1
|
Shikanai T. Molecular Genetic Dissection of the Regulatory Network of Proton Motive Force in Chloroplasts. PLANT & CELL PHYSIOLOGY 2024; 65:537-550. [PMID: 38150384 DOI: 10.1093/pcp/pcad157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/27/2023] [Accepted: 12/08/2023] [Indexed: 12/29/2023]
Abstract
The proton motive force (pmf) generated across the thylakoid membrane rotates the Fo-ring of ATP synthase in chloroplasts. The pmf comprises two components: membrane potential (∆Ψ) and proton concentration gradient (∆pH). Acidification of the thylakoid lumen resulting from ∆pH downregulates electron transport in the cytochrome b6f complex. This process, known as photosynthetic control, is crucial for protecting photosystem I (PSI) from photodamage in response to fluctuating light. To optimize the balance between efficient photosynthesis and photoprotection, it is necessary to regulate pmf. Cyclic electron transport around PSI and pseudo-cyclic electron transport involving flavodiiron proteins contribute to the modulation of pmf magnitude. By manipulating the ratio between the two components of pmf, it is possible to modify the extent of photosynthetic control without affecting the pmf size. This adjustment can be achieved by regulating the movement of ions (such as K+ and Cl-) across the thylakoid membrane. Since ATP synthase is the primary consumer of pmf in chloroplasts, its activity must be precisely regulated to accommodate other mechanisms involved in pmf optimization. Although fragments of information about each regulatory process have been accumulated, a comprehensive understanding of their interactions is lacking. Here, I summarize current knowledge of the network for pmf regulation, mainly based on genetic studies.
Collapse
Affiliation(s)
- Toshiharu Shikanai
- Department of Botany, Graduate School of Science, Kyoto University, Kyoto, 606-8502 Japan
| |
Collapse
|
2
|
Kharabian-Masouleh A, Furtado A, Alsubaie B, Al-Dossary O, Wu A, Al-Mssalem I, Henry R. Loss of plastid ndh genes in an autotrophic desert plant. Comput Struct Biotechnol J 2023; 21:5016-5027. [PMID: 37867970 PMCID: PMC10589726 DOI: 10.1016/j.csbj.2023.10.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 10/12/2023] [Accepted: 10/13/2023] [Indexed: 10/24/2023] Open
Abstract
Plant plastid genomes are highly conserved with most flowering plants having the same complement of essential plastid genes. Here, we report the loss of five of the eleven NADH dehydrogenase subunit genes (ndh) in the plastid of a desert plant jojoba (Simmondsia chinensis). The plastid genome of jojoba was 156,496 bp with one large single copy region (LSC), a very small single copy region (SSC) and two expanded inverted repeats (IRA + IRB). The NADH dehydrogenase (NDH) complex is comprised of several protein subunits, encoded by the ndh genes of the plastome and the nucleus. The ndh genes are critical to the proper functioning of the photosynthetic electron transport chain and protection of plants from oxidative stress. Most plants are known to contain all eleven ndh genes. Plants with missing or defective ndh genes are often heterotrophs either due to their complete or holo- or myco- parasitic nature. Plants with a defective NDH complex, caused by the deletion/pseudogenisation of some or all the ndh genes, survive in milder climates suggesting the likely extinction of plant lineages lacking these genes under harsh climates. Interestingly, some autotrophic plants do exist without ndh gene/s and can cope with high or low light. This implies that these plants are protected from oxidative stress by mechanisms excluding ndh genes. Jojoba has evolved mechanisms to cope with a non-functioning NDH complex and survives in extreme desert conditions with abundant sunlight and limited water.
Collapse
Affiliation(s)
- Ardashir Kharabian-Masouleh
- Queensland Alliance for Innovation in Food and Agriculture (QAAFI), The University of Queensland, Carmody Rd, St Lucia, QLD 4072, Australia
- ARC Centre of Excellence for Plant Success in Nature and Agriculture, The University of Queensland, Carmody Rd, St Lucia, QLD 4072, Australia
| | - Agnelo Furtado
- Queensland Alliance for Innovation in Food and Agriculture (QAAFI), The University of Queensland, Carmody Rd, St Lucia, QLD 4072, Australia
| | - Bader Alsubaie
- Queensland Alliance for Innovation in Food and Agriculture (QAAFI), The University of Queensland, Carmody Rd, St Lucia, QLD 4072, Australia
- College of Agriculture and Food Sciences, King Faisal University (KFU), Al Hofuf, 36362 Saudi Arabia
| | - Othman Al-Dossary
- Queensland Alliance for Innovation in Food and Agriculture (QAAFI), The University of Queensland, Carmody Rd, St Lucia, QLD 4072, Australia
- College of Agriculture and Food Sciences, King Faisal University (KFU), Al Hofuf, 36362 Saudi Arabia
| | - Alex Wu
- Queensland Alliance for Innovation in Food and Agriculture (QAAFI), The University of Queensland, Carmody Rd, St Lucia, QLD 4072, Australia
| | - Ibrahim Al-Mssalem
- College of Agriculture and Food Sciences, King Faisal University (KFU), Al Hofuf, 36362 Saudi Arabia
| | - Robert Henry
- Queensland Alliance for Innovation in Food and Agriculture (QAAFI), The University of Queensland, Carmody Rd, St Lucia, QLD 4072, Australia
- ARC Centre of Excellence for Plant Success in Nature and Agriculture, The University of Queensland, Carmody Rd, St Lucia, QLD 4072, Australia
| |
Collapse
|
3
|
Bowman JL, Arteaga-Vazquez M, Berger F, Briginshaw LN, Carella P, Aguilar-Cruz A, Davies KM, Dierschke T, Dolan L, Dorantes-Acosta AE, Fisher TJ, Flores-Sandoval E, Futagami K, Ishizaki K, Jibran R, Kanazawa T, Kato H, Kohchi T, Levins J, Lin SS, Nakagami H, Nishihama R, Romani F, Schornack S, Tanizawa Y, Tsuzuki M, Ueda T, Watanabe Y, Yamato KT, Zachgo S. The renaissance and enlightenment of Marchantia as a model system. THE PLANT CELL 2022; 34:3512-3542. [PMID: 35976122 PMCID: PMC9516144 DOI: 10.1093/plcell/koac219] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 06/21/2022] [Indexed: 05/07/2023]
Abstract
The liverwort Marchantia polymorpha has been utilized as a model for biological studies since the 18th century. In the past few decades, there has been a Renaissance in its utilization in genomic and genetic approaches to investigating physiological, developmental, and evolutionary aspects of land plant biology. The reasons for its adoption are similar to those of other genetic models, e.g. simple cultivation, ready access via its worldwide distribution, ease of crossing, facile genetics, and more recently, efficient transformation, genome editing, and genomic resources. The haploid gametophyte dominant life cycle of M. polymorpha is conducive to forward genetic approaches. The lack of ancient whole-genome duplications within liverworts facilitates reverse genetic approaches, and possibly related to this genomic stability, liverworts possess sex chromosomes that evolved in the ancestral liverwort. As a representative of one of the three bryophyte lineages, its phylogenetic position allows comparative approaches to provide insights into ancestral land plants. Given the karyotype and genome stability within liverworts, the resources developed for M. polymorpha have facilitated the development of related species as models for biological processes lacking in M. polymorpha.
Collapse
Affiliation(s)
| | - Mario Arteaga-Vazquez
- Instituto de Biotecnología y Ecología Aplicada, Universidad Veracruzana, Xalapa VER 91090, México
| | - Frederic Berger
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna Biocenter (VBC), Vienna 1030, Austria
| | - Liam N Briginshaw
- School of Biological Sciences, Monash University, Melbourne VIC 3800, Australia
- ARC Centre of Excellence for Plant Success in Nature and Agriculture, Monash University, Melbourne VIC 3800, Australia
| | - Philip Carella
- Department of Cell and Developmental Biology, John Innes Centre, Norwich NR4 7UH, UK
| | - Adolfo Aguilar-Cruz
- Instituto de Biotecnología y Ecología Aplicada, Universidad Veracruzana, Xalapa VER 91090, México
| | - Kevin M Davies
- The New Zealand Institute for Plant and Food Research Limited, Palmerston North 4442, New Zealand
| | - Tom Dierschke
- School of Biological Sciences, Monash University, Melbourne VIC 3800, Australia
| | - Liam Dolan
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna Biocenter (VBC), Vienna 1030, Austria
| | - Ana E Dorantes-Acosta
- Instituto de Biotecnología y Ecología Aplicada, Universidad Veracruzana, Xalapa VER 91090, México
| | - Tom J Fisher
- School of Biological Sciences, Monash University, Melbourne VIC 3800, Australia
- ARC Centre of Excellence for Plant Success in Nature and Agriculture, Monash University, Melbourne VIC 3800, Australia
| | - Eduardo Flores-Sandoval
- School of Biological Sciences, Monash University, Melbourne VIC 3800, Australia
- ARC Centre of Excellence for Plant Success in Nature and Agriculture, Monash University, Melbourne VIC 3800, Australia
| | - Kazutaka Futagami
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo 153-8902, Japan
| | | | - Rubina Jibran
- The New Zealand Institute for Plant & Food Research Limited, Auckland 1142, New Zealand
| | - Takehiko Kanazawa
- Division of Cellular Dynamics, National Institute for Basic Biology, Myodaiji, Okazaki, Aichi 444-8585, Japan
- The Department of Basic Biology, SOKENDAI (The Graduate University for Advanced Studies), Okazaki, Aichi 444-8585, Japan
| | - Hirotaka Kato
- Graduate School of Science, Kobe University, Kobe 657-8501, Japan
- Graduate School of Science and Engineering, Ehime University, Matsuyama, Ehime 790-8577, Japan
| | - Takayuki Kohchi
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan
| | - Jonathan Levins
- School of Biological Sciences, Monash University, Melbourne VIC 3800, Australia
| | - Shih-Shun Lin
- Institute of Biotechnology, National Taiwan University, Taipei 106, Taiwan
| | - Hirofumi Nakagami
- Basic Immune System of Plants, Max-Planck Institute for Plant Breeding Research, 50829 Cologne, Germany
| | - Ryuichi Nishihama
- Department of Applied Biological Science, Tokyo University of Science, Noda, Chiba 278-8510, Japan
| | - Facundo Romani
- Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, UK
| | | | - Yasuhiro Tanizawa
- Department of Informatics, National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan
| | - Masayuki Tsuzuki
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo 153-8902, Japan
| | - Takashi Ueda
- Division of Cellular Dynamics, National Institute for Basic Biology, Myodaiji, Okazaki, Aichi 444-8585, Japan
- The Department of Basic Biology, SOKENDAI (The Graduate University for Advanced Studies), Okazaki, Aichi 444-8585, Japan
| | - Yuichiro Watanabe
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo 153-8902, Japan
| | - Katsuyuki T Yamato
- Faculty of Biology-Oriented Science and Technology, Kindai University, Kinokawa, Wakayama 649-6493, Japan
| | - Sabine Zachgo
- Division of Botany, School of Biology and Chemistry, Osnabrück University, Osnabrück 49076, Germany
| |
Collapse
|
4
|
Popova AV, Stefanov M, Ivanov AG, Velitchkova M. The Role of Alternative Electron Pathways for Effectiveness of Photosynthetic Performance of Arabidopsis thaliana, Wt and Lut2, under Low Temperature and High Light Intensity. PLANTS (BASEL, SWITZERLAND) 2022; 11:2318. [PMID: 36079699 PMCID: PMC9460638 DOI: 10.3390/plants11172318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/22/2022] [Accepted: 09/01/2022] [Indexed: 12/02/2022]
Abstract
A recent investigation has suggested that the enhanced capacity for PSI-dependent cyclic electron flow (CEF) and PSI-dependent energy quenching that is related to chloroplast structural changes may explain the lower susceptibility of lut2 to combined stresses-a low temperature and a high light intensity. The possible involvement of alternative electron transport pathways, proton gradient regulator 5 (PGR5)-dependent CEF and plastid terminal oxidase (PTOX)-mediated electron transfer to oxygen in the response of Arabidopsis plants-wild type (wt) and lut2-to treatment with these two stressors was assessed by using specific electron transport inhibitors. Re-reduction kinetics of P700+ indicated that the capacity for CEF was higher in lut2 when this was compared to wt. Exposure of wt plants to the stress conditions caused increased CEF and was accompanied by a substantial raise in PGR5 and PTOX quantities. In contrast, both PGR5 and PTOX levels decreased under the same stress conditions in lut2, and inhibiting PGR5-dependent pathway by AntA did not exhibit any significant effects on CEF during the stress treatment and recovery period. Electron microscopy observations demonstrated that under control conditions the degree of grana stacking was much lower in lut2, and it almost disappeared under the combined stresses, compared to wt. The role of differential responses of alternative electron transport pathways in the acclimation to the stress conditions that are studied is discussed.
Collapse
Affiliation(s)
- Antoaneta V. Popova
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bl. 21, 1113 Sofia, Bulgaria
| | - Martin Stefanov
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bl. 21, 1113 Sofia, Bulgaria
| | - Alexander G. Ivanov
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bl. 21, 1113 Sofia, Bulgaria
- Department of Biology, University of Western Ontario, 1151 Richmond Str. N., London, ON N6A 5B7, Canada
| | - Maya Velitchkova
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bl. 21, 1113 Sofia, Bulgaria
| |
Collapse
|
5
|
Shinkawa H, Kajikawa M, Furuya T, Nishihama R, Tsukaya H, Kohchi T, Fukuzawa H. Protein Kinase MpYAK1 Is Involved in Meristematic Cell Proliferation, Reproductive Phase Change and Nutrient Signaling in the Liverwort Marchantia polymorpha. PLANT & CELL PHYSIOLOGY 2022; 63:1063-1077. [PMID: 35674121 DOI: 10.1093/pcp/pcac076] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 05/09/2022] [Accepted: 06/07/2022] [Indexed: 06/15/2023]
Abstract
Plant growth and development are regulated by environmental factors, including nutrient availability and light conditions, via endogenous genetic signaling pathways. Phosphorylation-dependent protein modification plays a major role in the regulation of cell proliferation in stress conditions, and several protein kinases have been shown to function in response to nutritional status, including dual-specificity tyrosine phosphorylation-regulated kinases (DYRKs). Although DYRKs are widely conserved in eukaryotes, the physiological functions of DYRKs in land plants are still to be elucidated. In the liverwort Marchantia polymorpha, a model bryophyte, four putative genes encoding DYRK homologous proteins, each of which belongs to the subfamily yet another kinase 1 (Yak1), plant-specific DYRK, DYRK2, or pre-mRNA processing protein 4 kinase, were identified. MpYAK1-defective male and female mutant lines generated by the clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated nuclease 9 (Cas9) system showed smaller sizes of thalli than did the wild-type plants and repressed cell divisions in the apical notch regions. The Mpyak1 mutants developed rhizoids from gemmae in the gemma cup before release. The Mpyak1 lines developed sexual organs even in non-inductive short-day photoperiod conditions supplemented with far-red light. In nitrogen (N)-deficient conditions, rhizoid elongation was inhibited in the Mpyak1 mutants. In conditions of aeration with 0.08% CO2 (v/v) and N depletion, Mpyak1 mutants accumulated higher levels of sucrose and lower levels of starch compared to the wild type. Transcriptomic analyses revealed that the expression of peroxidase genes was differentially affected by MpYAK1. These results suggest that MpYAK1 is involved in the maintenance of plant growth and developmental responses to light conditions and nutrient signaling.
