1
|
Zeighami Y, Bakken TE, Nickl-Jockschat T, Peterson Z, Jegga AG, Miller JA, Schulkin J, Evans AC, Lein ES, Hawrylycz M. A comparison of anatomic and cellular transcriptome structures across 40 human brain diseases. PLoS Biol 2023; 21:e3002058. [PMID: 37079537 PMCID: PMC10118126 DOI: 10.1371/journal.pbio.3002058] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 03/02/2023] [Indexed: 04/21/2023] Open
Abstract
Genes associated with risk for brain disease exhibit characteristic expression patterns that reflect both anatomical and cell type relationships. Brain-wide transcriptomic patterns of disease risk genes provide a molecular-based signature, based on differential co-expression, that is often unique to that disease. Brain diseases can be compared and aggregated based on the similarity of their signatures which often associates diseases from diverse phenotypic classes. Analysis of 40 common human brain diseases identifies 5 major transcriptional patterns, representing tumor-related, neurodegenerative, psychiatric and substance abuse, and 2 mixed groups of diseases affecting basal ganglia and hypothalamus. Further, for diseases with enriched expression in cortex, single-nucleus data in the middle temporal gyrus (MTG) exhibits a cell type expression gradient separating neurodegenerative, psychiatric, and substance abuse diseases, with unique excitatory cell type expression differentiating psychiatric diseases. Through mapping of homologous cell types between mouse and human, most disease risk genes are found to act in common cell types, while having species-specific expression in those types and preserving similar phenotypic classification within species. These results describe structural and cellular transcriptomic relationships of disease risk genes in the adult brain and provide a molecular-based strategy for classifying and comparing diseases, potentially identifying novel disease relationships.
Collapse
Affiliation(s)
- Yashar Zeighami
- Douglas Research Centre, Department of Psychiatry, McGill University, Montreal, Canada
- Montreal Neurological Institute, McGill University, Montreal, Canada
| | - Trygve E. Bakken
- Allen Institute for Brain Science, Seattle, Washington, United States of America
| | - Thomas Nickl-Jockschat
- Department of Psychiatry, Neuroscience and Pharmacology, Iowa Neuroscience Institute, University of Iowa, Iowa City, Iowa, United States of America
| | - Zeru Peterson
- Department of Psychiatry, Neuroscience and Pharmacology, Iowa Neuroscience Institute, University of Iowa, Iowa City, Iowa, United States of America
| | - Anil G. Jegga
- Division of Biomedical Informatics, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, United States of America
- Department of Pediatrics, College of Medicine, University of Cincinnati, Cincinnati, Ohio, United States of America
| | - Jeremy A. Miller
- Allen Institute for Brain Science, Seattle, Washington, United States of America
| | - Jay Schulkin
- Department of Obstetrics and Gynecology, University of Washington, Seattle, Washington, United States of America
| | - Alan C. Evans
- Montreal Neurological Institute, McGill University, Montreal, Canada
| | - Ed S. Lein
- Allen Institute for Brain Science, Seattle, Washington, United States of America
| | - Michael Hawrylycz
- Allen Institute for Brain Science, Seattle, Washington, United States of America
- University of Washington, Department of Genome Sciences, Seattle, Washington, United States of America
| |
Collapse
|
2
|
Pagano R, Salamian A, Zielinski J, Beroun A, Nalberczak-Skóra M, Skonieczna E, Cały A, Tay N, Banaschewski T, Desrivières S, Grigis A, Garavan H, Heinz A, Brühl R, Martinot JL, Martinot MLP, Artiges E, Nees F, Orfanos DP, Poustka L, Hohmann S, Fröhner JH, Smolka MN, Vaidya N, Walter H, Whelan R, Kalita K, Bito H, Müller CP, Schumann G, Okuno H, Radwanska K. Arc controls alcohol cue relapse by a central amygdala mechanism. Mol Psychiatry 2023; 28:733-745. [PMID: 36357670 DOI: 10.1038/s41380-022-01849-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 10/12/2022] [Accepted: 10/18/2022] [Indexed: 11/11/2022]
Abstract
Alcohol use disorder (AUD) is a chronic and fatal disease. The main impediment of the AUD therapy is a high probability of relapse to alcohol abuse even after prolonged abstinence. The molecular mechanisms of cue-induced relapse are not well established, despite the fact that they may offer new targets for the treatment of AUD. Using a comprehensive animal model of AUD, virally-mediated and amygdala-targeted genetic manipulations by CRISPR/Cas9 technology and ex vivo electrophysiology, we identify a mechanism that selectively controls cue-induced alcohol relapse and AUD symptom severity. This mechanism is based on activity-regulated cytoskeleton-associated protein (Arc)/ARG3.1-dependent plasticity of the amygdala synapses. In humans, we identified single nucleotide polymorphisms in the ARC gene and their methylation predicting not only amygdala size, but also frequency of alcohol use, even at the onset of regular consumption. Targeting Arc during alcohol cue exposure may thus be a selective new mechanism for relapse prevention.
