1
|
Scalise A, Aggarwal A, Sangwan N, Hamer A, Guntupalli S, Park HE, Aleman JO, Cameron SJ. A Divergent Platelet Transcriptome in Patients with Lipedema and Lymphedema. Genes (Basel) 2024; 15:737. [PMID: 38927673 PMCID: PMC11202821 DOI: 10.3390/genes15060737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 05/28/2024] [Accepted: 05/29/2024] [Indexed: 06/28/2024] Open
Abstract
Lipedema and lymphedema are physically similar yet distinct diseases that are commonly misdiagnosed. We previously reported that lipedema and lymphedema are associated with increased risk for venous thromboembolism (VTE). The underlying etiology of the prothrombotic profile observed in lipedema and lymphedema is unclear, but may be related to alterations in platelets. Our objective was to analyze the platelet transcriptome to identify biological pathways that may provide insight into platelet activation and thrombosis. The platelet transcriptome was evaluated in patients with lymphedema and lipedema, then compared to control subjects with obesity. Patients with lipedema were found to have a divergent transcriptome from patients with lymphedema. The platelet transcriptome and impacted biological pathways in lipedema were surprisingly similar to weight-matched comparators, yet different when compared to overweight individuals with a lower body mass index (BMI). Differences in the platelet transcriptome for patients with lipedema and lymphedema were found in biological pathways required for protein synthesis and degradation, as well as metabolism. Key differences in the platelet transcriptome for patients with lipedema compared to BMI-matched subjects involved metabolism and glycosaminoglycan processing. These inherent differences in the platelet transcriptome warrant further investigation, and may contribute to the increased risk of thrombosis in patients with lipedema and lymphedema.
Collapse
Affiliation(s)
- Alliefair Scalise
- Heart Vascular and Thoracic Institute, Department of Cardiovascular Medicine, Section of Vascular Medicine, Cleveland Clinic Foundation, Cleveland, OH 44195, USA
| | - Anu Aggarwal
- Lerner Research Institute, Department of Cardiovascular and Metabolic Sciences, Cleveland Clinic Foundation, Cleveland, OH 44195, USA
| | - Naseer Sangwan
- Lerner Research Institute, Department of Cardiovascular and Metabolic Sciences, Cleveland Clinic Foundation, Cleveland, OH 44195, USA
| | - Annelise Hamer
- Heart Vascular and Thoracic Institute, Department of Cardiovascular Medicine, Section of Vascular Medicine, Cleveland Clinic Foundation, Cleveland, OH 44195, USA
| | - Suman Guntupalli
- Lerner Research Institute, Department of Cardiovascular and Metabolic Sciences, Cleveland Clinic Foundation, Cleveland, OH 44195, USA
| | - Huijun Edelyn Park
- Lerner Research Institute, Department of Cardiovascular and Metabolic Sciences, Cleveland Clinic Foundation, Cleveland, OH 44195, USA
| | - Jose O. Aleman
- Holman Division of Endocrinology, New York University, New York, NY 10012, USA;
| | - Scott J. Cameron
- Heart Vascular and Thoracic Institute, Department of Cardiovascular Medicine, Section of Vascular Medicine, Cleveland Clinic Foundation, Cleveland, OH 44195, USA
- Lerner Research Institute, Department of Cardiovascular and Metabolic Sciences, Cleveland Clinic Foundation, Cleveland, OH 44195, USA
- Lerner College of Medicine, Case Western Reserve University, Cleveland, OH 44195, USA
- Department of Hematology, Taussig Cancer Center, Cleveland, OH 44195, USA
| |
Collapse
|
2
|
Tynngård N, Alshamari A, Sandgren P, Kenny D, Vasilache AM, Abedi MR, Ramström S. High fragmentation in platelet concentrates impacts the activation, procoagulant, and aggregatory capacity of platelets. Platelets 2023; 34:2159018. [PMID: 36632714 DOI: 10.1080/09537104.2022.2159018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Platelets are transfused to patients to prevent bleeding. Since both preparation and storage can impact the hemostatic functions of platelets, we studied platelet concentrates (PCs) with different initial composition in regard to platelet fragmentation and its impact on storage-induced changes in activation potential. Ten whole blood derived PCs were assessed over 7 storage days. Using flow cytometry, platelet (CD41+) subpopulations were characterized for activation potential using activation markers (PAC-1, P-selectin, and LAMP-1), phosphatidylserine (Annexin V), and mitochondrial integrity (DiIC1(5)). Aggregation response, coagulation, and soluble activation markers (cytokines and sGPVI) were also measured. Of the CD41+ events, the PCs contained a median of 82% normal-sized platelets, 10% small platelets, and 8% fragments. The small platelets exhibited procoagulant hallmarks (increased P-selectin and Annexin V and reduced DiIC1(5)). Normal-sized platelets responded to activation, whereas activation potential was decreased for small and abolished for fragments. Five PCs contained a high proportion of small platelets and fragments (median of 28% of CD41+ events), which was significantly higher than the other five PCs (median of 9%). A high proportion of small platelets and fragments was associated with procoagulant hallmarks and decreased activation potential, but, although diminished, they still retained some activation potential throughout 7 days storage.
Collapse
Affiliation(s)
- Nahreen Tynngård
- Department of Clinical Chemistry and Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden.,Research and Development Unit in Region Östergötland and Department of Health, Medicine and Caring Sciences, Linköping University, Linköping, Sweden
| | - Aseel Alshamari
- Department of Clinical Immunology and Transfusion medicine, Faculty of Medicine and Health, Örebro University, Sweden.,Cardiovascular Research Centre, School of Medical Sciences, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - Per Sandgren
- Department of Clinical Science, Intervention and Technology (CLINTEC), Karolinska Institutet, Stockholm, Sweden
| | - Dermot Kenny
- Clinical Research Centre, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Ana Maria Vasilache
- Department of Clinical Immunology and Transfusion Medicine, and Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Mohammad R Abedi
- Department of Clinical Immunology and Transfusion medicine, Faculty of Medicine and Health, Örebro University, Sweden
| | - Sofia Ramström
- Department of Clinical Chemistry and Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden.,Cardiovascular Research Centre, School of Medical Sciences, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| |
Collapse
|
3
|
Kubat GB, Ulger O, Akin S. Requirements for successful mitochondrial transplantation. J Biochem Mol Toxicol 2021; 35:e22898. [PMID: 34435410 DOI: 10.1002/jbt.22898] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 07/11/2021] [Accepted: 08/13/2021] [Indexed: 12/17/2022]
Abstract
Maintenance of mitochondrial oxidative phosphorylation capacity and other mitochondrial functions are essential for the prevention of mitochondrial dysfunction-related diseases such as neurodegenerative, cardiovascular, and liver diseases. To date, no well-known treatment modality has been developed to prevent or reduce mitochondrial dysfunction. However, a novel approach that transplants fully functional mitochondria directly into defective cells has recently caught the attention of scientists. In this review, we provide an overview of the cell/tissue source of the mitochondria to prompt cell regeneration or tissue repair in vitro and in vivo applications. The animal and human models entail that effective procedures should be used in the isolation and confirmation of mitochondrial membrane potential and function. We believe that these procedures for mitochondrial transplantation for tissue or cell culture will confirm intact, viable, and free from contamination isolated mitochondria from the appropriate sources.
Collapse
Affiliation(s)
- Gokhan Burcin Kubat
- Department of Exercise and Sports Physiology, Hacettepe University, Ankara, Turkey.,Department of Pathology, Gulhane Training and Research Hospital, Ankara, Turkey
| | - Oner Ulger
- Department Intensive Care, Gulhane Training and Research Hospital, Ankara, Turkey
| | - Senay Akin
- Department of Exercise and Sports Physiology, Hacettepe University, Ankara, Turkey
| |
Collapse
|
4
|
N-acetylcysteine reduce the stress induced by cold storage of platelets: A potential way to extend shelf life of platelets. Transfus Apher Sci 2020; 60:103039. [PMID: 33388248 DOI: 10.1016/j.transci.2020.103039] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Revised: 11/26/2020] [Accepted: 12/01/2020] [Indexed: 10/22/2022]
Abstract
The room temperature storage used for platelets worldwide leads to platelet storage lesion (PSL) and risk of bacterial growth, limiting platelet shelf life and safety in transfusion. Thus, there is a need for an alternative storage method that can serve as effective temperature storage for platelet concentrates (PCs). In the previous investigation, we have shown that N-acetylcysteine (NAC) is a potential candidate for an additive solution to retain platelet characteristics during cold storage for up to 5 days. However, the study partially describes the efficacy and has drawbacks to address. Here, we used the apheresis platelet product with 50 mM NAC and stored up to 10 days under refrigerated condition (4 ± 1 °C). Stored platelet concentrates were analyzed for critical parameters such as platelet activation, annexin V binding, sialic acid, reactive oxygen species (ROS), neuraminidase activity, and in vivo efficacy using Prkdcscid mice. Investigation observations revealed that PCs with NAC showed reduced platelet activation, annexin V binding, ROS production, and sialic acid levels. in vivo recovery of PCs showed similar recovery rates stored PCs irrespective of treatment or storage condition. However, on the tenth day after 24 h, recovery in room temperature stored concentrates was about 32 %, whereas in NAC treated refrigerated concentrates, it stands at 47 %. These observations indicate that NAC addition protects refrigerated concentrates during long-term storage retaining the platelet integrity. The study also suggests that extending PC storage beyond 10 days is practically accomplishable with efficacy similar to room temperature (RT) stored PCs.