Collapse
Affiliation(s)
- Haruka Shinkawa
- Graduate School of Biostudies, Kyoto University, Kyoto, 606-8502 Japan
- Research Institute for Bioresources and Biotechnology, Ishikawa Prefectural University, Ishikawa, 921-8836 Japan
| | - Masataka Kajikawa
- Graduate School of Biostudies, Kyoto University, Kyoto, 606-8502 Japan
- Faculty of Biology-Oriented Science and Technology, Kindai University, Wakayama, 649-6493 Japan
| | - Tomoyuki Furuya
- Graduate School of Science, University of Tokyo, Tokyo, 113-0033 Japan
- College of Life Sciences, Ritsumeikan University, Kusatsu, Shiga, 525-8577 Japan
| | - Ryuichi Nishihama
- Graduate School of Biostudies, Kyoto University, Kyoto, 606-8502 Japan
- Faculty of Science and Technology, Tokyo University of Science, Noda, Chiba, 278-8510 Japan
| | - Hirokazu Tsukaya
- Graduate School of Science, University of Tokyo, Tokyo, 113-0033 Japan
| | - Takayuki Kohchi
- Graduate School of Biostudies, Kyoto University, Kyoto, 606-8502 Japan
| | - Hideya Fukuzawa
- Graduate School of Biostudies, Kyoto University, Kyoto, 606-8502 Japan
| |
Collapse
|
6
|
Ke BF, Wang GJ, Labiak PH, Rouhan G, Chen CW, Shepherd LD, Ohlsen DJ, Renner MAM, Karol KG, Li FW, Kuo LY. Systematics and Plastome Evolution in Schizaeaceae. FRONTIERS IN PLANT SCIENCE 2022; 13:885501. [PMID: 35909781 PMCID: PMC9328107 DOI: 10.3389/fpls.2022.885501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 06/06/2022] [Indexed: 06/15/2023]
Abstract
While the family Schizaeaceae (Schizaeales) represents only about 0.4% of the extant fern species diversity, it differs from other ferns greatly in gross morphologies, niche preferences, and life histories. One of the most notable features in this family is its mycoheterotrophic life style in the gametophytic stage, which appears to be associated with extensive losses of plastid genes. However, the limited number of sequenced plastomes, and the lack of a well-resolved phylogenetic framework of Schizaeaceae, makes it difficult to gain any further insight. Here, with a comprehensive sampling of ~77% of the species diversity of this family, we first inferred a plastid phylogeny of Schizaeaceae using three DNA regions. To resolve the deep relationships within this family, we then reconstructed a plastome-based phylogeny focusing on a selection of representatives that covered all the major clades. From this phylogenomic backbone, we traced the evolutionary histories of plastid genes and examined whether gene losses were associated with the evolution of gametophytic mycoheterotrophy. Our results reveal that extant Schizaeaceae is comprised of four major clades-Microschizaea, Actinostachys, Schizaea, and Schizaea pusilla. The loss of all plastid NADH-like dehydrogenase (ndh) genes was confirmed to have occurred in the ancestor of extant Schizaeaceae, which coincides with the evolution of mycoheterotrophy in this family. For chlorophyll biosynthesis genes (chl), the losses were interpreted as convergent in Schizaeaceae, and found not only in Actinostachys, a clade producing achlorophyllous gametophytes, but also in S. pusilla with chlorophyllous gametophytes. In addition, we discovered a previously undescribed but phylogenetically distinct species hidden in the Schizaea dichotoma complex and provided a taxonomic treatment and morphological diagnostics for this new species-Schizaea medusa. Finally, our phylogenetic results suggest that the current PPG I circumscription of Schizaea is non-monophyletic, and we therefore proposed a three-genus classification moving a subset of Schizaea species sensu PPG I to a third genus-Microschizaea.
Collapse
Affiliation(s)
- Bing-Feng Ke
- Institute of Molecular and Cellular Biology, National Tsing Hua University, Hsinchu, Taiwan
| | | | - Paulo H. Labiak
- Depto. de Botânica, Universidade Federal do Paraná, Curitiba, Brazil
| | - Germinal Rouhan
- Institut de Systématique, Evolution, Biodiversité (ISYEB), Muséum National d’Histoire Naturelle, EPHE, UA, CNRS, Sorbonne Université, Paris, France
- Department of Biology, University of Florida, Gainesville, FL, United States
| | - Cheng-Wei Chen
- Department of Life Science, Biodiversity Program, Taiwan International Graduate Program, Biodiversity Research Center, Academia Sinica and National Taiwan Normal University, Taipei, Taiwan
| | - Lara D. Shepherd
- Museum of New Zealand Te Papa Tongarewa, Wellington, New Zealand
| | | | | | - Kenneth G. Karol
- The Lewis B. and Dorothy Cullman Program for Molecular Systematics, New York Botanical Garden, Bronx, NY, United States
| | - Fay-Wei Li
- Boyce Thompson Institute, Ithaca, NY, United States
- Plant Biology Section, Cornell University, Ithaca, NY, United States
| | - Li-Yaung Kuo
- Institute of Molecular and Cellular Biology, National Tsing Hua University, Hsinchu, Taiwan
| |
Collapse
|
7
|
Abstract
Light reaction of photosynthesis is efficiently driven by protein complexes arranged in an orderly in the thylakoid membrane. As the 5th complex, NAD(P)H dehydrogenase complex (NDH-1) is involved in cyclic electron flow around photosystem I to protect plants against environmental stresses for efficient photosynthesis. In addition, two kinds of NDH-1 complexes participate in CO2 uptake for CO2 concentration in cyanobacteria. In recent years, great progress has been made in the understanding of the assembly and the structure of NDH-1. However, the regulatory mechanism of NDH-1 in photosynthesis remains largely unknown. Therefore, understanding the regulatory mechanism of NDH-1 is of great significance to reveal the mechanism of efficient photosynthesis. In this mini-review, the author introduces current progress in the research of cyanobacterial NDH-1. Finally, the author summarizes the possible regulatory mechanism of cyanobacterial NDH-1 in photosynthesis and discusses the research prospect.
Collapse
Affiliation(s)
- Mi Hualing
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institutes of Plant Physiology and Ecology, Shanghai, China
| |
Collapse
|
8
|
Qu XJ, Zhang XJ, Cao DL, Guo XX, Mower JP, Fan SJ. Plastid and mitochondrial phylogenomics reveal correlated substitution rate variation in Koenigia (Polygonoideae, Polygonaceae) and a reduced plastome for Koenigia delicatula including loss of all ndh genes. Mol Phylogenet Evol 2022; 174:107544. [PMID: 35690375 DOI: 10.1016/j.ympev.2022.107544] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 01/19/2022] [Accepted: 06/01/2022] [Indexed: 10/18/2022]
Abstract
Koenigia, a genus proposed by Linnaeus, has a contentious taxonomic history. In particular, relationships among species and the circumscription of the genus relative to Aconogonon remain uncertain. To explore phylogenetic relationships of Koenigia with other members of tribe Persicarieae and to establish the timing of major evolutionary diversification events, genome skimming of organellar sequences was used to assemble plastomes and mitochondrial genes from 15 individuals representing 13 species. Most Persicarieae plastomes exhibit a conserved structure and content relative to other flowering plants. However, Koenigia delicatula has lost functional copies of all ndh genes and the intron from atpF. In addition, the rpl32 gene was relocated in the K. delicatula plastome, which likely occurred via overlapping inversions or differential expansion and contraction of the inverted repeat. The highly supported but conflicting relationships between plastome and mitochondrial trees and among gene trees complicates the circumscription of Koenigia, which could be caused by rapid diversification within a short period. Moreover, the plastome and mitochondrial trees revealed correlated variation in substitution rates among Persicarieae species, suggesting a shared underlying mechanism promoting evolutionary rate variation in both organellar genomes. The divergence of dwarf K. delicatula from other Koenigia species may be associated with the well-known Eocene Thermal Maximum 2 or Early Eocene Climatic Optimum event, while diversification of the core-Koenigia clade associates with the Mid-Miocene Climatic Optimum and the uplift of Qinghai-Tibetan Plateau and adjacent areas.
Collapse
Affiliation(s)
- Xiao-Jian Qu
- Shandong Provincial Key Laboratory of Plant Stress Research, College of Life Sciences, Shandong Normal University, Ji'nan 250014, Shandong, China
| | - Xue-Jie Zhang
- Shandong Provincial Key Laboratory of Plant Stress Research, College of Life Sciences, Shandong Normal University, Ji'nan 250014, Shandong, China
| | - Dong-Ling Cao
- Shandong Provincial Key Laboratory of Plant Stress Research, College of Life Sciences, Shandong Normal University, Ji'nan 250014, Shandong, China
| | - Xiu-Xiu Guo
- Shandong Provincial Key Laboratory of Plant Stress Research, College of Life Sciences, Shandong Normal University, Ji'nan 250014, Shandong, China
| | - Jeffrey P Mower
- Center for Plant Science Innovation, University of Nebraska, Lincoln, NE 68588, USA; Department of Agronomy and Horticulture, University of Nebraska, Lincoln, NE 68583, USA.
| | - Shou-Jin Fan
- Shandong Provincial Key Laboratory of Plant Stress Research, College of Life Sciences, Shandong Normal University, Ji'nan 250014, Shandong, China.
| |
Collapse
|
9
|
Shuang SP, Zhang JY, Cun Z, Wu HM, Hong J, Chen JW. A Comparison of Photoprotective Mechanism in Different Light-Demanding Plants Under Dynamic Light Conditions. FRONTIERS IN PLANT SCIENCE 2022; 13:819843. [PMID: 35463455 PMCID: PMC9019478 DOI: 10.3389/fpls.2022.819843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 02/28/2022] [Indexed: 06/14/2023]
Abstract
Light intensity is highly heterogeneous in nature, and plants have evolved a series of strategies to acclimate to dynamic light due to their immobile lifestyles. However, it is still unknown whether there are differences in photoprotective mechanisms among different light-demanding plants in response to dynamic light, and thus the role of non-photochemical quenching (NPQ), electron transport, and light energy allocation of photosystems in photoprotection needs to be further understood in different light-demanding plants. The activities of photosystem II (PSII) and photosystem I (PSI) in shade-tolerant species Panax notoginseng, intermediate species Polygonatum kingianum, and sun-demanding species Erigeron breviscapus were comparatively measured to elucidate photoprotection mechanisms in different light-demanding plants under dynamic light. The results showed that the NPQ and PSII maximum efficiency (F v'/F m') of E. breviscapus were higher than the other two species under dynamic high light. Meanwhile, cyclic electron flow (CEF) of sun plants is larger under transient high light conditions since the slope of post-illumination, P700 dark reduction rate, and plastoquinone (PQ) pool were greater. NPQ was more active and CEF was initiated more readily in shade plants than the two other species under transient light. Moreover, sun plants processed higher quantum yield of PSII photochemistry (ΦPSII), quantum yield of photochemical energy conversion [Y(I)], and quantum yield of non-photochemical energy dissipation due to acceptor side limitation (Y(NA), while the constitutive thermal dissipation and fluorescence (Φf,d) and quantum yield of non-photochemical energy dissipation due to donor side limitation [Y(ND)] of PSI were higher in shade plants. These results suggest that sun plants had higher NPQ and CEF for photoprotection under transient high light and mainly allocated light energy through ΦPSII and ΦNPQ, while shade plants had a higher Φf,d and a larger heat dissipation efficiency of PSI donor. Overall, it has been demonstrated that the photochemical efficiency and photoprotective capacity are greater in sun plants under transient dynamic light, while shade plants are more sensitive to transient dynamic light.
Collapse
Affiliation(s)
- Sheng-Pu Shuang
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, China
- Key Laboratory of Medicinal Plant Biology of Yunnan Province, Yunnan Agricultural University, Kunming, China
- National and Local Joint Engineering Research Center on Germplasm Innovation and Utilization of Chinese Medicinal Materials in Southwestern China, Yunnan Agricultural University, Kunming, China
| | - Jin-Yan Zhang
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, China
- Key Laboratory of Medicinal Plant Biology of Yunnan Province, Yunnan Agricultural University, Kunming, China
- National and Local Joint Engineering Research Center on Germplasm Innovation and Utilization of Chinese Medicinal Materials in Southwestern China, Yunnan Agricultural University, Kunming, China
| | - Zhu Cun
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, China
- Key Laboratory of Medicinal Plant Biology of Yunnan Province, Yunnan Agricultural University, Kunming, China
- National and Local Joint Engineering Research Center on Germplasm Innovation and Utilization of Chinese Medicinal Materials in Southwestern China, Yunnan Agricultural University, Kunming, China
| | - Hong-Min Wu
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, China
- Key Laboratory of Medicinal Plant Biology of Yunnan Province, Yunnan Agricultural University, Kunming, China
- National and Local Joint Engineering Research Center on Germplasm Innovation and Utilization of Chinese Medicinal Materials in Southwestern China, Yunnan Agricultural University, Kunming, China
| | - Jie Hong
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, China
- Key Laboratory of Medicinal Plant Biology of Yunnan Province, Yunnan Agricultural University, Kunming, China
- National and Local Joint Engineering Research Center on Germplasm Innovation and Utilization of Chinese Medicinal Materials in Southwestern China, Yunnan Agricultural University, Kunming, China
| | - Jun-Wen Chen
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, China
- Key Laboratory of Medicinal Plant Biology of Yunnan Province, Yunnan Agricultural University, Kunming, China
- National and Local Joint Engineering Research Center on Germplasm Innovation and Utilization of Chinese Medicinal Materials in Southwestern China, Yunnan Agricultural University, Kunming, China
| |
Collapse
|
10
|
Serrano-Pérez E, Romero-Losada AB, Morales-Pineda M, García-Gómez ME, Couso I, García-González M, Romero-Campero FJ. Transcriptomic and Metabolomic Response to High Light in the Charophyte Alga Klebsormidium nitens. FRONTIERS IN PLANT SCIENCE 2022; 13:855243. [PMID: 35599877 PMCID: PMC9121098 DOI: 10.3389/fpls.2022.855243] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 03/28/2022] [Indexed: 05/04/2023]
Abstract
The characterization of the molecular mechanisms, such as high light irradiance resistance, that allowed plant terrestralization is a cornerstone in evolutionary studies since the conquest of land by plants played a pivotal role in life evolution on Earth. Viridiplantae or the green lineage is divided into two clades, Chlorophyta and Streptophyta, that in turn splits into Embryophyta or land plants and Charophyta. Charophyta are used in evolutionary studies on plant terrestralization since they are generally accepted as the extant algal species most closely related to current land plants. In this study, we have chosen the facultative terrestrial early charophyte alga Klebsormidium nitens to perform an integrative transcriptomic and metabolomic analysis under high light in order to unveil key mechanisms involved in the early steps of plants terrestralization. We found a fast chloroplast retrograde signaling possibly mediated by reactive oxygen species and the inositol polyphosphate 1-phosphatase (SAL1) and 3'-phosphoadenosine-5'-phosphate (PAP) pathways inducing gene expression and accumulation of specific metabolites. Systems used by both Chlorophyta and Embryophyta were activated such as the xanthophyll cycle with an accumulation of zeaxanthin and protein folding and repair mechanisms constituted by NADPH-dependent thioredoxin reductases, thioredoxin-disulfide reductases, and peroxiredoxins. Similarly, cyclic electron flow, specifically the pathway dependent on proton gradient regulation 5, was strongly activated under high light. We detected a simultaneous co-activation of the non-photochemical quenching mechanisms based on LHC-like stress related (LHCSR) protein and the photosystem II subunit S that are specific to Chlorophyta and Embryophyta, respectively. Exclusive Embryophyta systems for the synthesis, sensing, and response to the phytohormone auxin were also activated under high light in K. nitens leading to an increase in auxin content with the concomitant accumulation of amino acids such as tryptophan, histidine, and phenylalanine.