Collapse
Affiliation(s)
- Roberto Pagano
- Laboratory of Molecular Basis of Behavior, Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland
| | - Ahmad Salamian
- Laboratory of Molecular Basis of Behavior, Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland
| | - Janusz Zielinski
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Anna Beroun
- Laboratory of Neuronal Plasticity, BRAINCITY, Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland
| | - Maria Nalberczak-Skóra
- Laboratory of Molecular Basis of Behavior, Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland
| | - Edyta Skonieczna
- Laboratory of Molecular Basis of Behavior, Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland
| | - Anna Cały
- Laboratory of Molecular Basis of Behavior, Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland
| | - Nicole Tay
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Tobias Banaschewski
- Department of Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Sylvane Desrivières
- Centre for Population Neuroscience and Precision Medicine (PONS), Institute of Psychiatry, Psychology & Neuroscience, SGDP Centre, King's College London, London, UK
| | - Antoine Grigis
- NeuroSpin, CEA, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Hugh Garavan
- Departments of Psychiatry and Psychology, University of Vermont, Burlington, VT, USA
| | - Andreas Heinz
- Department of Psychiatry and Psychotherapy, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Campus Charité Mitte, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Rüdiger Brühl
- Braunschweig and Berlin, Physikalisch-Technische Bundesanstalt (PTB), Berlin, Germany
| | - Jean-Luc Martinot
- INSERM U1299 "Trajectoires développementales en psychiatrie, Institut National de la Santé et de la Recherche Médicale, Paris, Gif-sur-Yvette, France
- AP-HP. Sorbonne Université, Department of Child and Adolescent Psychiatry, Pitié-Salpêtrière Hospital, Paris, France
- Psychiatry Department, EPS Barthélémy Durand, Etampes, France
- Ecole Normale supérieure Paris-Saclay, CNRS, Centre Borelli, Université Paris-Saclay, Paris, Gif-sur-Yvette, France
| | - Marie-Laure Paillère Martinot
- INSERM U1299 "Trajectoires développementales en psychiatrie, Institut National de la Santé et de la Recherche Médicale, Paris, Gif-sur-Yvette, France
- AP-HP. Sorbonne Université, Department of Child and Adolescent Psychiatry, Pitié-Salpêtrière Hospital, Paris, France
- Psychiatry Department, EPS Barthélémy Durand, Etampes, France
- Ecole Normale supérieure Paris-Saclay, CNRS, Centre Borelli, Université Paris-Saclay, Paris, Gif-sur-Yvette, France
| | - Eric Artiges
- INSERM U1299 "Trajectoires développementales en psychiatrie, Institut National de la Santé et de la Recherche Médicale, Paris, Gif-sur-Yvette, France
- AP-HP. Sorbonne Université, Department of Child and Adolescent Psychiatry, Pitié-Salpêtrière Hospital, Paris, France
- Psychiatry Department, EPS Barthélémy Durand, Etampes, France
- Ecole Normale supérieure Paris-Saclay, CNRS, Centre Borelli, Université Paris-Saclay, Paris, Gif-sur-Yvette, France
| | - Frauke Nees
- Department of Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- Institute of Medical Psychology and Medical Sociology, University Medical Center Schleswig-Holstein, Kiel University, Kiel, Germany
| | | | - Luise Poustka
- Department of Child and Adolescent Psychiatry and Psychotherapy, University Medical Centre Göttingen, Göttingen, Germany
| | - Sarah Hohmann
- Department of Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Juliane H Fröhner
- Department of Psychiatry, Technische Universität Dresden, Dresden, Germany
| | - Michael N Smolka
- Department of Psychiatry, Technische Universität Dresden, Dresden, Germany
| | - Nilakshi Vaidya
- Centre for Population Neuroscience and Precision Medicine (PONS), Institute of Psychiatry, Psychology & Neuroscience, SGDP Centre, King's College London, London, UK
| | - Henrik Walter
- Department of Psychiatry and Psychotherapy, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Campus Charité Mitte, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Robert Whelan
- School of Psychology and Global Brain Health Institute, Trinity College Dublin, Dublin, Ireland
| | - Katarzyna Kalita
- Laboratory of Neurobiology, BRAINCITY, Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland
| | - Haruhiko Bito
- Department of Neurochemistry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Christian P Müller
- Section of Addiction Medicine, Department of Psychiatry and Psychotherapy, University Clinic, Friedrich-Alexander-University of Erlangen-Nuremberg, Erlangen, Germany
- Centre for Drug Research, Universiti Sains Malaysia, Minden, Penang, Malaysia
| | - Gunter Schumann
- Centre for Population Neuroscience and Stratified Medicine (PONS), Department of Psychiatry and Psychotherapy, Charité Universitätsmedizin Berlin, Berlin, Germany
- Centre for Population Neuroscience and Precision Medicine (PONS), Institute for Science and Technology of Brain-inspired Intelligence (ISTBI), Fudan University, Shanghai, China
| | - Hiroyuki Okuno
- Department of Biochemistry and Molecular Biology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Kasia Radwanska
- Laboratory of Molecular Basis of Behavior, Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland.
| |
Collapse
|
3
|
Yang W, Singla R, Maheshwari O, Fontaine CJ, Gil-Mohapel J. Alcohol Use Disorder: Neurobiology and Therapeutics. Biomedicines 2022; 10:1192. [PMID: 35625928 PMCID: PMC9139063 DOI: 10.3390/biomedicines10051192] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 05/18/2022] [Accepted: 05/20/2022] [Indexed: 02/04/2023] Open
Abstract
Alcohol use disorder (AUD) encompasses the dysregulation of multiple brain circuits involved in executive function leading to excessive consumption of alcohol, despite negative health and social consequences and feelings of withdrawal when access to alcohol is prevented. Ethanol exerts its toxicity through changes to multiple neurotransmitter systems, including serotonin, dopamine, gamma-aminobutyric acid, glutamate, acetylcholine, and opioid systems. These neurotransmitter imbalances result in dysregulation of brain circuits responsible for reward, motivation, decision making, affect, and the stress response. Despite serious health and psychosocial consequences, this disorder still remains one of the leading causes of death globally. Treatment options include both psychological and pharmacological interventions, which are aimed at reducing alcohol consumption and/or promoting abstinence while also addressing dysfunctional behaviours and impaired functioning. However, stigma and social barriers to accessing care continue to impact many individuals. AUD treatment should focus not only on restoring the physiological and neurological impairment directly caused by alcohol toxicity but also on addressing psychosocial factors associated with AUD that often prevent access to treatment. This review summarizes the impact of alcohol toxicity on brain neurocircuitry in the context of AUD and discusses pharmacological and non-pharmacological therapies currently available to treat this addiction disorder.
