1
|
Guo H, Guan Z, Liu Y, Chao K, Zhu Q, Zhou Y, Wu H, Pi E, Chen H, Zeng H. Comprehensive identification and expression analyses of sugar transporter genes reveal the role of GmSTP22 in salt stress resistance in soybean. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 216:109095. [PMID: 39255613 DOI: 10.1016/j.plaphy.2024.109095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 08/02/2024] [Accepted: 09/03/2024] [Indexed: 09/12/2024]
Abstract
The transport, compartmentation and allocation of sugar are critical for plant growth and development, as well as for stress resistance, but sugar transporter genes have not been comprehensively characterized in soybean. Here, we performed a genome-wide identification and expression analyses of sugar transporter genes in soybean in order to reveal their putative functions. A total of 122 genes encoding sucrose transporters (SUTs) and monosaccharide transporters (MSTs) were identified in soybean. They were classified into 8 subfamilies according to their phylogenetic relationships and their conserved motifs. Comparative genomics analysis indicated that whole genome duplication/segmental duplication and tandem duplication contributed to the expansion of sugar transporter genes in soybean. Expression analysis by retrieving transcriptome datasets suggested that most of these sugar transporter genes were expressed in various tissues, and a number of genes exhibited tissue-specific expression patterns. Several genes including GmSTP21, GmSFP8, and GmPLT5/6/7/8/9 were predominantly expressed in nodules, and GmPLT8 was significantly induced by rhizobia inoculation in root hairs. Transcript profiling and qRT-PCR analyses suggested that half of these sugar transporter genes were significantly induced or repressed under stresses like salt, drought, and cold. In addition, GmSTP22 was found to be localized in the plasma membrane, and its overexpression promoted plant growth and salt tolerance in transgenic Arabidopsis under the supplement with glucose or sucrose. This study provides insights into the evolutionary expansion, expression pattern and functional divergence of sugar transporter gene family, and will enable further understanding of their biological functions in the regulation of growth, yield formation and stress resistance of soybean.
Collapse
Affiliation(s)
- Hang Guo
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, China
| | - Zhengxing Guan
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, China
| | - Yuanyuan Liu
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, China
| | - Kexin Chao
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, China
| | - Qiuqing Zhu
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, China
| | - Yi Zhou
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, China
| | - Haicheng Wu
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, China
| | - Erxu Pi
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, China
| | - Huatao Chen
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Houqing Zeng
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, China.
| |
Collapse
|
2
|
Yoshida T, Mergner J, Yang Z, Liu J, Kuster B, Fernie AR, Grill E. Integrating multi-omics data reveals energy and stress signaling activated by abscisic acid in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 119:1112-1133. [PMID: 38613775 DOI: 10.1111/tpj.16765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 03/24/2024] [Accepted: 03/31/2024] [Indexed: 04/15/2024]
Abstract
Phytohormones are essential signaling molecules regulating various processes in growth, development, and stress responses. Genetic and molecular studies, especially using Arabidopsis thaliana (Arabidopsis), have discovered many important players involved in hormone perception, signal transduction, transport, and metabolism. Phytohormone signaling pathways are extensively interconnected with other endogenous and environmental stimuli. However, our knowledge of the huge and complex molecular network governed by a hormone remains limited. Here we report a global overview of downstream events of an abscisic acid (ABA) receptor, REGULATORY COMPONENTS OF ABA RECEPTOR (RCAR) 6 (also known as PYRABACTIN RESISTANCE 1 [PYR1]-LIKE [PYL] 12), by integrating phosphoproteomic, proteomic and metabolite profiles. Our data suggest that the RCAR6 overexpression constitutively decreases the protein levels of its coreceptors, namely clade A protein phosphatases of type 2C, and activates sucrose non-fermenting-1 (SNF1)-related protein kinase 1 (SnRK1) and SnRK2, the central regulators of energy and ABA signaling pathways. Furthermore, several enzymes in sugar metabolism were differentially phosphorylated and expressed in the RCAR6 line, and the metabolite profile revealed altered accumulations of several organic acids and amino acids. These results indicate that energy- and water-saving mechanisms mediated by the SnRK1 and SnRK2 kinases, respectively, are under the control of the ABA receptor-coreceptor complexes.
Collapse
Affiliation(s)
- Takuya Yoshida
- Lehrstuhl für Botanik, Technische Universität München, Emil-Ramann-Str. 4, 85354, Freising, Germany
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, 14476, Potsdam-Golm, Germany
| | - Julia Mergner
- Bavarian Center for Biomolecular Mass Spectrometry at Klinikum rechts der Isar (BayBioMS@MRI), Technical University of Munich, Munich, Germany
- Chair of Proteomics and Bioanalytics, Technical University of Munich, Freising, Germany
| | - Zhenyu Yang
- Lehrstuhl für Botanik, Technische Universität München, Emil-Ramann-Str. 4, 85354, Freising, Germany
| | - Jinghui Liu
- Lehrstuhl für Botanik, Technische Universität München, Emil-Ramann-Str. 4, 85354, Freising, Germany
| | - Bernhard Kuster
- Chair of Proteomics and Bioanalytics, Technical University of Munich, Freising, Germany
| | - Alisdair R Fernie
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, 14476, Potsdam-Golm, Germany
| | - Erwin Grill
- Lehrstuhl für Botanik, Technische Universität München, Emil-Ramann-Str. 4, 85354, Freising, Germany
| |
Collapse
|
3
|
Zhu C, Jing B, Lin T, Li X, Zhang M, Zhou Y, Yu J, Hu Z. Phosphorylation of sugar transporter TST2 by protein kinase CPK27 enhances drought tolerance in tomato. PLANT PHYSIOLOGY 2024; 195:1005-1024. [PMID: 38431528 DOI: 10.1093/plphys/kiae124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 01/17/2024] [Accepted: 02/01/2024] [Indexed: 03/05/2024]
Abstract
Drought is a major environmental stress threatening plant growth and productivity. Calcium-dependent protein kinases (CPKs) are plant-specific Ca2+ sensors with multifaceted roles in signaling drought responses. Nonetheless, the mechanisms underpinning how CPKs transmit downstream drought signaling remain unresolved. Through genetic investigations, our study unveiled that knocking out CPK27 reduced drought tolerance in tomato (Solanum lycopersicum) plants and impaired abscisic acid (ABA)-orchestrated plant response to drought stress. Proteomics and phosphoproteomics revealed that CPK27-dependent drought-induced proteins were highly associated with the sugar metabolism pathway, which was further verified by reduced soluble sugar content in the cpk27 mutant under drought conditions. Using protein-protein interaction assays and phosphorylation assessments, we demonstrated that CPK27 directly interacted with and phosphorylated tonoplast sugar transporter 2 (TST2), promoting intercellular soluble sugar accumulation during drought stress. Furthermore, Ca2+ and ABA enhanced CPK27-mediated interaction and phosphorylation of TST2, thus revealing a role of TST2 in tomato plant drought tolerance. These findings extend the toolbox of potential interventions for enhancing plant drought stress tolerance and provide a target to improve drought tolerance by manipulating CPK27-mediated soluble sugar accumulation for rendering drought tolerance in a changing climate.
Collapse
Affiliation(s)
- Changan Zhu
- Department of Horticulture, Zhejiang University, Hangzhou 310058, China
| | - Beiyu Jing
- Department of Horticulture, Zhejiang University, Hangzhou 310058, China
| | - Teng Lin
- Department of Horticulture, Zhejiang University, Hangzhou 310058, China
| | - Xinyan Li
- Department of Horticulture, Zhejiang University, Hangzhou 310058, China
| | - Min Zhang
- Department of Horticulture, Zhejiang University, Hangzhou 310058, China
| | - Yanhong Zhou
- Department of Horticulture, Zhejiang University, Hangzhou 310058, China
- Hainan Institute, Zhejiang University, Yazhou Bay Science and Technology City, Sanya 572025, China
| | - Jingquan Yu
- Department of Horticulture, Zhejiang University, Hangzhou 310058, China
- Hainan Institute, Zhejiang University, Yazhou Bay Science and Technology City, Sanya 572025, China
| | - Zhangjian Hu
- Department of Horticulture, Zhejiang University, Hangzhou 310058, China
- Hainan Institute, Zhejiang University, Yazhou Bay Science and Technology City, Sanya 572025, China
| |
Collapse
|
4
|
Mao Z, Wang Y, Li M, Zhang S, Zhao Z, Xu Q, Liu JH, Li C. Vacuolar proteomic analysis reveals tonoplast transporters for accumulation of citric acid and sugar in citrus fruit. HORTICULTURE RESEARCH 2024; 11:uhad249. [PMID: 38288255 PMCID: PMC10822839 DOI: 10.1093/hr/uhad249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Accepted: 11/13/2023] [Indexed: 01/31/2024]
Abstract
Vacuole largely dictates the fruit taste and flavor, as most of the sugars and organic acids are stored in the vacuoles of the fruit. However, difficulties associated with vacuole separation severely hinder identification and characterization of vacuolar proteins in fruit species. In this study, we established an effective approach for separating vacuoles and successfully purified vacuolar protein from six types of citrus fruit with varying patterns of sugar and organic acid contents. By using label-free LC-MS/MS proteomic analysis, 1443 core proteins were found to be associated with the essential functions of vacuole in citrus fruit. Correlation analysis of metabolite concentration with proteomic data revealed a transporter system for the accumulation of organic acid and soluble sugars in citrus. Furthermore, we characterized the physiological roles of selected key tonoplast transporters, ABCG15, Dict2.1, TMT2, and STP7 in the accumulation of citric acid and sugars. These findings provide a novel perspective and practical solution for investigating the transporters underlying the formation of citrus taste and flavor.
Collapse
Affiliation(s)
- Zuolin Mao
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Yue Wang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Mengdi Li
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Shuhang Zhang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Zeqi Zhao
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Qiang Xu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Ji-Hong Liu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Chunlong Li
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
| |
Collapse
|
5
|
Khan A, Cheng J, Kitashova A, Fürtauer L, Nägele T, Picco C, Scholz-Starke J, Keller I, Neuhaus HE, Pommerrenig B. Vacuolar sugar transporter EARLY RESPONSE TO DEHYDRATION6-LIKE4 affects fructose signaling and plant growth. PLANT PHYSIOLOGY 2023; 193:2141-2163. [PMID: 37427783 DOI: 10.1093/plphys/kiad403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 06/02/2023] [Accepted: 06/11/2023] [Indexed: 07/11/2023]
Abstract
Regulation of intracellular sugar homeostasis is maintained by regulation of activities of sugar import and export proteins residing at the tonoplast. We show here that the EARLY RESPONSE TO DEHYDRATION6-LIKE4 (ERDL4) protein, a member of the monosaccharide transporter family, resides in the vacuolar membrane in Arabidopsis (Arabidopsis thaliana). Gene expression and subcellular fractionation studies indicated that ERDL4 participates in fructose allocation across the tonoplast. Overexpression of ERDL4 increased total sugar levels in leaves due to a concomitantly induced stimulation of TONOPLAST SUGAR TRANSPORTER 2 (TST2) expression, coding for the major vacuolar sugar loader. This conclusion is supported by the finding that tst1-2 knockout lines overexpressing ERDL4 lack increased cellular sugar levels. ERDL4 activity contributing to the coordination of cellular sugar homeostasis is also indicated by 2 further observations. First, ERDL4 and TST genes exhibit an opposite regulation during a diurnal rhythm, and second, the ERDL4 gene is markedly expressed during cold acclimation, representing a situation in which TST activity needs to be upregulated. Moreover, ERDL4-overexpressing plants show larger rosettes and roots, a delayed flowering time, and increased total seed yield. Consistently, erdl4 knockout plants show impaired cold acclimation and freezing tolerance along with reduced plant biomass. In summary, we show that modification of cytosolic fructose levels influences plant organ development and stress tolerance.
Collapse
Affiliation(s)
- Azkia Khan
- Plant Physiology, RPTU Kaiserslautern-Landau, Paul-Ehrlich Straße 22, D-67653 Kaiserslautern, Germany
| | - Jintao Cheng
- College of Horticulture and Forestry Sciences, Huazhong Agricultural University and Key Laboratory of Horticultural Plant Biology, Ministry of Education, Wuhan 430070, China
| | - Anastasia Kitashova
- Plant Evolutionary Cell Biology, Faculty of Biology, Ludwig-Maximilians- Universität München, D-82152 Planegg-Martinsried, Germany
| | - Lisa Fürtauer
- Institute for Biology III, Unit of Plant Molecular Systems Biology, RWTH Aachen University, Aachen, Germany
| | - Thomas Nägele
- Plant Evolutionary Cell Biology, Faculty of Biology, Ludwig-Maximilians- Universität München, D-82152 Planegg-Martinsried, Germany
| | - Cristiana Picco
- Institute of Biophysics, Consiglio Nazionale delle Ricerche (CNR), Via De Marini 6, I-16149 Genova, Italy
| | - Joachim Scholz-Starke
- Institute of Biophysics, Consiglio Nazionale delle Ricerche (CNR), Via De Marini 6, I-16149 Genova, Italy
| | - Isabel Keller
- Plant Physiology, RPTU Kaiserslautern-Landau, Paul-Ehrlich Straße 22, D-67653 Kaiserslautern, Germany
| | - H Ekkehard Neuhaus
- Plant Physiology, RPTU Kaiserslautern-Landau, Paul-Ehrlich Straße 22, D-67653 Kaiserslautern, Germany
| | - Benjamin Pommerrenig
- Plant Physiology, RPTU Kaiserslautern-Landau, Paul-Ehrlich Straße 22, D-67653 Kaiserslautern, Germany
| |
Collapse
|
6
|
Weiszmann J, Walther D, Clauw P, Back G, Gunis J, Reichardt I, Koemeda S, Jez J, Nordborg M, Schwarzerova J, Pierides I, Nägele T, Weckwerth W. Metabolome plasticity in 241 Arabidopsis thaliana accessions reveals evolutionary cold adaptation processes. PLANT PHYSIOLOGY 2023; 193:980-1000. [PMID: 37220420 PMCID: PMC10517190 DOI: 10.1093/plphys/kiad298] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 04/28/2023] [Accepted: 05/03/2023] [Indexed: 05/25/2023]
Abstract
Acclimation and adaptation of metabolism to a changing environment are key processes for plant survival and reproductive success. In the present study, 241 natural accessions of Arabidopsis (Arabidopsis thaliana) were grown under two different temperature regimes, 16 °C and 6 °C, and growth parameters were recorded, together with metabolite profiles, to investigate the natural genome × environment effects on metabolome variation. The plasticity of metabolism, which was captured by metabolic distance measures, varied considerably between accessions. Both relative growth rates and metabolic distances were predictable by the underlying natural genetic variation of accessions. Applying machine learning methods, climatic variables of the original growth habitats were tested for their predictive power of natural metabolic variation among accessions. We found specifically habitat temperature during the first quarter of the year to be the best predictor of the plasticity of primary metabolism, indicating habitat temperature as the causal driver of evolutionary cold adaptation processes. Analyses of epigenome- and genome-wide associations revealed accession-specific differential DNA-methylation levels as potentially linked to the metabolome and identified FUMARASE2 as strongly associated with cold adaptation in Arabidopsis accessions. These findings were supported by calculations of the biochemical Jacobian matrix based on variance and covariance of metabolomics data, which revealed that growth under low temperatures most substantially affects the accession-specific plasticity of fumarate and sugar metabolism. Our findings indicate that the plasticity of metabolic regulation is predictable from the genome and epigenome and driven evolutionarily by Arabidopsis growth habitats.