Collapse
Affiliation(s)
- Emma Serrano-Pérez
- Microalgae Systems Biology and Biotechnology Research Group, Institute for Plant Biochemistry and Photosynthesis, Universidad de Sevilla – Consejo Superior de Investigaciones Científicas, Seville, Spain
- Department of Computer Science and Artificial Intelligence, Universidad de Sevilla, Seville, Spain
| | - Ana B. Romero-Losada
- Microalgae Systems Biology and Biotechnology Research Group, Institute for Plant Biochemistry and Photosynthesis, Universidad de Sevilla – Consejo Superior de Investigaciones Científicas, Seville, Spain
- Department of Computer Science and Artificial Intelligence, Universidad de Sevilla, Seville, Spain
| | - María Morales-Pineda
- Microalgae Systems Biology and Biotechnology Research Group, Institute for Plant Biochemistry and Photosynthesis, Universidad de Sevilla – Consejo Superior de Investigaciones Científicas, Seville, Spain
| | - M. Elena García-Gómez
- Microalgae Systems Biology and Biotechnology Research Group, Institute for Plant Biochemistry and Photosynthesis, Universidad de Sevilla – Consejo Superior de Investigaciones Científicas, Seville, Spain
| | - Inmaculada Couso
- Microalgae Systems Biology and Biotechnology Research Group, Institute for Plant Biochemistry and Photosynthesis, Universidad de Sevilla – Consejo Superior de Investigaciones Científicas, Seville, Spain
| | - Mercedes García-González
- Microalgae Systems Biology and Biotechnology Research Group, Institute for Plant Biochemistry and Photosynthesis, Universidad de Sevilla – Consejo Superior de Investigaciones Científicas, Seville, Spain
| | - Francisco J. Romero-Campero
- Microalgae Systems Biology and Biotechnology Research Group, Institute for Plant Biochemistry and Photosynthesis, Universidad de Sevilla – Consejo Superior de Investigaciones Científicas, Seville, Spain
- Department of Computer Science and Artificial Intelligence, Universidad de Sevilla, Seville, Spain
- *Correspondence: Francisco J. Romero-Campero,
| |
Collapse
|
11
|
Yamamoto H, Sato N, Shikanai T. Critical Role of NdhA in the Incorporation of the Peripheral Arm into the Membrane-Embedded Part of the Chloroplast NADH Dehydrogenase-Like Complex. PLANT & CELL PHYSIOLOGY 2021; 62:1131-1145. [PMID: 33169158 DOI: 10.1093/pcp/pcaa143] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 10/19/2020] [Indexed: 06/11/2023]
Abstract
The chloroplast NADH dehydrogenase-like (NDH) complex mediates ferredoxin-dependent plastoquinone reduction in the thylakoid membrane. In angiosperms, chloroplast NDH is composed of five subcomplexes and further forms a supercomplex with photosystem I (PSI). Subcomplex A (SubA) mediates the electron transport and consists of eight subunits encoded by both plastid and nuclear genomes. The assembly of SubA in the stroma has been extensively studied, but it is unclear how SubA is incorporated into the membrane-embedded part of the NDH complex. Here, we isolated a novel Arabidopsis mutant chlororespiratory reduction 16 (crr16) defective in NDH activity. CRR16 encodes a chloroplast-localized P-class pentatricopeptide repeat protein conserved in angiosperms. Transcript analysis of plastid-encoded ndh genes indicated that CRR16 was responsible for the efficient splicing of the group II intron in the ndhA transcript, which encodes a membrane-embedded subunit localized to the connecting site between SubA and the membrane subcomplex (SubM). To analyze the roles of NdhA in the assembly and stability of the NDH complex, the homoplastomic knockout plant of ndhA (ΔndhA) was generated in tobacco (Nicotiana tabacum). Biochemical analyses of crr16 and ΔndhA plants indicated that NdhA was essential for stabilizing SubA and SubE but not for the accumulation of the other three subcomplexes. Furthermore, the crr16 mutant accumulated the SubA assembly intermediates in the stroma more than that in the wild type. These results suggest that NdhA biosynthesis is essential for the incorporation of SubA into the membrane-embedded part of the NDH complex at the final assembly step of the NDH-PSI supercomplex.
Collapse
Affiliation(s)
- Hiroshi Yamamoto
- Department of Botany, Graduate School of Science, Kyoto University, Oiwake-cho, Kitashirakawa, Sakyo-ku, Kyoto, 606-8502 Japan
| | - Nozomi Sato
- Department of Botany, Graduate School of Science, Kyoto University, Oiwake-cho, Kitashirakawa, Sakyo-ku, Kyoto, 606-8502 Japan
- Faculty of Life Sciences, Kyoto Sangyo University, Kamigamo Motoyama, Kita-ku, Kyoto 603-8555, Japan
| | - Toshiharu Shikanai
- Department of Botany, Graduate School of Science, Kyoto University, Oiwake-cho, Kitashirakawa, Sakyo-ku, Kyoto, 606-8502 Japan
| |
Collapse
|
12
|
Chadee A, Alber NA, Dahal K, Vanlerberghe GC. The Complementary Roles of Chloroplast Cyclic Electron Transport and Mitochondrial Alternative Oxidase to Ensure Photosynthetic Performance. FRONTIERS IN PLANT SCIENCE 2021; 12:748204. [PMID: 34650584 PMCID: PMC8505746 DOI: 10.3389/fpls.2021.748204] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 08/30/2021] [Indexed: 05/29/2023]
Abstract
Chloroplasts use light energy and a linear electron transport (LET) pathway for the coupled generation of NADPH and ATP. It is widely accepted that the production ratio of ATP to NADPH is usually less than required to fulfill the energetic needs of the chloroplast. Left uncorrected, this would quickly result in an over-reduction of the stromal pyridine nucleotide pool (i.e., high NADPH/NADP+ ratio) and under-energization of the stromal adenine nucleotide pool (i.e., low ATP/ADP ratio). These imbalances could cause metabolic bottlenecks, as well as increased generation of damaging reactive oxygen species. Chloroplast cyclic electron transport (CET) and the chloroplast malate valve could each act to prevent stromal over-reduction, albeit in distinct ways. CET avoids the NADPH production associated with LET, while the malate valve consumes the NADPH associated with LET. CET could operate by one of two different pathways, depending upon the chloroplast ATP demand. The NADH dehydrogenase-like pathway yields a higher ATP return per electron flux than the pathway involving PROTON GRADIENT REGULATION5 (PGR5) and PGR5-LIKE PHOTOSYNTHETIC PHENOTYPE1 (PGRL1). Similarly, the malate valve could couple with one of two different mitochondrial electron transport pathways, depending upon the cytosolic ATP demand. The cytochrome pathway yields a higher ATP return per electron flux than the alternative oxidase (AOX) pathway. In both Arabidopsis thaliana and Chlamydomonas reinhardtii, PGR5/PGRL1 pathway mutants have increased amounts of AOX, suggesting complementary roles for these two lesser-ATP yielding mechanisms of preventing stromal over-reduction. These two pathways may become most relevant under environmental stress conditions that lower the ATP demands for carbon fixation and carbohydrate export.
Collapse
Affiliation(s)
- Avesh Chadee
- Department of Biological Sciences, and Department of Cell and Systems Biology, University of Toronto Scarborough, Toronto, ON, Canada
| | - Nicole A. Alber
- Department of Biological Sciences, and Department of Cell and Systems Biology, University of Toronto Scarborough, Toronto, ON, Canada
| | - Keshav Dahal
- Fredericton Research and Development Centre, Agriculture and Agri-Food Canada, Fredericton, NB, Canada
| | - Greg C. Vanlerberghe
- Department of Biological Sciences, and Department of Cell and Systems Biology, University of Toronto Scarborough, Toronto, ON, Canada
| |
Collapse
|
13
|
Investigating the Viral Suppressor HC-Pro Inhibiting Small RNA Methylation through Functional Comparison of HEN1 in Angiosperm and Bryophyte. Viruses 2021; 13:v13091837. [PMID: 34578418 PMCID: PMC8473176 DOI: 10.3390/v13091837] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 09/09/2021] [Accepted: 09/09/2021] [Indexed: 12/27/2022] Open
Abstract
In plants, HEN1-facilitated methylation at 3′ end ribose is a critical step of small-RNA (sRNA) biogenesis. A mutant of well-studied Arabidopsis HEN1 (AtHEN1), hen1-1, showed a defective developmental phenotype, indicating the importance of sRNA methylation. Moreover, Marchantia polymorpha has been identified to have a HEN1 ortholog gene (MpHEN1); however, its function remained unfathomed. Our in vivo and in vitro data have shown MpHEN1 activity being comparable with AtHEN1, and their substrate specificity towards duplex microRNA (miRNA) remained consistent. Furthermore, the phylogenetic tree and multiple alignment highlighted the conserved molecular evolution of the HEN1 family in plants. The P1/HC-Pro of the turnip mosaic virus (TuMV) is a known RNA silencing suppressor and inhibits HEN1 methylation of sRNAs. Here, we report that the HC-Pro physically binds with AtHEN1 through FRNK motif, inhibiting HEN1’s methylation activity. Moreover, the in vitro EMSA data indicates GST-HC-Pro of TuMV lacks sRNA duplex-binding ability. Surprisingly, the HC-Pro also inhibits MpHEN1 activity in a dosage-dependent manner, suggesting the possibility of interaction between HC-Pro and MpHEN1 as well. Further investigations on understanding interaction mechanisms of HEN1 and various HC-Pros can advance the knowledge of viral suppressors.
Collapse
|
14
|
Evolution of an assembly factor-based subunit contributed to a novel NDH-PSI supercomplex formation in chloroplasts. Nat Commun 2021; 12:3685. [PMID: 34140516 PMCID: PMC8211685 DOI: 10.1038/s41467-021-24065-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 05/27/2021] [Indexed: 11/09/2022] Open
Abstract
Chloroplast NADH dehydrogenase-like (NDH) complex is structurally related to mitochondrial Complex I and forms a supercomplex with two copies of Photosystem I (the NDH-PSI supercomplex) via linker proteins Lhca5 and Lhca6. The latter was acquired relatively recently in a common ancestor of angiosperms. Here we show that NDH-dependent Cyclic Electron Flow 5 (NDF5) is an NDH assembly factor in Arabidopsis. NDF5 initiates the assembly of NDH subunits (PnsB2 and PnsB3) and Lhca6, suggesting that they form a contact site with Lhca6. Our analysis of the NDF5 ortholog in Physcomitrella and angiosperm genomes reveals the subunit PnsB2 to be newly acquired via tandem gene duplication of NDF5 at some point in the evolution of angiosperms. Another Lhca6 contact subunit, PnsB3, has evolved from a protein unrelated to NDH. The structure of the largest photosynthetic electron transport chain complex has become more complicated by acquiring novel subunits and supercomplex formation with PSI. The chloroplast NDH complex interacts with Photosystem I to form the NDH-PSI supercomplex. Here the authors show that Arabidopsis NDF5 shares a common ancestor with the NDH subunit PnsB2 and acts as an NDH assembly factor initiating the assembly of PnsB2 and the evolutionarily distinct PnsB3.
Collapse
|
15
|
Liu H, Chen H, Ding G, Li K, Wang Y. Proteomic Insight into the Symbiotic Relationship of Pinus massoniana Lamb and Suillus luteus towards Developing Al-Stress Resistance. Life (Basel) 2021; 11:177. [PMID: 33672434 PMCID: PMC7926926 DOI: 10.3390/life11020177] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 02/18/2021] [Accepted: 02/20/2021] [Indexed: 12/30/2022] Open
Abstract
Global warming significantly impacts forest range areas by increasing soil acidification or aluminum toxicity. Aluminum (Al) toxicity retards plant growth by inhibiting the root development process, hindering water uptake, and limiting the bioavailability of other essential micronutrients. Pinus massoniana (masson pine), globally recognized as a reforestation plant, is resistant to stress conditions including biotic and abiotic stresses. This resistance is linked to the symbiotic relationship with diverse ectomycorrhizal fungal species. In the present study, we investigated the genetic regulators as expressed proteins, conferring a symbiotic relationship between Al-stress resistance and Suillus luteus in masson pine. Multi-treatment trials resulted in the identification of 12 core Al-stress responsive proteins conserved between Al stress conditions with or without S. luteus inoculation. These proteins are involved in chaperonin CPN60-2, protein refolding and ATP-binding, Cu-Zn-superoxide dismutase precursor, oxidation-reduction process, and metal ion binding, phosphoglycerate kinase 1, glycolytic process, and metabolic process. Furthermore, 198 Al responsive proteins were identified specifically under S. luteus-inoculation and are involved in gene regulation, metabolic process, oxidation-reduction process, hydrolase activity, and peptide activity. Chlorophyll a-b binding protein, endoglucanase, putative spermidine synthase, NADH dehydrogenase, and glutathione-S-transferase were found with a significant positive expression under a combined Al and S. luteus treatment, further supported by the up-regulation of their corresponding genes. This study provides a theoretical foundation for exploiting the regulatory role of ectomycorrhizal inoculation and associated genetic changes in resistance against Al stress in masson pine.
Collapse
Affiliation(s)
- Haiyan Liu
- Institute for Forest Resources & Environment of Guizhou, Guiyang 550025, China; (H.L.); (H.C.); (K.L.)
- Guizhou Botanical Garden, Guiyang 550004, China;
| | - Houying Chen
- Institute for Forest Resources & Environment of Guizhou, Guiyang 550025, China; (H.L.); (H.C.); (K.L.)
| | - Guijie Ding
- Institute for Forest Resources & Environment of Guizhou, Guiyang 550025, China; (H.L.); (H.C.); (K.L.)
| | - Kuaifen Li
- Institute for Forest Resources & Environment of Guizhou, Guiyang 550025, China; (H.L.); (H.C.); (K.L.)
| | - Yao Wang
- Guizhou Botanical Garden, Guiyang 550004, China;
| |
Collapse
|
16
|
Yan Q, Zhao L, Wang W, Pi X, Han G, Wang J, Cheng L, He YK, Kuang T, Qin X, Sui SF, Shen JR. Antenna arrangement and energy-transfer pathways of PSI-LHCI from the moss Physcomitrella patens. Cell Discov 2021; 7:10. [PMID: 33589616 PMCID: PMC7884438 DOI: 10.1038/s41421-021-00242-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 12/21/2020] [Indexed: 02/07/2023] Open
Abstract
Plants harvest light energy utilized for photosynthesis by light-harvesting complex I and II (LHCI and LHCII) surrounding photosystem I and II (PSI and PSII), respectively. During the evolution of green plants, moss is at an evolutionarily intermediate position from aquatic photosynthetic organisms to land plants, being the first photosynthetic organisms that landed. Here, we report the structure of the PSI–LHCI supercomplex from the moss Physcomitrella patens (Pp) at 3.23 Å resolution solved by cryo-electron microscopy. Our structure revealed that four Lhca subunits are associated with the PSI core in an order of Lhca1–Lhca5–Lhca2–Lhca3. This number is much decreased from 8 to 10, the number of subunits in most green algal PSI–LHCI, but the same as those of land plants. Although Pp PSI–LHCI has a similar structure as PSI–LHCI of land plants, it has Lhca5, instead of Lhca4, in the second position of Lhca, and several differences were found in the arrangement of chlorophylls among green algal, moss, and land plant PSI–LHCI. One chlorophyll, PsaF–Chl 305, which is found in the moss PSI–LHCI, is located at the gap region between the two middle Lhca subunits and the PSI core, and therefore may make the excitation energy transfer from LHCI to the core more efficient than that of land plants. On the other hand, energy-transfer paths at the two side Lhca subunits are relatively conserved. These results provide a structural basis for unravelling the mechanisms of light-energy harvesting and transfer in the moss PSI–LHCI, as well as important clues on the changes of PSI–LHCI after landing.