Collapse
Affiliation(s)
- Waisley Yang
- Island Medical Program, Faculty of Medicine, University of British Columbia, Victoria, BC V8P 5C2, Canada; (W.Y.); (R.S.)
| | - Rohit Singla
- Island Medical Program, Faculty of Medicine, University of British Columbia, Victoria, BC V8P 5C2, Canada; (W.Y.); (R.S.)
| | - Oshin Maheshwari
- Psychiatry Residency Program, Faculty of Medicine, University of British Columbia, Victoria, BC V8W 3P5, Canada;
| | | | - Joana Gil-Mohapel
- Island Medical Program, Faculty of Medicine, University of British Columbia, Victoria, BC V8P 5C2, Canada; (W.Y.); (R.S.)
- Division of Medical Sciences, University of Victoria, Victoria, BC V8W 2Y2, Canada;
| |
Collapse
|
4
|
Sexually dimorphic prelimbic cortex mechanisms play a role in alcohol dependence: protection by endostatin. Neuropsychopharmacology 2021; 46:1937-1949. [PMID: 34253856 PMCID: PMC8429630 DOI: 10.1038/s41386-021-01075-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 06/12/2021] [Accepted: 06/15/2021] [Indexed: 02/05/2023]
Abstract
Angiogenesis or proliferation of endothelial cells plays a role in brain microenvironment homeostasis. Previously we have shown enhanced expression of markers of angiogenesis in the medial prefrontal cortex during abstinence in an animal model of ethanol dependence induced by chronic intermittent ethanol vapor (CIE) and ethanol drinking (ED) procedure. Here we report that systemic injections of the angiogenesis inhibitor endostatin reduced relapse to drinking behavior in female CIE-ED rats without affecting relapse to drinking in male CIE-ED rats, and female and male nondependent ED rats. Endostatin did not alter relapse to sucrose drinking in both sexes. Endostatin reduced expression of platelet endothelial cell adhesion molecule-1 (PECAM-1) in all groups; however, rescued expression of tight junction protein claudin-5 in the prelimbic cortex (PLC) of female CIE-ED rats. In both sexes, CIE-ED enhanced microglial activation in the PLC and this was selectively prevented by endostatin in female CIE-ED rats. Endostatin prevented CIE-ED-induced enhanced NF-kB activity and expression and Fos expression in females and did not alter reduced Fos expression in males. Analysis of synaptic processes within the PLC revealed sexually dimorphic adaptations, with CIE-ED reducing synaptic transmission and altering synaptic plasticity in the PLC in females, and increasing synaptic transmission in males. Endostatin prevented the neuroadaptations in the PLC in females via enhancing phosphorylation of CaMKII, without affecting the neuroadaptations in males. Our multifaceted approach is the first to link PLC endothelial cell damage to the behavioral, neuroimmune, and synaptic changes associated with relapse to ethanol drinking in female subjects, and provides a new therapeutic strategy to reduce relapse in dependent subjects.
Collapse
|
5
|
Warden AS, Wolfe SA, Khom S, Varodayan FP, Patel RR, Steinman MQ, Bajo M, Montgomery SE, Vlkolinsky R, Nadav T, Polis I, Roberts AJ, Mayfield RD, Harris RA, Roberto M. Microglia Control Escalation of Drinking in Alcohol-Dependent Mice: Genomic and Synaptic Drivers. Biol Psychiatry 2020; 88:910-921. [PMID: 32680583 PMCID: PMC7674270 DOI: 10.1016/j.biopsych.2020.05.011] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Revised: 04/10/2020] [Accepted: 05/06/2020] [Indexed: 12/17/2022]
Abstract
BACKGROUND Microglia, the primary immune cells of the brain, are implicated in alcohol use disorder. However, it is not known if microglial activation contributes to the transition from alcohol use to alcohol use disorder or is a consequence of alcohol intake. METHODS We investigated the role of microglia in a mouse model of alcohol dependence using a colony stimulating factor 1 receptor inhibitor (PLX5622) to deplete microglia and a chronic intermittent ethanol vapor two-bottle choice drinking procedure. Additionally, we examined anxiety-like behavior during withdrawal. We then analyzed synaptic neuroadaptations in the central nucleus of the amygdala (CeA) and gene expression changes in the medial prefrontal cortex and CeA from the same animals used for behavioral studies. RESULTS PLX5622 prevented escalations in voluntary alcohol intake and decreased anxiety-like behavior associated with alcohol dependence. PLX5622 also reversed expression changes in inflammatory-related genes and glutamatergic and GABAergic (gamma-aminobutyric acidergic) genes in the medial prefrontal cortex and CeA. At the cellular level in these animals, microglia depletion reduced inhibitory GABAA and excitatory glutamate receptor-mediated synaptic transmission in the CeA, supporting the hypothesis that microglia regulate dependence-induced changes in neuronal function. CONCLUSIONS Our multifaceted approach is the first to link microglia to the molecular, cellular, and behavioral changes associated with the development of alcohol dependence, suggesting that microglia may also be critical for the development and progression of alcohol use disorder.
