsis female gametophytes. Genome Biol 2020; 21:178. [PMID: 32698836 PMCID: PMC7375004 DOI: 10.1186/s13059-020-02094-0] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 07/06/2020] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Polyploidy provides new genetic material that facilitates evolutionary novelty, species adaptation, and crop domestication. Polyploidy often leads to an increase in cell or organism size, which may affect transcript abundance or transcriptome size, but the relationship between polyploidy and transcriptome changes remains poorly understood. Plant cells often undergo endoreduplication, confounding the polyploid effect. RESULTS To mitigate these effects, we select female gametic cells that are developmentally stable and void of endoreduplication. Using single-cell RNA sequencing (scRNA-seq) in Arabidopsis thaliana tetraploid lines and isogenic diploids, we show that transcriptome abundance doubles in the egg cell and increases approximately 1.6-fold in the central cell, consistent with cell size changes. In the central cell of tetraploid plants, DEMETER (DME) is upregulated, which can activate PRC2 family members FIS2 and MEA, and may suppress the expression of other genes. Upregulation of cell size regulators in tetraploids, including TOR and OSR2, may increase the size of reproductive cells. In diploids, the order of transcriptome abundance is central cell, synergid cell, and egg cell, consistent with their cell size variation. Remarkably, we uncover new sets of female gametophytic cell-specific transcripts with predicted biological roles; the most abundant transcripts encode families of cysteine-rich peptides, implying roles in cell-cell recognition during double fertilization. CONCLUSIONS Transcriptome in single cells doubles in tetraploid plants compared to diploid, while the degree of change and relationship to the cell size depends on cell types. These scRNA-seq resources are free of cross-contamination and are uniquely valuable for advancing plant hybridization, reproductive biology, and polyploid genomics.
Collapse
Affiliation(s)
- Qingxin Song
- Department of Molecular Biosciences, The University of Texas at Austin, 1 University Station A5000, Austin, TX, 78712, USA
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
| | - Atsumi Ando
- Department of Molecular Biosciences, The University of Texas at Austin, 1 University Station A5000, Austin, TX, 78712, USA
| | - Ning Jiang
- Department of Biomedical Engineering, The University of Texas at Austin, 1 University Station C0800, Austin, TX, 78712, USA
| | - Yoko Ikeda
- Institute of Plant Science and Resources, Okayama University, Chuo 2-20-1, Kurashiki, Okayama, 710-0046, Japan
| | - Z Jeffrey Chen
- Department of Molecular Biosciences, The University of Texas at Austin, 1 University Station A5000, Austin, TX, 78712, USA.
| |
Collapse
|
40
|
Scheben A, Hojsgaard D. Can We Use Gene-Editing to Induce Apomixis in Sexual Plants? Genes (Basel) 2020; 11:E781. [PMID: 32664641 PMCID: PMC7397034 DOI: 10.3390/genes11070781] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 07/08/2020] [Accepted: 07/09/2020] [Indexed: 12/12/2022] Open
Abstract
Apomixis, the asexual formation of seeds, is a potentially valuable agricultural trait. Inducing apomixis in sexual crop plants would, for example, allow breeders to fix heterosis in hybrid seeds and rapidly generate doubled haploid crop lines. Molecular models explain the emergence of functional apomixis, i.e., apomeiosis + parthenogenesis + endosperm development, as resulting from a combination of genetic or epigenetic changes that coordinate altered molecular and developmental steps to form clonal seeds. Apomixis-like features and synthetic clonal seeds have been induced with limited success in the sexual plants rice and maize by using gene editing to mutate genes related to meiosis and fertility or via egg-cell specific expression of embryogenesis genes. Inducing functional apomixis and increasing the penetrance of apomictic seed production will be important for commercial deployment of the trait. Optimizing the induction of apomixis with gene editing strategies that use known targets as well as identifying alternative targets will be possible by better understanding natural genetic variation in apomictic species. With the growing availability of genomic data and precise gene editing tools, we are making substantial progress towards engineering apomictic crops.