Collapse
Affiliation(s)
- Qiujing Yan
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Liang Zhao
- State Key Laboratory of Membrane Biology, Beijing Advanced Innovation Center for Structural Biology & Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Wenda Wang
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Xiong Pi
- State Key Laboratory of Membrane Biology, Beijing Advanced Innovation Center for Structural Biology & Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Guangye Han
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Jie Wang
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lingpeng Cheng
- State Key Laboratory of Membrane Biology, Beijing Advanced Innovation Center for Structural Biology & Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Yi-Kun He
- College of Life Sciences, Department of Chemistry, Capital Normal University, Beijing, 100048, China
| | - Tingyun Kuang
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Xiaochun Qin
- School of Biological Science and Technology, University of Jinan, Jinan, Shandong, 250022, China.
| | - Sen-Fang Sui
- State Key Laboratory of Membrane Biology, Beijing Advanced Innovation Center for Structural Biology & Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Beijing, 100084, China. .,Department of Biology, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China.
| | - Jian-Ren Shen
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China. .,Research Institute for Interdisciplinary Science, and Graduate School of Natural Science and Technology, Okayama University, Okayama, 700-8530, Japan.
| |
Collapse
|
17
|
Ma M, Liu Y, Bai C, Yang Y, Sun Z, Liu X, Zhang S, Han X, Yong JWH. The Physiological Functionality of PGR5/PGRL1-Dependent Cyclic Electron Transport in Sustaining Photosynthesis. FRONTIERS IN PLANT SCIENCE 2021; 12:702196. [PMID: 34305990 PMCID: PMC8294387 DOI: 10.3389/fpls.2021.702196] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 06/07/2021] [Indexed: 05/07/2023]
Abstract
The cyclic electron transport (CET), after the linear electron transport (LET), is another important electron transport pathway during the light reactions of photosynthesis. The proton gradient regulation 5 (PGR5)/PRG5-like photosynthetic phenotype 1 (PGRL1) and the NADH dehydrogenase-like complex pathways are linked to the CET. Recently, the regulation of CET around photosystem I (PSI) has been recognized as crucial for photosynthesis and plant growth. Here, we summarized the main biochemical processes of the PGR5/PGRL1-dependent CET pathway and its physiological significance in protecting the photosystem II and PSI, ATP/NADPH ratio maintenance, and regulating the transitions between LET and CET in order to optimize photosynthesis when encountering unfavorable conditions. A better understanding of the PGR5/PGRL1-mediated CET during photosynthesis might provide novel strategies for improving crop yield in a world facing more extreme weather events with multiple stresses affecting the plants.
Collapse
Affiliation(s)
- Mingzhu Ma
- College of Land and Environment, National Key Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Northeast China Plant Nutrition and Fertilization Scientific Observation and Research Center for Ministry of Agriculture and Rural Affairs, Key Laboratory of Protected Horticulture of Education Ministry and Liaoning Province, Shenyang Agricultural University, Shenyang, China
| | - Yifei Liu
- College of Land and Environment, National Key Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Northeast China Plant Nutrition and Fertilization Scientific Observation and Research Center for Ministry of Agriculture and Rural Affairs, Key Laboratory of Protected Horticulture of Education Ministry and Liaoning Province, Shenyang Agricultural University, Shenyang, China
- The UWA Institute of Agriculture, The University of Western Australia, Perth, WA, Australia
- School of Biological Sciences, The University of Western Australia, Perth, WA, Australia
- School of Agriculture and Environment, The University of Western Australia, Perth, WA, Australia
- *Correspondence: Yifei Liu, ; Xiaori Han,
| | - Chunming Bai
- National Sorghum Improvement Center, Liaoning Academy of Agricultural Sciences, Shenyang, China
| | - Yunhong Yang
- Professional Technology Innovation Center of Magnesium Nutrition, Yingkou Magnesite Chemical Ind Group Co., Ltd., Yingkou, China
| | - Zhiyu Sun
- College of Land and Environment, National Key Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Northeast China Plant Nutrition and Fertilization Scientific Observation and Research Center for Ministry of Agriculture and Rural Affairs, Key Laboratory of Protected Horticulture of Education Ministry and Liaoning Province, Shenyang Agricultural University, Shenyang, China
| | - Xinyue Liu
- College of Land and Environment, National Key Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Northeast China Plant Nutrition and Fertilization Scientific Observation and Research Center for Ministry of Agriculture and Rural Affairs, Key Laboratory of Protected Horticulture of Education Ministry and Liaoning Province, Shenyang Agricultural University, Shenyang, China
| | - Siwei Zhang
- College of Land and Environment, National Key Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Northeast China Plant Nutrition and Fertilization Scientific Observation and Research Center for Ministry of Agriculture and Rural Affairs, Key Laboratory of Protected Horticulture of Education Ministry and Liaoning Province, Shenyang Agricultural University, Shenyang, China
| | - Xiaori Han
- College of Land and Environment, National Key Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Northeast China Plant Nutrition and Fertilization Scientific Observation and Research Center for Ministry of Agriculture and Rural Affairs, Key Laboratory of Protected Horticulture of Education Ministry and Liaoning Province, Shenyang Agricultural University, Shenyang, China
- *Correspondence: Yifei Liu, ; Xiaori Han,
| | - Jean Wan Hong Yong
- School of Biological Sciences, The University of Western Australia, Perth, WA, Australia
- Department of Biosystems and Technology, Swedish University of Agricultural Sciences, Alnarp, Sweden
| |
Collapse
|
18
|
Storti M, Puggioni MP, Segalla A, Morosinotto T, Alboresi A. The chloroplast NADH dehydrogenase-like complex influences the photosynthetic activity of the moss Physcomitrella patens. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:5538-5548. [PMID: 32497206 DOI: 10.1093/jxb/eraa274] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 05/27/2020] [Indexed: 06/11/2023]
Abstract
Alternative electron pathways contribute to regulation of photosynthetic light reactions to adjust to metabolic demands in dynamic environments. The chloroplast NADH dehydrogenase-like (NDH) complex mediates the cyclic electron transport pathway around PSI in different cyanobacteria, algae, and plant species, but it is not fully conserved in all photosynthetic organisms. In order to assess how the physiological role of this complex changed during plant evolution, we isolated Physcomitrella patens lines knocked out for the NDHM gene that encodes a subunit fundamental for the activity of the complex. ndhm knockout mosses indicated high PSI acceptor side limitation upon abrupt changes in illumination. In P. patens, pseudo-cyclic electron transport mediated by flavodiiron proteins (FLVs) was also shown to prevent PSI over-reduction in plants exposed to light fluctuations. flva ndhm double knockout mosses had altered photosynthetic performance and growth defects under fluctuating light compared with the wild type and single knockout mutants. The results showed that while the contribution of NDH to electron transport is minor compared with FLV, NDH still participates in modulating photosynthetic activity, and it is critical to avoid PSI photoinhibition, especially when FLVs are inactive. The functional overlap between NDH- and FLV-dependent electron transport supports PSI activity and prevents its photoinhibition under light variations.
Collapse
Affiliation(s)
- Mattia Storti
- Dipartimento di Biologia, Università degli Studi di Padova, Padova, Italy
| | | | - Anna Segalla
- Dipartimento di Biologia, Università degli Studi di Padova, Padova, Italy
| | - Tomas Morosinotto
- Dipartimento di Biologia, Università degli Studi di Padova, Padova, Italy
| | | |
Collapse
|
19
|
Nikkanen L, Santana Sánchez A, Ermakova M, Rögner M, Cournac L, Allahverdiyeva Y. Functional redundancy between flavodiiron proteins and NDH-1 in Synechocystis sp. PCC 6803. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 103:1460-1476. [PMID: 32394539 DOI: 10.1111/tpj.14812] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 04/30/2020] [Accepted: 05/05/2020] [Indexed: 05/09/2023]
Abstract
In oxygenic photosynthetic organisms, excluding angiosperms, flavodiiron proteins (FDPs) catalyze light-dependent reduction of O2 to H2 O. This alleviates electron pressure on the photosynthetic apparatus and protects it from photodamage. In Synechocystis sp. PCC 6803, four FDP isoforms function as hetero-oligomers of Flv1 and Flv3 and/or Flv2 and Flv4. An alternative electron transport pathway mediated by the NAD(P)H dehydrogenase-like complex (NDH-1) also contributes to redox hemostasis and the photoprotection of photosynthesis. Four NDH-1 types have been characterized in cyanobacteria: NDH-11 and NDH-12 , which function in respiration; and NDH-13 and NDH-14 , which function in CO2 uptake. All four types are involved in cyclic electron transport. Along with single FDP mutants (∆flv1 and Δflv3) and the double NDH-1 mutants (∆d1d2, which is deficient in NDH-11,2 and ∆d3d4, which is deficient in NDH-13,4 ), we studied triple mutants lacking one of Flv1 or Flv3, and NDH-11,2 or NDH-13,4 . We show that the presence of either Flv1/3 or NDH-11,2 , but not NDH-13,4 , is indispensable for survival during changes in growth conditions from high CO2 /moderate light to low CO2 /high light. Our results show functional redundancy between FDPs and NDH-11,2 under the studied conditions. We suggest that ferredoxin probably functions as a primary electron donor to both Flv1/3 and NDH-11,2 , allowing their functions to be dynamically coordinated for efficient oxidation of photosystem I and for photoprotection under variable CO2 and light availability.
Collapse
Affiliation(s)
- Lauri Nikkanen
- Molecular Plant Biology, Department of Biochemistry, University of Turku, Turku, Finland
| | - Anita Santana Sánchez
- Molecular Plant Biology, Department of Biochemistry, University of Turku, Turku, Finland
| | - Maria Ermakova
- Molecular Plant Biology, Department of Biochemistry, University of Turku, Turku, Finland
| | - Matthias Rögner
- Plant Biochemistry, Faculty of Biology & Biotechnology, Ruhr-University Bochum, Bochum, Germany
| | - Laurent Cournac
- Eco&Sols, University of Montpellier, IRD, CIRAD, INRAE, Institut Agro, Montpellier, France
| | - Yagut Allahverdiyeva
- Molecular Plant Biology, Department of Biochemistry, University of Turku, Turku, Finland
| |
Collapse
|
20
|
Zavala-Páez M, Vieira LDN, de Baura VA, Balsanelli E, de Souza EM, Cevallos MC, Chase MW, Smidt EDC. Comparative Plastid Genomics of Neotropical Bulbophyllum (Orchidaceae; Epidendroideae). FRONTIERS IN PLANT SCIENCE 2020; 11:799. [PMID: 32719690 PMCID: PMC7347972 DOI: 10.3389/fpls.2020.00799] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 05/19/2020] [Indexed: 05/23/2023]
Abstract
Pantropical Bulbophyllum, with ∼2,200 species, is one of the largest genera in Orchidaceae. Although phylogenetics and taxonomy of the ∼60 American species in the genus are generally well understood, some species complexes need more study to clearly delimit their component species and provide information about their evolutionary history. Previous research has suggested that the plastid genome includes phylogenetic markers capable of providing resolution at low taxonomic levels, and thus it could be an effective tool if these divergent regions can be identified. In this study, we sequenced the complete plastid genome of eight Bulbophyllum species, representing five of six Neotropical taxonomic sections. All plastomes conserve the typical quadripartite structure, and, although the general structure of plastid genomes is conserved, differences in ndh-gene composition and total length were detected. Total length was determined by contraction and expansion of the small single-copy region, a result of an independent loss of the seven ndh genes. Selection analyses indicated that protein-coding genes were generally well conserved, but in four genes, we identified 95 putative sites under positive selection. Furthermore, a total of 54 polymorphic simple sequence repeats were identified, for which we developed amplification primers. In addition, we propose 10 regions with potential to improve phylogenetic analyses of Neotropical Bulbophyllum species.
Collapse
Affiliation(s)
| | | | - Valter Antônio de Baura
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Paraná, Curitiba, Brazil
| | - Eduardo Balsanelli
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Paraná, Curitiba, Brazil
| | | | - Marco Cerna Cevallos
- Grupo de Investigación Nunkui Wakan, Universidad Politécnica Salesiana, Quito, Ecuador
| | - Mark W. Chase
- Royal Botanic Gardens, Kew, Richmond, United Kingdom
- Department of Environment and Agriculture, Curtin University, Perth, WA, Australia
| | | |
Collapse
|
21
|
Ishikawa N, Yokoe Y, Nishimura T, Nakano T, Ifuku K. PsbQ-Like Protein 3 Functions as an Assembly Factor for the Chloroplast NADH Dehydrogenase-Like Complex in Arabidopsis. PLANT & CELL PHYSIOLOGY 2020; 61:1252-1261. [PMID: 32333781 DOI: 10.1093/pcp/pcaa050] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 04/17/2020] [Indexed: 06/11/2023]
Abstract
Angiosperms have three PsbQ-like (PQL) proteins in addition to the PsbQ subunit of the oxygen-evolving complex of photosystem II. Previous studies have shown that two PQL proteins, PnsL2 and PnsL3, are subunits of the chloroplast NADH dehydrogenase-like (NDH) complex involved in the photosystem I (PSI) cyclic electron flow. In addition, another PsbQ homolog, PQL3, is required for the NDH activity; however, the molecular function of PQL3 has not been elucidated. Here, we show that PQL3 is an assembly factor, particularly for the accumulation of subcomplex B (SubB) of the chloroplast NDH. In the pql3 mutant of Arabidopsis thaliana, the amounts of NDH subunits in SubB, PnsB1 and PsnB4, were decreased, causing a severe reduction in the NDH-PSI supercomplex. Analysis using blue native polyacrylamide gel electrophoresis suggested that the incorporation of PnsL3 into SubB was affected in the pql3 mutant. Unlike other PsbQ homologs, PQL3 was weakly associated with thylakoid membranes and was only partially protected from thermolysin digestion. Consistent with the function as an assembly factor, PQL3 accumulated independently in other NDH mutants, such as pnsl1-3. Furthermore, PQL3 accumulated in young leaves in a manner similar to the accumulation of CRR3, an assembly factor for SubB. These results suggest that PQL3 has developed a distinct function as an assembly factor for the NDH complex during evolution of the PsbQ protein family in angiosperms.