Collapse
Affiliation(s)
- Anna S Warden
- Waggoner Center for Alcoholism and Addiction Research, University of Texas at Austin, Austin, Texas; Institute for Neuroscience, University of Texas at Austin, Austin, Texas
| | - Sarah A Wolfe
- Departments of Molecular Medicine and Neuroscience, The Scripps Research Institute, La Jolla, California
| | - Sophia Khom
- Departments of Molecular Medicine and Neuroscience, The Scripps Research Institute, La Jolla, California
| | - Florence P Varodayan
- Departments of Molecular Medicine and Neuroscience, The Scripps Research Institute, La Jolla, California
| | - Reesha R Patel
- Departments of Molecular Medicine and Neuroscience, The Scripps Research Institute, La Jolla, California
| | - Michael Q Steinman
- Departments of Molecular Medicine and Neuroscience, The Scripps Research Institute, La Jolla, California
| | - Michal Bajo
- Departments of Molecular Medicine and Neuroscience, The Scripps Research Institute, La Jolla, California
| | - Sarah E Montgomery
- Departments of Molecular Medicine and Neuroscience, The Scripps Research Institute, La Jolla, California
| | - Roman Vlkolinsky
- Departments of Molecular Medicine and Neuroscience, The Scripps Research Institute, La Jolla, California
| | - Tali Nadav
- Departments of Molecular Medicine and Neuroscience, The Scripps Research Institute, La Jolla, California
| | - Ilham Polis
- Departments of Molecular Medicine and Neuroscience, The Scripps Research Institute, La Jolla, California
| | - Amanda J Roberts
- Departments of Molecular Medicine and Neuroscience, The Scripps Research Institute, La Jolla, California
| | - R Dayne Mayfield
- Waggoner Center for Alcoholism and Addiction Research, University of Texas at Austin, Austin, Texas; Institute for Neuroscience, University of Texas at Austin, Austin, Texas
| | - R Adron Harris
- Waggoner Center for Alcoholism and Addiction Research, University of Texas at Austin, Austin, Texas; Institute for Neuroscience, University of Texas at Austin, Austin, Texas
| | - Marisa Roberto
- Departments of Molecular Medicine and Neuroscience, The Scripps Research Institute, La Jolla, California.
| |
Collapse
|
6
|
Lathen DR, Merrill CB, Rothenfluh A. Flying Together: Drosophila as a Tool to Understand the Genetics of Human Alcoholism. Int J Mol Sci 2020; 21:E6649. [PMID: 32932795 PMCID: PMC7555299 DOI: 10.3390/ijms21186649] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 09/07/2020] [Accepted: 09/08/2020] [Indexed: 12/14/2022] Open
Abstract
Alcohol use disorder (AUD) exacts an immense toll on individuals, families, and society. Genetic factors determine up to 60% of an individual's risk of developing problematic alcohol habits. Effective AUD prevention and treatment requires knowledge of the genes that predispose people to alcoholism, play a role in alcohol responses, and/or contribute to the development of addiction. As a highly tractable and translatable genetic and behavioral model organism, Drosophila melanogaster has proven valuable to uncover important genes and mechanistic pathways that have obvious orthologs in humans and that help explain the complexities of addiction. Vinegar flies exhibit remarkably strong face and mechanistic validity as a model for AUDs, permitting many advancements in the quest to understand human genetic involvement in this disease. These advancements occur via approaches that essentially fall into one of two categories: (1) discovering candidate genes via human genome-wide association studies (GWAS), transcriptomics on post-mortem tissue from AUD patients, or relevant physiological connections, then using reverse genetics in flies to validate candidate genes' roles and investigate their molecular function in the context of alcohol. (2) Utilizing flies to discover candidate genes through unbiased screens, GWAS, quantitative trait locus analyses, transcriptomics, or single-gene studies, then validating their translational role in human genetic surveys. In this review, we highlight the utility of Drosophila as a model for alcoholism by surveying recent advances in our understanding of human AUDs that resulted from these various approaches. We summarize the genes that are conserved in alcohol-related function between humans and flies. We also provide insight into some advantages and limitations of these approaches. Overall, this review demonstrates how Drosophila have and can be used to answer important genetic questions about alcohol addiction.