Collapse
Affiliation(s)
- Armin Scheben
- Simons Center for Quantitative Biology, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA;
| | - Diego Hojsgaard
- Department of Systematics, Biodiversity and Evolution of Plants, Albrecht-von-Haller Institute for Plant Sciences, University of Goettingen, Untere Karspuele 2, 37073 Goettingen, Germany
| |
Collapse
|
41
|
Hater F, Nakel T, Groß-Hardt R. Reproductive Multitasking: The Female Gametophyte. ANNUAL REVIEW OF PLANT BIOLOGY 2020; 71:517-546. [PMID: 32442389 DOI: 10.1146/annurev-arplant-081519-035943] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Fertilization of flowering plants requires the organization of complex tasks, many of which become integrated by the female gametophyte (FG). The FG is a few-celled haploid structure that orchestrates division of labor to coordinate successful interaction with the sperm cells and their transport vehicle, the pollen tube. As reproductive outcome is directly coupled to evolutionary success, the underlying mechanisms are under robust molecular control, including integrity check and repair mechanisms. Here, we review progress on understanding the development and function of the FG, starting with the functional megaspore, which represents the haploid founder cell of the FG. We highlight recent achievements that have greatly advanced our understanding of pollen tube attraction strategies and the mechanisms that regulate plant hybridization and gamete fusion. In addition, we discuss novel insights into plant polyploidization strategies that expand current concepts on the evolution of flowering plants.
Collapse
Affiliation(s)
- Friederike Hater
- Centre for Biomolecular Interactions, University of Bremen, 28359 Bremen, Germany;
| | - Thomas Nakel
- Centre for Biomolecular Interactions, University of Bremen, 28359 Bremen, Germany;
| | - Rita Groß-Hardt
- Centre for Biomolecular Interactions, University of Bremen, 28359 Bremen, Germany;
| |
Collapse
|
42
|
Hojsgaard D. Apomixis Technology: Separating the Wheat from the Chaff. Genes (Basel) 2020; 11:E411. [PMID: 32290084 PMCID: PMC7231277 DOI: 10.3390/genes11040411] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 04/03/2020] [Accepted: 04/08/2020] [Indexed: 02/06/2023] Open
Abstract
Projections indicate that current plant breeding approaches will be unable to incorporate the global crop yields needed to deliver global food security. Apomixis is a disruptive innovation by which a plant produces clonal seeds capturing heterosis and gene combinations of elite phenotypes. Introducing apomixis into hybrid cultivars is a game-changing development in the current plant breeding paradigm that will accelerate the generation of high-yield cultivars. However, apomixis is a developmentally complex and genetically multifaceted trait. The central problem behind current constraints to apomixis breeding is that the genomic configuration and molecular mechanism that initiate apomixis and guide the formation of a clonal seed are still unknown. Today, not a single explanation about the origin of apomixis offer full empirical coverage, and synthesizing apomixis by manipulating individual genes has failed or produced little success. Overall evidence suggests apomixis arise from a still unknown single event molecular mechanism with multigenic effects. Disentangling the genomic basis and complex genetics behind the emergence of apomixis in plants will require the use of novel experimental approaches benefiting from Next Generation Sequencing technologies and targeting not only reproductive genes, but also the epigenetic and genomic configurations associated with reproductive phenotypes in homoploid sexual and apomictic carriers. A comprehensive picture of most regulatory changes guiding apomixis emergence will be central for successfully installing apomixis into the target species by exploiting genetic modification techniques.
Collapse
Affiliation(s)
- Diego Hojsgaard
- Department of Systematics, Biodiversity and Evolution of Plants, Albrecht-von-Haller Institute for Plant Sciences, Georg-August-University of Göttingen, Untere Karspüle 2, D-37073-1 Göttingen, Germany
| |
Collapse
|
43
|
Controlling Apomixis: Shared Features and Distinct Characteristics of Gene Regulation. Genes (Basel) 2020; 11:genes11030329. [PMID: 32245021 PMCID: PMC7140868 DOI: 10.3390/genes11030329] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 03/13/2020] [Accepted: 03/18/2020] [Indexed: 02/06/2023] Open
Abstract
In higher plants, sexual and asexual reproduction through seeds (apomixis) have evolved as alternative strategies. As apomixis leads to the formation of clonal offspring, its great potential for agricultural applications has long been recognized. However, the genetic basis and the molecular control underlying apomixis and its evolutionary origin are to date not fully understood. Both in sexual and apomictic plants, reproduction is tightly controlled by versatile mechanisms regulating gene expression, translation, and protein abundance and activity. Increasing evidence suggests that interrelated pathways including epigenetic regulation, cell-cycle control, hormonal pathways, and signal transduction processes are relevant for apomixis. Additional molecular mechanisms are being identified that involve the activity of DNA- and RNA-binding proteins, such as RNA helicases which are increasingly recognized as important regulators of reproduction. Together with other factors including non-coding RNAs, their association with ribosomes is likely to be relevant for the formation and specification of the apomictic reproductive lineage. Subsequent seed formation appears to involve an interplay of transcriptional activation and repression of developmental programs by epigenetic regulatory mechanisms. In this review, insights into the genetic basis and molecular control of apomixis are presented, also taking into account potential relations to environmental stress, and considering aspects of evolution.