Collapse
Affiliation(s)
- Noriko Ishikawa
- Division of Integrated Life Science, Graduate School of Biostudies, Kyoto University, Kitashirakawa-Oiwake-cho, Sakyo-ku, Kyoto 606-8502, Japan
| | - Yuki Yokoe
- Division of Integrated Life Science, Graduate School of Biostudies, Kyoto University, Kitashirakawa-Oiwake-cho, Sakyo-ku, Kyoto 606-8502, Japan
| | - Taishi Nishimura
- Division of Integrated Life Science, Graduate School of Biostudies, Kyoto University, Kitashirakawa-Oiwake-cho, Sakyo-ku, Kyoto 606-8502, Japan
| | - Takeshi Nakano
- Division of Integrated Life Science, Graduate School of Biostudies, Kyoto University, Kitashirakawa-Oiwake-cho, Sakyo-ku, Kyoto 606-8502, Japan
| | - Kentaro Ifuku
- Division of Integrated Life Science, Graduate School of Biostudies, Kyoto University, Kitashirakawa-Oiwake-cho, Sakyo-ku, Kyoto 606-8502, Japan
| |
Collapse
|
22
|
Cesarino I, Dello Ioio R, Kirschner GK, Ogden MS, Picard KL, Rast-Somssich MI, Somssich M. Plant science's next top models. ANNALS OF BOTANY 2020; 126:1-23. [PMID: 32271862 PMCID: PMC7304477 DOI: 10.1093/aob/mcaa063] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 04/08/2020] [Indexed: 05/05/2023]
Abstract
BACKGROUND Model organisms are at the core of life science research. Notable examples include the mouse as a model for humans, baker's yeast for eukaryotic unicellular life and simple genetics, or the enterobacteria phage λ in virology. Plant research was an exception to this rule, with researchers relying on a variety of non-model plants until the eventual adoption of Arabidopsis thaliana as primary plant model in the 1980s. This proved to be an unprecedented success, and several secondary plant models have since been established. Currently, we are experiencing another wave of expansion in the set of plant models. SCOPE Since the 2000s, new model plants have been established to study numerous aspects of plant biology, such as the evolution of land plants, grasses, invasive and parasitic plant life, adaptation to environmental challenges, and the development of morphological diversity. Concurrent with the establishment of new plant models, the advent of the 'omics' era in biology has led to a resurgence of the more complex non-model plants. With this review, we introduce some of the new and fascinating plant models, outline why they are interesting subjects to study, the questions they will help to answer, and the molecular tools that have been established and are available to researchers. CONCLUSIONS Understanding the molecular mechanisms underlying all aspects of plant biology can only be achieved with the adoption of a comprehensive set of models, each of which allows the assessment of at least one aspect of plant life. The model plants described here represent a step forward towards our goal to explore and comprehend the diversity of plant form and function. Still, several questions remain unanswered, but the constant development of novel technologies in molecular biology and bioinformatics is already paving the way for the next generation of plant models.
Collapse
Affiliation(s)
- Igor Cesarino
- Department of Botany, Institute of Biosciences, University of São Paulo, Rua do Matão 277, Butantã, São Paulo, Brazil
| | - Raffaele Dello Ioio
- Dipartimento di Biologia e Biotecnologie, Università di Roma La Sapienza, Rome, Italy
| | - Gwendolyn K Kirschner
- University of Bonn, Institute of Crop Science and Resource Conservation (INRES), Division of Crop Functional Genomics, Bonn, Germany
| | - Michael S Ogden
- School of BioSciences, University of Melbourne, Parkville, VIC, Australia
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
| | - Kelsey L Picard
- School of Natural Sciences, University of Tasmania, Hobart, TAS, Australia
| | - Madlen I Rast-Somssich
- School of Biological Sciences, Monash University, Clayton Campus, Melbourne, VIC, Australia
| | - Marc Somssich
- School of BioSciences, University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
23
|
Ishibashi K, Small I, Shikanai T. Evolutionary Model of Plastidial RNA Editing in Angiosperms Presumed from Genome-Wide Analysis of Amborella trichopoda. PLANT & CELL PHYSIOLOGY 2019; 60:2141-2151. [PMID: 31150097 DOI: 10.1093/pcp/pcz111] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 05/21/2019] [Indexed: 05/08/2023]
Abstract
Amborella trichopoda is placed close to the base of the angiosperm lineage (basal angiosperm). By genome-wide RNA sequencing, we identified 184C-to-U RNA editing sites in the plastid genome of Amborella. This number is much higher than that observed in other angiosperms including maize (44 sites), rice (39 sites) and grape (115 sites). Despite the high frequency of RNA editing, the biased distribution of RNA editing sites in the genome, target codon preference and nucleotide preference adjacent to the edited cytidine are similar to that in other angiosperms, suggesting a common editing machinery. Consistent with this idea, the Amborella nuclear genome encodes 2-3 times more of the E- and DYW-subclass members of pentatricopeptide repeat proteins responsible for RNA editing site recognition in plant organelles. Among 165 editing sites in plastid protein coding sequences in Amborella, 100 sites were conserved at least in one out of 38 species selected to represent key branching points of the angiosperm phylogenetic tree. We assume these 100 sites represent at least a subset of the sites in the plastid editotype of ancestral angiosperms. We then mapped the loss and gain of editing sites on the phylogenetic tree of angiosperms. Our results support the idea that the evolution of angiosperms has led to the loss of RNA editing sites in plastids.
Collapse
Affiliation(s)
- Kota Ishibashi
- Department of Botany, Graduate School of Science, Kyoto University, Oiwake-cho, Kitashirakawa, Sakyo-ku, Kyoto, Japan
| | - Ian Small
- Australian Research Council Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, Crawley, WA, Australia
| | - Toshiharu Shikanai
- Department of Botany, Graduate School of Science, Kyoto University, Oiwake-cho, Kitashirakawa, Sakyo-ku, Kyoto, Japan
| |
Collapse
|
24
|
Grebe S, Trotta A, Bajwa AA, Suorsa M, Gollan PJ, Jansson S, Tikkanen M, Aro EM. The unique photosynthetic apparatus of Pinaceae: analysis of photosynthetic complexes in Picea abies. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:3211-3225. [PMID: 30938447 PMCID: PMC6598058 DOI: 10.1093/jxb/erz127] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 03/13/2019] [Indexed: 05/07/2023]
Abstract
Pinaceae are the predominant photosynthetic species in boreal forests, but so far no detailed description of the protein components of the photosynthetic apparatus of these gymnosperms has been available. In this study we report a detailed characterization of the thylakoid photosynthetic machinery of Norway spruce (Picea abies (L.) Karst). We first customized a spruce thylakoid protein database from translated transcript sequences combined with existing protein sequences derived from gene models, which enabled reliable tandem mass spectrometry identification of P. abies thylakoid proteins from two-dimensional large pore blue-native/SDS-PAGE. This allowed a direct comparison of the two-dimensional protein map of thylakoid protein complexes from P. abies with the model angiosperm Arabidopsis thaliana. Although the subunit composition of P. abies core PSI and PSII complexes is largely similar to that of Arabidopsis, there was a high abundance of a smaller PSI subcomplex, closely resembling the assembly intermediate PSI* complex. In addition, the evolutionary distribution of light-harvesting complex (LHC) family members of Pinaceae was compared in silico with other land plants, revealing that P. abies and other Pinaceae (also Gnetaceae and Welwitschiaceae) have lost LHCB4, but retained LHCB8 (formerly called LHCB4.3). The findings reported here show the composition of the photosynthetic apparatus of P. abies and other Pinaceae members to be unique among land plants.
Collapse
Affiliation(s)
- Steffen Grebe
- Molecular Plant Biology, Department of Biochemistry, University of Turku, Turku, Finland
| | - Andrea Trotta
- Molecular Plant Biology, Department of Biochemistry, University of Turku, Turku, Finland
| | - Azfar A Bajwa
- Molecular Plant Biology, Department of Biochemistry, University of Turku, Turku, Finland
| | - Marjaana Suorsa
- Molecular Plant Biology, Department of Biochemistry, University of Turku, Turku, Finland
| | - Peter J Gollan
- Molecular Plant Biology, Department of Biochemistry, University of Turku, Turku, Finland
| | - Stefan Jansson
- Umeå University, Faculty of Science and Technology, Department of Plant Physiology, Umeå Plant Science Centre (UPSC), Umeå, Sweden
| | - Mikko Tikkanen
- Molecular Plant Biology, Department of Biochemistry, University of Turku, Turku, Finland
| | - Eva-Mari Aro
- Molecular Plant Biology, Department of Biochemistry, University of Turku, Turku, Finland
| |
Collapse
|
25
|
Nakano H, Yamamoto H, Shikanai T. Contribution of NDH-dependent cyclic electron transport around photosystem I to the generation of proton motive force in the weak mutant allele of pgr5. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2019; 1860:369-374. [PMID: 30878346 DOI: 10.1016/j.bbabio.2019.03.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 01/29/2019] [Accepted: 03/11/2019] [Indexed: 01/05/2023]
Abstract
In angiosperms, cyclic electron transport (CET) around photosystem I (PSI) consists of two pathways, depending on PGR5/PGRL1 proteins and the chloroplast NDH complex. In single mutants defective in chloroplast NDH, photosynthetic electron transport is only slightly affected at low light intensity, but in double mutants impaired in both CET pathways photosynthesis and plant growth are severely affected. The question is whether this strong mutant phenotype observed in double mutants can be simply explained by the additive effect of defects in both CET pathways. In this study, we used the weak mutant allele of pgr5-2 for the background of double mutants to avoid possible problems caused by the secondary effects due to the strong mutant phenotype. In two double mutants, crr2-2 pgr5-2 and ndhs-1 pgr5-2, the plant growth was unaffected and linear electron transport was only slightly affected. However, NPQ induction was more severely impaired in the double mutants than in the pgr5-2 single mutant. A similar trend was observed in the size of the proton motive force. Despite the slight reduction in photosystem II parameters, PSI parameters were severely affected in the pgr5-2 single mutant, the phenotype that was further enhanced by adding the NDH defects. Despite the lack of ∆pH-dependent regulation at the cytochrome b6f complex (donor-side regulation of PSI), the plastoquinone pool was more reduced in the double mutants than in the pgr5-2 single mutants. This phenotype suggests that both PGR5/PGRL1- and NDH-dependent CET contribute to supply sufficient acceptors from PSI by balancing the ATP/NADPH production ratio.
Collapse
Affiliation(s)
- Hiroshi Nakano
- Department of Botany, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | - Hiroshi Yamamoto
- Department of Botany, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | - Toshiharu Shikanai
- Department of Botany, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan.
| |
Collapse
|
26
|
Deng N, Hou C, Liu C, Li M, Bartish I, Tian Y, Chen W, Du C, Jiang Z, Shi S. Significance of Photosynthetic Characters in the Evolution of Asian Gnetum (Gnetales). FRONTIERS IN PLANT SCIENCE 2019; 10:39. [PMID: 30804953 PMCID: PMC6370715 DOI: 10.3389/fpls.2019.00039] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 01/10/2019] [Indexed: 05/23/2023]
Abstract
Gnetum is a genus in the Gnetales that has a unique but ambiguous placement within seed plant phylogeny. Previous studies have shown that Gnetum has lower values of photosynthetic characters than those of other seed plants, but few Gnetum species have been studied, and those that have been studied are restricted to narrow taxonomic and geographic ranges. In addition, the mechanism underlying the lower values of photosynthetic characters in Gnetum remains poorly understood. Here, we investigated the photosynthetic characters of a Chinese lianoid species, i.e., Gnetum parvifolium, and co-occurring woody angiosperms growing in the wild, as well as seedlings of five Chinese Gnetum species cultivated in a greenhouse. The five Gnetum species had considerably lower values for photosynthesis parameters (net photosynthetic rate, transpiration rate, intercellular CO2 concentration, and stomatal conductance) than those of other seed plant representatives. Interrelated analyses revealed that the low photosynthetic capacity may be an intrinsic property of Gnetum, and may be associated with its evolutionary history. Comparison of the chloroplast genomes (cpDNAs) of Gnetum with those of other seed plant representatives revealed that 17 coding genes are absent from the cpDNAs of all species of Gnetum. This lack of multiple functional genes from the cpDNAs probably leads to the low photosynthetic rates of Gnetum. Our results provide a new perspective on the evolutionary history of the Gnetales, and on the ecophysiological and genomic attributes of tropical biomes in general. These results could also be useful for the breeding and cultivation of Gnetum.
Collapse
Affiliation(s)
- Nan Deng
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
- Hunan Academy of Forestry, Changsha, China
- Hunan Cili Forest Ecosystem State Research Station, Cili, China
| | - Chen Hou
- School of Life Sciences, Sun Yat-sen University, Guangzhou, China
- Department of Ecology, Environment and Plant Sciences, Stockholm University, Stockholm, Sweden
| | - Caixia Liu
- Hunan Academy of Forestry, Changsha, China
| | - Minghe Li
- College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Igor Bartish
- Department of Genetic Ecology, Institute of Botany, Academy of Sciences of Czech Republic, Praha, Czechia
| | - Yuxin Tian
- Hunan Academy of Forestry, Changsha, China
- Hunan Cili Forest Ecosystem State Research Station, Cili, China
| | - Wei Chen
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
| | - Changjian Du
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
| | - Zeping Jiang
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
- Institute of Forest and Ecology Protection, Chinese Academy of Forestry, Beijing, China
| | - Shengqing Shi
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
| |
Collapse
|
27
|
Kato Y, Odahara M, Fukao Y, Shikanai T. Stepwise evolution of supercomplex formation with photosystem I is required for stabilization of chloroplast NADH dehydrogenase-like complex: Lhca5-dependent supercomplex formation in Physcomitrella patens. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 96:937-948. [PMID: 30176081 DOI: 10.1111/tpj.14080] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Accepted: 08/16/2018] [Indexed: 05/25/2023]
Abstract
In angiosperms, such as Arabidopsis and barley, the chloroplast NADH dehydrogenase-like (NDH) complex associates with two copies of photosystem I (PSI) supercomplex to form an NDH-PSI supercomplex for the stabilization of the NDH complex. Two linker proteins, Lhca5 and Lhca6, are members of the light-harvesting complex I (LHCI) family and mediate this supercomplex formation. The liverwort Marchantia polymorpha has branched from the basal land plant lineage and has neither Lhca5 nor Lhca6. Consequently, the NDH complex does not form a supercomplex with PSI in this plant. The Lhca6 gene does not seem to exist also in the moss Physcomitrella patens (Physcomitrella). Conversely, the Lhca5 gene has been found in Physcomitrella, although experimental evidence is still lacking for its contribution to NDH-PSI supercomplex formation as a linker. Here, we biochemically characterized the Lhca5 knock-out mutant (lhca5) in Physcomitrella. The NDH-PSI supercomplex observed in wild-type Physcomitrella was absent in the lhca5 mutant. Lhca5 protein was detected in this NDH-PSI supercomplex. Some PSI and NDH subunits were co-immunoprecipitated with Lhca5-HA. These results indicate that the Physcomitrella gene is the functional ortholog of Lhca5 reported in Arabidopsis. Between Physcomitrella and Arabidopsis, the stromal loop region is highly conserved in Lhca5 proteins but not in other LHCI members. We found that Lhca5 contributed to the stable accumulation of the NDH complex, but part of the NDH complex was still sensitive to high light intensity, even in the wild-type. We considered that angiosperms acquired another linker protein, Lhca6, to further stabilize the NDH complex.