Collapse
Affiliation(s)
- Daniel R. Lathen
- Department of Psychiatry and Neuroscience Ph.D. Program, University of Utah, Salt Lake City, UT 84108, USA;
| | - Collin B. Merrill
- Molecular Medicine Program, University of Utah, Salt Lake City, UT 84112, USA;
| | - Adrian Rothenfluh
- Department of Psychiatry and Neuroscience Ph.D. Program, University of Utah, Salt Lake City, UT 84108, USA;
- Molecular Medicine Program, University of Utah, Salt Lake City, UT 84112, USA;
- Department of Neurobiology and Anatomy, University of Utah, Salt Lake City, UT 84132, USA
- Department of Human Genetics, University of Utah, Salt Lake City, UT 84112, USA
| |
Collapse
|
7
|
Nudmamud-Thanoi S, Iamjan SA, Kerdsan-Phusan W, Thanoi S. Pharmacogenetics of drug dependence: Polymorphisms of genes involved in glutamate neurotransmission. Neurosci Lett 2020; 726:134128. [PMID: 30836121 DOI: 10.1016/j.neulet.2019.02.046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 02/16/2019] [Accepted: 02/28/2019] [Indexed: 10/27/2022]
Abstract
Multiple studies provide evidence to support dysfunction of glutamate neurotransmission in the pathogenesis of drug dependence. Pharmacogenetic investigation of glutamate-related genes has provided further support for the involvement of this neurotransmitter in the risk of, and consequences of, drug abuse and dependence. This paper aims to provide a brief review of these association studies. Findings involving single nucleotide polymorphisms (SNPs) in glutamate receptor genes (GRIN, GRIA) and glutamate transporter genes (SLC1A, SLC17A) are reviewed as potential risk factors. As yet a clear perspective of the functional consequences and interactions of the various reported findings is lacking.
Collapse
Affiliation(s)
- Sutisa Nudmamud-Thanoi
- Department of Anatomy, Faculty of Medical Science, Naresuan University, Phitsanulok 65000, Thailand; Centre of Excellence in Medical Biotechnology, Faculty of Medical Science, Naresuan University, Phitsanulok 65000, Thailand.
| | - Sri-Arun Iamjan
- Department of Anatomy, Faculty of Medical Science, Naresuan University, Phitsanulok 65000, Thailand; Centre of Excellence in Medical Biotechnology, Faculty of Medical Science, Naresuan University, Phitsanulok 65000, Thailand
| | - Walailuk Kerdsan-Phusan
- Department of Anatomy, School of Medical Sciences, University of Phayao, Phayao 56000, Thailand
| | - Samur Thanoi
- Department of Anatomy, Faculty of Medical Science, Naresuan University, Phitsanulok 65000, Thailand; Centre of Excellence in Medical Biotechnology, Faculty of Medical Science, Naresuan University, Phitsanulok 65000, Thailand
| |
Collapse
|
8
|
Iamjan SA, Thanoi S, Watiktinkorn P, Reynolds GP, Nudmamud-Thanoi S. Genetic variation of GRIA3 gene is associated with vulnerability to methamphetamine dependence and its associated psychosis. J Psychopharmacol 2018; 32:309-315. [PMID: 29338492 DOI: 10.1177/0269881117750153] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Methamphetamine (METH) is an addictive psychostimulant drug commonly leading to schizophrenia-like psychotic symptoms. Disturbances in glutamatergic neurotransmission have been proposed as neurobiological mechanisms and the α-amino-3 hydroxy-5 methyl-4 isoxazole propionic acid (AMPA) glutamate receptor has been implicated in these processes. Moreover, genetic variants in GRIAs, genes encoding AMPA receptor subunits, have been observed in association with both drug dependence and psychosis. We hypothesized that variation of GRIA genes may be associated with METH dependence and METH-induced psychosis. Genotyping of GRIA1 rs1428920, GRIA2 rs3813296, GRIA3 rs3761554, rs502434 and rs989638 was performed in 102 male Thai controls and 100 METH-dependent subjects (53 with METH-dependent psychosis). We observed no evidence of association with METH dependence and METH-dependent psychosis in the GRIA1 and GRIA2 polymorphisms, nor with single polymorphisms rs3761554 and rs989638 in GRIA3. An association of GRIA3 rs502434 was identified with both METH dependence and METH-dependent psychosis, although this did not withstand correction for multiple testing. Combining the analysis of this site with the previously-demonstrated association with BDNF rs6265 resulted in a highly significant effect. These preliminary findings indicate that genetic variability in GRIA3 may interact with a functional BDNF polymorphism to provide a strong risk factor for the development of METH dependence in the Thai population.
Collapse
Affiliation(s)
- Sri-Arun Iamjan
- 1 Faculty of Medical Science, Department of Anatomy, Naresuan University, Phitsanulok, Thailand.,2 Faculty of Medical Science, Centre of Excellence in Medical Biotechnology, Naresuan University, Phitsanulok, Thailand
| | - Samur Thanoi
- 1 Faculty of Medical Science, Department of Anatomy, Naresuan University, Phitsanulok, Thailand.,2 Faculty of Medical Science, Centre of Excellence in Medical Biotechnology, Naresuan University, Phitsanulok, Thailand
| | | | - Gavin P Reynolds
- 2 Faculty of Medical Science, Centre of Excellence in Medical Biotechnology, Naresuan University, Phitsanulok, Thailand.,4 Biomolecular Sciences Research Centre, Sheffield Hallam University, UK
| | - Sutisa Nudmamud-Thanoi
- 1 Faculty of Medical Science, Department of Anatomy, Naresuan University, Phitsanulok, Thailand.,2 Faculty of Medical Science, Centre of Excellence in Medical Biotechnology, Naresuan University, Phitsanulok, Thailand
| |
Collapse
|
9
|
Abstract