Collapse
Affiliation(s)
- Jakob Weiszmann
- Molecular Systems Biology (MOSYS), Department of Functional and Evolutionary Ecology, Faculty of Life Sciences, University of Vienna, 1030 Vienna, Austria
- Vienna Metabolomics Center (VIME), University of Vienna, 1030 Vienna, Austria
| | - Dirk Walther
- Bioinformatics, Max-Planck-Institute of Molecular Plant Physiology, 14476 Potsdam, Germany
| | - Pieter Clauw
- Austrian Academy of Sciences, Gregor Mendel Institute (GMI), 1030 Vienna, Austria
| | - Georg Back
- Bioinformatics, Max-Planck-Institute of Molecular Plant Physiology, 14476 Potsdam, Germany
| | - Joanna Gunis
- Austrian Academy of Sciences, Gregor Mendel Institute (GMI), 1030 Vienna, Austria
| | - Ilka Reichardt
- Genome Engineering Facility, Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
| | - Stefanie Koemeda
- Plant Sciences Facility, Vienna BioCenter Core Facilities GmbH (VBCF), 1030 Vienna, Austria
| | - Jakub Jez
- Plant Sciences Facility, Vienna BioCenter Core Facilities GmbH (VBCF), 1030 Vienna, Austria
| | - Magnus Nordborg
- Austrian Academy of Sciences, Gregor Mendel Institute (GMI), 1030 Vienna, Austria
| | - Jana Schwarzerova
- Molecular Systems Biology (MOSYS), Department of Functional and Evolutionary Ecology, Faculty of Life Sciences, University of Vienna, 1030 Vienna, Austria
- Brno University of Technology, Faculty of Electrical Engineering and Communication, Department of Biomedical Engineering, Technická 12, 616 00 Brno, Czech Republic
| | - Iro Pierides
- Molecular Systems Biology (MOSYS), Department of Functional and Evolutionary Ecology, Faculty of Life Sciences, University of Vienna, 1030 Vienna, Austria
| | - Thomas Nägele
- LMU Munich, Faculty of Biology, Plant Evolutionary Cell Biology, 82152 Planegg, Germany
| | - Wolfram Weckwerth
- Molecular Systems Biology (MOSYS), Department of Functional and Evolutionary Ecology, Faculty of Life Sciences, University of Vienna, 1030 Vienna, Austria
- Vienna Metabolomics Center (VIME), University of Vienna, 1030 Vienna, Austria
| |
Collapse
|
7
|
Ren Y, Liao S, Xu Y. An update on sugar allocation and accumulation in fruits. PLANT PHYSIOLOGY 2023; 193:888-899. [PMID: 37224524 DOI: 10.1093/plphys/kiad294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 04/26/2023] [Accepted: 05/04/2023] [Indexed: 05/26/2023]
Abstract
Fruit sweetness is determined by the amount and composition of sugars in the edible flesh. The accumulation of sugar is a highly orchestrated process that requires coordination of numerous metabolic enzymes and sugar transporters. This coordination enables partitioning and long-distance translocation of photoassimilates from source tissues to sink organs. In fruit crops, sugars ultimately accumulate in the sink fruit. Whereas tremendous progress has been achieved in understanding the function of individual genes associated with sugar metabolism and sugar transport in non-fruit crops, there is less known about the sugar transporters and metabolic enzymes responsible for sugar accumulation in fruit crop species. This review identifies knowledge gaps and can serve as a foundation for future studies, with comprehensive updates focusing on (1) the physiological roles of the metabolic enzymes and sugar transporters responsible for sugar allocation and partitioning and that contribute to sugar accumulation in fruit crops; and (2) the molecular mechanisms underlying the transcriptional and posttranslational regulation of sugar transport and metabolism. We also provide insights into the challenges and future directions of studies on sugar transporters and metabolic enzymes and name several promising genes that should be targeted with gene editing in the pursuit of optimized sugar allocation and partitioning to enhance sugar accumulation in fruits.
Collapse
Affiliation(s)
- Yi Ren
- National Watermelon and Melon Improvement Center, Beijing Academy of Agricultural and Forestry Sciences (BAAFS), State Key Laboratory of Vegetable Biobreeding, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing 100097, China
| | - Shengjin Liao
- National Watermelon and Melon Improvement Center, Beijing Academy of Agricultural and Forestry Sciences (BAAFS), State Key Laboratory of Vegetable Biobreeding, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing 100097, China
| | - Yong Xu
- National Watermelon and Melon Improvement Center, Beijing Academy of Agricultural and Forestry Sciences (BAAFS), State Key Laboratory of Vegetable Biobreeding, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing 100097, China
| |
Collapse
|
8
|
Barnes AC, Myers JL, Surber SM, Liang Z, Mower JP, Schnable JC, Roston RL. Oligogalactolipid production during cold challenge is conserved in early diverging lineages. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:5405-5417. [PMID: 37357909 PMCID: PMC10848234 DOI: 10.1093/jxb/erad241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 06/23/2023] [Indexed: 06/27/2023]
Abstract
Severe cold, defined as a damaging cold beyond acclimation temperatures, has unique responses, but the signaling and evolution of these responses are not well understood. Production of oligogalactolipids, which is triggered by cytosolic acidification in Arabidopsis (Arabidopsis thaliana), contributes to survival in severe cold. Here, we investigated oligogalactolipid production in species from bryophytes to angiosperms. Production of oligogalactolipids differed within each clade, suggesting multiple evolutionary origins of severe cold tolerance. We also observed greater oligogalactolipid production in control samples than in temperature-challenged samples of some species. Further examination of representative species revealed a tight association between temperature, damage, and oligogalactolipid production that scaled with the cold tolerance of each species. Based on oligogalactolipid production and transcript changes, multiple angiosperm species share a signal of oligogalactolipid production initially described in Arabidopsis, namely cytosolic acidification. Together, these data suggest that oligogalactolipid production is a severe cold response that originated from an ancestral damage response that remains in many land plant lineages and that cytosolic acidification may be a common signaling mechanism for its activation.
Collapse
Affiliation(s)
- Allison C Barnes
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Jennifer L Myers
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE, USA
- Department of Horticulture, North Carolina State University, Raleigh, NC, USA
| | - Samantha M Surber
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Zhikai Liang
- Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Jeffrey P Mower
- Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - James C Schnable
- Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Rebecca L Roston
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE, USA
| |
Collapse
|
9
|
Zhou M, Deng X, Jiang Y, Zhou G, Chen J. Genome-Wide Identification and an Evolution Analysis of Tonoplast Monosaccharide Transporter ( TMT) Genes in Seven Gramineae Crops and Their Expression Profiling in Rice. Genes (Basel) 2023; 14:1140. [PMID: 37372320 DOI: 10.3390/genes14061140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 05/17/2023] [Accepted: 05/22/2023] [Indexed: 06/29/2023] Open
Abstract
The tonoplast monosaccharide transporter (TMT) family plays essential roles in sugar transport and plant growth. However, there is limited knowledge about the evolutionary dynamics of this important gene family in important Gramineae crops and putative function of rice TMT genes under external stresses. Here, the gene structural characteristics, chromosomal location, evolutionary relationship, and expression patterns of TMT genes were analyzed at a genome-wide scale. We identified six, three, six, six, four, six, and four TMT genes, respectively, in Brachypodium distachyon (Bd), Hordeum vulgare (Hv), Oryza rufipogon (Or), Oryza sativa ssp. japonica (Os), Sorghum bicolor (Sb), Setaria italica (Si), and Zea mays (Zm). All TMT proteins were divided into three clades based on the phylogenetic tree, gene structures, and protein motifs. The transcriptome data and qRT-PCR experiments suggested that each clade members had different expression patterns in various tissues and multiple reproductive tissues. In addition, the microarray datasets of rice indicated that different rice subspecies responded differently to the same intensity of salt or heat stress. The Fst value results indicated that the TMT gene family in rice was under different selection pressures in the process of rice subspecies differentiation and later selection breeding. Our findings pave the way for further insights into the evolutionary patterns of the TMT gene family in the important Gramineae crops and provide important references for characterizing the functions of rice TMT genes.
Collapse
Affiliation(s)
- Mingao Zhou
- Fujian Provincial Key Laboratory of Genetic Engineering for Agriculture, Institute of Biotechnology, Fujian Academy of Agricultural Sciences, Fuzhou 350003, China
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Xiaoxiao Deng
- The Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha 410125, China
| | - Yifei Jiang
- Fujian Provincial Key Laboratory of Genetic Engineering for Agriculture, Institute of Biotechnology, Fujian Academy of Agricultural Sciences, Fuzhou 350003, China
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Guoning Zhou
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, China
| | - Jianmin Chen
- Fujian Provincial Key Laboratory of Genetic Engineering for Agriculture, Institute of Biotechnology, Fujian Academy of Agricultural Sciences, Fuzhou 350003, China
| |
Collapse
|
10
|
Abstract
Proteins are workhorses in the cell; they form stable and more often dynamic, transient protein-protein interactions, assemblies, and networks and have an intimate interplay with DNA and RNA. These network interactions underlie fundamental biological processes and play essential roles in cellular function. The proximity-dependent biotinylation labeling approach combined with mass spectrometry (PL-MS) has recently emerged as a powerful technique to dissect the complex cellular network at the molecular level. In PL-MS, by fusing a genetically encoded proximity-labeling (PL) enzyme to a protein or a localization signal peptide, the enzyme is targeted to a protein complex of interest or to an organelle, allowing labeling of proximity proteins within a zoom radius. These biotinylated proteins can then be captured by streptavidin beads and identified and quantified by mass spectrometry. Recently engineered PL enzymes such as TurboID have a much-improved enzymatic activity, enabling spatiotemporal mapping with a dramatically increased signal-to-noise ratio. PL-MS has revolutionized the way we perform proteomics by overcoming several hurdles imposed by traditional technology, such as biochemical fractionation and affinity purification mass spectrometry. In this review, we focus on biotin ligase-based PL-MS applications that have been, or are likely to be, adopted by the plant field. We discuss the experimental designs and review the different choices for engineered biotin ligases, enrichment, and quantification strategies. Lastly, we review the validation and discuss future perspectives.
Collapse
Affiliation(s)
- Shou-Ling Xu
- Department of Plant Biology, Carnegie Institution for Science, Stanford, California, USA;
- Carnegie Mass Spectrometry Facility, Carnegie Institution for Science, Stanford, California, USA
| | - Ruben Shrestha
- Department of Plant Biology, Carnegie Institution for Science, Stanford, California, USA;
| | - Sumudu S Karunadasa
- Department of Plant Biology, Carnegie Institution for Science, Stanford, California, USA;
| | - Pei-Qiao Xie
- Department of Plant Biology, Carnegie Institution for Science, Stanford, California, USA;
- Department of Molecular and Cell Biology, University of California, Berkeley, California, USA
| |
Collapse
|
11
|
Li J, Zhu R, Zhang M, Cao B, Li X, Song B, Liu Z, Wu J. Natural variations in the PbCPK28 promoter regulate sugar content through interaction with PbTST4 and PbVHA-A1 in pear. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 114:124-141. [PMID: 36710644 DOI: 10.1111/tpj.16126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 01/12/2023] [Accepted: 01/19/2023] [Indexed: 06/18/2023]
Abstract
Soluble sugars play an important role in plant growth, development and fruit quality. Pear fruits have demonstrated a considerable improvement in sugar quality during their long history of selection. However, little is known about the underlying molecular mechanisms accompanying the changes in fruit sugar content as a result of selection by horticulturists. Here, we identified a calcium-dependent protein kinase (PbCPK28), which is located on LG15 and is present within a selective sweep region, thus linked to the quantitative trait loci for soluble solids. Association analysis indicates that a single nucleotide polymorphism-13 variation (SNP13T/C ) in the PbCPK28 regulatory region led to fructose content diversity in pear. Elevated expression of PbCPK28 resulted in significantly increased fructose levels in pear fruits. Furthermore, PbCPK28 interacts with and phosphorylates PbTST4, a proton antiporter, thereby coupling the sugar import into the vacuole with proton export. We demonstrated that residues S277 and S314 of PbTST4 are crucial for its function. Additionally, PbCPK28 interacts with and phosphorylates the vacuolar hydrogen proton pump PbVHA-A1, which could provide proton motive forces for PbTST4. We also found that the T11 and Y120 phosphorylation sites in PbVHA-A1 are essential for its function. Evolution analysis and yeast-two-hybrid results support that the CPK-TST/CPK-VHA-A regulatory network is highly conserved in plants, especially the corresponding phosphorylation sites. Together, our work identifies an agriculturally important natural variation and an important regulatory network, allowing genetic improvement of fruit sugar contents in pears through modulation of PbCPK28 expression and phosphorylation of PbTST4 and PbVHA-A1.
Collapse
Affiliation(s)
- Jiaming Li
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Rongxiang Zhu
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Mingyue Zhang
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| | - Beibei Cao
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Xiaolong Li
- College of Horticulture Science, Zhejiang Agriculture and Forestry University, Hangzhou, Zhejiang, 311200, China
| | - Bobo Song
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Zhongchi Liu
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland, 20742, USA
| | - Jun Wu
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
- Zhongshan Biological Breeding Laboratory, Nanjing, Jiangsu, 210014, China
| |
Collapse
|
12
|
Gao ZF, Yang X, Mei Y, Zhang J, Chao Q, Wang BC. A dynamic phosphoproteomic analysis provides insight into the C4 plant maize (Zea mays L.) response to natural diurnal changes. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 113:291-307. [PMID: 36440987 DOI: 10.1111/tpj.16047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 11/22/2022] [Accepted: 11/25/2022] [Indexed: 06/16/2023]
Abstract
As sessile organisms, plants need to respond to rapid changes in numerous environmental factors, mainly diurnal changes of light, temperature, and humidity. Maize is the world's most grown crop, and as a C4 plant it exhibits high photosynthesis capacity, reaching the highest rate of net photosynthesis at midday; that is, there is no "midday depression." Revealing the physiological responses to diurnal changes and underlying mechanisms will be of great significance for guiding maize improvement efforts. In this study, we collected maize leaf samples and analyzed the proteome and phosphoproteome at nine time points during a single day/night cycle, quantifying 7424 proteins and 5361 phosphosites. The new phosphosites identified in our study increased the total maize phosphoproteome coverage by 8.5%. Kinase-substrate network analysis indicated that 997 potential substrates were phosphorylated by 20 activated kinases. Through analysis of proteins with significant changes in abundance and phosphorylation, we found that the response to a heat stimulus involves a change in the abundance of numerous proteins. By contrast, the high light at noon and rapidly changing light conditions induced changes in the phosphorylation level of proteins involved in processes such as chloroplast movement, photosynthesis, and C4 pathways. Phosphorylation is involved in regulating the activity of large number of enzymes; for example, phosphorylation of S55 significantly enhanced the activity of maize phosphoenolpyruvate carboxykinase1 (ZmPEPCK1). Overall, the database of dynamic protein abundance and phosphorylation we have generated provides a resource for the improvement of C4 crop plants.