Collapse
Affiliation(s)
- Yoshinobu Kato
- Department of Botany, Graduate School of Science, Kyoto University, Kyoto, 606-8502, Japan
| | - Masaki Odahara
- Department of Life Science, College of Science, Rikkyo (St. Paul's) University, Toshima-ku, Tokyo, 171-8501, Japan
| | - Yoichiro Fukao
- Department of Bioinformatics, Ritsumeikan University, Kusatsu, Shiga, 525-8577, Japan
| | - Toshiharu Shikanai
- Department of Botany, Graduate School of Science, Kyoto University, Kyoto, 606-8502, Japan
| |
Collapse
|
28
|
Wang C, Takahashi H, Shikanai T. PROTON GRADIENT REGULATION 5 contributes to ferredoxin-dependent cyclic phosphorylation in ruptured chloroplasts. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2018; 1859:1173-1179. [DOI: 10.1016/j.bbabio.2018.07.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 07/26/2018] [Accepted: 07/30/2018] [Indexed: 10/28/2022]
|
29
|
Ito A, Sugita C, Ichinose M, Kato Y, Yamamoto H, Shikanai T, Sugita M. An evolutionarily conserved P-subfamily pentatricopeptide repeat protein is required to splice the plastid ndhA transcript in the moss Physcomitrella patens and Arabidopsis thaliana. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 94:638-648. [PMID: 29505122 DOI: 10.1111/tpj.13884] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 02/07/2018] [Accepted: 02/14/2018] [Indexed: 05/10/2023]
Abstract
Pentatricopeptide repeat (PPR) proteins are known to play important roles in post-transcriptional regulation in plant organelles. However, the function of the majority of PPR proteins remains unknown. To examine their functions, Physcomitrella patens PpPPR_66 knockout (KO) mutants were generated and characterized. The KO mosses exhibited a wild-type-like growth phenotype but showed aberrant chlorophyll fluorescence due to defects in chloroplast NADH dehydrogenase-like (NDH) activity. Immunoblot analysis suggested that disruption of PpPPR_66 led to a complete loss of the chloroplast NDH complex. To examine whether the loss of PpPPR_66 affects the expression of plastid ndh genes, the transcript levels of 11 plastid ndh genes were analyzed by reverse transcription PCR. This analysis indicated that splicing of the ndhA transcript was specifically impaired while mRNA accumulation levels as well as the processing patterns of other plastid ndh genes were not affected in the KO mutants. Complemented PpPPR_66 KO lines transformed with the PpPPR_66 full-length cDNA rescued splicing of the ndhA transcript. Arabidopsis thaliana T-DNA tagged lines of a PPR_66 homolog (At2 g35130) showed deficient splicing of the ndhA transcript. This indicates that the two proteins are functionally conserved between bryophytes and vascular plants. An in vitro RNA-binding assay demonstrated that the recombinant PpPPR_66 bound preferentially to the region encompassing a part of exon 1 to a 5' part of the ndhA group II intron. Taken together, these results indicate that PpPPR_66 acts as a specific factor to splice ndhA pre-mRNA.
Collapse
Affiliation(s)
- Ayaka Ito
- Center for Gene Research, Nagoya University, Nagoya, 464-8602, Japan
| | - Chieko Sugita
- Center for Gene Research, Nagoya University, Nagoya, 464-8602, Japan
| | - Mizuho Ichinose
- Center for Gene Research, Nagoya University, Nagoya, 464-8602, Japan
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Nagoya, 464-8602, Japan
| | - Yoshinobu Kato
- Department of Botany, Graduate School of Science, Kyoto University, Kyoto, 606-0076, Japan
| | - Hiroshi Yamamoto
- Department of Botany, Graduate School of Science, Kyoto University, Kyoto, 606-0076, Japan
| | - Toshiharu Shikanai
- Department of Botany, Graduate School of Science, Kyoto University, Kyoto, 606-0076, Japan
| | - Mamoru Sugita
- Center for Gene Research, Nagoya University, Nagoya, 464-8602, Japan
| |
Collapse
|
30
|
Otani T, Kato Y, Shikanai T. Specific substitutions of light-harvesting complex I proteins associated with photosystem I are required for supercomplex formation with chloroplast NADH dehydrogenase-like complex. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 94:122-130. [PMID: 29385648 DOI: 10.1111/tpj.13846] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2017] [Accepted: 01/15/2018] [Indexed: 05/25/2023]
Abstract
In Arabidopsis, the chloroplast NADH-dehydrogenase-like (NDH) complex is sandwiched between two copies of photosystem I (PSI) supercomplex, consisting of a PSI core and four light-harvesting complex I (LHCI) proteins (PSI-LHCI) to form the NDH-PSI supercomplex. Two minor LHCI proteins, Lhca5 and Lhca6, contribute to the interaction of each PSI-LHCI copy with the NDH complex. Here, large-pore blue-native gel electrophoresis revealed that, in addition to this complex, there were at least two types of higher-order association of more LHCI copies with the NDH complex. In single-particle images, this higher-order association of PSI-LHCI preferentially occurs at the left side of the NDH complex when viewed from the stromal side, placing subcomplex A at the top (Yadav et al., Biochim. Biophys. Acta - Bioenerg., 1858, 2017, 12). The association was impaired in the lhca6 mutant but not in the lhca5 mutant, suggesting that the left copy of PSI-LHCI was linked to the NDH complex via Lhca6. From an analysis of subunit compositions of the NDH-PSI supercomplex in lhca5 and lhca6 mutants, we propose that Lhca6 substitutes for Lhca2 in the left copy of PSI-LHCI, whereas Lhca5 substitutes for Lhca4 in the right copy. In the lhca2 mutant, Lhca3 was specifically stabilized in the NDH-PSI supercomplex through heterodimer formation with Lhca6. In the left copy of PSI-LHCI, subcomplex B, Lhca6 and NdhD likely formed the core of the supercomplex interaction. In contrast, a larger protein complex, including at least subcomplexes B and L and NdhB, was needed to form the contact site with Lhca5 in the right copy of PSI-LHCI.
Collapse
Affiliation(s)
- Takuto Otani
- Department of Botany, Graduate School of Science, Kyoto University, Kyoto, 606-8502, Japan
| | - Yoshinobu Kato
- Department of Botany, Graduate School of Science, Kyoto University, Kyoto, 606-8502, Japan
| | - Toshiharu Shikanai
- Department of Botany, Graduate School of Science, Kyoto University, Kyoto, 606-8502, Japan
| |
Collapse
|
31
|
Silva SR, Michael TP, Meer EJ, Pinheiro DG, Varani AM, Miranda VFO. Comparative genomic analysis of Genlisea (corkscrew plants-Lentibulariaceae) chloroplast genomes reveals an increasing loss of the ndh genes. PLoS One 2018; 13:e0190321. [PMID: 29293597 PMCID: PMC5749785 DOI: 10.1371/journal.pone.0190321] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Accepted: 12/12/2017] [Indexed: 11/18/2022] Open
Abstract
In the carnivorous plant family Lentibulariaceae, all three genome compartments (nuclear, chloroplast, and mitochondria) have some of the highest rates of nucleotide substitutions across angiosperms. While the genera Genlisea and Utricularia have the smallest known flowering plant nuclear genomes, the chloroplast genomes (cpDNA) are mostly structurally conserved except for deletion and/or pseudogenization of the NAD(P)H-dehydrogenase complex (ndh) genes known to be involved in stress conditions of low light or CO2 concentrations. In order to determine how the cpDNA are changing, and to better understand the evolutionary history within the Genlisea genus, we sequenced, assembled and analyzed complete cpDNA from six species (G. aurea, G. filiformis, G. pygmaea, G. repens, G. tuberosa and G. violacea) together with the publicly available G. margaretae cpDNA. In general, the cpDNA structure among the analyzed Genlisea species is highly similar. However, we found that the plastidial ndh genes underwent a progressive process of degradation similar to the other terrestrial Lentibulariaceae cpDNA analyzed to date, but in contrast to the aquatic species. Contrary to current thinking that the terrestrial environment is a more stressful environment and thus requiring the ndh genes, we provide evidence that in the Lentibulariaceae the terrestrial forms have progressive loss while the aquatic forms have the eleven plastidial ndh genes intact. Therefore, the Lentibulariaceae system provides an important opportunity to understand the evolutionary forces that govern the transition to an aquatic environment and may provide insight into how plants manage water stress at a genome scale.
Collapse
Affiliation(s)
- Saura R. Silva
- Universidade Estadual Paulista (Unesp), Botucatu, Instituto de Biociências, São Paulo, Brazil
| | - Todd P. Michael
- J. Craig Venter Institute, La Jolla, CA, United States of America
| | - Elliott J. Meer
- 10X Genomics, Pleasanton, California, United States of America
| | - Daniel G. Pinheiro
- Universidade Estadual Paulista (Unesp), Faculdade de Ciências Agrárias e Veterinárias, Jaboticabal, Departamento de Tecnologia, São Paulo, Brazil
| | - Alessandro M. Varani
- Universidade Estadual Paulista (Unesp), Faculdade de Ciências Agrárias e Veterinárias, Jaboticabal, Departamento de Tecnologia, São Paulo, Brazil
| | - Vitor F. O. Miranda
- Universidade Estadual Paulista (Unesp), Faculdade de Ciências Agrárias e Veterinárias, Jaboticabal, Departamento de Biologia Aplicada à Agropecuária, São Paulo, Brazil
| |
Collapse
|
32
|
Kim HT, Chase MW. Independent degradation in genes of the plastid ndh gene family in species of the orchid genus Cymbidium (Orchidaceae; Epidendroideae). PLoS One 2017; 12:e0187318. [PMID: 29140976 PMCID: PMC5695243 DOI: 10.1371/journal.pone.0187318] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Accepted: 10/17/2017] [Indexed: 11/23/2022] Open
Abstract
In this paper, we compare ndh genes in the plastid genome of many Cymbidium species and three closely related taxa in Orchidaceae looking for evidence of ndh gene degradation. Among the 11 ndh genes, there were frequently large deletions in directly repeated or AT-rich regions. Variation in these degraded ndh genes occurs between individual plants, apparently at population levels in these Cymbidium species. It is likely that ndh gene transfers from the plastome to mitochondrial genome (chondriome) occurred independently in Orchidaceae and that ndh genes in the chondriome were also relatively recently transferred between distantly related species in Orchidaceae. Four variants of the ycf1-rpl32 region, which normally includes the ndhF genes in the plastome, were identified, and some Cymbidium species contained at least two copies of that region in their organellar genomes. The four ycf1-rpl32 variants seem to have a clear pattern of close relationships. Patterns of ndh degradation between closely related taxa and translocation of ndh genes to the chondriome in Cymbidium suggest that there have been multiple bidirectional intracellular gene transfers between two organellar genomes, which have produced different levels of ndh gene degradation among even closely related species.
Collapse
Affiliation(s)
- Hyoung Tae Kim
- College of Agriculture and Life Sciences, Kyungpook University, Daegu, Korea
| | - Mark W. Chase
- Jodrell Laboratory, Royal Botanic Gardens, Kew, Richmond, Surrey, United Kingdom
- * E-mail:
| |
Collapse
|
33
|
Amiryousefi A, Hyvönen J, Poczai P. The plastid genome of Vanillon ( Vanilla pompona, Orchidaceae). MITOCHONDRIAL DNA PART B-RESOURCES 2017; 2:689-691. [PMID: 33473949 PMCID: PMC7800859 DOI: 10.1080/23802359.2017.1383201] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
This study presents the complete sequence of Vanilla pompona chloroplast genome. This 148,009 bp long genome consist of 107 genes out of which 30 of them are tRNA, 4 rRNA. Fairly long inverted repeat regions (IR) and large single-copy (LSC) of length 29,807 and 86,358 bp, respectively, were detected. This means an exceptionally short single-copy (SSC) region with only 2037 bp. This truncation of the SSC is due to multiple translocation of ndh genes to the mitochondrion as in majority of the Orchidaceae and especially in the genus Vanilla. The phylogeny presented here meaningfully places Vanillon within the orchid family.
Collapse
Affiliation(s)
- Ali Amiryousefi
- Finnish Museum of Natural History (Botany), University of Helsinki, Helsinki, Finland.,Department of Bioscience (Plant Biology), Viikki Plant Science Centre, University of Helsinki, Helsinki, Finland
| | - Jaakko Hyvönen
- Department of Bioscience (Plant Biology), Viikki Plant Science Centre, University of Helsinki, Helsinki, Finland
| | - Péter Poczai
- Finnish Museum of Natural History (Botany), University of Helsinki, Helsinki, Finland
| |
Collapse
|
34
|
Liu B, Sun G. microRNAs contribute to enhanced salt adaptation of the autopolyploid Hordeum bulbosum compared with its diploid ancestor. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2017; 91:57-69. [PMID: 28370696 DOI: 10.1111/tpj.13546] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Revised: 03/14/2017] [Accepted: 03/20/2017] [Indexed: 05/21/2023]
Abstract
Several studies have shown that autopolyploid can tolerate abiotic stresses better than its diploid ancestor. However, the underlying molecular mechanism is poorly known. microRNAs (miRNAs) are small RNAs that regulate the target gene expression post-transcriptionally and play a critical role in the response to abiotic stresses. Duplication of the whole genome can result in the expansion of miRNA families, and the innovative miRNA-target interaction is important for adaptive responses to various environments. We identified new microRNAs induced by genome duplication, that are also associated with stress response and the distinctive microRNA networks in tetraploid and diploid Hordeum bulbosum using high-throughput sequencing. Physiological results showed that autotetraploid Hordeum bulbosum tolerated salt stress better than its diploid. Comparison of miRNAs expression between diploid and tetraploid check (CK) and salt stress revealed that five miRNAs affected by genome doubling were also involved in salt stress response. Of these, miR528b-3p was only detected in the tetraploid, and downregulated under salt stress relative to that in tetraploid CK. Moreover, through target prediction, it was found that miR528b-3p was not only involved in DNA replication and repair but also participated in salt stress response. Finally, by analyzing all the differentially expressed microRNAs and their targets, we also discovered distinguished microRNAs-target regulatory networks in diploid and tetraploid, respectively. Overall, the results demonstrated the critical role of microRNAs in autopolyploid to have better tolerance salt stress.
Collapse
Affiliation(s)
- Beibei Liu
- Biology Department, Saint Mary's University, Halifax, Nova Scotia, B3H 3C3, Canada
| | - Genlou Sun
- Biology Department, Saint Mary's University, Halifax, Nova Scotia, B3H 3C3, Canada
| |
Collapse
|
35
|
Iwai M, Yokono M. Light-harvesting antenna complexes in the moss Physcomitrella patens: implications for the evolutionary transition from green algae to land plants. CURRENT OPINION IN PLANT BIOLOGY 2017; 37:94-101. [PMID: 28445834 DOI: 10.1016/j.pbi.2017.04.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 04/03/2017] [Accepted: 04/05/2017] [Indexed: 05/10/2023]
Abstract
Plants have successfully adapted to a vast range of terrestrial environments during their evolution. To elucidate the evolutionary transition of light-harvesting antenna proteins from green algae to land plants, the moss Physcomitrella patens is ideally placed basally among land plants. Compared to the genomes of green algae and land plants, the P. patens genome codes for more diverse and redundant light-harvesting antenna proteins. It also encodes Lhcb9, which has characteristics not found in other light-harvesting antenna proteins. The unique complement of light-harvesting antenna proteins in P. patens appears to facilitate protein interactions that include those lost in both green algae and land plants with regard to stromal electron transport pathways and photoprotection mechanisms. This review will highlight unique characteristics of the P. patens light-harvesting antenna system and the resulting implications about the evolutionary transition during plant terrestrialization.