Collapse
|
5
|
Maués JHDS, Moreira-Nunes CDFA, Burbano RMR. Computational Identification and Characterization of New microRNAs in Human Platelets Stored in a Blood Bank. Biomolecules 2020; 10:biom10081173. [PMID: 32806499 PMCID: PMC7464399 DOI: 10.3390/biom10081173] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 08/05/2020] [Accepted: 08/06/2020] [Indexed: 12/15/2022] Open
Abstract
Platelet concentrate (PC) transfusions are widely used to save the lives of patients who experience acute blood loss. MicroRNAs (miRNAs) comprise a class of molecules with a biological role which is relevant to the understanding of storage lesions in blood banks. We used a new approach to identify miRNAs in normal human platelet sRNA-Seq data from the GSE61856 repository. We identified a comprehensive miRNA expression profile, where we detected 20 of these transcripts potentially expressed in PCs stored for seven days, which had their expression levels analyzed with simulations of computational biology. Our results identified a new collection of miRNAs (miR-486-5p, miR-92a-3p, miR-103a-3p, miR-151a-3p, miR-181a-5p, and miR-221-3p) that showed a sensitivity expression pattern due to biological platelet changes during storage, confirmed by additional quantitative real-time polymerase chain reaction (qPCR) validation on 100 PC units from 500 healthy donors. We also identified that these miRNAs could transfer regulatory information on platelets, such as members of the let-7 family, by regulating the YOD1 gene, which is a deubiquitinating enzyme highly expressed in platelet hyperactivity. Our results also showed that the target genes of these miRNAs play important roles in signaling pathways, cell cycle, stress response, platelet activation and cancer. In summary, the miRNAs described in this study, have a promising application in transfusion medicine as potential biomarkers to also measure the quality and viability of the PC during storage in blood banks.
Collapse
Affiliation(s)
- Jersey Heitor da Silva Maués
- Laboratory of Human Cytogenetics, Institute of Biological Sciences, Federal University of Pará, Belém, PA 66075-110, Brazil;
- Laboratory of Molecular Biology, Ophir Loyola Hospital, Belém, PA 66063-240, Brazil
- Correspondence: (J.H.d.S.M.); (C.d.F.A.M.-N.)
| | - Caroline de Fátima Aquino Moreira-Nunes
- Laboratory of Pharmacogenetics, Drug Research and Development Center (NPDM), Federal University of Ceará, Fortaleza, CE 60430-275, Brazil
- Correspondence: (J.H.d.S.M.); (C.d.F.A.M.-N.)
| | - Rommel Mário Rodriguez Burbano
- Laboratory of Human Cytogenetics, Institute of Biological Sciences, Federal University of Pará, Belém, PA 66075-110, Brazil;
- Laboratory of Molecular Biology, Ophir Loyola Hospital, Belém, PA 66063-240, Brazil
| |
Collapse
|
6
|
Millar D, Hayes C, Jones J, Klapper E, Kniep JN, Luu HS, Noland DK, Petitti L, Poisson JL, Spaepen E, Ye Z, Maurer-Spurej E. Comparison of the platelet activation status of single-donor platelets obtained with two different cell separator technologies. Transfusion 2020; 60:2067-2078. [PMID: 32729161 DOI: 10.1111/trf.15934] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 05/06/2020] [Accepted: 05/24/2020] [Indexed: 12/16/2022]
Abstract
BACKGROUND The microparticle content (MP%) of apheresis platelets-a marker of platelet activation-is influenced by donor factors and by external stressors during collection and storage. This study assessed the impact of apheresis technology and other factors on the activation status (MP%) of single-donor apheresis platelets. STUDY DESIGN AND METHODS Data from six US hospitals that screened platelets by measuring MP% through dynamic light scattering (ThromboLUX) were retrospectively analyzed. Relative risks (RRs) were derived from univariate and multivariable regression models, with activation rate (MP% ≥15% for plasma-stored platelets; ≥10% for platelet additive solution [PAS]-stored platelets) and MP% as outcomes. Apheresis platform (Trima Accel vs Amicus), storage medium (plasma vs PAS), pathogen reduction, storage time, and testing location were used as predictors. RESULTS Data were obtained from 7511 platelet units collected using Trima (from 16 suppliers, all stored in plasma, 20.0% were pathogen-reduced) and 2456 collected using Amicus (from four different collection facilities of one supplier, 65.0% plasma-stored, 35.0% PAS-stored, none pathogen-reduced). Overall, 30.0% of Trima platelets were activated compared to 45.6% of Amicus platelets (P < .0001). Multivariable analysis identified apheresis platform as significantly associated with platelet activation, with a lower activation rate for Trima than Amicus (RR: 0.641, 95% confidence interval [CI]: 0.578; 0.711, P < .0001) and a 6.901% (95% CI: 5.926; 7.876, P < .0001) absolute reduction in MP%, when adjusting for the other variables. CONCLUSION Trima-collected platelets were significantly less likely to be activated than Amicus-collected platelets, irrespective of the storage medium, the use of pathogen reduction, storage time, and testing site.
Collapse
Affiliation(s)
- Daniel Millar
- Department of Integrated Engineering, University of British Columbia and MistyWest Research and Engineering Lab, Vancouver, British Columbia, Canada
| | - Chelsea Hayes
- Department of Pathology, Division of Transfusion Medicine, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Jessica Jones
- Department of Pathology & Laboratory Medicine, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Ellen Klapper
- Department of Pathology, Division of Transfusion Medicine, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Joel N Kniep
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Hung S Luu
- Department of Pathology, University of Texas Southwestern Medical Center and Children's Health, Dallas, Texas, USA
| | - Daniel K Noland
- Department of Pathology, University of Texas Southwestern Medical Center and Children's Health, Dallas, Texas, USA
| | | | | | | | - Zhan Ye
- Department of Pathology & Laboratory Medicine, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Elisabeth Maurer-Spurej
- Department of Pathology and Laboratory Medicine and Centre for Blood Research and Canadian Blood Services, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
7
|
Protective effect of L-carnitine on platelet apoptosis during storage of platelet concentrate. Transfus Clin Biol 2020; 27:139-146. [PMID: 32544525 DOI: 10.1016/j.tracli.2020.06.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 05/16/2020] [Accepted: 06/08/2020] [Indexed: 11/21/2022]
Abstract
BACKGROUND Platelet apoptosis is considered as one of the important factors involved in platelet storage lesion (PSL) and affect the quality of platelets during storage. The beneficial effect of L-carnitine (LC) on platelet apoptosis during platelet concentrates (PCs) storage has not been fully investigated. The aim of this study was to evaluate the effects of LC on platelets of PC regarding their apoptosis markers during storage. METHODS Ten PCs from healthy donors were investigated in this study. PCs were prepared by platelet rich plasma (PRP) method and stored at 22±2°C with gentle agitation during storage. The effects of LC (15mM) on the platelet apoptosis were assessed by analyzing different indicative presence or absence of LC. Sampling was performed to evaluate apoptosis markers during platelet storage. RESULTS The results indicated significantly higher mitochondrial membrane potential for LC-treated platelets than the untreated on the days 2 and 5 of storage (Pday2=0.001, Pday5=0.001). Phosphatidylserine (PS) exposure significantly increased on the untreated compared with LC-treated platelets on the second and third days of storage (Pday2=0.014, Pday3=0.012). Also, active caspase 3 was lower in the LC- treated platelets than the control group on the day 5 of storage (Pday5=0.004). Cytosolic cytochrome C was so significantly lower in LC-treated compared to the untreated platelets during storage time (Pday2=0.002, Pday3=0.001, Pday5=0.001). CONCLUSION The results of this study indicate that the use of LC as an additive solution in platelets may be useful to reduce PSL by decreasing platelet apoptosis via mitochondrial pathway and increase platelet quality during storage.