Collapse
Affiliation(s)
- Zhi-Fang Gao
- Key Laboratory of Photobiology, CAS, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiu Yang
- Key Laboratory of Photobiology, CAS, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Yingchang Mei
- Key Laboratory of Photobiology, CAS, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Jiao Zhang
- Key Laboratory of Photobiology, CAS, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Qing Chao
- Key Laboratory of Photobiology, CAS, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
- Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100093, China
| | - Bai-Chen Wang
- Key Laboratory of Photobiology, CAS, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
- Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100093, China
| |
Collapse
|
13
|
Cold Tolerance of ScCBL6 Is Associated with Tonoplast Transporters and Photosynthesis in Arabidopsis. Curr Issues Mol Biol 2022; 44:5579-5592. [DOI: 10.3390/cimb44110378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 11/01/2022] [Accepted: 11/02/2022] [Indexed: 11/12/2022] Open
Abstract
Plants that are adapted to harsh environments offer enormous opportunity to understand stress responses in ecological systems. Stipa capillacea is widely distributed in the frigid and arid region of the Tibetan Plateau, but its signal transduction system under cold stress has not been characterized. In this study, we isolated a cDNA encoding the signal transduction protein, ScCBL6, from S. capillacea, and evaluated its role in cold tolerance by ectopically expressing it in Arabidopsis. Full-length ScCBL6 encode 227 amino acids, and are clustered with CBL6 in Stipa purpurea and Oryza sativa in a phylogenetic analysis. Compared with tolerance in wild-type (WT) plants, ScCBL6-overexpressing plants (ScCBL6-OXP) were more tolerant to cold stress but not to drought stress, as confirmed by their high photosynthetic capacity (Fv/Fm) and survival rate under cold stress. We further compared their cold-responsive transcriptome profiles by RNA sequencing. In total, 3931 genes were differentially expressed by the introduction of ScCBL6. These gene products were involved in multiple processes such as the immune system, lipid catabolism, and secondary metabolism. A KEGG pathway analysis revealed that they were mainly enriched in plant hormone signal transduction and biomacromolecule metabolism. Proteins encoded by differentially expressed genes were predicted to be localized in chloroplasts, mitochondria, and vacuoles, suggesting that ScCBL6 exerts a wide range of functions. Based on its tonoplast subcellular location combined with integrated transcriptome and physiological analyses of ScCBL6-OXP, we inferred that ScCBL6 improves plant cold stress tolerance in Arabidopsis via the regulation of photosynthesis, redox status, and tonoplast metabolite transporters.
Collapse
|
14
|
Seidel T. The Plant V-ATPase. FRONTIERS IN PLANT SCIENCE 2022; 13:931777. [PMID: 35845650 PMCID: PMC9280200 DOI: 10.3389/fpls.2022.931777] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 06/03/2022] [Indexed: 05/25/2023]
Abstract
V-ATPase is the dominant proton pump in plant cells. It contributes to cytosolic pH homeostasis and energizes transport processes across endomembranes of the secretory pathway. Its localization in the trans Golgi network/early endosomes is essential for vesicle transport, for instance for the delivery of cell wall components. Furthermore, it is crucial for response to abiotic and biotic stresses. The V-ATPase's rather complex structure and multiple subunit isoforms enable high structural flexibility with respect to requirements for different organs, developmental stages, and organelles. This complexity further demands a sophisticated assembly machinery and transport routes in cells, a process that is still not fully understood. Regulation of V-ATPase is a target of phosphorylation and redox-modifications but also involves interactions with regulatory proteins like 14-3-3 proteins and the lipid environment. Regulation by reversible assembly, as reported for yeast and the mammalian enzyme, has not be proven in plants but seems to be absent in autotrophic cells. Addressing the regulation of V-ATPase is a promising approach to adjust its activity for improved stress resistance or higher crop yield.
Collapse
|
15
|
Hu Y, Liu J, Lin Y, Xu X, Xia Y, Bai J, Yu Y, Xiao F, Ding Y, Ding C, Chen L. Sucrose nonfermenting-1-related protein kinase 1 regulates sheath-to-panicle transport of nonstructural carbohydrates during rice grain filling. PLANT PHYSIOLOGY 2022; 189:1694-1714. [PMID: 35294032 PMCID: PMC9237689 DOI: 10.1093/plphys/kiac124] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 02/22/2022] [Indexed: 05/05/2023]
Abstract
The remobilization of nonstructural carbohydrates (NSCs) reserved in rice (Oryza sativa) sheaths is essential for grain filling. This assimilate distribution between plant tissues and organs is determined by sucrose non-fermenting-1-related protein kinase 1 (SnRK1). However, the SnRK1-mediated mechanism regulating the sheath-to-panicle transport of NSCs in rice remains unknown. In this study, leaf cutting treatment was used to accelerate NSC transport in the rice sheaths. Accelerated NSC transport was accompanied by increased levels of OsSnRK1a mRNA expression, SnRK1a protein expression, catalytic subunit phosphorylation of SnRK1, and SnRK1 activity, indicating that SnRK1 activity plays an important role in sheath NSC transport. We also discovered that trehalose-6-phosphate, a signal of sucrose availability, slightly reduced SnRK1 activity in vitro. Since SnRK1 activity is mostly regulated by OsSnRK1a transcription in response to low sucrose content, we constructed an snrk1a mutant to verify the function of SnRK1 in NSC transport. NSCs accumulated in the sheaths of snrk1a mutant plants and resulted in a low seed setting rate and grain weight, verifying that SnRK1 activity is essential for NSC remobilization. Using phosphoproteomics and parallel reaction monitoring, we identified 20 SnRK1-dependent phosphosites that are involved in NSC transport. In addition, the SnRK1-mediated phosphorylation of the phosphosites directly affected starch degradation, sucrose metabolism, phloem transport, sugar transport across the tonoplast, and glycolysis in rice sheaths to promote NSC transport. Therefore, our findings reveal the importance, function, and possible regulatory mechanism of SnRK1 in the sheath-to-panicle transport of NSCs in rice.
Collapse
Affiliation(s)
- Yuxiang Hu
- College of Agriculture, Nanjing Agricultural University, Nanjing, China
- Key Laboratory of Crop Physiology & Ecology in Southern China, Ministry of Agricultural University, Nanjing, China
| | - Jiajun Liu
- College of Agriculture, Nanjing Agricultural University, Nanjing, China
- Key Laboratory of Crop Physiology & Ecology in Southern China, Ministry of Agricultural University, Nanjing, China
| | - Yan Lin
- College of Agriculture, Nanjing Agricultural University, Nanjing, China
- Key Laboratory of Crop Physiology & Ecology in Southern China, Ministry of Agricultural University, Nanjing, China
| | - Xuemei Xu
- College of Agriculture, Nanjing Agricultural University, Nanjing, China
- Key Laboratory of Crop Physiology & Ecology in Southern China, Ministry of Agricultural University, Nanjing, China
| | - Yongqing Xia
- College of Agriculture, Nanjing Agricultural University, Nanjing, China
- Key Laboratory of Crop Physiology & Ecology in Southern China, Ministry of Agricultural University, Nanjing, China
| | - Jiaqi Bai
- College of Agriculture, Nanjing Agricultural University, Nanjing, China
- Key Laboratory of Crop Physiology & Ecology in Southern China, Ministry of Agricultural University, Nanjing, China
| | - Yongchao Yu
- College of Agriculture, Nanjing Agricultural University, Nanjing, China
- Key Laboratory of Crop Physiology & Ecology in Southern China, Ministry of Agricultural University, Nanjing, China
| | - Feng Xiao
- College of Agriculture, Nanjing Agricultural University, Nanjing, China
- Key Laboratory of Crop Physiology & Ecology in Southern China, Ministry of Agricultural University, Nanjing, China
| | - Yanfeng Ding
- College of Agriculture, Nanjing Agricultural University, Nanjing, China
- Key Laboratory of Crop Physiology & Ecology in Southern China, Ministry of Agricultural University, Nanjing, China
- Collaborative Innovation Center for Modern Crop Production Co-Sponsored by Province and Ministry, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | | | - Lin Chen
- Authors for correspondence: (L.C); (C.D.)
| |
Collapse
|
16
|
Kuang L, Chen S, Guo Y, Scheuring D, Flaishman MA, Ma H. Proteome Analysis of Vacuoles Isolated from Fig (Ficus carica L.) Flesh during Fruit Development. PLANT & CELL PHYSIOLOGY 2022; 63:785-801. [PMID: 35348748 DOI: 10.1093/pcp/pcac039] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 03/22/2022] [Accepted: 03/23/2022] [Indexed: 06/14/2023]
Abstract
Fruit flesh cell vacuoles play a pivotal role in fruit growth and quality formation. In the present study, intact vacuoles were carefully released and collected from protoplasts isolated from flesh cells at five sampling times along fig fruit development. Label-free quantification and vacuole proteomic analysis identified 1,251 proteins, 1,137 of which were recruited as differentially abundant proteins (DAPs) by fold change ≥ 1.5, P < 0.05. DAPs were assigned to 10 functional categories; among them, 238, 186, 109, 93 and 90 were annotated as metabolism, transport proteins, membrane fusion or vesicle trafficking, protein fate and stress response proteins, respectively. Decreased numbers of DAPs were uncovered along fruit development. The overall changing pattern of DAPs revealed two major proteome landscape conversions in fig flesh cell vacuoles: the first occurred when fruit developed from late-stage I to mid-stage II, and the second occurred when the fruit started ripening. Metabolic proteins related to glycosidase, lipid and extracellular proteins contributing to carbohydrate storage and vacuole expansion, and protein-degrading proteins determining vacuolar lytic function were revealed. Key tonoplast proteins contributing to vacuole expansion, cell growth and fruit quality formation were also identified. The revealed comprehensive changes in the vacuole proteome during flesh development were compared with our previously published vacuole proteome of grape berry. The information expands our knowledge of the vacuolar proteome and the protein basis of vacuole functional evolution during fruit development and quality formation.
Collapse
Affiliation(s)
- Liuqing Kuang
- Department of Fruit Tree Sciences, College of Horticulture, China Agricultural University, Beijing 100193, China
- College of Agronomy, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, China
| | - Shangwu Chen
- College of Food Science and Nutrition Engineering, China Agricultural University, Beijing 100193, China
| | - Yan Guo
- College of Biology Sciences, China Agricultural University, Beijing 100193, China
| | - David Scheuring
- Department of Plant Pathology, University of Kaiserslautern, Kaiserslautern 67663, Germany
| | - Moshe A Flaishman
- Department of Fruit Tree Sciences, Agricultural Research Organization, The Volcani Center, Bet Dagan 50250, Israel
| | - Huiqin Ma
- Department of Fruit Tree Sciences, College of Horticulture, China Agricultural University, Beijing 100193, China
| |
Collapse
|
17
|
Abstract
H+-ATPases, including the phosphorylated intermediate-type (P-type) and vacuolar-type (V-type) H+-ATPases, are important ATP-driven proton pumps that generate membrane potential and provide proton motive force for secondary active transport. P- and V-type H+-ATPases have distinct structures and subcellular localizations and play various roles in growth and stress responses. A P-type H+-ATPase is mainly regulated at the posttranslational level by phosphorylation and dephosphorylation of residues in its autoinhibitory C terminus. The expression and activity of both P- and V-type H+-ATPases are highly regulated by hormones and environmental cues. In this review, we summarize the recent advances in understanding of the evolution, regulation, and physiological roles of P- and V-type H+-ATPases, which coordinate and are involved in plant growth and stress adaptation. Understanding the different roles and the regulatory mechanisms of P- and V-type H+-ATPases provides a new perspective for improving plant growth and stress tolerance by modulating the activity of H+-ATPases, which will mitigate the increasing environmental stress conditions associated with ongoing global climate change.
Collapse
Affiliation(s)
- Ying Li
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, College of Agriculture, Yangzhou University, Yangzhou, China
| | - Houqing Zeng
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Feiyun Xu
- Center for Plant Water-Use and Nutrition Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China;
| | - Feng Yan
- Institute of Agronomy and Plant Breeding, Justus Liebig University of Giessen, Giessen, Germany
| | - Weifeng Xu
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, College of Agriculture, Yangzhou University, Yangzhou, China
- Center for Plant Water-Use and Nutrition Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China;
| |
Collapse
|
18
|
Abstract
Proteins are intimately involved in executing and controlling virtually all cellular processes. To understand the molecular mechanisms that underlie plant phenotypes, it is essential to investigate protein expression, interactions, and modifications, to name a few. The proteome is highly dynamic in time and space, and a plethora of protein modifications, protein interactions, and network constellations are at play under specific conditions and developmental stages. Analysis of proteomes aims to characterize the entire protein complement of a particular cell type, tissue, or organism-a challenging task, given the dynamic nature of the proteome. Modern mass spectrometry-based proteomics technology can be used to address this complexity at a system-wide scale by the global identification and quantification of thousands of proteins. In this review, we present current methods and technologies employed in mass spectrometry-based proteomics and provide examples of dynamic changes in the plant proteome elucidated by proteomic approaches.
Collapse
Affiliation(s)
- Julia Mergner
- Bavarian Center for Biomolecular Mass Spectrometry at Klinikum rechts der Isar (BayBioMS@MRI), Technical University of Munich, Munich, Germany;
- Chair of Proteomics and Bioanalytics, Technical University of Munich, Freising, Germany;
| | - Bernhard Kuster
- Chair of Proteomics and Bioanalytics, Technical University of Munich, Freising, Germany;
- Bavarian Center for Biomolecular Mass Spectrometry (BayBioMS), Technical University of Munich, Freising, Germany
| |
Collapse
|
19
|
Stefan T, Wu XN, Zhang Y, Fernie A, Schulze WX. Regulatory Modules of Metabolites and Protein Phosphorylation in Arabidopsis Genotypes With Altered Sucrose Allocation. FRONTIERS IN PLANT SCIENCE 2022; 13:891405. [PMID: 35665154 PMCID: PMC9161306 DOI: 10.3389/fpls.2022.891405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 04/11/2022] [Indexed: 06/15/2023]
Abstract
Multi-omics data sets are increasingly being used for the interpretation of cellular processes in response to environmental cues. Especially, the posttranslational modification of proteins by phosphorylation is an important regulatory process affecting protein activity and/or localization, which, in turn, can have effects on metabolic processes and metabolite levels. Despite this importance, relationships between protein phosphorylation status and metabolite abundance remain largely underexplored. Here, we used a phosphoproteomics-metabolomics data set collected at the end of day and night in shoots and roots of Arabidopsis to propose regulatory relationships between protein phosphorylation and accumulation or allocation of metabolites. For this purpose, we introduced a novel, robust co-expression measure suited to the structure of our data sets, and we used this measure to construct metabolite-phosphopeptide networks. These networks were compared between wild type and plants with perturbations in key processes of sugar metabolism, namely, sucrose export (sweet11/12 mutant) and starch synthesis (pgm mutant). The phosphopeptide-metabolite network turned out to be highly sensitive to perturbations in sugar metabolism. Specifically, KING1, the regulatory subunit of SnRK1, was identified as a primary candidate connecting protein phosphorylation status with metabolism. We additionally identified strong changes in the fatty acid network of the sweet11/12 mutant, potentially resulting from a combination of fatty acid signaling and metabolic overflow reactions in response to high internal sucrose concentrations. Our results further suggest novel protein-metabolite relationships as candidates for future targeted research.