Collapse
Affiliation(s)
- Masakazu Iwai
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720-3102, USA; Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.
| | - Makio Yokono
- Institute of Low Temperature Science, Hokkaido University, Sapporo 060-0819, Japan
| |
Collapse
|
36
|
Otani T, Yamamoto H, Shikanai T. Stromal Loop of Lhca6 is Responsible for the Linker Function Required for the NDH-PSI Supercomplex Formation. PLANT & CELL PHYSIOLOGY 2017; 58:851-861. [PMID: 28184910 DOI: 10.1093/pcp/pcx009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 01/15/2017] [Indexed: 05/25/2023]
Abstract
The light-harvesting complex I (LHCI) proteins in Arabidopsis thaliana are encoded by six genes. Major LHCI proteins (Lhca1-Lhca4) harvest light energy and transfer the resulting excitation energy to the PSI core by forming a PSI supercomplex. In contrast, the minor LHCI proteins Lhca5 and Lhca6 contribute to supercomplex formation between the PSI supercomplex and the chloroplast NADH dehydrogenase-like (NDH) complex, although Lhca5 is also solely associated with the PSI supercomplex. Lhca6 was branched from Lhca2 during the evolution of land plants. In this study, we focused on the molecular evolution involved in the transition from a major LHCI, Lhca2, to the linker protein Lhca6. To elucidate the domains of Lhca6 responsible for linker function, we systematically swapped domains between the two LHCI proteins. To overcome problems due to the low stability of chimeric proteins, we employed sensitive methods to evaluate supercomplex formation: we monitored NDH activity by using Chl fluorescence analysis and detected NDH-PSI supercomplex formation by using protein blot analysis in the form of two-dimensional blue-native (BN)/SDS-PAGE. The stromal loop of Lhca6 was shown to be necessary and sufficient for linker function. Chimeric Lhca6, in which the stromal loop was substituted by that of Lhca2, was not functional as a linker and was detected at the position of the PSI supercomplex in the BN-polyacrylamide gel. The stromal loop of Lhca6 is likely to be necessary for the interaction with chloroplast NDH, rather than for the association with the PSI supercomplex.
Collapse
Affiliation(s)
- Takuto Otani
- Department of Botany, Graduate School of Science, Kyoto University, Kyoto, Japan
| | - Hiroshi Yamamoto
- Department of Botany, Graduate School of Science, Kyoto University, Kyoto, Japan
- CREST, Japan Science and Technology Agency, Chiyoda-ku, Tokyo, Japan
| | - Toshiharu Shikanai
- Department of Botany, Graduate School of Science, Kyoto University, Kyoto, Japan
- CREST, Japan Science and Technology Agency, Chiyoda-ku, Tokyo, Japan
| |
Collapse
|
37
|
Shikanai T, Yamamoto H. Contribution of Cyclic and Pseudo-cyclic Electron Transport to the Formation of Proton Motive Force in Chloroplasts. MOLECULAR PLANT 2017; 10:20-29. [PMID: 27575692 DOI: 10.1016/j.molp.2016.08.004] [Citation(s) in RCA: 118] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Revised: 07/28/2016] [Accepted: 08/08/2016] [Indexed: 05/05/2023]
Abstract
Photosynthetic electron transport is coupled to proton translocation across the thylakoid membrane, resulting in the formation of a trans-thylakoid proton gradient (ΔpH) and membrane potential (Δψ). Ion transporters and channels localized to the thylakoid membrane regulate the contribution of each component to the proton motive force (pmf). Although both ΔpH and Δψ contribute to ATP synthesis as pmf, only ΔpH downregulates photosynthetic electron transport via the acidification of the thylakoid lumen by inducing thermal dissipation of excessive absorbed light energy from photosystem II antennae and slowing down of the electron transport through the cytochrome b6f complex. To optimize the tradeoff between efficient light energy utilization and protection of both photosystems against photodamage, plants have to regulate the pmf amplitude and its components, ΔpH and Δψ. Cyclic electron transport around photosystem I (PSI) is a major regulator of the pmf amplitude by generating pmf independently of the net production of NADPH by linear electron transport. Chloroplast ATP synthase relaxes pmf for ATP synthesis, and its activity should be finely tuned for maintaining the size of the pmf during steady-state photosynthesis. Pseudo-cyclic electron transport mediated by flavodiiron protein (Flv) forms a large electron sink, which is essential for PSI photoprotection in fluctuating light in cyanobacteria. Flv is conserved from cyanobacteria to gymnosperms but not in angiosperms. The Arabidopsis proton gradient regulation 5 (pgr5) mutant is defective in the main pathway of PSI cyclic electron transport. By introducing Physcomitrella patens genes encoding Flvs, the function of PSI cyclic electron transport was substituted by that of Flv-dependent pseudo-cyclic electron transport. In transgenic plants, the size of the pmf was complemented to the wild-type level but the contribution of ΔpH to the total pmf was lower than that in the wild type. In the pgr5 mutant, the size of the pmf was drastically lowered by the absence of PSI cyclic electron transport. In the mutant, ΔpH occupied the majority of pmf, suggesting the presence of a mechanism for the homeostasis of luminal pH in the light. To avoid damage to photosynthetic electron transport by periods of excess solar energy, plants employ an intricate regulatory network involving alternative electron transport pathways, ion transporters/channels, and pH-dependent mechanisms for downregulating photosynthetic electron transport.
Collapse
Affiliation(s)
- Toshiharu Shikanai
- Department of Botany, Graduate School of Science, Kyoto University, Oiwake-cho, Kitashirakawa, Sakyo-ku, Kyoto 606-8502 Japan; CREST, Japan Science and Technology Agency, Chiyoda-ku, Tokyo 102-0076 Japan.
| | - Hiroshi Yamamoto
- Department of Botany, Graduate School of Science, Kyoto University, Oiwake-cho, Kitashirakawa, Sakyo-ku, Kyoto 606-8502 Japan; CREST, Japan Science and Technology Agency, Chiyoda-ku, Tokyo 102-0076 Japan
| |
Collapse
|
38
|
Kono M, Yamori W, Suzuki Y, Terashima I. Photoprotection of PSI by Far-Red Light Against the Fluctuating Light-Induced Photoinhibition in Arabidopsis thaliana and Field-Grown Plants. PLANT & CELL PHYSIOLOGY 2017; 58:35-45. [PMID: 28119424 DOI: 10.1093/pcp/pcw215] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Accepted: 11/28/2016] [Indexed: 05/05/2023]
Abstract
It has been reported that PSI photoinhibition is induced even in wild-type plants of Arabidopsis thaliana, rice and other species by exposure of leaves to fluctuating light (FL) for a few hours. Because plants are exposed to FL in nature, they must possess protective mechanisms against the FL-induced photodamage. Here, using A. thaliana grown at various irradiances, we examined PSI photoprotection by far-red (FR) light at intensities comparable with those observed in nature. Dark-treated leaves were illuminated by red FL alternating high/low light at 1,200/30 µmol m-2 s-1 for 800 ms/10 s. By this FL treatment without FR light for 120 min, the level of photo-oxidizable P700 was decreased by 30% even in the plants grown at high irradiances. The addition of continuous FR light during the FL suppressed this damage almost completely. With FR light, P700 was kept in a more oxidized state in both low- and high-light phases. The protective effect of FR light was diminished more in mutants of the NADH dehydrogenase-like complex (NDH)-mediated cyclic electron flow around PSI (CEF-PSI) than in the PGR5 (proton gradient regulation 5)-mediated CEF-PSI, indicating that the NDH-mediated CEF-PSI would be a major contributor to PSI photoprotection in the presence of FR light. We also confirmed that PSI photoinhibition decreased with the increase in growth irradiance in A. thaliana and field-grown plants, and that this PSI photodamage was largely suppressed by addition of FR light. These results clearly indicate that the most effective PSI protection is realized in the presence of FR light.
Collapse
Affiliation(s)
- Masaru Kono
- Department of Biological Sciences, School of Science, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo, Japan
| | - Wataru Yamori
- Department of Biological Sciences, School of Science, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo, Japan
| | - Yoshihiro Suzuki
- Department of Biological Sciences, School of Science, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo, Japan
| | - Ichiro Terashima
- Department of Biological Sciences, School of Science, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo, Japan
| |
Collapse
|
39
|
Yamamoto H, Fan X, Sugimoto K, Fukao Y, Peng L, Shikanai T. CHLORORESPIRATORY REDUCTION 9 is a Novel Factor Required for Formation of Subcomplex A of the Chloroplast NADH Dehydrogenase-Like Complex. PLANT & CELL PHYSIOLOGY 2016; 57:2122-2132. [PMID: 27481895 DOI: 10.1093/pcp/pcw130] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Accepted: 07/12/2016] [Indexed: 06/06/2023]
Abstract
In vascular plants, the chloroplast NADH dehydrogenase-like (NDH) complex, a homolog of respiratory NADH:quinone oxidoreductase (Complex I), mediates plastoquinone reduction using ferredoxin as an electron donor in cyclic electron transport around PSI in the thylakoid membrane. In angiosperms, chloroplast NDH is composed of five subcomplexes and forms a supercomplex with PSI. The modular assembly of stroma-protruded subcomplex A, which corresponds to the Q module of Complex I, was recently reported. However, the factors involved in the specific assembly steps have not been completely identified. Here, we isolated an Arabidopsis mutant, chlororespiratory reduction 9 (crr9), defective in NDH activity. The CRR9 gene encodes a novel stromal protein without any known functional domains or motifs. CRR9 is highly conserved in cyanobacteria and land plants but not in green algae, which do not have chloroplast NDH. Blue native-PAGE and immunoblot analyses of thylakoid proteins indicated that formation of subcomplex A was impaired in crr9 CRR9 was specifically required for the accumulation of NdhK, a subcomplex A subunit, in NDH assembly intermediates in the stroma. Furthermore, two-dimensional clear native/SDS-PAGE analysis of the stroma fraction indicated that incorporation of NdhM into NDH assembly intermediate complex 400 was impaired in crr9 These results suggest that CRR9 is a novel factor required for the formation of NDH subcomplex A.
Collapse
Affiliation(s)
- Hiroshi Yamamoto
- Department of Botany, Graduate School of Science, Kyoto University, Kyoto, 606-8502 Japan
- CREST, Japan Science and Technology Agency Chiyoda-ku Tokyo, 102-0076 Japan
| | - Xiangyuan Fan
- Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Kazuhiko Sugimoto
- Department of Botany, Graduate School of Science, Kyoto University, Kyoto, 606-8502 Japan
| | - Yoichiro Fukao
- Department of Bioinformatics, Ritsumeikan University, Kusatsu, Shiga, 525-8577 Japan
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, Nara, 630-0192 Japan
| | - Lianwei Peng
- Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Toshiharu Shikanai
- Department of Botany, Graduate School of Science, Kyoto University, Kyoto, 606-8502 Japan
- CREST, Japan Science and Technology Agency Chiyoda-ku Tokyo, 102-0076 Japan
| |
Collapse
|
40
|
Kambakam S, Bhattacharjee U, Petrich J, Rodermel S. PTOX Mediates Novel Pathways of Electron Transport in Etioplasts of Arabidopsis. MOLECULAR PLANT 2016; 9:1240-1259. [PMID: 27353362 DOI: 10.1016/j.molp.2016.06.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2015] [Revised: 06/05/2016] [Accepted: 06/16/2016] [Indexed: 05/21/2023]
Abstract
The immutans (im) variegation mutant of Arabidopsis defines the gene for PTOX (plastid terminal oxidase), a versatile plastoquinol oxidase in chloroplast membranes. In this report we used im to gain insight into the function of PTOX in etioplasts of dark-grown seedlings. We discovered that PTOX helps control the redox state of the plastoquinone (PQ) pool in these organelles, and that it plays an essential role in etioplast metabolism by participating in the desaturation reactions of carotenogenesis and in one or more redox pathways mediated by PGR5 (PROTON GRADIENT REGULATION 5) and NDH (NAD(P)H dehydrogenase), both of which are central players in cyclic electron transport. We propose that these elements couple PTOX with electron flow from NAD(P)H to oxygen, and by analogy to chlororespiration (in chloroplasts) and chromorespiration (in chromoplasts), we suggest that they define a respiratory process in etioplasts that we have termed "etiorespiration". We further show that the redox state of the PQ pool in etioplasts might control chlorophyll biosynthesis, perhaps by participating in mechanisms of retrograde (plastid-to-nucleus) signaling that coordinate biosynthetic and photoprotective activities required to poise the etioplast for light development. We conclude that PTOX is an important component of metabolism and redox sensing in etioplasts.
Collapse
Affiliation(s)
- Sekhar Kambakam
- Department of Genetics, Development and Cell Biology, Iowa State University, 445 Bessey Hall, Ames, IA 50011, USA
| | | | - Jacob Petrich
- Department of Chemistry, Iowa State University, Ames, IA 50011, USA
| | - Steve Rodermel
- Department of Genetics, Development and Cell Biology, Iowa State University, 445 Bessey Hall, Ames, IA 50011, USA.
| |
Collapse
|
41
|
Shikanai T. Regulatory network of proton motive force: contribution of cyclic electron transport around photosystem I. PHOTOSYNTHESIS RESEARCH 2016; 129:253-60. [PMID: 26858094 DOI: 10.1007/s11120-016-0227-0] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Accepted: 01/27/2016] [Indexed: 05/07/2023]
Abstract
Cyclic electron transport around photosystem I (PSI) generates ∆pH across the thylakoid membrane without net production of NADPH. In angiosperms, two pathways of PSI cyclic electron transport operate. The main pathway depends on PGR5/PGRL1 proteins and is likely identical to the historical Arnon's pathway. The minor pathway depends on chloroplast NADH dehydrogenase-like (NDH) complex. In assays of their rates in vivo, the two independent pathways are often mixed together. Theoretically, linear electron transport from water to NADP(+) cannot satisfy the ATP/NADPH production ratio required by the Calvin-Benson cycle and photorespiration. PGR5/PGRL1-dependent PSI cyclic electron transport contributes substantially to the supply of ATP for CO2 fixation, as does linear electron transport. Also, the contribution of chloroplast NDH cannot be ignored, especially at low light intensity, although the extent of the contribution depends on the plant species. An increase in proton conductivity of ATP synthase may compensate ATP synthesis to some extent in the pgr5 mutant. Combined with the decreased rate of ∆pH generation, however, this mechanism sacrifices homeostasis of the thylakoid lumen pH, seriously disturbing the pH-dependent regulation of photosynthetic electron transport, induction of qE, and downregulation of the cytochrome b 6 f complex. PGR5/PGRL1-dependent PSI cyclic electron transport produces sufficient proton motive force for ATP synthesis and the regulation of photosynthetic electron transport.
Collapse
Affiliation(s)
- Toshiharu Shikanai
- Department of Botany, Graduate School of Science, Kyoto University, Oiwake-cho, Sakyo-ku, Kyoto, 606-8502, Japan.