Ionotropic glutamate receptors (AMPA, NMDA, and kainate receptors) play a central role in excitatory glutamatergic signaling throughout the brain. As a result, functional changes, especially long-lasting forms of plasticity, have the potential to profoundly alter neuronal function and the expression of adaptive and pathological behaviors. Thus, alcohol-related adaptations in ionotropic glutamate receptors are of great interest, since they could promote excessive alcohol consumption, even after long-term abstinence. Alcohol- and drug-related adaptations in NMDARs have been recently reviewed, while less is known about kainate receptor adaptations. Thus, we focus here on functional changes in AMPARs, tetramers composed of GluA1-4 subunits. Long-lasting increases or decreases in AMPAR function, the so-called long-term potentiation or depression, have widely been considered to contribute to normal and pathological memory states. In addition, a great deal has been learned about the acute regulation of AMPARs by signaling pathways, scaffolding and auxiliary proteins, intracellular trafficking, and other mechanisms. One important common adaptation is a shift in AMPAR subunit composition from GluA2-containing, calcium-impermeable AMPARs (CIARs) to GluA2-lacking, calcium-permeable AMPARs (CPARs), which is observed under a broad range of conditions including intoxicant exposure or intake, stress, novelty, food deprivation, and ischemia. This shift has the potential to facilitate AMPAR currents, since CPARs have much greater single-channel currents than CIARs, as well as faster AMPAR activation kinetics (although with faster inactivation) and calcium-related activity. Many tools have been developed to interrogate particular aspects of AMPAR signaling, including compounds that selectively inhibit CPARs, raising exciting translational possibilities. In addition, recent studies have used transgenic animals and/or optogenetics to identify AMPAR adaptations in particular cell types and glutamatergic projections, which will provide critical information about the specific circuits that CPARs act within. Also, less is known about the specific nature of alcohol-related AMPAR adaptations, and thus we use other examples that illustrate more fully how particular AMPAR changes might influence intoxicant-related behavior. Thus, by identifying alcohol-related AMPAR adaptations, the specific molecular events that underlie them, and the cells and projections in which they occur, we hope to better inform the development of new therapeutic interventions for addiction.
Collapse
|
10
|
Yeung EW, Craggs JG, Gizer IR. Comorbidity of Alcohol Use Disorder and Chronic Pain: Genetic Influences on Brain Reward and Stress Systems. Alcohol Clin Exp Res 2017; 41:1831-1848. [PMID: 29048744 DOI: 10.1111/acer.13491] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Accepted: 08/25/2017] [Indexed: 01/10/2023]
Abstract
Alcohol use disorder (AUD) is highly comorbid with chronic pain (CP). Evidence has suggested that neuroadaptive processes characterized by reward deficit and stress surfeit are involved in the development of AUD and pain chronification. Neurological data suggest that shared genetic architecture associated with the reward and stress systems may contribute to the comorbidity of AUD and CP. This monograph first delineates the prevailing theories of the development of AUD and pain chronification focusing on the reward and stress systems. It then provides a brief summary of relevant neurological findings followed by an evaluation of evidence documented by molecular genetic studies. Candidate gene association studies have provided some initial support for the genetic overlap between AUD and CP; however, these results must be interpreted with caution until studies with sufficient statistical power are conducted and replications obtained. Genomewide association studies have suggested a number of genes (e.g., TBX19, HTR7, and ADRA1A) that are either directly or indirectly related to the reward and stress systems in the AUD and CP literature. Evidence reviewed in this monograph suggests that shared genetic liability underlying the comorbidity between AUD and CP, if present, is likely to be complex. As the advancement in molecular genetic methods continues, future studies may show broader central nervous system involvement in AUD-CP comorbidity.
Collapse
Affiliation(s)
- Ellen W Yeung
- Department of Psychological Sciences, University of Missouri, Columbia, Missouri.,Institute for Interdisciplinary Salivary Bioscience Research, University of California at Irvine, Irvine, California
| | - Jason G Craggs
- Department of Psychological Sciences, University of Missouri, Columbia, Missouri.,School of Health Professions, University of Missouri, Columbia, Missouri
| | - Ian R Gizer
- Department of Psychological Sciences, University of Missouri, Columbia, Missouri
| |
Collapse
|
11
|
Eissenberg JC. More than Meets the Eye: Eye Color and Alcoholism. MISSOURI MEDICINE 2016; 113:98-103. [PMID: 27311215 PMCID: PMC6139948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
|
12
|
Winham SJ, Jenkins GD, Biernacka JM. Modeling X Chromosome Data Using Random Forests: Conquering Sex Bias. Genet Epidemiol 2015; 40:123-32. [PMID: 26639183 DOI: 10.1002/gepi.21946] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Revised: 10/29/2015] [Accepted: 10/29/2015] [Indexed: 12/12/2022]
Abstract
Machine learning methods, including Random Forests (RF), are increasingly used for genetic data analysis. However, the standard RF algorithm does not correctly model the effects of X chromosome single nucleotide polymorphisms (SNPs), leading to biased estimates of variable importance. We propose extensions of RF to correctly model X SNPs, including a stratified approach and an approach based on the process of X chromosome inactivation. We applied the new and standard RF approaches to case-control alcohol dependence data from the Study of Addiction: Genes and Environment (SAGE), and compared the performance of the alternative approaches via a simulation study. Standard RF applied to a case-control study of alcohol dependence yielded inflated variable importance estimates for X SNPs, even when sex was included as a variable, but the results of the new RF methods were consistent with univariate regression-based approaches that correctly model X chromosome data. Simulations showed that the new RF methods eliminate the bias in standard RF variable importance for X SNPs when sex is associated with the trait, and are able to detect causal autosomal and X SNPs. Even in the absence of sex effects, the new extensions perform similarly to standard RF. Thus, we provide a powerful multimarker approach for genetic analysis that accommodates X chromosome data in an unbiased way. This method is implemented in the freely available R package "snpRF" (http://www.cran.r-project.org/web/packages/snpRF/).