Collapse
Affiliation(s)
- Thorsten Stefan
- Department of Plant Systems Biology, University of Hohenheim, Stuttgart, Germany
| | - Xu Na Wu
- College for Life Science, Yunnan University, Kunming, China
| | - Youjun Zhang
- Department of Central Metabolism, Max-Planck-Institute of Molecular Plant Physiology, Potsdam, Germany
- Center of Plant System Biology and Biotechnology, Plovdiv, Bulgaria
| | - Alisdair Fernie
- Department of Central Metabolism, Max-Planck-Institute of Molecular Plant Physiology, Potsdam, Germany
- Center of Plant System Biology and Biotechnology, Plovdiv, Bulgaria
| | - Waltraud X. Schulze
- Department of Plant Systems Biology, University of Hohenheim, Stuttgart, Germany
| |
Collapse
|
20
|
Wen S, Neuhaus HE, Cheng J, Bie Z. Contributions of sugar transporters to crop yield and fruit quality. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:2275-2289. [PMID: 35139196 DOI: 10.1093/jxb/erac043] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 02/04/2022] [Indexed: 05/09/2023]
Abstract
The flux, distribution, and storage of soluble sugars regulate crop yield in terms of starch, oil, protein, and total carbohydrates, and affect the quality of many horticultural products. Sugar transporters contribute to phloem loading and unloading. The mechanisms of phloem loading have been studied in detail, but the complex and diverse mechanisms of phloem unloading and sugar storage in sink organs are less explored. Unloading and subsequent transport mechanisms for carbohydrates vary in different sink organs. Analyzing the transport and storage mechanisms of carbohydrates in important storage organs, such as cereal seeds, fruits, or stems of sugarcane, will provide information for genetic improvements to increase crop yield and fruit quality. This review discusses current research progress on sugar transporters involved in carbohydrate unloading and storage in sink organs. The roles of sugar transporters in crop yield and the accumulation of sugars are also discussed to highlight their contribution to efficient breeding.
Collapse
Affiliation(s)
- Suying Wen
- College of Horticulture and Forestry Sciences, Huazhong Agricultural University and Key Laboratory of Horticultural Plant Biology, Ministry of Education, Wuhan, 430070, PR China
| | - H Ekkehard Neuhaus
- Plant Physiology, University of Kaiserslautern, D-67653 Kaiserslautern, Germany
| | - Jintao Cheng
- College of Horticulture and Forestry Sciences, Huazhong Agricultural University and Key Laboratory of Horticultural Plant Biology, Ministry of Education, Wuhan, 430070, PR China
| | - Zhilong Bie
- College of Horticulture and Forestry Sciences, Huazhong Agricultural University and Key Laboratory of Horticultural Plant Biology, Ministry of Education, Wuhan, 430070, PR China
| |
Collapse
|
21
|
Okooboh GO, Haferkamp I, Valifard M, Pommerrenig B, Kelly A, Feussner I, Neuhaus HE. Overexpression of the vacuolar sugar importer BvTST1 from sugar beet in Camelina improves seed properties and leads to altered root characteristics. PHYSIOLOGIA PLANTARUM 2022; 174:e13653. [PMID: 35187664 DOI: 10.1111/ppl.13653] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 02/11/2022] [Accepted: 02/16/2022] [Indexed: 06/14/2023]
Abstract
Overexpression of the vacuolar sugar transporter TST1 in Arabidopsis leads to higher seed lipid levels and higher total seed yield per plant. However, effects on fruit biomass have not been observed in crop plants like melon, strawberry, cotton, apple, or tomato with increased tonoplast sugar transporter (TST) activity. Thus, it was unclear whether overexpression of TST in selected crops might lead to increased fruit yield, as observed in Arabidopsis. Here, we report that constitutive overexpression of TST1 from sugar beet in the important crop species Camelina sativa (false flax) resembles the seed characteristics observed for Arabidopsis upon increased TST activity. These effects go along with a stimulation of sugar export from source leaves and not only provoke optimised seed properties like higher lipid levels and increased overall seed yield per plant, but also modify the root architecture of BvTST1 overexpressing Camelina lines. Such mutants grew longer primary roots and showed an increased number of lateral roots, especially when developed under conditions of limited water supply. These changes in root properties result in a stabilisation of total seed yield under drought conditions. In summary, we demonstrate that increased vacuolar TST activity may lead to optimised yield of an oil-seed crop species with high levels of healthy ω3 fatty acids in storage lipids. Moreover, since BvTST1 overexpressing Camelina mutants, in addition, exhibit optimised yield under limited water availability, we might devise a strategy to create crops with improved tolerance against drought, representing one of the most challenging environmental cues today and in future.
Collapse
Affiliation(s)
- Gloria O Okooboh
- Plant Physiology, Faculty of Biology, University of Kaiserslautern, Kaiserslautern
| | - Ilka Haferkamp
- Plant Physiology, Faculty of Biology, University of Kaiserslautern, Kaiserslautern
| | - Marzieh Valifard
- Plant Physiology, Faculty of Biology, University of Kaiserslautern, Kaiserslautern
| | - Benjamin Pommerrenig
- Plant Physiology, Faculty of Biology, University of Kaiserslautern, Kaiserslautern
| | - Amélie Kelly
- Plant Biochemistry, Albrecht-von-Haller-Institute for Plant Sciences and Göttingen Center for Molecular Biosciences (GZMB), University of Göttingen, Göttingen, Germany
| | - Ivo Feussner
- Plant Biochemistry, Albrecht-von-Haller-Institute for Plant Sciences and Göttingen Center for Molecular Biosciences (GZMB), University of Göttingen, Göttingen, Germany
| | | |
Collapse
|
22
|
Salvi P, Agarrwal R, Gandass N, Manna M, Kaur H, Deshmukh R. Sugar transporters and their molecular tradeoffs during abiotic stress responses in plants. PHYSIOLOGIA PLANTARUM 2022; 174:e13652. [PMID: 35174495 DOI: 10.1111/ppl.13652] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 01/25/2022] [Accepted: 02/14/2022] [Indexed: 06/14/2023]
Abstract
Sugars as photosynthates are well known as energy providers and as building blocks of various structural components of plant cells, tissues and organs. Additionally, as a part of various sugar signaling pathways, they interact with other cellular machinery and influence many important cellular decisions in plants. Sugar signaling is further reliant on the differential distribution of sugars throughout the plant system. The distribution of sugars from source to sink tissues or within organelles of plant cells is a highly regulated process facilitated by various sugar transporters located in plasma membranes and organelle membranes, respectively. Sugar distribution, as well as signaling, is impacted during unfavorable environments such as extreme temperatures, salt, nutrient scarcity, or drought. Here, we have discussed the mechanism of sugar transport via various types of sugar transporters as well as their differential response during environmental stress exposure. The functional involvement of sugar transporters in plant's abiotic stress tolerance is also discussed. Besides, we have also highlighted the challenges in engineering sugar transporter proteins as well as the undeciphered modules associated with sugar transporters in plants. Thus, this review provides a comprehensive discussion on the role and regulation of sugar transporters during abiotic stresses and enables us to target the candidate sugar transporter(s) for crop improvement to develop climate-resilient crops.
Collapse
Affiliation(s)
- Prafull Salvi
- Department of Agriculture Biotechnology, National Agri-Food Biotechnology Institute, Mohali, Punjab, India
| | | | - Nishu Gandass
- Department of Agriculture Biotechnology, National Agri-Food Biotechnology Institute, Mohali, Punjab, India
| | - Mrinalini Manna
- National Institute of Plant Genome Research, New Delhi, India
| | - Harmeet Kaur
- ICAR-National Institute for Plant Biotechnology, New Delhi, India
| | - Rupesh Deshmukh
- Department of Agriculture Biotechnology, National Agri-Food Biotechnology Institute, Mohali, Punjab, India
| |
Collapse
|
23
|
Wang C, Xiang Y, Qian D. Current progress in plant V-ATPase: From biochemical properties to physiological functions. JOURNAL OF PLANT PHYSIOLOGY 2021; 266:153525. [PMID: 34560396 DOI: 10.1016/j.jplph.2021.153525] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 09/12/2021] [Accepted: 09/12/2021] [Indexed: 06/13/2023]
Abstract
Vacuolar-type adenosine triphosphatase (V-ATPase, VHA) is a highly conserved, ATP-driven multisubunit proton pump that is widely distributed in all eukaryotic cells. V-ATPase consists of two domains formed by at least 13 different subunits, the membrane peripheral V1 domain responsible for ATP hydrolysis, and the membrane-integral V0 domain responsible for proton translocation. V-ATPase plays an essential role in energizing secondary active transport and is indispensable to plants. In addition to multiple stress responses, plant V-ATPase is also implicated in physiological processes such as growth, development, and morphogenesis. Based on the identification of distinct V-ATPase mutants and advances in luminal pH measurements in vivo, it has been revealed that this holoenzyme complex plays a pivotal role in pH homeostasis of the plant endomembrane system and endocytic and secretory trafficking. Here, we review recent progress in comprehending the biochemical properties and physiological functions of plant V-ATPase and explore the topics that require further elucidation.
Collapse
Affiliation(s)
- Chao Wang
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Yun Xiang
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Dong Qian
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China.
| |
Collapse
|
24
|
Holzheu P, Krebs M, Larasati C, Schumacher K, Kummer U. An integrative view on vacuolar pH homeostasis in Arabidopsis thaliana: Combining mathematical modeling and experimentation. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 106:1541-1556. [PMID: 33780094 DOI: 10.1111/tpj.15251] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 02/27/2021] [Accepted: 03/10/2021] [Indexed: 06/12/2023]
Abstract
The acidification of plant vacuoles is of great importance for various physiological processes, as a multitude of secondary active transporters utilize the proton gradient established across the vacuolar membrane. Vacuolar-type H+ -translocating ATPases and a pyrophosphatase are thought to enable vacuoles to accumulate protons against their electrochemical potential. However, recent studies pointed to the ATPase located at the trans-Golgi network/early endosome (TGN/EE) to contribute to vacuolar acidification in a manner not understood as of now. Here, we combined experimental data and computational modeling to test different hypotheses for vacuolar acidification mechanisms. For this, we analyzed different models with respect to their ability to describe existing experimental data. To better differentiate between alternative acidification mechanisms, new experimental data have been generated. By fitting the models to the experimental data, we were able to prioritize the hypothesis in which vesicular trafficking of Ca2+ /H+ -antiporters from the TGN/EE to the vacuolar membrane and the activity of ATP-dependent Ca2+ -pumps at the tonoplast might explain the residual acidification observed in Arabidopsis mutants defective in vacuolar proton pump activity. The presented modeling approach provides an integrative perspective on vacuolar pH regulation in Arabidopsis and holds potential to guide further experimental work.
Collapse
Affiliation(s)
- Pascal Holzheu
- Department of Modeling of Biological Processes, COS Heidelberg/Bioquant, Heidelberg University, Im Neuenheimer Feld 267, Heidelberg, 69120, Germany
| | - Melanie Krebs
- Department of Cell Biology, COS Heidelberg, Heidelberg University, Im Neuenheimer Feld 230, Heidelberg, 69120, Germany
| | - Catharina Larasati
- Department of Cell Biology, COS Heidelberg, Heidelberg University, Im Neuenheimer Feld 230, Heidelberg, 69120, Germany
| | - Karin Schumacher
- Department of Cell Biology, COS Heidelberg, Heidelberg University, Im Neuenheimer Feld 230, Heidelberg, 69120, Germany
| | - Ursula Kummer
- Department of Modeling of Biological Processes, COS Heidelberg/Bioquant, Heidelberg University, Im Neuenheimer Feld 267, Heidelberg, 69120, Germany
| |
Collapse
|
25
|
Kim M, Xi H, Park J. Genome-wide comparative analyses of GATA transcription factors among 19 Arabidopsis ecotype genomes: Intraspecific characteristics of GATA transcription factors. PLoS One 2021; 16:e0252181. [PMID: 34038437 PMCID: PMC8153473 DOI: 10.1371/journal.pone.0252181] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Accepted: 05/11/2021] [Indexed: 12/30/2022] Open
Abstract
GATA transcription factors (TFs) are widespread eukaryotic regulators whose DNA-binding domain is a class IV zinc finger motif (CX2CX17-20CX2C) followed by a basic region. Due to the low cost of genome sequencing, multiple strains of specific species have been sequenced: e.g., number of plant genomes in the Plant Genome Database (http://www.plantgenome.info/) is 2,174 originated from 713 plant species. Thus, we investigated GATA TFs of 19 Arabidopsis thaliana genome-widely to understand intraspecific features of Arabidopsis GATA TFs with the pipeline of GATA database (http://gata.genefamily.info/). Numbers of GATA genes and GATA TFs of each A. thaliana genome range from 29 to 30 and from 39 to 42, respectively. Four cases of different pattern of alternative splicing forms of GATA genes among 19 A. thaliana genomes are identified. 22 of 2,195 amino acids (1.002%) from the alignment of GATA domain amino acid sequences display variations across 19 ecotype genomes. In addition, maximally four different amino acid sequences per each GATA domain identified in this study indicate that these position-specific amino acid variations may invoke intraspecific functional variations. Among 15 functionally characterized GATA genes, only five GATA genes display variations of amino acids across ecotypes of A. thaliana, implying variations of their biological roles across natural isolates of A. thaliana. PCA results from 28 characteristics of GATA genes display the four groups, same to those defined by the number of GATA genes. Topologies of bootstrapped phylogenetic trees of Arabidopsis chloroplasts and common GATA genes are mostly incongruent. Moreover, no relationship between geographical distribution and their phylogenetic relationships was found. Our results present that intraspecific variations of GATA TFs in A. thaliana are conserved and evolutionarily neutral along with 19 ecotypes, which is congruent to the fact that GATA TFs are one of the main regulators for controlling essential mechanisms, such as seed germination and hypocotyl elongation.
Collapse
Affiliation(s)
- Mangi Kim
- InfoBoss Inc., Gangnam-gu, Seoul, Republic of Korea
- InfoBoss Research Center, Gangnam-gu, Seoul, Republic of Korea
| | - Hong Xi
- InfoBoss Inc., Gangnam-gu, Seoul, Republic of Korea
- InfoBoss Research Center, Gangnam-gu, Seoul, Republic of Korea
| | - Jongsun Park
- InfoBoss Inc., Gangnam-gu, Seoul, Republic of Korea
- InfoBoss Research Center, Gangnam-gu, Seoul, Republic of Korea
| |
Collapse
|
26
|
Targeted Quantification of Phosphorylation Sites Identifies STRIPAK-Dependent Phosphorylation of the Hippo Pathway-Related Kinase SmKIN3. mBio 2021; 12:mBio.00658-21. [PMID: 33947760 PMCID: PMC8262875 DOI: 10.1128/mbio.00658-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
We showed recently that the germinal center kinase III (GCKIII) SmKIN3 from the fungus Sordaria macrospora is involved in sexual development and hyphal septation. Our recent extensive global proteome and phosphoproteome analysis revealed that SmKIN3 is a target of the striatin-interacting phosphatase and kinase (STRIPAK) multisubunit complex. Here, using protein samples from the wild type and three STRIPAK mutants, we applied absolute quantification by parallel-reaction monitoring (PRM) to analyze phosphorylation site occupancy in SmKIN3 and other septation initiation network (SIN) components, such as CDC7 and DBF2, as well as BUD4, acting downstream of SIN. For SmKIN3, we show that phosphorylation of S668 and S686 is decreased in mutants lacking distinct subunits of STRIPAK, while a third phosphorylation site, S589, was not affected. We constructed SmKIN3 mutants carrying phospho-mimetic and phospho-deficient codons for phosphorylation sites S589, S668, and S686. Investigation of hyphae in a ΔSmkin3 strain complemented by the S668 and S686 mutants showed a hyper-septation phenotype, which was absent in the wild type, the ΔSmkin3 strain complemented with the wild-type gene, and the S589 mutant. Furthermore, localization studies with SmKIN3 phosphorylation variants and STRIPAK mutants showed that SmKIN3 preferentially localizes at the terminal septa, which is distinctly different from the localization of the wild-type strains. We conclude that STRIPAK-dependent phosphorylation of SmKIN3 has an impact on controlled septum formation and on the time-dependent localization of SmKIN3 on septa at the hyphal tip. Thus, STRIPAK seems to regulate SmKIN3, as well as DBF2 and BUD4 phosphorylation, affecting septum formation.