- CREST, Japan Science and Technology Agency, Chiyoda-ku, Tokyo, 102-0076, Japan.
| |
Collapse
|
42
|
De Bortoli S, Teardo E, Szabò I, Morosinotto T, Alboresi A. Evolutionary insight into the ionotropic glutamate receptor superfamily of photosynthetic organisms. Biophys Chem 2016; 218:14-26. [PMID: 27586818 DOI: 10.1016/j.bpc.2016.07.004] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2016] [Revised: 07/20/2016] [Accepted: 07/20/2016] [Indexed: 01/14/2023]
Abstract
Photosynthetic eukaryotes have a complex evolutionary history shaped by multiple endosymbiosis events that required a tight coordination between the organelles and the rest of the cell. Plant ionotropic glutamate receptors (iGLRs) form a large superfamily of proteins with a predicted or proven non-selective cation channel activity regulated by a broad range of amino acids. They are involved in different physiological processes such as C/N sensing, resistance against fungal infection, root and pollen tube growth and response to wounding and pathogens. Most of the present knowledge is limited to iGLRs located in plasma membranes. However, recent studies localized different iGLR isoforms to mitochondria and/or chloroplasts, suggesting the possibility that they play a specific role in bioenergetic processes. In this work, we performed a comparative analysis of GLR sequences from bacteria and various photosynthetic eukaryotes. In particular, novel types of selectivity filters of bacteria are reported adding new examples of the great diversity of the GLR superfamily. The highest variability in GLR sequences was found among the algal sequences (cryptophytes, diatoms, brown and green algae). GLRs of land plants are not closely related to the GLRs of green algae analyzed in this work. The GLR family underwent a great expansion in vascular plants. Among plant GLRs, Clade III includes sequences from Physcomitrella patens, Marchantia polymorpha and gymnosperms and can be considered the most ancient, while other clades likely emerged later. In silico analysis allowed the identification of sequences with a putative target to organelles. Sequences with a predicted localization to mitochondria and chloroplasts are randomly distributed among different type of GLRs, suggesting that no compartment-related specific function has been maintained across the species.
Collapse
Affiliation(s)
| | - Enrico Teardo
- Department of Biology, University of Padova, Italy; CNR Institute of Neuroscience, Padova, Italy
| | - Ildikò Szabò
- Department of Biology, University of Padova, Italy; CNR Institute of Neuroscience, Padova, Italy
| | | | | |
Collapse
|
43
|
Shikanai T. Chloroplast NDH: A different enzyme with a structure similar to that of respiratory NADH dehydrogenase. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2016; 1857:1015-22. [DOI: 10.1016/j.bbabio.2015.10.013] [Citation(s) in RCA: 107] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Revised: 10/21/2015] [Accepted: 10/26/2015] [Indexed: 11/28/2022]
|
44
|
Daniell H, Lin CS, Yu M, Chang WJ. Chloroplast genomes: diversity, evolution, and applications in genetic engineering. Genome Biol 2016; 17:134. [PMID: 27339192 PMCID: PMC4918201 DOI: 10.1186/s13059-016-1004-2] [Citation(s) in RCA: 782] [Impact Index Per Article: 97.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Chloroplasts play a crucial role in sustaining life on earth. The availability of over 800 sequenced chloroplast genomes from a variety of land plants has enhanced our understanding of chloroplast biology, intracellular gene transfer, conservation, diversity, and the genetic basis by which chloroplast transgenes can be engineered to enhance plant agronomic traits or to produce high-value agricultural or biomedical products. In this review, we discuss the impact of chloroplast genome sequences on understanding the origins of economically important cultivated species and changes that have taken place during domestication. We also discuss the potential biotechnological applications of chloroplast genomes.
Collapse
Affiliation(s)
- Henry Daniell
- Department of Biochemistry, School of Dental Medicine, University of Pennsylvania, South 40th St, Philadelphia, PA, 19104-6030, USA.
| | - Choun-Sea Lin
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan
| | - Ming Yu
- Department of Biochemistry, School of Dental Medicine, University of Pennsylvania, South 40th St, Philadelphia, PA, 19104-6030, USA
| | - Wan-Jung Chang
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
45
|
Yamori W, Shikanai T. Physiological Functions of Cyclic Electron Transport Around Photosystem I in Sustaining Photosynthesis and Plant Growth. ANNUAL REVIEW OF PLANT BIOLOGY 2016; 67:81-106. [PMID: 26927905 DOI: 10.1146/annurev-arplant-043015-112002] [Citation(s) in RCA: 294] [Impact Index Per Article: 36.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
The light reactions in photosynthesis drive both linear and cyclic electron transport around photosystem I (PSI). Linear electron transport generates both ATP and NADPH, whereas PSI cyclic electron transport produces ATP without producing NADPH. PSI cyclic electron transport is thought to be essential for balancing the ATP/NADPH production ratio and for protecting both photosystems from damage caused by stromal overreduction. Two distinct pathways of cyclic electron transport have been proposed in angiosperms: a major pathway that depends on the PROTON GRADIENT REGULATION 5 (PGR5) and PGR5-LIKE PHOTOSYNTHETIC PHENOTYPE 1 (PGRL1) proteins, which are the target site of antimycin A, and a minor pathway mediated by the chloroplast NADH dehydrogenase-like (NDH) complex. Recently, the regulation of PSI cyclic electron transport has been recognized as essential for photosynthesis and plant growth. In this review, we summarize the possible functions and importance of the two pathways of PSI cyclic electron transport.
Collapse
Affiliation(s)
- Wataru Yamori
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Tokyo 113-0033, Japan;
- Precursory Research for Embryonic Science and Technology (PRESTO) and
| | - Toshiharu Shikanai
- Core Research for Evolutionary Science and Technology (CREST), Japan Science and Technology Agency, Kawaguchi 332-0012, Japan
- Department of Botany, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| |
Collapse
|
46
|
Peltier G, Aro EM, Shikanai T. NDH-1 and NDH-2 Plastoquinone Reductases in Oxygenic Photosynthesis. ANNUAL REVIEW OF PLANT BIOLOGY 2016; 67:55-80. [PMID: 26735062 DOI: 10.1146/annurev-arplant-043014-114752] [Citation(s) in RCA: 169] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Oxygenic photosynthesis converts solar energy into chemical energy in the chloroplasts of plants and microalgae as well as in prokaryotic cyanobacteria using a complex machinery composed of two photosystems and both membrane-bound and soluble electron carriers. In addition to the major photosynthetic complexes photosystem II (PSII), cytochrome b6f, and photosystem I (PSI), chloroplasts also contain minor components, including a well-conserved type I NADH dehydrogenase (NDH-1) complex that functions in close relationship with photosynthesis and likewise originated from the endosymbiotic cyanobacterial ancestor. Some plants and many microalgal species have lost plastidial ndh genes and a functional NDH-1 complex during evolution, and studies have suggested that a plastidial type II NADH dehydrogenase (NDH-2) complex substitutes for the electron transport activity of NDH-1. However, although NDH-1 was initially thought to use NAD(P)H as an electron donor, recent research has demonstrated that both chloroplast and cyanobacterial NDH-1s oxidize reduced ferredoxin. We discuss more recent findings related to the biochemical composition and activity of NDH-1 and NDH-2 in relation to the physiology and regulation of photosynthesis, particularly focusing on their roles in cyclic electron flow around PSI, chlororespiration, and acclimation to changing environments.
Collapse
Affiliation(s)
- Gilles Peltier
- Institute of Environmental Biology and Biotechnology, CEA, CNRS, Aix-Marseille University, CEA Cadarache, 13018 Saint-Paul-lès-Durance, France;
| | - Eva-Mari Aro
- Department of Biochemistry, University of Turku, 20014 Turku, Finland;
| | | |
Collapse
|
47
|
Tsuzuki M, Nishihama R, Ishizaki K, Kurihara Y, Matsui M, Bowman JL, Kohchi T, Hamada T, Watanabe Y. Profiling and Characterization of Small RNAs in the Liverwort, Marchantia polymorpha, Belonging to the First Diverged Land Plants. PLANT & CELL PHYSIOLOGY 2016; 57:359-72. [PMID: 26589267 DOI: 10.1093/pcp/pcv182] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Accepted: 11/13/2015] [Indexed: 05/04/2023]
Abstract
MicroRNAs (miRNAs) have important roles in gene regulation during plant development. Previous studies revealed that some miRNAs are highly shared by most land plants. Recently, the liverwort, Marchantia polymorpha, has been studied by molecular genetic approaches, and sequencing of its genome is currently underway. The expression pattern and the detailed functions of miRNAs during Marchantia development are unknown. Here, we profiled the small RNAs expressed in thalli, antheridiophores and archegoniophores of M. polymorpha using high-throughput RNA sequencing. We revealed that a limited number of miRNAs are shared between M. polymorpha and the moss, Physcomitrella patens, and that a number of miRNAs are M. polymorpha specific. Like other land plants, cognate target genes corresponding to conserved miRNAs could be found in the genome database and were experimentally confirmed to guide cleavage of target mRNAs. The results suggested that two genes in the SPL (SQUAMOSA PROMOTER BINDING-LIKE) transcription factor family, which are regulated by miR156 in most land plants, were instead targeted by two distinct miRNAs in M. polymorpha. In order to demonstrate the physiological roles of miRNAs in M. polymorpha, we constructed an miRNA ectopic expression system to establish overexpression transformants for conserved miRNAs, miR166 and miR319. Ectopic expression of these miRNAs induced abnormal development of the thallus and gemma cups, suggesting that balanced expression of miRNA/target mRNAs has a crucial role in developmental regulation in M. polymorpha. Profiling data on miRNA together with the ectopic expression system would provide new information on the liverwort small RNA world and evolutionary divergence/conservation of small RNA function among land plants.
Collapse
Affiliation(s)
- Masayuki Tsuzuki
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, 153-8902 Japan
| | - Ryuichi Nishihama
- Graduate School of Biostudies, Kyoto University, Kyoto, 606-8502 Japan
| | | | - Yukio Kurihara
- Synthetic Genomics Research Team, Biomass Engineering Program Cooperation Division, RIKEN Center for Sustainable Resource Science (CSRS), Yokohama, 230-0045 Japan
| | - Minami Matsui
- Synthetic Genomics Research Team, Biomass Engineering Program Cooperation Division, RIKEN Center for Sustainable Resource Science (CSRS), Yokohama, 230-0045 Japan
| | - John L Bowman
- School of Biological Sciences, Monash University, Melbourne, Victoria 3800, Australia Department of Plant Biology, UC Davis, Davis, CA 95616, USA
| | - Takayuki Kohchi
- Graduate School of Biostudies, Kyoto University, Kyoto, 606-8502 Japan
| | - Takahiro Hamada
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, 153-8902 Japan
| | - Yuichiro Watanabe
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, 153-8902 Japan
| |
Collapse
|
48
|
Ishizaki K, Nishihama R, Yamato KT, Kohchi T. Molecular Genetic Tools and Techniques for Marchantia polymorpha Research. PLANT & CELL PHYSIOLOGY 2016; 57:262-70. [PMID: 26116421 DOI: 10.1093/pcp/pcv097] [Citation(s) in RCA: 141] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2015] [Accepted: 06/18/2015] [Indexed: 05/18/2023]
Abstract
Liverworts occupy a basal position in the evolution of land plants, and are a key group to address a wide variety of questions in plant biology. Marchantia polymorpha is a common, easily cultivated, dioecious liverwort species, and is emerging as an experimental model organism. The haploid gametophytic generation dominates the diploid sporophytic generation in its life cycle. Genetically homogeneous lines in the gametophyte generation can be established easily and propagated through asexual reproduction, which aids genetic and biochemical experiments. Owing to its dioecy, male and female sexual organs are formed in separate individuals, which enables crossing in a fully controlled manner. Reproductive growth can be induced at the desired times under laboratory conditions, which helps genetic analysis. The developmental process from a single-celled spore to a multicellular body can be observed directly in detail. As a model organism, molecular techniques for M. polymorpha are well developed; for example, simple and efficient protocols of Agrobacterium-mediated transformation have been established. Based on them, various strategies for molecular genetics, such as introduction of reporter constructs, overexpression, gene silencing and targeted gene modification, are available. Herein, we describe the technologies and resources for reverse and forward genetics in M. polymorpha, which offer an excellent experimental platform to study the evolution and diversity of regulatory systems in land plants.
Collapse
Affiliation(s)
| | - Ryuichi Nishihama
- Graduate School of Biostudies, Kyoto University, Kyoto, 606-8502 Japan
| | - Katsuyuki T Yamato
- Faculty of Biology-Oriented Science and Technology, Kinki University, Wakayama, 649-6493 Japan
| | - Takayuki Kohchi
- Graduate School of Biostudies, Kyoto University, Kyoto, 606-8502 Japan
| |
Collapse
|
49
|
Shimamura M. Marchantia polymorpha: Taxonomy, Phylogeny and Morphology of a Model System. PLANT & CELL PHYSIOLOGY 2016; 57:230-56. [PMID: 26657892 DOI: 10.1093/pcp/pcv192] [Citation(s) in RCA: 187] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Accepted: 11/25/2015] [Indexed: 05/06/2023]
Abstract
One of the classical research plants in plant biology, Marchantia polymorpha, is drawing attention as a new model system. Its ease of genetic transformation and a genome sequencing project have attracted attention to the species. Here I present a thorough assessment of the taxonomic status, anatomy and developmental morphology of each organ and tissue of the gametophyte and sporophyte on the basis of a thorough review of the literature and my own observations. Marchantia polymorpha has been a subject of intensive study for nearly 200 years, and the information summarized here offers an invaluable resource for future studies on this model plant.
Collapse
Affiliation(s)
- Masaki Shimamura
- Department of Biology, Graduate School of Science, Hiroshima University, Kagamiyama 1-3-1, Higashi-Hiroshim, 739-8526 Japan
| |
Collapse
|
50
|
Boehm CR, Ueda M, Nishimura Y, Shikanai T, Haseloff J. A Cyan Fluorescent Reporter Expressed from the Chloroplast Genome of Marchantia polymorpha. PLANT & CELL PHYSIOLOGY 2016; 57:291-9. [PMID: 26634291 PMCID: PMC4788411 DOI: 10.1093/pcp/pcv160] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Accepted: 10/21/2015] [Indexed: 05/10/2023]
Abstract
Recently, the liverwort Marchantia polymorpha has received increasing attention as a basal plant model for multicellular studies. Its ease of handling, well-characterized plastome and proven protocols for biolistic plastid transformation qualify M. polymorpha as an attractive platform to study the evolution of chloroplasts during the transition from water to land. In addition, chloroplasts of M. polymorpha provide a convenient test-bed for the characterization of genetic elements involved in plastid gene expression due to the absence of mechanisms for RNA editing. While reporter genes have proven valuable to the qualitative and quantitative study of gene expression in chloroplasts, expression of green fluorescent protein (GFP) in chloroplasts of M. polymorpha has proven problematic. We report the design of a codon-optimized gfp varian, mturq2cp, which allowed successful expression of a cyan fluorescent protein under control of the tobacco psbA promoter from the chloroplast genome of M. polymorpha. We demonstrate the utility of mturq2cp in (i) early screening for transplastomic events following biolistic transformation of M. polymorpha spores; (ii) visualization of stromules as elements of plastid structure in Marchantia; and (iii) quantitative microscopy for the analysis of promoter activity.
Collapse
Affiliation(s)
- Christian R Boehm
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, UK
| | - Minoru Ueda
- Department of Botany, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto, 606-8502 Japan Present address: RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro, Tsurumi, Yokohama, 230-0045 Japan
| | - Yoshiki Nishimura
- Department of Botany, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto, 606-8502 Japan
| | - Toshiharu Shikanai
- Department of Botany, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto, 606-8502 Japan CREST, Japan Science and Technology Agency, Chiyoda-ku, Tokyo, 102-0076 Japan
| | - Jim Haseloff
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, UK
| |
Collapse
|