Collapse
|
8
|
Lasta CS, Hlavac N, Marcondes NA, Dalmolin ML, Terra SR, de Almeida Lacerda L, Faulhaber GAM, González FHD. Quality control in veterinary blood banks: evaluation of canine platelet concentrates stored for five days. BMC Vet Res 2020; 16:25. [PMID: 32000762 PMCID: PMC6990466 DOI: 10.1186/s12917-020-2254-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 01/22/2020] [Indexed: 12/03/2022] Open
Abstract
Background Platelets undergo structural, biochemical and functional alterations when stored, and platelet storage lesions reduce platelet function and half-life after transfusion. The objective of this study was to evaluate stored canine platelet concentrates with platelet aggregation, flow cytometry and biochemistry assays. Twenty-two bags of canine platelet concentrates were obtained by the platelet-rich plasma method and were assessed on days 1, 3 and 5 after collection. Parameters such as platelet counts, residual leukocytes, platelet swirling, glucose, lactate, pH, CD62P expression (platelet activation), JC-1 (mitochondrial function) and annexin V (apoptosis and cell death) were assessed. Results Over the five days of storage there was a significant decrease in glucose, HCO3, pCO2, ATP, pH, swirling and mitochondrial function, associated with a significant increase in lactate levels and pO2. At the end of storage pH was 5.9 ± 0.6 and lactate levels were 2.8 ± 1.2 mmol/L. Results of the quality parameters evaluated were similar to those reported in human platelets studies. The deleterious effects of storage were more pronounced in bags with higher platelet counts (> 7.49 × 1010/unit), suggesting that canine platelet concentrates should not contain an excessive number of platelets. Conclusions Quality parameters of canine platelets under standard storage conditions were similar to those observed in human platelets. Our results have potential to be used for the routine evaluation and quality control in veterinary blood banks.
Collapse
Affiliation(s)
- Camila Serina Lasta
- Departamento de Saúde, Faculdade de Medicina Veterinária, Centro Universitário Ritter dos Reis - UniRitter - Campus FAPA, Av. Manoel Elias, 2001, 91240-261, Porto Alegre, Brazil. .,Departamento de Patologia Clínica Veterinária, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.
| | - Nicole Hlavac
- Departamento de Anatomia, Patologia e Clínicas Veterinárias, Universidade Federal da Bahia, Salvador, Brazil
| | | | | | - Silvia Resende Terra
- Departamento de Patologia Clínica Veterinária, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | | | - Gustavo Adolpho Moreira Faulhaber
- Departamento de Medicina Interna, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.,Programa de Pós-Graduação em Medicina, Ciências Médicas, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Félix Hilário Díaz González
- Departamento de Patologia Clínica Veterinária, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| |
Collapse
|
9
|
Pennell EN, Wagner KH, Mosawy S, Bulmer AC. Acute bilirubin ditaurate exposure attenuates ex vivo platelet reactive oxygen species production, granule exocytosis and activation. Redox Biol 2019; 26:101250. [PMID: 31226648 PMCID: PMC6586953 DOI: 10.1016/j.redox.2019.101250] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Revised: 06/07/2019] [Accepted: 06/08/2019] [Indexed: 12/19/2022] Open
Abstract
Background Bilirubin, a by-product of haem catabolism, possesses potent endogenous antioxidant and platelet inhibitory properties. These properties may be useful in inhibiting inappropriate platelet activation and ROS production; for example, during storage for transfusion. Given the hydrophobicity of unconjugated bilirubin (UCB), we investigated the acute platelet inhibitory and ROS scavenging ability of a water-soluble bilirubin analogue, bilirubin ditaurate (BRT) on ex vivo platelet function to ascertain its potential suitability for inclusion during platelet storage. Methods The inhibitory potential of BRT (10–100 μM) was assessed using agonist induced platelet aggregation, dense granule exocytosis and flow cytometric analysis of P-selectin and GPIIb/IIIa expression. ROS production was investigated by analysis of H2DCFDA fluorescence following agonist simulation while mitochondrial ROS production investigated using MitoSOX™ Red. Platelet mitochondrial membrane potential and viability was assessed using TMRE and Zombie Green™ respectively. Results Our data shows ≤35 μM BRT significantly inhibits both dense and alpha granule exocytosis as measured by ATP release and P-selectin surface expression, respectively. Significant inhibition of GPIIb/IIIa expression was also reported upon ≤35 μM BRT exposure. Furthermore, platelet exposure to ≤10 μM BRT significantly reduces platelet mitochondrial ROS production. Despite the inhibitory effect of BRT, platelet viability, mitochondrial membrane potential and agonist induced aggregation were not perturbed. Conclusions These data indicate, for the first time, that BRT, a water-soluble bilirubin analogue, inhibits platelet activation and reduces platelet ROS production ex vivo and may, therefore, may be of use in preserving platelet function during storage. The impact of conjugated bilirubin on platelet function has not been investigated to date. Bilirubin ditaurate (BDT) is a water-soluble analogue of conjugated bilirubin. BDT attenuates ex vivo platelet activation and ROS generation. Conjugated forms of bilirubin might inhibit platelet activation during storage.
Collapse
Affiliation(s)
- Evan Noel Pennell
- School of Medical Science, Griffith University, Gold Coast, Australia
| | - Karl-Heinz Wagner
- Research Platform Active Aging, Department of Nutritional Science, University of Vienna, Austria.
| | - Sapha Mosawy
- School of Medical Science, Griffith University, Gold Coast, Australia; Endeavour College of Natural Health, Melbourne, Australia
| | | |
Collapse
|
10
|
Hosseini E, Ghasemzadeh M, Atashibarg M, Haghshenas M. ROS scavenger, N-acetyl-l-cysteine and NOX specific inhibitor, VAS2870 reduce platelets apoptosis while enhancing their viability during storage. Transfusion 2019; 59:1333-1343. [DOI: 10.1111/trf.15114] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 11/20/2018] [Accepted: 11/21/2018] [Indexed: 11/28/2022]
Affiliation(s)
- Ehteramolsadat Hosseini
- Blood Transfusion Research Center; High Institute for Research and Education in Transfusion Medicine; Tehran Iran
| | - Mehran Ghasemzadeh
- Blood Transfusion Research Center; High Institute for Research and Education in Transfusion Medicine; Tehran Iran
- Australian Centre for Blood Diseases; Monash University; Melbourne Victoria Australia
| | - Mahtab Atashibarg
- Blood Transfusion Research Center; High Institute for Research and Education in Transfusion Medicine; Tehran Iran
| | - Masood Haghshenas
- Blood Transfusion Research Center; High Institute for Research and Education in Transfusion Medicine; Tehran Iran
| |
Collapse
|
11
|
Bashir S, Kemsley K, Min K, Swann ID, Cardigan R. Platelet storage in more than 90% additive solution containing glucose and bicarbonate has the potential to increase shelf life. Transfusion 2018; 58:2959-2968. [PMID: 30265746 DOI: 10.1111/trf.14962] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Revised: 06/22/2018] [Accepted: 06/24/2018] [Indexed: 11/30/2022]
Abstract
BACKGROUND Platelet concentrates (PCs) suspended in more than 90% additive solution (AS) are recommended for patients with reactions to platelets stored in plasma. Next-generation AS containing glucose and bicarbonate might enable storage of these PCs for longer than those in current-generation AS, which was therefore evaluated in this study. STUDY DESIGN AND METHODS Five buffy coat or apheresis-derived PCs were pooled and split into identical units. All units except the control were centrifuged, the plasma removed and replaced with AS (SSP+, PAS-5, or PAS-G), or resuspended in the same plasma and sampled 96 hours after resuspension for analysis. RESULTS Plasma carryover was less than 10%, total protein less than 1 g/unit, and immunoglobulin A levels lower than 0.1 mg/mL for all PCs in AS. The pH of all the platelets during storage was higher than 6.4. PAS containing glucose maintained superior in vitro platelet function during storage compared with those resuspended in SSP+. Compared with storage in SSP+, storage in PAS-5 or PAS-G resulted in better preservation of platelet adenosine triphosphate and hypotonic shock response, lower annexin V binding, and improved mitochondrial membrane potential. CONCLUSION Platelets resuspended in PAS-5 and PAS-G maintained in vitro function and metabolism during storage compared with SSP+ platelets. Elevated platelet metabolic activity was noticed in PAS-G, and higher platelet activation was detected with PAS-5. Platelets resuspended in PAS containing glucose has the potential to increase the shelf life of PC in more than 90% AS.