Collapse
|
27
|
Aluko OO, Li C, Wang Q, Liu H. Sucrose Utilization for Improved Crop Yields: A Review Article. Int J Mol Sci 2021; 22:4704. [PMID: 33946791 PMCID: PMC8124652 DOI: 10.3390/ijms22094704] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 04/14/2021] [Accepted: 04/17/2021] [Indexed: 12/13/2022] Open
Abstract
Photosynthetic carbon converted to sucrose is vital for plant growth. Sucrose acts as a signaling molecule and a primary energy source that coordinates the source and sink development. Alteration in source-sink balance halts the physiological and developmental processes of plants, since plant growth is mostly triggered when the primary assimilates in the source leaf balance with the metabolic needs of the heterotrophic sinks. To measure up with the sink organ's metabolic needs, the improvement of photosynthetic carbon to synthesis sucrose, its remobilization, and utilization at the sink level becomes imperative. However, environmental cues that influence sucrose balance within these plant organs, limiting positive yield prospects, have also been a rising issue over the past few decades. Thus, this review discusses strategies to improve photosynthetic carbon assimilation, the pathways actively involved in the transport of sucrose from source to sink organs, and their utilization at the sink organ. We further emphasize the impact of various environmental cues on sucrose transport and utilization, and the strategic yield improvement approaches under such conditions.
Collapse
Affiliation(s)
- Oluwaseun Olayemi Aluko
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao 266101, China; (O.O.A.); (C.L.)
- Graduate School of Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Chuanzong Li
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao 266101, China; (O.O.A.); (C.L.)
- Graduate School of Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Qian Wang
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao 266101, China; (O.O.A.); (C.L.)
| | - Haobao Liu
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao 266101, China; (O.O.A.); (C.L.)
| |
Collapse
|
28
|
Ghassemi-Golezani K, Abdoli S. Improving ATPase and PPase activities, nutrient uptake and growth of salt stressed ajowan plants by salicylic acid and iron-oxide nanoparticles. PLANT CELL REPORTS 2021; 40:559-573. [PMID: 33403499 DOI: 10.1007/s00299-020-02652-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 12/14/2020] [Indexed: 05/27/2023]
Abstract
Salicylic acid and iron-oxide nanoparticles alleviated salt toxicity and improved plant growth by stimulating the activities of H+-ATPase and H+-PPase and preventing nutrient imbalance. Two factorial experiments were undertaken in a greenhouse during 2018 and 2019, to evaluate the impacts of SA (1 mM) and nano-Fe2O3 (3 mM) sprays at 7 leaves and flowering stages on vacuolar H+-pumps, growth and essential oil of salt-subjected (0, 4, 8 and 12 dS m-1 NaCl) ajowan plants. Measurements of plant traits were started at about 12 days after the last foliar spray and continued up to maturity. The H+-ATPase and H+-PPase activities and root ATP content were enhanced under low salinity, but higher salinities reduced these parameters. Rising salinity enhanced Na uptake and translocation, endogenous SA and DPPH activity, while reduced K+/Na+ ratio and nutrients uptake, leading to a reduction in plant biomass. Treatment with SA, nano-Fe2O3 and their combination improved H+-pumps activities and ATP content in roots and leaves. The SA-related treatments caused the highest activities of H+-pumps in roots, but Fe-related treatments resulted in the highest activities of these pumps in leaves. Increasing H+-pumps activities reduced sodium uptake and translocation and enhanced nutrients uptake. Foliar treatments, especially SA + nano-Fe2O3 augmented endogenous SA, DPPH activity, and plant growth in salt-stressed plants. Essential oil contents of vegetative and inflorescence organs under severe salinity and seeds under moderate and severe salinities were enhanced. Maximum essential oil was obtained from seeds of SA + nano-Fe2O3-treated plants, which was strongly correlated with endogenous SA and DPPH. Nevertheless, the SA + nano-Fe2O3 was the best treatment for diminishing salt toxicity and improving ajowan plant growth and essential oil production.
Collapse
Affiliation(s)
- Kazem Ghassemi-Golezani
- Department of Plant Ecophysiology, Faculty of Agriculture, University of Tabriz, Tabriz, Iran.
| | - Soheila Abdoli
- Department of Plant Ecophysiology, Faculty of Agriculture, University of Tabriz, Tabriz, Iran
| |
Collapse
|
29
|
Wipf D, Pfister C, Mounier A, Leborgne-Castel N, Frommer WB, Courty PE. Identification of Putative Interactors of Arabidopsis Sugar Transporters. TRENDS IN PLANT SCIENCE 2021; 26:13-22. [PMID: 33071187 DOI: 10.1016/j.tplants.2020.09.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 07/24/2020] [Accepted: 09/08/2020] [Indexed: 06/11/2023]
Abstract
Hexoses and disaccharides are the key carbon sources for essentially all physiological processes across kingdoms. In plants, sucrose, and in some cases raffinose and stachyose, are transported from the site of synthesis in leaves, the sources, to all other organs that depend on import, the sinks. Sugars also play key roles in interactions with beneficial and pathogenic microbes. Sugar transport is mediated by transport proteins that fall into super-families. Sugar transporter (ST) activity is tuned at different levels, including transcriptional and posttranslational levels. Understanding the ST interactome has a great potential to uncover important players in biologically and physiologically relevant processes, including, but not limited to Arabidopsis thaliana. Here, we combined ST interactions and coexpression studies to identify potentially relevant interaction networks.
Collapse
Affiliation(s)
- Daniel Wipf
- Agroécologie, AgroSup Dijon, CNRS, Université de Bourgogne, INRAE, Université de Bourgogne Franche-Comté, 21000 Dijon, France
| | - Carole Pfister
- Agroécologie, AgroSup Dijon, CNRS, Université de Bourgogne, INRAE, Université de Bourgogne Franche-Comté, 21000 Dijon, France
| | - Arnaud Mounier
- Agroécologie, AgroSup Dijon, CNRS, Université de Bourgogne, INRAE, Université de Bourgogne Franche-Comté, 21000 Dijon, France
| | - Nathalie Leborgne-Castel
- Agroécologie, AgroSup Dijon, CNRS, Université de Bourgogne, INRAE, Université de Bourgogne Franche-Comté, 21000 Dijon, France
| | - Wolf B Frommer
- Institute for Molecular Physiology, Heinrich Heine University Düsseldorf, Düsseldorf 40225, Germany; Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Chikusa, Nagoya 464-8601, Japan
| | - Pierre-Emmanuel Courty
- Agroécologie, AgroSup Dijon, CNRS, Université de Bourgogne, INRAE, Université de Bourgogne Franche-Comté, 21000 Dijon, France.
| |
Collapse
|
30
|
Gao ZF, Shen Z, Chao Q, Yan Z, Ge XL, Lu T, Zheng H, Qian CR, Wang BC. Large-scale Proteomic and Phosphoproteomic Analyses of Maize Seedling Leaves During De-etiolation. GENOMICS PROTEOMICS & BIOINFORMATICS 2020; 18:397-414. [PMID: 33385613 PMCID: PMC8242269 DOI: 10.1016/j.gpb.2020.12.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 07/16/2019] [Accepted: 05/12/2020] [Indexed: 12/20/2022]
Abstract
De-etiolation consists of a series of developmental and physiological changes that a plant undergoes in response to light. During this process light, an important environmental signal, triggers the inhibition of mesocotyl elongation and the production of photosynthetically active chloroplasts, and etiolated leaves transition from the "sink" stage to the "source" stage. De-etiolation has been extensively studied in maize (Zea mays L.). However, little is known about how this transition is regulated. In this study, we described a quantitative proteomic and phosphoproteomic atlas of the de-etiolation process in maize. We identified 16,420 proteins in proteome, among which 14,168 proteins were quantified. In addition, 8746 phosphorylation sites within 3110 proteins were identified. From the combined proteomic and phosphoproteomic data, we identified a total of 17,436 proteins. Only 7.0% (998/14,168) of proteins significantly changed in abundance during de-etiolation. In contrast, 26.6% of phosphorylated proteins exhibited significant changes in phosphorylation level; these included proteins involved in gene expression and homeostatic pathways and rate-limiting enzymes involved in photosynthetic light and carbon reactions. Based on phosphoproteomic analysis, 34.0% (1057/3110) of phosphorylated proteins identified in this study contained more than 2 phosphorylation sites, and 37 proteins contained more than 16 phosphorylation sites, indicating that multi-phosphorylation is ubiquitous during the de-etiolation process. Our results suggest that plants might preferentially regulate the level of posttranslational modifications (PTMs) rather than protein abundance for adapting to changing environments. The study of PTMs could thus better reveal the regulation of de-etiolation.
Collapse
Affiliation(s)
- Zhi-Fang Gao
- Key Laboratory of Photobiology, CAS, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhuo Shen
- Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangdong Key Laboratory for New Technology Research of Vegetables, Guangzhou 510640, China
| | - Qing Chao
- Key Laboratory of Photobiology, CAS, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Zhen Yan
- Key Laboratory of Photobiology, CAS, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xuan-Liang Ge
- Institute of Crop Cultivation and Farming, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China
| | - Tiancong Lu
- Beijing ProteinWorld Biotech, Beijing 100012, China
| | - Haiyan Zheng
- Center for Advanced Biotechnology and Medicine, Biological Mass Spectrometry Facility, Rutgers University, Piscataway, NJ 08855, USA
| | - Chun-Rong Qian
- Institute of Crop Cultivation and Farming, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China.
| | - Bai-Chen Wang
- Key Laboratory of Photobiology, CAS, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
31
|
Ammonium Accumulation Caused by Reduced Tonoplast V-ATPase Activity in Arabidopsis thaliana. Int J Mol Sci 2020; 22:ijms22010002. [PMID: 33374906 PMCID: PMC7792577 DOI: 10.3390/ijms22010002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 12/09/2020] [Accepted: 12/10/2020] [Indexed: 01/06/2023] Open
Abstract
Plant vacuoles are unique compartments that play a critical role in plant growth and development. The vacuolar H+-ATPase (V-ATPase), together with the vacuolar H+-pyrophosphatase (V-PPase), generates the proton motive force that regulates multiple cell functions and impacts all aspects of plant life. We investigated the effect of V-ATPase activity in the vacuole on plant growth and development. We used an Arabidopsisthaliana (L.) Heynh. double mutant, vha-a2 vha-a3, which lacks two tonoplast-localized isoforms of the membrane-integral V-ATPase subunit VHA-a. The mutant is viable but exhibits impaired growth and leaf chlorosis. Nitrate assimilation led to excessive ammonium accumulation in the shoot and lower nitrogen uptake, which exacerbated growth retardation of vha-a2 vha-a3. Ion homeostasis was disturbed in plants with missing VHA-a2 and VHA-a3 genes, which might be related to limited growth. The reduced growth and excessive ammonium accumulation of the double mutant was alleviated by potassium supplementation. Our results demonstrate that plants lacking the two tonoplast-localized subunits of V-ATPase can be viable, although with defective growth caused by multiple factors, which can be alleviated by adding potassium. This study provided a new insight into the relationship between V-ATPase, growth, and ammonium accumulation, and revealed the role of potassium in mitigating ammonium toxicity.
Collapse
|
32
|
Kamal MM, Ishikawa S, Takahashi F, Suzuki K, Kamo M, Umezawa T, Shinozaki K, Kawamura Y, Uemura M. Large-Scale Phosphoproteomic Study of Arabidopsis Membrane Proteins Reveals Early Signaling Events in Response to Cold. Int J Mol Sci 2020; 21:E8631. [PMID: 33207747 PMCID: PMC7696906 DOI: 10.3390/ijms21228631] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 11/12/2020] [Accepted: 11/13/2020] [Indexed: 12/22/2022] Open
Abstract
Cold stress is one of the major factors limiting global crop production. For survival at low temperatures, plants need to sense temperature changes in the surrounding environment. How plants sense and respond to the earliest drop in temperature is still not clearly understood. The plasma membrane and its adjacent extracellular and cytoplasmic sites are the first checkpoints for sensing temperature changes and the subsequent events, such as signal generation and solute transport. To understand how plants respond to early cold exposure, we used a mass spectrometry-based phosphoproteomic method to study the temporal changes in protein phosphorylation events in Arabidopsis membranes during 5 to 60 min of cold exposure. The results revealed that brief cold exposures led to rapid phosphorylation changes in the proteins involved in cellular ion homeostasis, solute and protein transport, cytoskeleton organization, vesical trafficking, protein modification, and signal transduction processes. The phosphorylation motif and kinase-substrate network analysis also revealed that multiple protein kinases, including RLKs, MAPKs, CDPKs, and their substrates, could be involved in early cold signaling. Taken together, our results provide a first look at the cold-responsive phosphoproteome changes of Arabidopsis membrane proteins that can be a significant resource to understand how plants respond to an early temperature drop.
Collapse
Affiliation(s)
- Md Mostafa Kamal
- United Graduate School of Agricultural Sciences, Iwate University, Morioka 020-8550, Japan; (M.M.K.); (Y.K.)
| | - Shinnosuke Ishikawa
- Graduate School of Bio-Applications and Systems Engineering, Tokyo University of Agriculture and Technology, Koganei 184-8588, Japan; (S.I.); (T.U.)
| | - Fuminori Takahashi
- Gene Discovery Research Group, RIKEN Center for Sustainable Resource Science, 3-1-1 Koyadai, Tsukuba 305-0074, Japan; (F.T.); (K.S.)
| | - Ko Suzuki
- Department of Biochemistry, Iwate Medical University, Yahaba 028-3694, Japan; (K.S.); (M.K.)
| | - Masaharu Kamo
- Department of Biochemistry, Iwate Medical University, Yahaba 028-3694, Japan; (K.S.); (M.K.)
| | - Taishi Umezawa
- Graduate School of Bio-Applications and Systems Engineering, Tokyo University of Agriculture and Technology, Koganei 184-8588, Japan; (S.I.); (T.U.)
| | - Kazuo Shinozaki
- Gene Discovery Research Group, RIKEN Center for Sustainable Resource Science, 3-1-1 Koyadai, Tsukuba 305-0074, Japan; (F.T.); (K.S.)
| | - Yukio Kawamura
- United Graduate School of Agricultural Sciences, Iwate University, Morioka 020-8550, Japan; (M.M.K.); (Y.K.)
- Department of Plant-Bioscience, Faculty of Agriculture, Iwate University, Morioka 020-8550, Japan
| | - Matsuo Uemura
- United Graduate School of Agricultural Sciences, Iwate University, Morioka 020-8550, Japan; (M.M.K.); (Y.K.)