Collapse
|
44
|
Radoeva T, Albrecht C, Piepers M, de Vries S, Weijers D. Suspensor-derived somatic embryogenesis in Arabidopsis. Development 2020; 147:dev.188912. [DOI: 10.1242/dev.188912] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 06/08/2020] [Indexed: 01/16/2023]
Abstract
In many flowering plants, asymmetric division of the zygote generates apical and basal cells with different fates. In Arabidopsis thaliana, the apical cell generates the embryo while the basal cell divides anticlinally, leading to a suspensor of 6-9 cells that remain extra-embryonic and eventually senesce. In some genetic backgrounds, or upon ablation of the embryo, suspensor cells can undergo periclinal cell divisions and eventually form a second, twin embryo. Likewise, embryogenesis can be induced from somatic cells by various genes, but the relation to suspensor-derived embryos is unclear. Here, we addressed the nature of the suspensor to embryo fate transformation, and its genetic triggers. We expressed most known embryogenesis-inducing genes specifically in suspensor cells. We next analyzed morphology and fate marker expression in embryos in which suspensor division were activated by different triggers to address the developmental paths towards reprogramming. Our results show that reprogramming of Arabidopsis suspensor cells towards embryonic identity is a specific cellular response that is triggered by defined regulators, follows a conserved developmental trajectory and shares similarity to the process of somatic embryogenesis from post-embryonic tissues.
Collapse
Affiliation(s)
- Tatyana Radoeva
- Wageningen University, Laboratory of Biochemistry, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| | - Catherine Albrecht
- Wageningen University, Laboratory of Biochemistry, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| | - Marcel Piepers
- Wageningen University, Laboratory of Biochemistry, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| | - Sacco de Vries
- Wageningen University, Laboratory of Biochemistry, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| | - Dolf Weijers
- Wageningen University, Laboratory of Biochemistry, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| |
Collapse
|
45
|
Abstract
Algae are photosynthetic eukaryotes whose taxonomic breadth covers a range of life histories, degrees of cellular and developmental complexity, and diverse patterns of sexual reproduction. These patterns include haploid- and diploid-phase sex determination, isogamous mating systems, and dimorphic sexes. Despite the ubiquity of sexual reproduction in algae, their mating-type-determination and sex-determination mechanisms have been investigated in only a limited number of representatives. These include volvocine green algae, where sexual cycles and sex-determining mechanisms have shed light on the transition from mating types to sexes, and brown algae, which are a model for UV sex chromosome evolution in the context of a complex haplodiplontic life cycle. Recent advances in genomics have aided progress in understanding sexual cycles in less-studied taxa including ulvophyte, charophyte, and prasinophyte green algae, as well as in diatoms.
Collapse
Affiliation(s)
- James Umen
- Donald Danforth Plant Science Center, St. Louis, Missouri 63132, USA;
| | - Susana Coelho
- Algal Genetics Group, Integrative Biology of Marine Models, Station Biologique de Roscoff, Sorbonne Université, UPMC Université Paris 06, CNRS, CS 90074, F-29688 Roscoff, France;
| |
Collapse
|
46
|
Evolution, Initiation, and Diversity in Early Plant Embryogenesis. Dev Cell 2019; 50:533-543. [DOI: 10.1016/j.devcel.2019.07.011] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 06/07/2019] [Accepted: 07/07/2019] [Indexed: 11/22/2022]
|
47
|
Hisanaga T, Yamaoka S, Kawashima T, Higo A, Nakajima K, Araki T, Kohchi T, Berger F. Building new insights in plant gametogenesis from an evolutionary perspective. NATURE PLANTS 2019; 5:663-669. [PMID: 31285561 DOI: 10.1038/s41477-019-0466-0] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Accepted: 05/29/2019] [Indexed: 05/18/2023]
Abstract
Extant bryophytes are thought to preserve characteristics of ancestral land plants, with a life cycle dominated by the haploid gametophyte. The gametophyte produces gametes in specialized organs that differentiate after an extensive phase of vegetative development. During land plant evolution, these organs became extremely reduced. As a result, in flowers of angiosperms the haploid phase of the life cycle is reduced to few-celled gametophytes, namely the embryo sac (female) and pollen (male). Although many factors contributing to gametogenesis have been identified in flowering plants, the extreme reduction of the gametophytes has prevented a clear molecular dissection of key processes of gametogenesis. Recent studies in the model bryophyte Marchantia polymorpha have identified conserved transcription factors regulating the equivalent steps in the sexual reproduction of land plants. These include FEMALE GAMETOPHYTE MYB for female gametophyte development, BONOBO for gamete progenitor cell specification, DUO POLLEN1 for sperm differentiation and members of the RWP-RK domain family for female gamete formation. These studies demonstrate that M. polymorpha is a powerful model to untangle the core processes of gametogenesis in land plants. We anticipate that a deeper understanding of gametogenesis in bryophytes will circumscribe the origin of plant germ cells and define the differentiation programmes of sperm and eggs.