Collapse
|
12
|
Marcondes NA, Terra SR, Lasta CS, Hlavac NRC, Dalmolin ML, Lacerda LDA, Faulhaber GAM, González FHD. Comparison of JC‐1 and MitoTracker probes for mitochondrial viability assessment in stored canine platelet concentrates: A flow cytometry study. Cytometry A 2018; 95:214-218. [DOI: 10.1002/cyto.a.23567] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 06/18/2018] [Accepted: 06/27/2018] [Indexed: 11/09/2022]
Affiliation(s)
| | - Silvia Resende Terra
- Clinical Pathology Laboratory, Veterinary Medicine FacultyUniversidade do Sul de Santa Catarina Tubarão Brazil
| | - Camila Serina Lasta
- Department of Veterinary Clinical PathologyUniversidade Federal do Rio Grande do Sul Porto Alegre Brazil
- Department of HealthCentro Universitário Ritter dos Reis – UniRitter Porto Alegre Brazil
| | - Nicole Regina Capacchi Hlavac
- Clinical Pathology Laboratory, Veterinary Medicine FacultyUniversidade do Sul de Santa Catarina Tubarão Brazil
- Department of Veterinary Clinical PathologyUniversidade Federal do Rio Grande do Sul Porto Alegre Brazil
| | | | | | - Gustavo Adolpho Moreira Faulhaber
- Laboratório Zanol Porto Alegre Brazil
- Department of Internal MedicineUniversidade Federal do Rio Grande do Sul Porto Alegre Brazil
- Post‐Graduation Program in Medicine: Medical SciencesUniversidade Federal do Rio Grande do Sul Porto Alegre Brazil
| | | |
Collapse
|
13
|
Intrinsic apoptosis circumvents the functional decline of circulating platelets but does not cause the storage lesion. Blood 2018; 132:197-209. [DOI: 10.1182/blood-2017-11-816355] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2017] [Accepted: 05/07/2018] [Indexed: 01/21/2023] Open
Abstract
Key Points
BAK/BAX depletion in murine platelets reveals that intrinsic apoptosis is not required for the development of the platelet storage lesion. Restriction of platelet life span by intrinsic apoptosis is pivotal to maintain a functional, hemostatically reactive platelet population.
Collapse
|
14
|
Zhang X, Yu S, Deng G, He Y, Li Q, Yu L, Yu Y. Effects of nitric oxide donor S-nitrosoglutathione on apoptosis of apheresis platelets. Hematology 2018; 23:574-580. [PMID: 29890936 DOI: 10.1080/10245332.2018.1483547] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Affiliation(s)
- Xiongxin Zhang
- The Department of Anesthesiology, The First Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, People’s Republic of China
| | - Shifang Yu
- The Department of Transfusion Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, People’s Republic of China
| | - Gang Deng
- The Ningbo Central Blood Station, Ningbo, People’s Republic of China
| | - Yunlei He
- The Ningbo Central Blood Station, Ningbo, People’s Republic of China
| | - Qiang Li
- The Department of Laboratory Medicine, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, People’s Republic of China
| | - Lu Yu
- The Ningbo Central Blood Station, Ningbo, People’s Republic of China
| | - Yong Yu
- The Department of Transfusion Medicine, Ningbo No. 2 Hospital, Ningbo, People’s Republic of China
| |
Collapse
|
15
|
Bashir S, Meli A, Cardigan R. In vitroquality of apheresis platelets divided into paediatric-sized units and stored in PVC bags plasticised with TOTM, BTHC or DINCH. Transfus Med 2018; 28:380-385. [DOI: 10.1111/tme.12528] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 03/20/2018] [Accepted: 03/21/2018] [Indexed: 11/30/2022]
Affiliation(s)
- S. Bashir
- Component Development Laboratory, NHS Blood and Transplant; Cambridge UK
| | - A. Meli
- Component Development Laboratory, NHS Blood and Transplant; Cambridge UK
| | - R. Cardigan
- Component Development Laboratory, NHS Blood and Transplant; Cambridge UK
- Department of Haematology; University of Cambridge; Cambridge UK
| |
Collapse
|
16
|
Ghasemzadeh M, Hosseini E, Roudsari ZO, Zadkhak P. Intraplatelet reactive oxygen species (ROS) correlate with the shedding of adhesive receptors, microvesiculation and platelet adhesion to collagen during storage: Does endogenous ROS generation downregulate platelet adhesive function? Thromb Res 2018; 163:153-161. [DOI: 10.1016/j.thromres.2018.01.048] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2017] [Revised: 01/02/2018] [Accepted: 01/26/2018] [Indexed: 01/01/2023]
|
17
|
Vucic M, Stanojkovic Z, Antic A, Vucic J, Pavlovic V. Evaluation of platelet activation in leukocyte-depleted platelet concentrates during storage. Bosn J Basic Med Sci 2018; 18:29-34. [PMID: 28926321 DOI: 10.17305/bjbms.2017.2321] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 08/29/2017] [Accepted: 08/30/2017] [Indexed: 01/14/2023] Open
Abstract
Structural and functional changes in platelets during storage can lead to the loss of platelet reactivity and response. Our aim was to evaluate leukocyte-depleted platelet concentrates on storage days 0, 3 and 5, obtained by in-line filtration. In non-filtered platelet concentrates (NF-PC) group, 180 whole blood units were collected with quadruple blood bags and then compared to another group of 180 whole blood units (leukocyte-depleted platelet concentrates [LD-PC]), collected in Imuflex Whole Blood Filter Saving Platelets (WB-SP) bags with an integrated leukoreduction filter, with regard to the platelet quality and characteristics. The efficacy of the two techniques for platelet concentrate preparation was evaluated by white blood cell (WBC) and platelet count on day 0. The partial pressure of oxygen (pO2), pH, platelets positive for P-selectin (CD62P), CD63, cluster of differentiation 42b (CD42b), phosphatidylserine (PS), and mitochondrial membrane potential (MMP) were analyzed during the storage in both groups. A significantly lower WBC count and higher platelet count was observed in LD-PC compared to NF-PC group, indicating the overall efficacy of the first technique. During the 5-day storage, pH and pO2 decreased in both groups. In LD-PC group, higher pH, increased pO2 and decreased platelet surface expression of CD62P, CD63 and PS were observed compared to NF-PC group. In both groups, the percentage of CD42b positive platelets and MMP did not change significantly during the 5-day period. The assessment of different markers of platelet activation may be an effective tool in evaluating the quality of platelets during storage. A better understanding of platelet activation may provide new insights for developing a novel therapeutic approach in the manipulation of platelet aggregation.
Collapse
Affiliation(s)
- Miodrag Vucic
- Clinic of Hematology and Clinical Immunology, Medical Faculty, University of Nis, Nis, Serbia.
| | | | | | | | | |
Collapse
|
18
|
Black A, Orsó E, Kelsch R, Pereira M, Kamhieh-Milz J, Salama A, Fischer MB, Meyer E, Frey BM, Schmitz G. Analysis of platelet-derived extracellular vesicles in plateletpheresis concentrates: a multicenter study. Transfusion 2017; 57:1459-1469. [DOI: 10.1111/trf.14109] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Revised: 02/06/2017] [Accepted: 02/06/2017] [Indexed: 12/19/2022]
Affiliation(s)
- Anne Black
- Institute for Clinical Chemistry and Laboratory Medicine; University Hospital of Regensburg; Regensburg Germany
| | - Evelyn Orsó
- Institute for Clinical Chemistry and Laboratory Medicine; University Hospital of Regensburg; Regensburg Germany
| | - Reinhard Kelsch
- Institute of Transfusion Medicine and Transplantation Immunology, University Hospital Muenster; Muenster Germany
| | - Melanie Pereira
- Institute of Transfusion Medicine, Charité University Medical Centre; Berlin Germany
| | - Julian Kamhieh-Milz
- Institute of Transfusion Medicine, Charité University Medical Centre; Berlin Germany
| | - Abdulgabar Salama
- Institute of Transfusion Medicine, Charité University Medical Centre; Berlin Germany
| | - Michael B. Fischer
- Department for Health Sciences and Biomedicine; Danube University Krems; Krems Austria
| | - Eduardo Meyer
- Regional Blood Transfusion Service Zurich SRK; Zurich Switzerland
| | - Beat M. Frey
- Regional Blood Transfusion Service Zurich SRK; Zurich Switzerland
| | - Gerd Schmitz
- Institute for Clinical Chemistry and Laboratory Medicine; University Hospital of Regensburg; Regensburg Germany
| |
Collapse
|
19
|
Au AE, Josefsson EC. Regulation of platelet membrane protein shedding in health and disease. Platelets 2016; 28:342-353. [PMID: 27494300 DOI: 10.1080/09537104.2016.1203401] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Extracellular proteolysis of platelet plasma membrane proteins is an event that ensues platelet activation. Shedding of surface receptors such as glycoprotein (GP) Ibα, GPV and GPVI as well as externalized proteins P-selectin and CD40L releases soluble ectodomain fragments that are subsequently detectable in plasma. This results in the irreversible functional downregulation of platelet receptor-mediated adhesive interactions and the generation of biologically active fragments. In this review, we describe molecular insights into the regulation of platelet receptor and ligand shedding in health and disease. The scope of this review is specially focused on GPIbα, GPV, GPVI, P-selectin and CD40L where we: (1) describe the basic physiological regulation of expression and shedding of these proteins in hemostasis illustrate alterations in receptor expression during (2) apoptosis and (3) ex vivo storage relevant for blood banking purposes; (4) discuss considerations to be made when analyzing and interpreting shedding of platelet membrane proteins and finally; (5) collate clinical evidence that quantify these platelet proteins during disease.