- Department of Plant-Bioscience, Faculty of Agriculture, Iwate University, Morioka 020-8550, Japan
| |
Collapse
|
33
|
Wang Z, Liang Y, Jin Y, Tong X, Wei X, Ma F, Ma B, Li M. Ectopic expression of apple hexose transporter MdHT2.2 reduced the salt tolerance of tomato seedlings with decreased ROS-scavenging ability. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 156:504-513. [PMID: 33049446 DOI: 10.1016/j.plaphy.2020.10.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 10/01/2020] [Indexed: 06/11/2023]
Abstract
Salt is one of the main stresses that limit plant growth, especially at the seedling stage, reducing crop production and severely impacting food security. However, the relationship between salt stress and sugar content regulated by sugar transporters remains unknown. Here, we investigated the salt tolerance of transgenic tomato seedlings ectopically expressing MdHT2.2, which is a fructose and glucose/H+ symporter located on the plasma membrane in apple. Although the contents of fructose, glucose and sucrose in the leaves of seedlings ectopically expressing MdHT2.2 obviously increased compared with those of WT seedlings, the transgenic seedlings were significantly less tolerance to salt stress. Under salt stress, the SlSOS1/2 and SlNHX1 genes were highly expressed, and the accumulation of Na+ was lower in the transgenic seedlings than in WT, however, ROS accumulated to a greater degree in the former, and the ROS-scavenging-related enzyme activities and AsA content were lower in the transgenic seedlings than WT. Taken together, these results indicated that the relatively low salt tolerance of the MdHT2.2 transgenic seedlings was related with the accumulation of ROS, which was caused by reduced ROS-scavenging ability. Our results offer proof that changes in sugar content caused by sugar transporters are related to salt tolerance, and provide new insight into the regulation of sugar content, quality improvement and stress tolerance.
Collapse
Affiliation(s)
- Zhengyang Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Shaanxi Key Laboratory of Apple, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Yonghui Liang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Shaanxi Key Laboratory of Apple, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Yuru Jin
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Shaanxi Key Laboratory of Apple, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Xiaolei Tong
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Shaanxi Key Laboratory of Apple, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Xiaoyu Wei
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Shaanxi Key Laboratory of Apple, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Fengwang Ma
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Shaanxi Key Laboratory of Apple, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Baiquan Ma
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Shaanxi Key Laboratory of Apple, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Mingjun Li
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Shaanxi Key Laboratory of Apple, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| |
Collapse
|
34
|
Li Y, Li X, Yang J, He Y. Natural antisense transcripts of MIR398 genes suppress microR398 processing and attenuate plant thermotolerance. Nat Commun 2020; 11:5351. [PMID: 33093449 PMCID: PMC7582911 DOI: 10.1038/s41467-020-19186-x] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 09/30/2020] [Indexed: 12/13/2022] Open
Abstract
MicroRNAs (miRNAs) and natural antisense transcripts (NATs) control many biological processes and have been broadly applied for genetic manipulation of eukaryotic gene expression. Still unclear, however, are whether and how NATs regulate miRNA production. Here, we report that the cis-NATs of MIR398 genes repress the processing of their pri-miRNAs. Through genome-wide analysis of RNA sequencing data, we identify cis-NATs of MIRNA genes in Arabidopsis and Brassica. In Arabidopsis, MIR398b and MIR398c are coexpressed in vascular tissues with their antisense genes NAT398b and NAT398c, respectively. Knock down of NAT398b and NAT398c promotes miR398 processing, resulting in stronger plant thermotolerance owing to silencing of miR398-targeted genes; in contrast, their overexpression activates NAT398b and NAT398c, causing poorer thermotolerance due to the upregulation of miR398-targeted genes. Unexpectedly, overexpression of MIR398b and MIR398c activates NAT398b and NAT398c. Taken together, these results suggest that NAT398b/c repress miR398 biogenesis and attenuate plant thermotolerance via a regulatory loop. MiRNAs and natural antisense transcripts can both regulate gene expression and plant development. Here, the authors show that cis-NATs to MIR398 repress processing of pri-miR398 and that cis-NAT expression is downregulated at high temperatures, contributing to miR398 mediated thermotolerance responses.
Collapse
Affiliation(s)
- Yajie Li
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, 200032, Shanghai, China.,University of the Chinese Academy of Sciences, 100049, Beijing, China
| | - Xiaorong Li
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, 200032, Shanghai, China.,University of the Chinese Academy of Sciences, 100049, Beijing, China
| | - Jun Yang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, 200032, Shanghai, China.
| | - Yuke He
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, 200032, Shanghai, China.
| |
Collapse
|
35
|
Xu H, Zou Q, Yang G, Jiang S, Fang H, Wang Y, Zhang J, Zhang Z, Wang N, Chen X. MdMYB6 regulates anthocyanin formation in apple both through direct inhibition of the biosynthesis pathway and through substrate removal. HORTICULTURE RESEARCH 2020; 7:72. [PMID: 32377362 PMCID: PMC7195469 DOI: 10.1038/s41438-020-0294-4] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Revised: 03/03/2020] [Accepted: 03/19/2020] [Indexed: 05/20/2023]
Abstract
Anthocyanin biosynthesis and sugar metabolism are important processes during plant growth, but the molecular interactions underlying these pathways are still unclear. In this work, we analyzed the anthocyanin and soluble sugar contents, as well as the transcript levels of transcription factors that are known to be related to the biosynthesis of anthocyanin in 'Hongcui 1' apple flesh during fruit development. Overexpression of MdMYB6 in red-fleshed calli was found to reduce anthocyanin content and result in downregulated expression of the MdANS and MdGSTF12 proteins. Yeast one-hybrid and electrophoretic mobility shift analyses showed that MdMYB6 could directly bind to the promoters of MdANS and MdGSTF12, indicating that MdMYB6 could inhibit anthocyanin biosynthesis by regulating MdANS and MdGSTF12. Overexpression of MdTMT1 in the Arabidopsis tmt1 mutant restored the glucose and fructose contents to the wild-type levels, while overexpression of MdTMT1 in red-fleshed calli increased the contents of glucose and fructose but reduced the contents of UDP-glucose, UDP-galactose, and anthocyanin. Using a GUS reporter system, yeast one-hybrid, chromatin immunoprecipitation-PCR and electrophoretic mobility shift analyses, we found that MdMYB6 could bind to the promoter of MdTMT1, resulting in increased promoter activity. Overexpression of MdMYB6 in calli overexpressing MdTMT1 increased the expression of MdTMT1, which led to reduced contents of UDP-glucose and UDP-galactose and decreased anthocyanin content compared to those of the calli that overexpressed MdTMT1. This finding suggested that MdMYB6 could also inhibit anthocyanin biosynthesis by regulating MdTMT1 to decrease the contents of UDP-glucose and UDP-galactose. Taken together, these results showed that MdMYB6 and MdTMT1 play key roles in both anthocyanin biosynthesis and sugar transport.
Collapse
Affiliation(s)
- Haifeng Xu
- College of Horticulture Science and Engineering, Shandong Agricultural University, 61 Daizong Road, Tai’an, 271018 China
- State Key Laboratory of Crop Biology, Shandong Agricultural University, 61 Daizong Road, Tai’an, 271018 China
| | - Qi Zou
- College of Horticulture Science and Engineering, Shandong Agricultural University, 61 Daizong Road, Tai’an, 271018 China
- State Key Laboratory of Crop Biology, Shandong Agricultural University, 61 Daizong Road, Tai’an, 271018 China
| | - Guanxian Yang
- College of Horticulture Science and Engineering, Shandong Agricultural University, 61 Daizong Road, Tai’an, 271018 China
- State Key Laboratory of Crop Biology, Shandong Agricultural University, 61 Daizong Road, Tai’an, 271018 China
| | - Shenghui Jiang
- College of Horticulture Science and Engineering, Shandong Agricultural University, 61 Daizong Road, Tai’an, 271018 China
- State Key Laboratory of Crop Biology, Shandong Agricultural University, 61 Daizong Road, Tai’an, 271018 China
| | - Hongcheng Fang
- College of Horticulture Science and Engineering, Shandong Agricultural University, 61 Daizong Road, Tai’an, 271018 China
- State Key Laboratory of Crop Biology, Shandong Agricultural University, 61 Daizong Road, Tai’an, 271018 China
| | - Yicheng Wang
- College of Horticulture Science and Engineering, Shandong Agricultural University, 61 Daizong Road, Tai’an, 271018 China
- State Key Laboratory of Crop Biology, Shandong Agricultural University, 61 Daizong Road, Tai’an, 271018 China
| | - Jing Zhang
- College of Horticulture Science and Engineering, Shandong Agricultural University, 61 Daizong Road, Tai’an, 271018 China
- State Key Laboratory of Crop Biology, Shandong Agricultural University, 61 Daizong Road, Tai’an, 271018 China
| | - Zongying Zhang
- College of Horticulture Science and Engineering, Shandong Agricultural University, 61 Daizong Road, Tai’an, 271018 China
- State Key Laboratory of Crop Biology, Shandong Agricultural University, 61 Daizong Road, Tai’an, 271018 China
| | - Nan Wang
- College of Horticulture Science and Engineering, Shandong Agricultural University, 61 Daizong Road, Tai’an, 271018 China
- State Key Laboratory of Crop Biology, Shandong Agricultural University, 61 Daizong Road, Tai’an, 271018 China
| | - Xuesen Chen
- College of Horticulture Science and Engineering, Shandong Agricultural University, 61 Daizong Road, Tai’an, 271018 China
- State Key Laboratory of Crop Biology, Shandong Agricultural University, 61 Daizong Road, Tai’an, 271018 China
| |
Collapse
|
36
|
Yang Y, Saand MA, Abdelaal WB, Zhang J, Wu Y, Li J, Fan H, Wang F. iTRAQ-based comparative proteomic analysis of two coconut varieties reveals aromatic coconut cold-sensitive in response to low temperature. J Proteomics 2020; 220:103766. [DOI: 10.1016/j.jprot.2020.103766] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 03/02/2020] [Accepted: 03/28/2020] [Indexed: 11/28/2022]
|
37
|
Tang RJ, Luan M, Wang C, Lhamo D, Yang Y, Zhao FG, Lan WZ, Fu AG, Luan S. Plant Membrane Transport Research in the Post-genomic Era. PLANT COMMUNICATIONS 2020; 1:100013. [PMID: 33404541 PMCID: PMC7747983 DOI: 10.1016/j.xplc.2019.100013] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 11/14/2019] [Accepted: 12/06/2019] [Indexed: 05/17/2023]
Abstract
Membrane transport processes are indispensable for many aspects of plant physiology including mineral nutrition, solute storage, cell metabolism, cell signaling, osmoregulation, cell growth, and stress responses. Completion of genome sequencing in diverse plant species and the development of multiple genomic tools have marked a new era in understanding plant membrane transport at the mechanistic level. Genes coding for a galaxy of pumps, channels, and carriers that facilitate various membrane transport processes have been identified while multiple approaches are developed to dissect the physiological roles as well as to define the transport capacities of these transport systems. Furthermore, signaling networks dictating the membrane transport processes are established to fully understand the regulatory mechanisms. Here, we review recent research progress in the discovery and characterization of the components in plant membrane transport that take advantage of plant genomic resources and other experimental tools. We also provide our perspectives for future studies in the field.
Collapse
Affiliation(s)
- Ren-Jie Tang
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA
| | - Mingda Luan
- College of Life Sciences, Northwest University, Xi'an 710069, China
| | - Chao Wang
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA
| | - Dhondup Lhamo
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA
| | - Yang Yang
- Nanjing University–Nanjing Forestry University Joint Institute for Plant Molecular Biology, College of Life Sciences, Nanjing University, Nanjing 210093, China
| | - Fu-Geng Zhao
- Nanjing University–Nanjing Forestry University Joint Institute for Plant Molecular Biology, College of Life Sciences, Nanjing University, Nanjing 210093, China
| | - Wen-Zhi Lan
- Nanjing University–Nanjing Forestry University Joint Institute for Plant Molecular Biology, College of Life Sciences, Nanjing University, Nanjing 210093, China
| | - Ai-Gen Fu
- College of Life Sciences, Northwest University, Xi'an 710069, China
| | - Sheng Luan
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA
- Corresponding author
| |
Collapse
|
38
|
Tai HH, Lagüe M, Thomson S, Aurousseau F, Neilson J, Murphy A, Bizimungu B, Davidson C, Deveaux V, Bègue Y, Wang HY, Xiong X, Jacobs JME. Tuber transcriptome profiling of eight potato cultivars with different cold-induced sweetening responses to cold storage. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 146:163-176. [PMID: 31756603 DOI: 10.1016/j.plaphy.2019.11.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 11/01/2019] [Accepted: 11/02/2019] [Indexed: 05/19/2023]
Abstract
Tubers are vegetative reproduction organs formed from underground extensions of the plant stem. Potato tubers are harvested and stored for months. Storage under cold temperatures of 2-4 °C is advantageous for supressing sprouting and diseases. However, development of reducing sugars can occur with cold storage through a process called cold-induced sweetening (CIS). CIS is undesirable as it leads to darkened color with fry processing. The purpose of the current study was to find differences in biological responses in eight cultivars with variation in CIS resistance. Transcriptome sequencing was done on tubers before and after cold storage and three approaches were taken for gene expression analysis: 1. Gene expression correlated with end-point glucose after cold storage, 2. Gene expression correlated with increased glucose after cold storage (after-before), and 3. Differential gene expression before and after cold storage. Cultivars with high CIS resistance (low glucose after cold) were found to increase expression of an invertase inhibitor gene and genes involved in DNA replication and repair after cold storage. The cultivars with low CIS resistance (high glucose after cold) showed increased expression of genes involved in abiotic stress response, gene expression, protein turnover and the mitochondria. There was a small number of genes with similar expression patterns for all cultivars including genes involved in cell wall strengthening and phospholipases. It is proposed that the pattern of gene expression is related to chilling-induced DNA damage repair and cold acclimation and that genetic variation in these processes are related to CIS.
Collapse
Affiliation(s)
- Helen H Tai
- Agriculture and Agri-Food Canada Fredericton Research and Development Centre, P. O. Box 20280, 850 Lincoln Rd, Fredericton, N. B, E3B 4Z7, Canada.
| | - Martin Lagüe
- Agriculture and Agri-Food Canada Fredericton Research and Development Centre, P. O. Box 20280, 850 Lincoln Rd, Fredericton, N. B, E3B 4Z7, Canada
| | - Susan Thomson
- The New Zealand Institute for Plant and Food Research Limited, Private Bag 4704, Christchurch, New Zealand
| | - Frédérique Aurousseau
- Sipre-Responsable Scientifique Création Variétale, Station de Recherche du Comité Nord, 76110, Bretteville du Grand Caux, France
| | - Jonathan Neilson
- Agriculture and Agri-Food Canada Fredericton Research and Development Centre, P. O. Box 20280, 850 Lincoln Rd, Fredericton, N. B, E3B 4Z7, Canada
| | - Agnes Murphy
- Agriculture and Agri-Food Canada Fredericton Research and Development Centre, P. O. Box 20280, 850 Lincoln Rd, Fredericton, N. B, E3B 4Z7, Canada
| | - Benoit Bizimungu
- Agriculture and Agri-Food Canada Fredericton Research and Development Centre, P. O. Box 20280, 850 Lincoln Rd, Fredericton, N. B, E3B 4Z7, Canada
| | - Charlotte Davidson
- Agriculture and Agri-Food Canada Fredericton Research and Development Centre, P. O. Box 20280, 850 Lincoln Rd, Fredericton, N. B, E3B 4Z7, Canada
| | - Virginie Deveaux
- Sipre-Responsable Scientifique Création Variétale, Station de Recherche du Comité Nord, 76110, Bretteville du Grand Caux, France
| | - Yves Bègue
- Sipre-Responsable Scientifique Création Variétale, Station de Recherche du Comité Nord, 76110, Bretteville du Grand Caux, France
| | - Hui Ying Wang
- College of Horticulture and Landscape, Hunan Agriculture Univ, Hunan, Changsha, 410128, China
| | - Xingyao Xiong
- College of Horticulture and Landscape, Hunan Agriculture Univ, Hunan, Changsha, 410128, China
| | - Jeanne M E Jacobs
- The New Zealand Institute for Plant and Food Research Limited, Private Bag 4704, Christchurch, New Zealand
| |
Collapse
|
39
|
Herrmann HA, Schwartz JM, Johnson GN. Metabolic acclimation-a key to enhancing photosynthesis in changing environments? JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:3043-3056. [PMID: 30997505 DOI: 10.1093/jxb/erz157] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 03/21/2019] [Indexed: 05/18/2023]
Abstract
Plants adjust their photosynthetic capacity in response to their environment in a way that optimizes their yield and fitness. There is growing evidence that this acclimation is a response to changes in the leaf metabolome, but the extent to which these are linked and how this is optimized remain poorly understood. Using as an example the metabolic perturbations occurring in response to cold, we define the different stages required for acclimation, discuss the evidence for a metabolic temperature sensor, and suggest further work towards designing climate-smart crops. In particular, we discuss how constraint-based and kinetic metabolic modelling approaches can be used to generate targeted hypotheses about relevant pathways, and argue that a stronger integration of experimental and in silico studies will help us to understand the tightly regulated interplay of carbon partitioning and resource allocation required for photosynthetic acclimation to different environmental conditions.