Collapse
Affiliation(s)
- Stacey J Winham
- Department of Health Sciences Research, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Gregory D Jenkins
- Department of Health Sciences Research, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Joanna M Biernacka
- Department of Health Sciences Research, Mayo Clinic, Rochester, Minnesota, United States of America.,Department of Psychiatry and Psychology, Mayo Clinic, Rochester, Minnesota, United States of America
| |
Collapse
|
13
|
Bell RL, Hauser SR, McClintick J, Rahman S, Edenberg HJ, Szumlinski KK, McBride WJ. Ethanol-Associated Changes in Glutamate Reward Neurocircuitry: A Minireview of Clinical and Preclinical Genetic Findings. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2015; 137:41-85. [PMID: 26809998 DOI: 10.1016/bs.pmbts.2015.10.018] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Herein, we have reviewed the role of glutamate, the major excitatory neurotransmitter in the brain, in a number of neurochemical, -physiological, and -behavioral processes mediating the development of alcohol dependence. The findings discussed include results from both preclinical as well as neuroimaging and postmortem clinical studies. Expression levels for a number of glutamate-associated genes and/or proteins are modulated by alcohol abuse and dependence. These changes in expression include metabotropic receptors and ionotropic receptor subunits as well as different glutamate transporters. Moreover, these changes in gene expression parallel the pharmacologic manipulation of these same receptors and transporters. Some of these gene expression changes may have predated alcohol abuse and dependence because a number of glutamate-associated polymorphisms are related to a genetic predisposition to develop alcohol dependence. Other glutamate-associated polymorphisms are linked to age at the onset of alcohol-dependence and initial level of response/sensitivity to alcohol. Finally, findings of innate and/or ethanol-induced glutamate-associated gene expression differences/changes observed in a genetic animal model of alcoholism, the P rat, are summarized. Overall, the existing literature indicates that changes in glutamate receptors, transporters, enzymes, and scaffolding proteins are crucial for the development of alcohol dependence and there is a substantial genetic component to these effects. This indicates that continued research into the genetic underpinnings of these glutamate-associated effects will provide important novel molecular targets for treating alcohol abuse and dependence.
Collapse
Affiliation(s)
- Richard L Bell
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, Indiana, USA.
| | - Sheketha R Hauser
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Jeanette McClintick
- Departments of Biochemistry and Molecular Biology and Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana , USA
| | - Shafiqur Rahman
- Department of Pharmaceutical Sciences, South Dakota State University, Brookings, South Dakota, USA
| | - Howard J Edenberg
- Departments of Biochemistry and Molecular Biology and Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana , USA
| | - Karen K Szumlinski
- Department of Psychological and Brain Sciences, University of California Santa Barbara, Santa Barbara, California, USA
| | - William J McBride
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, Indiana, USA
| |
Collapse
|
14
|
Grotewiel M, Bettinger JC. Drosophila and Caenorhabditis elegans as Discovery Platforms for Genes Involved in Human Alcohol Use Disorder. Alcohol Clin Exp Res 2015; 39:1292-311. [PMID: 26173477 PMCID: PMC4656040 DOI: 10.1111/acer.12785] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2015] [Accepted: 05/18/2015] [Indexed: 01/08/2023]
Abstract
BACKGROUND Despite the profound clinical significance and strong heritability of alcohol use disorder (AUD), we do not yet have a comprehensive understanding of the naturally occurring genetic variance within the human genome that drives its development. This lack of understanding is likely to be due in part to the large phenotypic and genetic heterogeneities that underlie human AUD. As a complement to genetic studies in humans, many laboratories are using the invertebrate model organisms (iMOs) Drosophila melanogaster (fruit fly) and Caenorhabditis elegans (nematode worm) to identify genetic mechanisms that influence the effects of alcohol (ethanol) on behavior. While these extremely powerful models have identified many genes that influence the behavioral responses to alcohol, in most cases it has remained unclear whether results from behavioral-genetic studies in iMOs are directly applicable to understanding the genetic basis of human AUD. METHODS In this review, we critically evaluate the utility of the fly and worm models for identifying genes that influence AUD in humans. RESULTS Based on results published through early 2015, studies in flies and worms have identified 91 and 50 genes, respectively, that influence 1 or more aspects of behavioral responses to alcohol. Collectively, these fly and worm genes correspond to 293 orthologous genes in humans. Intriguingly, 51 of these 293 human genes have been implicated in AUD by at least 1 study in human populations. CONCLUSIONS Our analyses strongly suggest that the Drosophila and C. elegans models have considerable utility for identifying orthologs of genes that influence human AUD.