Collapse
Affiliation(s)
- Amanda E Au
- a The Walter and Eliza Hall Institute of Medical Research, Cancer & Haematology Division , 1G Royal Parade, Melbourne , Australia.,b Department of Medical Biology , The University of Melbourne , Melbourne , Australia
| | - Emma C Josefsson
- a The Walter and Eliza Hall Institute of Medical Research, Cancer & Haematology Division , 1G Royal Parade, Melbourne , Australia.,b Department of Medical Biology , The University of Melbourne , Melbourne , Australia
| |
Collapse
|
20
|
Kamhieh-Milz J, Mustafa SA, Sterzer V, Celik H, Keski S, Khorramshahi O, Movassaghi K, Hoheisel JD, Alhamdani MSS, Salama A. Secretome profiling of apheresis platelet supernatants during routine storage via antibody-based microarray. J Proteomics 2016; 150:74-85. [PMID: 27478071 DOI: 10.1016/j.jprot.2016.07.028] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Revised: 07/25/2016] [Accepted: 07/27/2016] [Indexed: 02/07/2023]
Abstract
Platelet storage lesions (PSLs) occur during platelet concentrate (PC) storage. Adverse transfusion reactions (ATRs) have been demonstrated to be more frequent in older PCs and removal of the supernatant prior to transfusion reduces their occurrence. Proteomic profiling of PC supernatants was thus performed to identify proteins associated with PSLs and ATRs. Twenty-four PCs were investigated daily from day 0 to day 9 for platelet pre-activation (PPA), platelet-derived extracellular vesicles (PEVs), and platelet function. Using antibody microarrays, 673 extracellular proteins were analysed in PC supernatants on days 0, 3, 5, 7, and 9. During 5days of storage, PPA and PEVs continuously increased (P<0.0001). Platelet function was observed to remain stable within the first 5days (P=0.1751) and decreased thereafter. Comparison of all time points to day 0 revealed the identification of 136 proteins that were significantly changed in abundance during storage, of which 72 were expressed by platelets. Network analysis identified these proteins to be predominantly associated with exosomes (P=4.61×10-8, n=45 genes) and two clusters with distinct functions were found with one being associated with haemostasis and the other with RNA binding. These findings may provide an explanation for ATRs. SIGNIFICANCE Changes in platelet concentrate (PC) supernatants during storage have been so far only poorly addressed and high abundant proteins burden the identification of quantitative changes in the secretome. We applied a high-throughput antibody microarray allowing for the sensitive quantification of 673 extracellular factors. PCs account for the highest number of adverse transfusion reactions (ATRs). ATRs have been demonstrated to be more frequent in older PCs and removal of the supernatant prior to transfusion reduces their occurrence. Comprehensive interpretation of the changing proteins in the secretome during platelet storage under blood banking conditions may help to identify mechanisms leading to the occurrence of adverse transfusion reactions.
Collapse
Affiliation(s)
- Julian Kamhieh-Milz
- Institute of Transfusion Medicine, Charité University Medicine Berlin, Augustenburger Platz 1, 13349 Berlin, Germany.
| | - Shakhawan A Mustafa
- Division of Functional Genome Analysis, Deutsches Krebsforschungszentrum (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany; Kurdistan Institution for Strategic Studies and Scientific Research, Gullabax 335, Shorsh St., Sulaimani, Kurdistan Region, Iraq
| | - Viktor Sterzer
- Institute of Transfusion Medicine, Charité University Medicine Berlin, Augustenburger Platz 1, 13349 Berlin, Germany
| | - Hatice Celik
- Institute of Transfusion Medicine, Charité University Medicine Berlin, Augustenburger Platz 1, 13349 Berlin, Germany
| | - Sahime Keski
- Institute of Transfusion Medicine, Charité University Medicine Berlin, Augustenburger Platz 1, 13349 Berlin, Germany
| | - Omid Khorramshahi
- Institute of Transfusion Medicine, Charité University Medicine Berlin, Augustenburger Platz 1, 13349 Berlin, Germany
| | - Kamran Movassaghi
- Institute of Transfusion Medicine, Charité University Medicine Berlin, Augustenburger Platz 1, 13349 Berlin, Germany
| | - Jörg D Hoheisel
- Division of Functional Genome Analysis, Deutsches Krebsforschungszentrum (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Mohamed S S Alhamdani
- Division of Functional Genome Analysis, Deutsches Krebsforschungszentrum (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Abdulgabar Salama
- Institute of Transfusion Medicine, Charité University Medicine Berlin, Augustenburger Platz 1, 13349 Berlin, Germany
| |
Collapse
|
21
|
Wood B, Padula MP, Marks DC, Johnson L. Refrigerated storage of platelets initiates changes in platelet surface marker expression and localization of intracellular proteins. Transfusion 2016; 56:2548-2559. [PMID: 27460096 DOI: 10.1111/trf.13723] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Revised: 05/18/2016] [Accepted: 06/01/2016] [Indexed: 12/30/2022]
Abstract
BACKGROUND Platelets (PLTs) are currently stored at room temperature (22°C), which limits their shelf life, primarily due to the risk of bacterial growth. Alternatives to room temperature storage include PLT refrigeration (2-6°C), which inhibits bacterial growth, thus potentially allowing an extension of shelf life. Additionally, refrigerated PLTs appear more hemostatically active than conventional PLTs, which may be beneficial in certain clinical situations. However, the mechanisms responsible for this hemostatic function are not well characterized. The aim of this study was to assess the protein profile of refrigerated PLTs in an effort to understand these functional consequences. STUDY DESIGN AND METHODS Buffy coat PLTs were pooled, split, and stored either at room temperature (20-24°C) or under refrigerated (2-6°C) conditions (n = 8 in each group). PLTs were assessed for changes in external receptor expression and actin filamentation using flow cytometry. Intracellular proteomic changes were assessed using two-dimensional gel electrophoresis and Western blotting. RESULTS PLT refrigeration significantly reduced the abundance of glycoproteins (GPIb, GPIX, GPIIb, and GPIV) on the external membrane. However, refrigeration resulted in the increased expression of high-affinity integrins (αIIbβ3 and β1) and activation and apoptosis markers (CD62P, CD63, and phosphatidylserine). PLT refrigeration substantially altered the abundance and localization of several cytoskeletal proteins and resulted in an increase in actin filamentation, as measured by phalloidin staining. CONCLUSION Refrigerated storage of PLTs induces significant changes in the expression and localization of both surface-expressed and intracellular proteins. Understanding these proteomic changes may help to identify the mechanisms resulting in the refrigeration-associated alterations in PLT function and clearance.
Collapse
Affiliation(s)
- Ben Wood
- Research & Development, Australian Red Cross Blood Service, Alexandria, NSW, Australia.,Proteomics Core Facility, University of Technology Sydney, Sydney, NSW, Australia
| | - Matthew P Padula
- Proteomics Core Facility, University of Technology Sydney, Sydney, NSW, Australia
| | - Denese C Marks
- Research & Development, Australian Red Cross Blood Service, Alexandria, NSW, Australia
| | - Lacey Johnson
- Research & Development, Australian Red Cross Blood Service, Alexandria, NSW, Australia.
| |
Collapse
|
22
|
Abstract
A goal of platelet storage is to maintain the quality of platelets from the point of donation to the point of transfusion - to suspend the aging process. This effort is judged by clinical and laboratory measures with varying degrees of success. Recent work gives encouragement that platelets can be maintained ex vivo beyond the current 5 -7 day shelf life whilst maintaining their quality, as measured by posttransfusion recovery and survival. However, additional measures are needed to validate the development of technologies that may further reduce the aging of stored platelets, or enhance their hemostatic properties.
Collapse
Affiliation(s)
- Peter A Smethurst
- a Components Development Laboratory, NHS Blood and Transplant, Cambridge, UK, and Department of Haematology , University of Cambridge , Cambridge , UK
| |
Collapse
|
23
|
Abstract
The lifespan of platelets in circulation is brief, close to 10 days in humans and 5 days in mice. Bone marrow residing megakaryocytes produce around 100 billion platelets per day. In a healthy individual, the majority of platelets are not consumed by hemostatic processes, but rather their lifespan is controlled by programmed cell death, a canonical intrinsic apoptosis program. In the last decade, insights from genetically manipulated mouse models and pharmacological developments have helped to define the components of the intrinsic, or mitochondrial, apoptosis pathway that controls platelet lifespan. This review focuses on the molecular regulation of apoptosis in platelet survival, reviews thrombocytopenic conditions linked to enhanced platelet death, examines implications of chemotherapy-induced thrombocytopenia through apoptosis-inducing drugs in cancer therapy as well as discusses ex vivo aging of platelets.