Collapse
Affiliation(s)
- Helena A Herrmann
- School of Earth and Environmental Sciences, Faculty of Science and Engineering, University of Manchester, Manchester, UK
- Division of Evolution & Genomic Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Jean-Marc Schwartz
- Division of Evolution & Genomic Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Giles N Johnson
- School of Earth and Environmental Sciences, Faculty of Science and Engineering, University of Manchester, Manchester, UK
| |
Collapse
|
40
|
Liu CJ, Zhao Y, Zhang K. Cytokinin Transporters: Multisite Players in Cytokinin Homeostasis and Signal Distribution. FRONTIERS IN PLANT SCIENCE 2019; 10:693. [PMID: 31214217 PMCID: PMC6555093 DOI: 10.3389/fpls.2019.00693] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Accepted: 05/08/2019] [Indexed: 05/04/2023]
Abstract
Cytokinins (CKs) are a group of mobile adenine derivatives that act as chemical signals regulating a variety of biological processes implicated in plant development and stress responses. Their synthesis, homeostasis, and signaling perception evoke complicated intracellular traffic, intercellular movement, and in short- and long-distance translocation. Over nearly two decades, subsets of membrane transporters have been recognized and implicated in the transport of CKs as well as the related adenylates. In this review, we aim to recapitulate the key progresses in exploration of the transporter proteins involved in cytokinin traffic and translocation, discuss their functional implications in the cytokinin-mediated paracrine and long-distance communication, and highlight some knowledge gaps and open issues toward comprehensively understanding the molecular mechanism of membrane transporters in controlling spatiotemporal distribution of cytokinin species.
Collapse
Affiliation(s)
- Chang-Jun Liu
- Department of Biology, Brookhaven National Laboratory, Upton, NY, United States
| | - Yunjun Zhao
- Department of Biology, Brookhaven National Laboratory, Upton, NY, United States
| | - Kewei Zhang
- Department of Biology, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, China
| |
Collapse
|
41
|
Kuang L, Chen S, Guo Y, Ma H. Quantitative Proteome Analysis Reveals Changes in the Protein Landscape During Grape Berry Development With a Focus on Vacuolar Transport Proteins. FRONTIERS IN PLANT SCIENCE 2019; 10:641. [PMID: 31156689 PMCID: PMC6530609 DOI: 10.3389/fpls.2019.00641] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 04/29/2019] [Indexed: 05/08/2023]
Abstract
The vacuole plays a central role in fruit growth and quality formation, yet its proteomic landscape is largely unknown. In the present study, a protocol for isolating intact vacuoles from grape flesh tissue was successfully established. Quantitative proteome analysis identified 2533 proteins from five sampling dates along Cabernet Sauvignon berry development from stage I to III; among them, 1443 proteins were identified on all five sampling dates in at least two biological replicates per sample and were designated core proteome, and 1820 were recruited as differentially abundant proteins (DAPs) by sequential pairwise comparisons using arbitrary fold change of >1.5 and P < 0.05. Metabolism consistently constituted the largest category of identified proteins for both core proteome and DAPs, together with a consistently high proportion of protein-fate category proteins, indicating that the classic lytic functions of vegetative cell vacuoles are maintained throughout berry development; accumulation of metabolites involved in high sugar and other berry qualities in the late developmental stage added to the conventional lytic role of the flesh cell vacuoles. Overall increases in abundance of the DAPs were seen in the transporter proteins, membrane fusion/vesicle trafficking, and protein-fate categories, and decreased abundance was seen for DAPs in the stress, energy and cytoskeleton categories as berry development progressed. A very pronounced proteomic change was revealed between late stage I and mid stage II, with 915 increased and 114 decreased DAPs, demonstrating a significant surge of the vacuolar proteome underlying the rather static phenotypical and physiological phase. We identified 161 transport proteins with differential abundance, including proton pumps, aquaporins, sugar transporters, ATP-binding cassette transporters and ion transport proteins, together with organic compound transport proteins, the highest number and variety of berry tonoplast transporters found in grape proteome efforts to date. We further found a pre-positive increment of 96 transport proteins from the middle of stage II, before the berry undergoes its dramatic physiological changes at and following véraison. Our results are the first to describe the proteome of a vacuole-enriched preparation, toward understanding the functions of the largest compartment in berry cells during grape growth and ripening.
Collapse
Affiliation(s)
- Liuqing Kuang
- Department of Fruit Tree Sciences, College of Horticulture, China Agricultural University, Beijing, China
| | - Shangwu Chen
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Yan Guo
- College of Biological Sciences, China Agricultural University, Beijing, China
| | - Huiqin Ma
- Department of Fruit Tree Sciences, College of Horticulture, China Agricultural University, Beijing, China
| |
Collapse
|
42
|
Ma QJ, Sun MH, Kang H, Lu J, You CX, Hao YJ. A CIPK protein kinase targets sucrose transporter MdSUT2.2 at Ser 254 for phosphorylation to enhance salt tolerance. PLANT, CELL & ENVIRONMENT 2019; 42:918-930. [PMID: 29791976 DOI: 10.1111/pce.13349] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Revised: 05/17/2018] [Accepted: 05/17/2018] [Indexed: 05/18/2023]
Abstract
Soil salinity is one of the major abiotic stressors that negatively affect crop growth and yield. Salt stress can regulate antioxidants and the accumulation of osmoprotectants. In the study, a sucrose transporter MdSUT2.2 was identified in apple. Overexpression of MdSUT2.2 gene increased salt tolerance in the transgenic apple, compared with the WT control "Gala." In addition, it was found that protein MdSUT2.2 was phosphorylated at Ser254 site in response to salt. A DUAL membrane yeast hybridization system through an apple cDNA library demonstrated that a protein kinase MdCIPK13 interacted with MdSUT2.2. A series of transgenic analysis in apple calli showed that MdCIPK13 was required for the salt-induced phosphorylation of MdSUT2.2 protein and enhanced its stability and transport activity. Finally, it was found that MdCIPK13 improved salt resistance in an MdSUT2.2-dependent manner. These findings had enriched our understanding of the molecular mechanisms underlying abiotic stress.
Collapse
Affiliation(s)
- Qi-Jun Ma
- National Key Laboratory of Crop Biology, MOA Key Laboratory of Horticultural Crop Biology and Germplasm Innovation in Huanghuai Region, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, Shandong, China
| | - Mei-Hong Sun
- National Key Laboratory of Crop Biology, MOA Key Laboratory of Horticultural Crop Biology and Germplasm Innovation in Huanghuai Region, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, Shandong, China
| | - Hui Kang
- National Key Laboratory of Crop Biology, MOA Key Laboratory of Horticultural Crop Biology and Germplasm Innovation in Huanghuai Region, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, Shandong, China
| | - Jing Lu
- National Key Laboratory of Crop Biology, MOA Key Laboratory of Horticultural Crop Biology and Germplasm Innovation in Huanghuai Region, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, Shandong, China
| | - Chun-Xiang You
- National Key Laboratory of Crop Biology, MOA Key Laboratory of Horticultural Crop Biology and Germplasm Innovation in Huanghuai Region, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, Shandong, China
| | - Yu-Jin Hao
- National Key Laboratory of Crop Biology, MOA Key Laboratory of Horticultural Crop Biology and Germplasm Innovation in Huanghuai Region, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, Shandong, China
| |
Collapse
|
43
|
Kerbler SM, Taylor NL, Millar AH. Cold sensitivity of mitochondrial ATP synthase restricts oxidative phosphorylation in Arabidopsis thaliana. THE NEW PHYTOLOGIST 2019; 221:1776-1788. [PMID: 30281799 DOI: 10.1111/nph.15509] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Accepted: 09/20/2018] [Indexed: 05/03/2023]
Abstract
The combined action of the electron transport chain (ETC) and ATP synthase is essential in determining energy efficiency in plants, and so is important for cellular biosynthesis, growth and development. Owing to the sessile nature of plants, mitochondria must operate over a wide temperature range in the environment, necessitating a broad temperature tolerance of their biochemical reactions. We investigated the temperature response of mitochondrial respiratory processes in isolated mitochondria and intact plants of Arabidopsis thaliana and considered the effect of instantaneous responses to temperature and acclimation responses to low temperatures. We show that at 4°C the plant mitochondrial ATP synthase is differentially inhibited compared with other elements of the respiratory pathway, leading to decreased ADP : oxygen ratios and a limitation to the rate of ATP synthesis. This effect persists in vivo and cannot be overcome by cold-temperature acclimation of plants. This mechanism adds a new element to the respiratory acclimation model and provides a direct means of temperature perception by plant mitochondria. This also provides an alternative explanation for non-phosphorylating ETC bypass mechanisms, like the alternative oxidase to maintain respiratory rates, albeit at lower ATP synthesis efficiency, in response to the sensitivity of ATP synthase to the prevailing temperature.
Collapse
Affiliation(s)
- Sandra M Kerbler
- Australian Research Council Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, Crawley, WA, 6009, Australia
| | - Nicolas L Taylor
- Australian Research Council Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, Crawley, WA, 6009, Australia
- The Institute of Agriculture, The University of Western Australia, Crawley, WA, 6009, Australia
| | - A Harvey Millar
- Australian Research Council Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, Crawley, WA, 6009, Australia
| |
Collapse
|
44
|
Patir-Nebioglu MG, Andrés Z, Krebs M, Fink F, Drzewicka K, Stankovic-Valentin N, Segami S, Schuck S, Büttner M, Hell R, Maeshima M, Melchior F, Schumacher K. Pyrophosphate modulates plant stress responses via SUMOylation. eLife 2019; 8:44213. [PMID: 30785397 PMCID: PMC6382351 DOI: 10.7554/elife.44213] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Accepted: 02/05/2019] [Indexed: 01/11/2023] Open
Abstract
Pyrophosphate (PPi), a byproduct of macromolecule biosynthesis is maintained at low levels by soluble inorganic pyrophosphatases (sPPase) found in all eukaryotes. In plants, H+-pumping pyrophosphatases (H+-PPase) convert the substantial energy present in PPi into an electrochemical gradient. We show here, that both cold- and heat stress sensitivity of fugu5 mutants lacking the major H+-PPase isoform AVP1 is correlated with reduced SUMOylation. In addition, we show that increased PPi concentrations interfere with SUMOylation in yeast and we provide evidence that SUMO activating E1-enzymes are inhibited by micromolar concentrations of PPi in a non-competitive manner. Taken together, our results do not only provide a mechanistic explanation for the beneficial effects of AVP1 overexpression in plants but they also highlight PPi as an important integrator of metabolism and stress tolerance.
Collapse
Affiliation(s)
- M Görkem Patir-Nebioglu
- Department Cell Biology, Centre for Organismal Studies (COS), Heidelberg University, Heidelberg, Germany
| | - Zaida Andrés
- Department Cell Biology, Centre for Organismal Studies (COS), Heidelberg University, Heidelberg, Germany
| | - Melanie Krebs
- Department Cell Biology, Centre for Organismal Studies (COS), Heidelberg University, Heidelberg, Germany
| | - Fabian Fink
- Department Cell Biology, Centre for Organismal Studies (COS), Heidelberg University, Heidelberg, Germany
| | - Katarzyna Drzewicka
- Center for Molecular Biology of Heidelberg University (ZMBH) and DKFZ - ZMBH Alliance, Heidelberg, Germany
| | - Nicolas Stankovic-Valentin
- Center for Molecular Biology of Heidelberg University (ZMBH) and DKFZ - ZMBH Alliance, Heidelberg, Germany
| | - Shoji Segami
- Laboratory of Cell Dynamics, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Sebastian Schuck
- Center for Molecular Biology of Heidelberg University (ZMBH) and DKFZ - ZMBH Alliance, Heidelberg, Germany
| | - Michael Büttner
- Metabolomics Core Technology Platform, Centre for Organismal Studies (COS), Heidelberg University, Heidelberg, Germany
| | - Rüdiger Hell
- Metabolomics Core Technology Platform, Centre for Organismal Studies (COS), Heidelberg University, Heidelberg, Germany
| | - Masayoshi Maeshima
- Laboratory of Cell Dynamics, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Frauke Melchior
- Center for Molecular Biology of Heidelberg University (ZMBH) and DKFZ - ZMBH Alliance, Heidelberg, Germany
| | - Karin Schumacher
- Department Cell Biology, Centre for Organismal Studies (COS), Heidelberg University, Heidelberg, Germany
| |
Collapse
|
45
|
Zeng X, Xu Y, Jiang J, Zhang F, Ma L, Wu D, Wang Y, Sun W. iTRAQ-Based Comparative Proteomic Analysis of the Roots of TWO Winter Turnip Rapes ( Brassica rapa L.) with Different Freezing-Tolerance. Int J Mol Sci 2018; 19:E4077. [PMID: 30562938 PMCID: PMC6321220 DOI: 10.3390/ijms19124077] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 12/13/2018] [Accepted: 12/14/2018] [Indexed: 01/08/2023] Open
Abstract
The freezing tolerance of roots is crucial for winter turnip rape (Brassica rapa L.) survival in the winter in Northwest China. Cold acclimation (CA) can alleviate the root damage caused by freezing stress. To acknowledge the molecular mechanisms of freezing tolerance in winter turnip rape, two Brassica rapa genotypes, freezing stressed after the induction of cold acclimation, were used to compare the proteomic profiles of roots by isobaric tags for relative and absolute quantification (iTRAQ). Under freezing stress (-4 °C) for 8 h, 139 and 96 differentially abundant proteins (DAPs) were identified in the roots of "Longyou7" (freezing-tolerant) and "Tianyou4" (freezing-sensitive), respectively. Among these DAPs, 91 and 48 proteins were up- and down-accumulated in "Longyou7", respectively, and 46 and 50 proteins were up- and down-accumulated in "Tianyou4", respectively. Under freezing stress, 174 DAPs of two varieties were identified, including 9 proteins related to ribosome, 19 DAPs related to the biosynthesis of secondary metabolites (e.g., phenylpropanoid and the lignin pathway), and 22 down-accumulated DAPs enriched in oxidative phosphorylation, the pentose phosphate pathway, fructose and mannose metabolism, alpha-linolenic acid metabolism, carbon fixation in photosynthetic organisms, ascorbate and aldarate metabolism. The expressional pattern of the genes encoding the 15 significant DAPs were consistent with the iTRAQ data. This work indicates that protein biosynthesis, lignin synthesis, the reduction of energy consumption and a higher linolenic acid content contribute to the freezing tolerance of winter turnip rape. Functional analyses of these DAPs would be helpful in dissecting the molecular mechanisms of the stress responses in B. rapa.