Collapse
Affiliation(s)
- Tetsuya Hisanaga
- Gregor Mendel Institute, Austrian Academy of Sciences, Vienna BioCenter, Vienna, Austria
- Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Japan
| | - Shohei Yamaoka
- Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Tomokazu Kawashima
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, KY, USA
| | - Asuka Higo
- Graduate School of Biostudies, Kyoto University, Kyoto, Japan
- Kihara Institute for Biological Research, Yokohama City University, Yokohama, Japan
| | - Keiji Nakajima
- Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Japan
| | - Takashi Araki
- Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Takayuki Kohchi
- Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Frédéric Berger
- Gregor Mendel Institute, Austrian Academy of Sciences, Vienna BioCenter, Vienna, Austria.
| |
Collapse
|
48
|
León-Martínez G, Vielle-Calzada JP. Apomixis in flowering plants: Developmental and evolutionary considerations. Curr Top Dev Biol 2019; 131:565-604. [DOI: 10.1016/bs.ctdb.2018.11.014] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
49
|
Erbasol Serbes I, Palovaara J, Groß-Hardt R. Development and function of the flowering plant female gametophyte. Curr Top Dev Biol 2019; 131:401-434. [DOI: 10.1016/bs.ctdb.2018.11.016] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
50
|
Vijverberg K, Ozias-Akins P, Schranz ME. Identifying and Engineering Genes for Parthenogenesis in Plants. FRONTIERS IN PLANT SCIENCE 2019; 10:128. [PMID: 30838007 PMCID: PMC6389702 DOI: 10.3389/fpls.2019.00128] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Accepted: 01/24/2019] [Indexed: 05/16/2023]
Abstract
Parthenogenesis is the spontaneous development of an embryo from an unfertilized egg cell. It naturally occurs in a variety of plant and animal species. In plants, parthenogenesis usually is found in combination with apomeiosis (the omission of meiosis) and pseudogamous or autonomous (with or without central cell fertilization) endosperm formation, together known as apomixis (clonal seed production). The initiation of embryogenesis in vivo and in vitro has high potential in plant breeding methods, particularly for the instant production of homozygous lines from haploid gametes [doubled haploids (DHs)], the maintenance of vigorous F1-hybrids through clonal seed production after combining it with apomeiosis, reverse breeding approaches, and for linking diploid and polyploid gene pools. Because of this large interest, efforts to identify gene(s) for parthenogenesis from natural apomicts have been undertaken by using map-based cloning strategies and comparative gene expression studies. In addition, engineering parthenogenesis in sexual model species has been investigated via mutagenesis and gain-of-function strategies. These efforts have started to pay off, particularly by the isolation of the PsASGR-BabyBoom-Like from apomictic Pennisetum, a gene proven to be transferable to and functional in sexual pearl millet, rice, and maize. This review aims to summarize the current knowledge on parthenogenesis, the possible gene candidates also outside the grasses, and the use of these genes in plant breeding protocols. It shows that parthenogenesis is able to inherit and function independently from apomeiosis and endosperm formation, is expressed and active in the egg cell, and can induce embryogenesis in polyploid, diploid as well as haploid egg cells in plants. It also shows the importance of genes involved in the suppression of transcription and modifications thereof at one hand, and in embryogenesis for which transcription is allowed or artificially overexpressed on the other, in parthenogenetic reproduction. Finally, it emphasizes the importance of functional endosperm to allow for successful embryo growth and viable seed production.
Collapse
Affiliation(s)
- Kitty Vijverberg
- Biosystematics Group, Experimental Plant Sciences, Wageningen University and Research, Wageningen, Netherlands
- *Correspondence: Kitty Vijverberg,
| | - Peggy Ozias-Akins
- Department of Horticulture, Institute of Plant Breeding, Genetics and Genomics, University of Georgia, Tifton Campus, Tifton, GA, United States
| | - M. Eric Schranz
- Biosystematics Group, Experimental Plant Sciences, Wageningen University and Research, Wageningen, Netherlands
| |
Collapse
|