Collapse
Affiliation(s)
- Marion Lebois
- a The Walter and Eliza Hall Institute of Medical Research , Melbourne , Australia
| | - Emma C Josefsson
- a The Walter and Eliza Hall Institute of Medical Research , Melbourne , Australia.,b Department of Medical Biology , The University of Melbourne , Melbourne , Australia
| |
Collapse
|
24
|
Handigund M, Bae TW, Lee J, Cho YG. Evaluation of in vitro storage characteristics of cold stored platelet concentrates with N acetylcysteine (NAC). Transfus Apher Sci 2016; 54:127-38. [PMID: 26847865 DOI: 10.1016/j.transci.2016.01.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2015] [Revised: 12/30/2015] [Accepted: 01/06/2016] [Indexed: 10/22/2022]
Abstract
Platelets play a vital role in hemostasis and thrombosis, and their demand and usage has multiplied many folds over the years. However, due to the short life span and storage constraints on platelets, it is allowed to store them for up to 7 days at room temperature (RT); thus, there is a need for an alternative storage strategy for extension of shelf life. Current investigation involves the addition of 50 mM N acetylcysteine (NAC) in refrigerated concentrates. Investigation results revealed that addition of NAC to refrigerated concentrates prevented platelet activation and reduced the sialidase activity upon rewarming as well as on prolonged storage. Refrigerated concentrates with 50 mM NAC expressed a 23.91 ± 6.23% of CD62P (P-Selectin) and 22.33 ± 3.42% of phosphotidylserine (PS), whereas RT-stored platelets showed a 46.87 ± 5.23% of CD62P and 25.9 ± 6.48% of phosphotidylserine (PS) after 5 days of storage. Further, key metabolic parameters such as glucose and lactate accumulation indicated reduced metabolic activity. Taken together, investigation and observations indicate that addition of NAC potentially protects refrigerated concentrates by preventing platelet activation, stabilizing sialidase activity, and further reducing the metabolic activity. Hence, we believe that NAC can be a good candidate for an additive solution to retain platelet characteristics during cold storage and may pave the way for extension of storage shelf life.
Collapse
Affiliation(s)
- Mallikarjun Handigund
- Department of Laboratory Medicine, Chonbuk National University Medical School and Hospital, Jeonju 561180, Republic of Korea
| | - Tae Won Bae
- Department of Laboratory Medicine, Chonbuk National University Medical School and Hospital, Jeonju 561180, Republic of Korea
| | - Jaehyeon Lee
- Department of Laboratory Medicine, Chonbuk National University Medical School and Hospital, Jeonju 561180, Republic of Korea; Research Institute of Clinical Medicine of Chonbuk National University-Biomedical Research Institute of Chonbuk National University Hospital, Jeonju 561180, Republic of Korea
| | - Yong Gon Cho
- Department of Laboratory Medicine, Chonbuk National University Medical School and Hospital, Jeonju 561180, Republic of Korea; Research Institute of Clinical Medicine of Chonbuk National University-Biomedical Research Institute of Chonbuk National University Hospital, Jeonju 561180, Republic of Korea; Chonbuk National University Hospital branch of National Culture Collection for Pathology, Jeonju 561180, Republic of Korea.
| |
Collapse
|
25
|
Johnson L, Schubert P, Tan S, Devine DV, Marks DC. Extended storage and glucose exhaustion are associated with apoptotic changes in platelets stored in additive solution. Transfusion 2015; 56:360-8. [DOI: 10.1111/trf.13345] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Revised: 08/13/2015] [Accepted: 08/16/2015] [Indexed: 12/29/2022]
Affiliation(s)
- Lacey Johnson
- Research and Development; Australian Red Cross Blood Service; Sydney Australia
- Centre for Innovation; Canadian Blood Services; Vancouver British Columbia Canada
- Centre for Blood Research; University of British Columbia; Vancouver British Columbia Canada
| | - Peter Schubert
- Centre for Innovation; Canadian Blood Services; Vancouver British Columbia Canada
- Centre for Blood Research; University of British Columbia; Vancouver British Columbia Canada
| | - Shereen Tan
- Research and Development; Australian Red Cross Blood Service; Sydney Australia
| | - Dana V. Devine
- Centre for Innovation; Canadian Blood Services; Vancouver British Columbia Canada
- Centre for Blood Research; University of British Columbia; Vancouver British Columbia Canada
| | - Denese C. Marks
- Research and Development; Australian Red Cross Blood Service; Sydney Australia
| |
Collapse
|
26
|
Poncelet P, Robert S, Bailly N, Garnache-Ottou F, Bouriche T, Devalet B, Segatchian JH, Saas P, Mullier F. Tips and tricks for flow cytometry-based analysis and counting of microparticles. Transfus Apher Sci 2015; 53:110-26. [DOI: 10.1016/j.transci.2015.10.008] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
27
|
Södergren AL, Tynngård N, Berlin G, Ramström S. Responsiveness of platelets during storage studied with flow cytometry--formation of platelet subpopulations and LAMP-1 as new markers for the platelet storage lesion. Vox Sang 2015; 110:116-25. [PMID: 26389538 DOI: 10.1111/vox.12324] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Revised: 06/17/2015] [Accepted: 07/22/2015] [Indexed: 01/26/2023]
Abstract
BACKGROUND AND OBJECTIVES Storage lesions may prevent transfused platelets to respond to agonists and arrest bleeding. The aim of this study was to evaluate and quantify the capacity of platelet activation during storage using flow cytometry and new markers of platelet activation. MATERIALS AND METHODS Activation responses of platelets prepared by apheresis were measured on days 1, 5, 7 and 12. In addition, comparisons were made for platelet concentrates stored until swirling was affected. Lysosome-associated membrane protein-1 (LAMP-1), P-selectin and phosphatidylserine (PS) exposure were assessed by flow cytometry on platelets in different subpopulations in resting state or following stimulation with platelet agonists (cross-linked collagen-related peptide (CRP-XL), PAR1- and PAR4-activating peptides). RESULTS The ability to form subpopulations upon activation was significantly decreased already at day 5 for some agonist combinations. The agonist-induced exposure of PS and LAMP-1 also gradually decreased with time. Spontaneous exposure of P-selectin and PS increased with time, while spontaneous LAMP-1 exposure was unchanged. In addition, agonist-induced LAMP-1 expression clearly discriminated platelet concentrates with reduced swirling from those with retained swirling. This suggests that LAMP-1 could be a good marker to capture changes in activation capacity in stored platelets. CONCLUSION The platelet activation potential seen as LAMP-1 exposure and fragmentation into platelet subpopulations is potential sensitive markers for the platelet storage lesion.
Collapse
Affiliation(s)
- A L Södergren
- Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - N Tynngård
- Department of Clinical Immunology and Transfusion Medicine, and Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden.,Department of Clinical Chemistry and Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - G Berlin
- Department of Clinical Immunology and Transfusion Medicine, and Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - S Ramström
- Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| |
Collapse
|
28
|
Black A, Pienimaeki-Roemer A, Kenyon O, Orsó E, Schmitz G. Platelet-derived extracellular vesicles in plateletpheresis concentrates as a quality control approach. Transfusion 2015; 55:2184-96. [DOI: 10.1111/trf.13128] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Revised: 02/07/2015] [Accepted: 02/25/2015] [Indexed: 12/18/2022]
Affiliation(s)
- Anne Black
- Institute for Laboratory Medicine and Transfusion Medicine; University of Regensburg; Regensburg Germany
| | - Annika Pienimaeki-Roemer
- Institute for Laboratory Medicine and Transfusion Medicine; University of Regensburg; Regensburg Germany
| | | | - Evelyn Orsó
- Institute for Laboratory Medicine and Transfusion Medicine; University of Regensburg; Regensburg Germany
| | - Gerd Schmitz
- Institute for Laboratory Medicine and Transfusion Medicine; University of Regensburg; Regensburg Germany
| |
Collapse
|
29
|
Tynngård N, Trinks M, Berlin G. In vitro function of platelets treated with ultraviolet C light for pathogen inactivation: a comparative study with nonirradiated and gamma-irradiated platelets. Transfusion 2014; 55:1169-77. [DOI: 10.1111/trf.12963] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Revised: 08/28/2014] [Accepted: 11/03/2014] [Indexed: 01/02/2023]
Affiliation(s)
- Nahreen Tynngård
- Department of Clinical Immunology and Transfusion Medicine; Linköping University; Linköping Sweden
- Department of Clinical and Experimental Medicine; Linköping University; Linköping Sweden
- Department of Clinical Chemistry; Linköping University; Linköping Sweden
| | - Marie Trinks
- Department of Clinical Immunology and Transfusion Medicine; Linköping University; Linköping Sweden
- Department of Clinical and Experimental Medicine; Linköping University; Linköping Sweden
| | - Gösta Berlin
- Department of Clinical Immunology and Transfusion Medicine; Linköping University; Linköping Sweden
- Department of Clinical and Experimental Medicine; Linköping University; Linköping Sweden
| |
Collapse
|
30
|
Chen Z, Schubert P, Culibrk B, Devine DV. p38MAPK is involved in apoptosis development in apheresis platelet concentrates after riboflavin and ultraviolet light treatment. Transfusion 2014; 55:848-57. [PMID: 25385501 DOI: 10.1111/trf.12905] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Revised: 08/29/2014] [Accepted: 09/08/2014] [Indexed: 01/04/2023]
Abstract
BACKGROUND Pathogen inactivation (PI) accelerates the platelet (PLT) storage lesion, including apoptotic-like changes. Proteomic studies have shown that phosphorylation levels of several kinases increase in PLTs after riboflavin and UV light (RF-PI) treatment. Inhibition of p38MAPK improved in vitro PLT quality, but the biochemical basis of this kinase's contribution to PLT damage requires further analysis. STUDY DESIGN AND METHODS In a pool-and-split design, apheresis PLT concentrates were either treated or kept untreated with or without selected kinase inhibitors. Samples were analyzed throughout 7 days of storage, monitoring in vitro quality variables including phosphatidylserine exposure, degranulation, and glucose metabolism. Changes in the protein expression of Bax, Bak, and Bcl-xL and the activities of caspase-3 and -9 were determined by immunoblot analysis and flow cytometry, respectively. RESULTS The expression levels of the proapoptotic proteins Bax and Bak, but not the antiapoptotic protein Bcl-xL, were significantly increased after the RF-PI treatment. This trend was reversed in the presence of p38MAPK inhibitor SB203580. As a result of increasing proapoptotic protein levels, caspase-3 and -9 activities were significantly increased in RF-PI treatment during storage compared with control (p < 0.05). Similarly, p38MAPK inhibition significantly reduced these caspase activities compared with vehicle control after RF-PI treatment (p < 0.05). CONCLUSION These findings revealed that p38MAPK is involved in signaling leading to apoptosis triggered by RF-PI. Elucidation of the biochemical processes influenced by PI is a necessary step in the development of strategies to improve the PLT quality and ameliorate the negative effects of PI treatment.