Collapse
Affiliation(s)
- Xiucun Zeng
- College of Agronomy and Biotechnology/Key Laboratory of Hexi Corridor Resources Utilization of Gansu, Hexi University, Zhangye 734000, China.
| | - Yaozhao Xu
- College of Agronomy and Biotechnology/Key Laboratory of Hexi Corridor Resources Utilization of Gansu, Hexi University, Zhangye 734000, China.
- College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China.
| | - Jinjin Jiang
- Jiangsu Provincial Key Laboratory of Crop Genetics and Physiology, Yangzhou University, Yangzhou 225009, China.
| | - Fenqin Zhang
- College of Agronomy and Biotechnology/Key Laboratory of Hexi Corridor Resources Utilization of Gansu, Hexi University, Zhangye 734000, China.
| | - Li Ma
- College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China.
| | - Dewei Wu
- Jiangsu Provincial Key Laboratory of Crop Genetics and Physiology, Yangzhou University, Yangzhou 225009, China.
| | - Youping Wang
- Jiangsu Provincial Key Laboratory of Crop Genetics and Physiology, Yangzhou University, Yangzhou 225009, China.
| | - Wancang Sun
- College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China.
| |
Collapse
|
46
|
Arsova B, Watt M, Usadel B. Monitoring of Plant Protein Post-translational Modifications Using Targeted Proteomics. FRONTIERS IN PLANT SCIENCE 2018; 9:1168. [PMID: 30174677 PMCID: PMC6107839 DOI: 10.3389/fpls.2018.01168] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 07/23/2018] [Indexed: 05/19/2023]
Abstract
Protein post-translational modifications (PTMs) are among the fastest and earliest of plant responses to changes in the environment, making the mechanisms and dynamics of PTMs an important area of plant science. One of the most studied PTMs is protein phosphorylation. This review summarizes the use of targeted proteomics for the elucidation of the biological functioning of plant PTMs, and focuses primarily on phosphorylation. Since phosphorylated peptides have a low abundance, usually complex enrichment protocols are required for their research. Initial identification is usually performed with discovery phosphoproteomics, using high sensitivity mass spectrometers, where as many phosphopeptides are measured as possible. Once a PTM site is identified, biological characterization can be addressed with targeted proteomics. In targeted proteomics, Selected/Multiple Reaction Monitoring (S/MRM) is traditionally coupled to simple, standard protein digestion protocols, often omitting the enrichment step, and relying on triple-quadruple mass spectrometer. The use of synthetic peptides as internal standards allows accurate identification, avoiding cross-reactivity typical for some antibody based approaches. Importantly, internal standards allow absolute peptide quantitation, reported down to 0.1 femtomoles, also useful for determination of phospho-site occupancy. S/MRM is advantageous in situations where monitoring and diagnostics of peptide PTM status is needed for many samples, as it has faster sample processing times, higher throughput than other approaches, and excellent quantitation and reproducibility. Furthermore, the number of publicly available data-bases with plant PTM discovery data is growing, facilitating selection of modified peptides and design of targeted proteomics workflows. Recent instrument developments result in faster scanning times, inclusion of ion-trap instruments leading to parallel reaction monitoring- which further facilitates S/MRM experimental design. Finally, recent combination of data independent and data dependent spectra acquisition means that in addition to anticipated targeted data, spectra can now be queried for unanticipated information. The potential for future applications in plant biology is outlined.
Collapse
Affiliation(s)
- Borjana Arsova
- Institut für Bio- und Geowissenschaften, IBG-2–Plant Sciences, Forschungszentrum Jülich, Jülich, Germany
| | - Michelle Watt
- Institut für Bio- und Geowissenschaften, IBG-2–Plant Sciences, Forschungszentrum Jülich, Jülich, Germany
| | - Björn Usadel
- Institut für Bio- und Geowissenschaften, IBG-2–Plant Sciences, Forschungszentrum Jülich, Jülich, Germany
- IBMG: Institute for Biology I, RWTH Aachen University, Aachen, Germany
| |
Collapse
|
47
|
Abstract
Among targeted proteomic techniques, AQUA-MRM is considered as one of the most reliable for accurate protein quantitation. This method displays high sensitivity, specificity, and reproducibility compared to many common biochemical techniques by coupling the use of unique, heavy-labeled peptide standards and triple-quadrupole mass spectrometry. However, there are several important steps that are required for successful development and validation of a robust AQUA-MRM assay. The following protocol outlines and details the key steps necessary for plant sample preparation as well as AQUA-MRM development and validation, specifically for absolute quantitation of plant proteins in vivo. © 2018 by John Wiley & Sons, Inc.
Collapse
Affiliation(s)
- Nagib Ahsan
- Division of Biology and Medicine, Brown University, Providence, Rhode Island.,Center for Cancer Research Development, Proteomics Core Facility, Rhode Island Hospital, Providence, Rhode Island
| | - Rashaun S Wilson
- Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut
| | - Jay J Thelen
- Department of Biochemistry, University of Missouri, Christopher S. Bond Life Sciences Center, Columbia, Missouri
| |
Collapse
|
48
|
Pommerrenig B, Ludewig F, Cvetkovic J, Trentmann O, Klemens PAW, Neuhaus HE. In Concert: Orchestrated Changes in Carbohydrate Homeostasis Are Critical for Plant Abiotic Stress Tolerance. PLANT & CELL PHYSIOLOGY 2018; 59:1290-1299. [PMID: 29444312 DOI: 10.1093/pcp/pcy037] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Indexed: 06/08/2023]
Abstract
The sessile lifestyle of higher plants is accompanied by their remarkable ability to tolerate unfavorable environmental conditions. This is because, during evolution, plants developed a sophisticated repertoire of molecular and metabolic reactions to cope with changing biotic and abiotic challenges. In particular, the abiotic factors light intensity and ambient temperature are characterized by altering their amplitude within comparably short periods of time and are causative for onset of dynamic plant responses. These rapid responses in plants are also classified as 'acclimation reactions' which differ, due to their reversibility and duration, from non-reversible 'adaptation reactions'. In this review, we demonstrate the remarkable importance of stress-induced changes in carbohydrate homeostasis of plants exposed to high light or low temperatures. These changes represent a co-ordinated process comprising modifications of (i) the concentrations of selected sugars; (ii) starch turnover; (iii) intracellular sugar compartmentation; and (iv) corresponding gene expression patterns. The critical importance of these individual processes has been underlined in the recent past by the analyses of a large number of mutant plants. The outcome of these analyses raised our understanding of acclimation processes in plants per se but might even become instrumental to develop new concepts for directed breeding approaches with the aim to increase abiotic stress tolerance of crop species, which in most cases have high stress sensitivity. The latter direction of plant research is of special importance since abiotic stress stimuli strongly impact on crop productivity and are expected to become even more pronounced because of human activities which alter environmental conditions rapidly.
Collapse
Affiliation(s)
- Benjamin Pommerrenig
- University of Kaiserslautern, Plant Physiology, Erwin-Schrödinger-Str, Kaiserslautern, Germany
| | - Frank Ludewig
- Department of Biochemistry, Friedrich-Alexander University Erlangen-Nuremberg, Staudtstr. 5, Erlangen, Germany
| | - Jelena Cvetkovic
- University of Kaiserslautern, Plant Physiology, Erwin-Schrödinger-Str, Kaiserslautern, Germany
| | - Oliver Trentmann
- University of Kaiserslautern, Plant Physiology, Erwin-Schrödinger-Str, Kaiserslautern, Germany
| | - Patrick A W Klemens
- University of Kaiserslautern, Plant Physiology, Erwin-Schrödinger-Str, Kaiserslautern, Germany
| | - H Ekkehard Neuhaus
- University of Kaiserslautern, Plant Physiology, Erwin-Schrödinger-Str, Kaiserslautern, Germany
| |
Collapse
|
49
|
Wang L, Yao L, Hao X, Li N, Qian W, Yue C, Ding C, Zeng J, Yang Y, Wang X. Tea plant SWEET transporters: expression profiling, sugar transport, and the involvement of CsSWEET16 in modifying cold tolerance in Arabidopsis. PLANT MOLECULAR BIOLOGY 2018; 96:577-592. [PMID: 29616437 DOI: 10.1007/s11103-018-0716-y] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Accepted: 03/06/2018] [Indexed: 05/18/2023]
Abstract
Thirteen SWEET transporters were identified in Camellia sinensis and the cold-suppression gene CsSWEET16 contributed to sugar compartmentation across the vacuole and function in modifying cold tolerance in Arabidopsis. The sugars will eventually be exported transporters (SWEET) family of sugar transporters in plants is a recently identified protein family of sugar uniporters that contain seven transmembrane helices harbouring two MtN3 motifs. SWEETs play important roles in various biological processes, including plant responses to environmental stimuli. In this study, 13 SWEET transporters were identified in Camellia sinensis and were divided into four clades. Transcript abundances of CsSWEET genes were detected in various tissues. CsSWEET1a/1b/2a/2b/2c/3/9b/16/17 were expressed in all of the selected tissues, whereas the expression of CsSWEET5/7/9a/15 was not detected in some tissues, including those of mature leaves. Expression analysis of nine CsSWEET genes in leaves in response to abiotic stresses, natural cold acclimation and Colletotrichum camelliae infection revealed that eight CsSWEET genes responded to abiotic stress, while CsSWEET3 responded to C. camelliae infection. Functional analysis of 13 CsSWEET activities in yeast revealed that CsSWEET1a/1b/7/17 exhibit transport activity for glucose analogues and other types of hexose molecules. Further characterization of the cold-suppression gene CsSWEET16 revealed that this gene is localized in the vacuolar membrane. CsSWEET16 contributed to sugar compartmentation across the vacuole and function in modifying cold tolerance in Arabidopsis. Together, these findings demonstrate that CsSWEET genes play important roles in the response to abiotic and biotic stresses in tea plants and provide insights into the characteristics of SWEET genes in tea plants, which could serve as the basis for further functional identification of such genes.
Collapse
Affiliation(s)
- Lu Wang
- National Center for Tea Plant Improvement, Tea Research Institute, Chinese Academy of Agricultural Sciences, 9th South of Meiling Road, Hangzhou, 310008, China
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Hangzhou, 310008, China
| | - Lina Yao
- National Center for Tea Plant Improvement, Tea Research Institute, Chinese Academy of Agricultural Sciences, 9th South of Meiling Road, Hangzhou, 310008, China
| | - Xinyuan Hao
- National Center for Tea Plant Improvement, Tea Research Institute, Chinese Academy of Agricultural Sciences, 9th South of Meiling Road, Hangzhou, 310008, China
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Hangzhou, 310008, China
| | - Nana Li
- National Center for Tea Plant Improvement, Tea Research Institute, Chinese Academy of Agricultural Sciences, 9th South of Meiling Road, Hangzhou, 310008, China
| | - Wenjun Qian
- National Center for Tea Plant Improvement, Tea Research Institute, Chinese Academy of Agricultural Sciences, 9th South of Meiling Road, Hangzhou, 310008, China
| | - Chuan Yue
- National Center for Tea Plant Improvement, Tea Research Institute, Chinese Academy of Agricultural Sciences, 9th South of Meiling Road, Hangzhou, 310008, China
| | - Changqing Ding
- National Center for Tea Plant Improvement, Tea Research Institute, Chinese Academy of Agricultural Sciences, 9th South of Meiling Road, Hangzhou, 310008, China
| | - Jianming Zeng
- National Center for Tea Plant Improvement, Tea Research Institute, Chinese Academy of Agricultural Sciences, 9th South of Meiling Road, Hangzhou, 310008, China
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Hangzhou, 310008, China
| | - Yajun Yang
- National Center for Tea Plant Improvement, Tea Research Institute, Chinese Academy of Agricultural Sciences, 9th South of Meiling Road, Hangzhou, 310008, China.
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Hangzhou, 310008, China.
| | - Xinchao Wang
- National Center for Tea Plant Improvement, Tea Research Institute, Chinese Academy of Agricultural Sciences, 9th South of Meiling Road, Hangzhou, 310008, China.
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Hangzhou, 310008, China.
| |
Collapse
|
50
|
Frei B, Eisenach C, Martinoia E, Hussein S, Chen XZ, Arrivault S, Neuhaus HE. Purification and functional characterization of the vacuolar malate transporter tDT from Arabidopsis. J Biol Chem 2018; 293:4180-4190. [PMID: 29367340 DOI: 10.1074/jbc.ra117.000851] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 01/08/2018] [Indexed: 11/06/2022] Open
Abstract
The exact transport characteristics of the vacuolar dicarboxylate transporter tDT from Arabidopsis are elusive. To overcome this limitation, we combined a range of experimental approaches comprising generation/analysis of tDT overexpressors, 13CO2 feeding and quantification of 13C enrichment, functional characterization of tDT in proteoliposomes, and electrophysiological studies on vacuoles. tdt knockout plants showed decreased malate and increased citrate concentrations in leaves during the diurnal light-dark rhythm and after onset of drought, when compared with wildtypes. Interestingly, under the latter two conditions, tDT overexpressors exhibited malate and citrate levels opposite to tdt knockout plants. Highly purified tDT protein transports malate and citrate in a 1:1 antiport mode. The apparent affinity for malate decreased with decreasing pH, whereas citrate affinity increased. This observation indicates that tDT exhibits a preference for dianion substrates, which is supported by electrophysiological analysis on intact vacuoles. tDT also accepts fumarate and succinate as substrates, but not α-ketoglutarate, gluconate, sulfate, or phosphate. Taking tDT as an example, we demonstrated that it is possible to reconstitute a vacuolar metabolite transporter functionally in proteoliposomes. The displayed, so far unknown counterexchange properties of tDT now explain the frequently observed reciprocal concentration changes of malate and citrate in leaves from various plant species. tDT from Arabidopsis is the first member of the well-known and widely present SLC13 group of carrier proteins, exhibiting an antiport mode of transport.
Collapse
Affiliation(s)
- Benedikt Frei
- From Pflanzenphysiologie, Universität Kaiserslautern, Erwin Schrödinger-Strasse, D-67653 Kaiserslautern, Germany
| | - Cornelia Eisenach
- the Institut für Pflanzenbiologie, Universität Zürich, CH-8008 Zürich, Switzerland
| | - Enrico Martinoia
- the Institut für Pflanzenbiologie, Universität Zürich, CH-8008 Zürich, Switzerland
| | - Shaimaa Hussein
- the Faculty of Medicine and Dentistry, Department of Physiology, University of Alberta, Edmonton, Alberta T6G 2H7, Canada, and
| | - Xing-Zhen Chen
- the Faculty of Medicine and Dentistry, Department of Physiology, University of Alberta, Edmonton, Alberta T6G 2H7, Canada, and
| | - Stéphanie Arrivault
- the Max Planck-Institute of Molecular Plant Physiology, Wissenschaftspark Potsdam-Golm, Am Mühlenberg 1, D-14476 Potsdam, Germany
| | - H Ekkehard Neuhaus
- From Pflanzenphysiologie, Universität Kaiserslautern, Erwin Schrödinger-Strasse, D-67653 Kaiserslautern, Germany,
| |
Collapse
|