Collapse
Affiliation(s)
- Zhongming Chen
- Canadian Blood Services, Vancouver, British Columbia, Canada.,Centre for Blood Research, University of British Columbia, Vancouver, British Columbia, Canada
| | - Peter Schubert
- Canadian Blood Services, Vancouver, British Columbia, Canada.,Centre for Blood Research, University of British Columbia, Vancouver, British Columbia, Canada.,Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Brankica Culibrk
- Canadian Blood Services, Vancouver, British Columbia, Canada.,Centre for Blood Research, University of British Columbia, Vancouver, British Columbia, Canada
| | - Dana V Devine
- Canadian Blood Services, Vancouver, British Columbia, Canada.,Centre for Blood Research, University of British Columbia, Vancouver, British Columbia, Canada.,Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
31
|
In vitro evaluation of pathogen-inactivated buffy coat-derived platelet concentrates during storage: psoralen-based photochemical treatment step-by-step. BLOOD TRANSFUSION = TRASFUSIONE DEL SANGUE 2014; 13:255-64. [PMID: 25369598 DOI: 10.2450/2014.0082-14] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Accepted: 07/22/2014] [Indexed: 12/22/2022]
Abstract
BACKGROUND The Intercept Blood SystemTM (Cerus) is used to inactivate pathogens in platelet concentrates (PC). The aim of this study was to elucidate the extent to which the Intercept treatment modifies the functional properties of platelets. MATERIAL AND METHODS A two-arm study was conducted initially to compare buffy coat-derived pathogen-inactivated PC to untreated PC (n=5) throughout storage. A four-arm study was then designed to evaluate the contribution of the compound adsorbing device (CAD) and ultraviolet (UV) illumination to the changes observed upon Intercept treatment. Intercept-treated PC, CAD-incubated PC, and UV-illuminated PC were compared to untreated PC (n=5). Functional characteristics were assessed using flow cytometry, hypotonic shock response (HSR), aggregation, adhesion assays and flow cytometry for the detection of CD62P, CD42b, GPIIb-IIIa, phosphatidylserine exposure and JC-1 aggregates. RESULTS Compared to fresh platelets, end-of-storage platelets exhibited greater passive activation, disruption of the mitochondrial transmembrane potential (Δψm), and phosphatidylserine exposure accompanied by a decreased capacity to respond to agonist-induced aggregation, lower HSR, and CD42b expression. The Intercept treatment resulted in significantly lower HSR and CD42b expression compared to controls on day 7, with no significant changes in CD62P, Δψm, or phosphatidylserine exposure. GPIIbIIIa expression was significantly increased in Intercept-treated platelets throughout the storage period. The agonist-induced aggregation response was highly dependent on the type and concentration of agonist used, indicating a minor effect of the Intercept treatment. The CAD and UV steps alone had a negligible effect on platelet aggregation. DISCUSSION The Intercept treatment moderately affects platelet function in vitro. CAD and UV illumination alone make negligible contributions to the changes in aggregation observed in Intercept-treated PC.
Collapse
|
32
|
Zhuang Y, Ren G, Li H, Tian K, Zhang Y, Qiao W, Nie X, Liu Y, Song Y, Zhu C. In vitro properties of apheresis platelet during extended storage in plasma treated with anandamide. Transfus Apher Sci 2014; 51:58-64. [DOI: 10.1016/j.transci.2014.03.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2013] [Revised: 03/07/2014] [Accepted: 03/24/2014] [Indexed: 11/26/2022]
|
33
|
Tynngård N, Wallstedt M, Södergren AL, Faxälv L, Ramström S. Platelet adhesion changes during storage studied with a novel method using flow cytometry and protein-coated beads. Platelets 2014; 26:177-85. [PMID: 24679340 DOI: 10.3109/09537104.2014.891728] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The aim of the present study was to set up and evaluate a novel method for studies of platelet adhesion and activation in blood and platelet suspensions such as platelet concentrate (PC) samples using protein-coated polystyrene beads and flow cytometry. To demonstrate its usefulness, we studied PCs during storage. PCs were prepared by aphaeresis technique (n = 7). Metabolic variables and platelet function was measured on day 1, 5, 7 and 12 of storage. Spontaneous and TRAP-6-induced adhesion to fibrinogen- and collagen-coated beads was analyzed by flow cytometry. P-selectin and phosphatidyl serine (PS) expression was assessed on platelets bound to beads as well as on non-adherent platelets. Platelet adhesion to fibrinogen beads had increased by day 12 and adhesion to collagen beads at day 7 of storage (p < 0.05). TRAP-6 stimulation significantly increased the platelet adhesion to fibrinogen beads (p < 0.05) as well as the P-selectin and PS exposure on platelets bound to beads (p < 0.01) during the first 7 days of storage, but by day 12, significant changes were no longer induced by TRAP-6 stimulation. We demonstrate that our adhesion assay using protein-coated polystyrene beads can be used to assess the adhesion properties of platelets during storage without the addition of red blood cells. Therefore it may offer a useful tool for future studies of platelet adhesive capacity in transfusion medicine and other settings.
Collapse
Affiliation(s)
- Nahreen Tynngård
- Department of Clinical and Experimental Medicine, Division of Transfusion Medicine, Faculty of Health Sciences, Linköping University , Linköping , Sweden
| | | | | | | | | |
Collapse
|
34
|
Winkler J, Rand ML, Schmugge M, Speer O. Omi/HtrA2 and XIAP are components of platelet apoptosis signalling. Thromb Haemost 2013; 109:532-9. [PMID: 23306356 DOI: 10.1160/th12-06-0404] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2012] [Accepted: 12/05/2012] [Indexed: 12/18/2022]
Abstract
Although platelets possess the hallmarks of apoptosis such as activation of caspases, cytochrome c release and depolarisation of the mitochondrial transmembrane potential (∆Ψm), their entire apoptotic-signalling pathway is not totally understood. Therefore we studied the expression of various apoptotic proteins and found that platelets contain the pro-apoptotic proteins Omi/HtrA2 and Smac/Diablo, as well as their target the X-linked inhibitor of apoptosis XIAP. Omi/HtrA2 and Smac/Diablo were released from mitochondria into the platelet cytosol together with cytochrome c after induction of apoptosis by the Ca2+ ionophore A23187 or the BH3 mimetic ABT-737, and to a lesser extent, after platelet stimulation with collagen and thrombin. Inhibition of Omi/HtrA2 led to decreased levels of activated caspase-3/7 and caspase-9, but did not abolish loss of ∆Ψm or prevent release of Omi/HtrA2 from mitochondria. These results indicate that platelets have a functional intrinsic apoptotic-signalling pathway including the pro-apoptotic protease Omi/HtrA2 and its target protein XIAP.
Collapse
Affiliation(s)
- Jeannine Winkler
- Division of Haematology and Children's Research Center, University Children's Hospital Zurich, and Zurich Center for Integrative Human Physiology, University of Zurich, Steinwiesstrasse 75, CH-8032 Zurich, Switzerland
| | | | | | | |
Collapse
|
35
|
Bashir S, Cookson P, Wiltshire M, Hawkins L, Sonoda L, Thomas S, Seltsam A, Tolksdorf F, Williamson LM, Cardigan R. Pathogen inactivation of platelets using ultraviolet C light: effect on in vitro function and recovery and survival of platelets. Transfusion 2012; 53:990-1000. [PMID: 22905813 DOI: 10.1111/j.1537-2995.2012.03854.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
BACKGROUND We evaluated the effect of treating platelets (PLTs) using ultraviolet (UV)C light without the addition of any photosensitizing chemicals on PLT function in vitro and PLT recovery and survival in an autologous radiolabeled volunteer study. STUDY DESIGN AND METHODS For in vitro studies, pooled or single buffy coat-derived PLT concentrates (PCs) were pooled and split to obtain identical PCs that were either treated with UVC or untreated (n = 6 each) and stored for 7 days. PLT recovery and survival were determined in a two-arm parallel autologous study in healthy volunteers performed according to BEST guidelines. UVC-treated or untreated PCs (n = 6 each) were stored for 5 days and were compared to fresh PLTs from the same donor. RESULTS There were no significant differences on Day 7 of storage between paired UVC-treated and control PC units for pH, adenosine triphosphate, lactate dehydrogenase, CD62P, CD63, PLT microparticles, and JC-1 binding, but annexin V binding, lactate accumulation, and expression of CD41/61 were significantly higher in treated units (p < 0.05). Compared with control units, the recovery and survival of UVC-treated PC were reduced after 5 days of storage (p < 0.05) and when expressed as a percentage of fresh values, survival was reduced by 20% (p = 0.005) and recovery by 17% (p = 0.088). CONCLUSION UVC-treated PLTs stored for 5 days showed marginal changes in PLT metabolism and activation in vitro and were associated with a degree of reduction in recovery and survival similar to other pathogen inactivation systems that are licensed and in use.
Collapse
|
36
|
Saas P, Angelot F, Bardiaux L, Seilles E, Garnache-Ottou F, Perruche S. Phosphatidylserine-expressing cell by-products in transfusion: A pro-inflammatory or an anti-inflammatory effect? Transfus Clin Biol 2012; 19:90-7. [PMID: 22677430 DOI: 10.1016/j.tracli.2012.02.002] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2012] [Accepted: 02/29/2012] [Indexed: 01/06/2023]
Abstract
Labile blood products contain phosphatidylserine-expressing cell dusts, including apoptotic cells and microparticles. These cell by-products are produced during blood product process or storage and derived from the cells of interest that exert a therapeutic effect (red blood cells or platelets). Alternatively, phosphatidylserine-expressing cell dusts may also derived from contaminating cells, such as leukocytes, or may be already present in plasma, such as platelet-derived microparticles. These cell by-products present in labile blood products can be responsible for transfusion-induced immunomodulation leading to either transfusion-related acute lung injury (TRALI) or increased occurrence of post-transfusion infections or cancer relapse. In this review, we report data from the literature and our laboratory dealing with interactions between antigen-presenting cells and phosphatidylserine-expressing cell dusts, including apoptotic leukocytes and blood cell-derived microparticles. Then, we discuss how these phosphatidylserine-expressing cell by-products may influence transfusion.
Collapse
Affiliation(s)
- P Saas
- Inserm, UMR1098, BP 1937, 25020 Besançon cedex, France.
| | | | | | | | | | | |
Collapse
|
37
|
Reid S, Johnson L, Woodland N, Marks DC. Pathogen reduction treatment of buffy coat platelet concentrates in additive solution induces proapoptotic signaling. Transfusion 2012; 52:2094-103. [PMID: 22320126 DOI: 10.1111/j.1537-2995.2011.03558.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
BACKGROUND Pathogen reduction technology (PRT) can potentially reduce the risk of transfusion-transmitted infections. However, PRT treatment of platelet (PLT) concentrates also results in reduced PLT quality and increased markers of apoptosis during storage. The aim of this study was to investigate changes to the expression and activation of proteins involved in apoptosis signaling. STUDY DESIGN AND METHODS Samples from riboflavin and ultraviolet light PRT-treated and untreated (control) buffy coat-derived PCs in 70% SSP+ and 30% plasma were taken on Days 1, 5, and 7 of storage. Phosphatidylserine (PS) exposure, expression of Bcl-2 family proteins, cytochrome c release, and cleavage of caspase-3 and caspase-3 substrates were analyzed using flow cytometry and Western blotting. RESULTS Compared to untreated controls, markers of apoptosis signaling were increased after PRT and subsequent storage. PS exposure on the PLT outer membrane was significantly higher after PRT on Days 5 and 7 of storage (p < 0.05). Expression of proapoptotic Bak and Bax was higher after PRT and subsequent storage. Cytochrome c release and caspase-3 cleavage were also greater and occurred earlier in the PRT-treated PLTs. The cleavage of caspase-3 substrates gelsolin and ROCK I were also increased after PRT, compared to untreated controls. CONCLUSIONS This study demonstrated an increase in proapoptotic signaling during PLT storage, which was exacerbated by PRT. Many of these differences emerged outside the current 5-day storage period. These changes may not currently influence PLT transfusion quality, but will need to be carefully evaluated when considering extending PLT storage beyond 5 days.
Collapse
Affiliation(s)
- Samantha Reid
- Research and Development, Australian Red Cross Blood Service, and the School of Medical and Molecular Biosciences, University of Technology, Sydney, New South Wales, Australia
| | | | | | | |
Collapse
|
38
|
Leong HS, Podor TJ, Manocha B, Lewis JD. Validation of flow cytometric detection of platelet microparticles and liposomes by atomic force microscopy. J Thromb Haemost 2011; 9:2466-76. [PMID: 21981726 DOI: 10.1111/j.1538-7836.2011.04528.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
BACKGROUND Platelet microparticles (PMPs) are a promising prognostic marker for thrombotic disorders because of their release during platelet activation. The use of flow cytometry for the enumeration of PMPs in plasma has generated controversy due to their size, which is below the stated detection limits of conventional flow cytometry instruments. The potential impact of this is an underestimation of PMP counts. OBJECTIVES/METHODS To address this possibility, we used a combination of fluorescence-activated cell sorting (FACS) and atomic force microscopy (AFM) to determine the size distribution of PMPs present in plasma from acute myocardial infarction (AMI) patients and normal volunteers, and PMPs generated by expired platelet concentrates and washed platelets treated with agonists such as thrombin and calcium ionophore (A23187). RESULTS According to AFM image analysis, there was no statistically significant difference in height or volume distributions in PMPs from thrombin-activated, calcium ionophore-activated, expired platelet concentrates and plasma from healthy volunteers and AMI patients. Based on volume, expired platelets released the greatest proportion of exosomes (< 1.0 × 10(-22) L(3) in volume) in relation to the entire PMP population (29.7%) and the smallest proportion of exosomes was observed in AMI patient plasma (1.8%). Moreover, AFM imaging revealed that PMPs from expired platelets exhibited smooth surfaces compared with other PMP types but this was not statistically significant. CONCLUSIONS We confirm that flow cytometry is capable of analyzing PMPs from plasma by using AFM to perform nanoscale measurements of individual PMP events isolated by FACS. This method also provided the first quantitative nanoscale images of PMP ultrastructure.
Collapse
Affiliation(s)
- H S Leong
- The James Hogg Research Centre, St Paul's Hospital, Vancouver, BC.
| | | | | | | |
Collapse
|
39
|
Abstract
For many years, programmed cell death, known as apoptosis, was attributed exclusively to nucleated cells. Currently, however, apoptosis is also well-documented in anucleate platelets. This review describes extrinsic and intrinsic pathways of apoptosis in nucleated cells and in platelets, platelet apoptosis induced by multiple chemical stimuli and shear stresses, markers of platelet apoptosis, mitochodrial control of platelet apoptosis, and apoptosis mediated by platelet surface receptors PAR-1, GPIIbIIIa and GPIbα. In addition, this review presents data on platelet apoptosis provoked by aging of platelets in vitro during platelet storage, platelet apoptosis in pathological settings in humans and animal models, and inhibition of platelet apoptosis by cyclosporin A, intravenous immunoglobulin and GPIIbIIIa antagonist drugs.
Collapse
Affiliation(s)
- Valery Leytin
- Division of Transfusion Medicine, Department of Laboratory Medicine, The Keenan Research Centre in the Li Ka Shing Knowledge Institute of St. Michael's Hospital, Toronto, ON, Canada.
| |
Collapse
|