Collapse
Affiliation(s)
- Mike Grotewiel
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, Virginia
- Virginia Commonwealth University Alcohol Research Center, Richmond, Virginia
| | - Jill C Bettinger
- Department of Pharmacology and Toxicology , Virginia Commonwealth University, Richmond, Virginia
- Virginia Commonwealth University Alcohol Research Center, Richmond, Virginia
| |
Collapse
|
15
|
Frequency of alcohol consumption in humans; the role of metabotropic glutamate receptors and downstream signaling pathways. Transl Psychiatry 2015; 5:e586. [PMID: 26101849 PMCID: PMC4490281 DOI: 10.1038/tp.2015.70] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Revised: 04/13/2015] [Accepted: 04/23/2015] [Indexed: 12/18/2022] Open
Abstract
Rodent models implicate metabotropic glutamate receptors (mGluRs) and downstream signaling pathways in addictive behaviors through metaplasticity. One way mGluRs can influence synaptic plasticity is by regulating the local translation of AMPA receptor trafficking proteins via eukaryotic elongation factor 2 (eEF2). However, genetic variation in this pathway has not been examined with human alcohol use phenotypes. Among a sample of adults living in Detroit, Michigan (Detroit Neighborhood Health Study; n = 788; 83% African American), 206 genetic variants across the mGluR-eEF2-AMPAR pathway (including GRM1, GRM5, HOMER1, HOMER2, EEF2K, MTOR, EIF4E, EEF2, CAMK2A, ARC, GRIA1 and GRIA4) were found to predict number of drinking days per month (corrected P-value < 0.01) when considered as a set (set-based linear regression conducted in PLINK). In addition, a CpG site located in the 3'-untranslated region on the north shore of EEF2 (cg12255298) was hypermethylated in those who drank more frequently (P < 0.05). Importantly, the association between several genetic variants within the mGluR-eEF2-AMPAR pathway and alcohol use behavior (i.e., consumption and alcohol-related problems) replicated in the Grady Trauma Project (GTP), an independent sample of adults living in Atlanta, Georgia (n = 1034; 95% African American), including individual variants in GRM1, GRM5, EEF2, MTOR, GRIA1, GRIA4 and HOMER2 (P < 0.05). Gene-based analyses conducted in the GTP indicated that GRM1 (empirical P < 0.05) and EEF2 (empirical P < 0.01) withstood multiple test corrections and predicted increased alcohol consumption and related problems. In conclusion, insights from rodent studies enabled the identification of novel human alcohol candidate genes within the mGluR-eEF2-AMPAR pathway.
Collapse
|
16
|
Abstract
Alcohol use and alcohol use disorders are substantially heritable. Variants in genes coding for alcohol metabolic enzymes have long been known to influence consumption. More recent studies in family-based samples have implicated GABRA2, nicotinic receptor genes such as CHRNB3, and a number of other specific single genes as associated with alcohol use disorders. The growing use of genetic analyses, in particular studies using polygenic risk scores; neurobiologic pathways; and methods for quantifying gene × gene and gene × environment interactions have also contributed to an evolving understanding of the genetic architecture of alcohol use disorders. Additionally, the study of behavioral traits associated with alcohol dependence such as impulsivity and sensation seeking, and the influences of demographic factors (i.e., sex and ethnicity) have significantly enhanced the genetics of alcoholism literature. This article provides a brief overview of the current topically relevant findings in the field to date and includes areas of research still requiring attention.
Collapse
|
17
|
Smith SB, Mir E, Bair E, Slade GD, Dubner R, Fillingim RB, Greenspan JD, Ohrbach R, Knott C, Weir B, Maixner W, Diatchenko L. Genetic variants associated with development of TMD and its intermediate phenotypes: the genetic architecture of TMD in the OPPERA prospective cohort study. THE JOURNAL OF PAIN 2014; 14:T91-101.e1-3. [PMID: 24275226 DOI: 10.1016/j.jpain.2013.09.004] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2013] [Revised: 08/29/2013] [Indexed: 02/06/2023]
Abstract
UNLABELLED Genetic risk factors are believed to combine with environmental exposures and contribute to the risk of developing temporomandibular disorder (TMD). In this prospective cohort study, 2,737 people without TMD were assessed for common genetic variation in 358 genes known to contribute to nociceptive pathways, inflammation, and affective distress. During a median follow-up period of 2.8 years, 260 people developed first-onset TMD. Hazard ratios were computed as measures of association between 2,924 single-nucleotide polymorphisms and TMD incidence. After correction for multiple testing, no single single-nucleotide polymorphism was significantly associated with risk of onset TMD. However, several single-nucleotide polymorphisms exceeded Bonferroni correction for multiple comparison or false discovery rate thresholds (.05, .1, or .2) for association with intermediate phenotypes shown to be predictive of TMD onset. Nonspecific orofacial symptoms were associated with voltage-gated sodium channel, type I, alpha subunit (SCN1A, rs6432860, P = 2.77 × 10(-5)) and angiotensin I-converting enzyme 2 (ACE2, rs1514280, P = 4.86 × 10(-5)); global psychological symptoms with prostaglandin-endoperoxide synthase 1 (PTGS1, rs3842803, P = 2.79 × 10(-6)); stress and negative affectivity with amyloid-β (A4) precursor protein (APP, rs466448, P = 4.29 × 10(-5)); and heat pain temporal summation with multiple PDZ domain protein (MPDZ, rs10809907, P = 3.05 × 10(-5)). The use of intermediate phenotypes for complex pain diseases revealed new genetic pathways influencing risk of TMD. PERSPECTIVE This article reports the findings of a large candidate gene association study of first-onset TMD and related intermediate phenotypes in the OPPERA Study. Although no genetic markers predicted TMD onset, several genetic risk factors for clinical, psychological, and sensory phenotypes associated with TMD onset were observed.
Collapse
Affiliation(s)
- Shad B Smith
- Regional Center for Neurosensory Disorders, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina; Department of Endodontics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Morozova TV, Mackay TFC, Anholt RRH. Genetics and genomics of alcohol sensitivity. Mol Genet Genomics 2014; 289:253-69. [PMID: 24395673 PMCID: PMC4037586 DOI: 10.1007/s00438-013-0808-y] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Accepted: 12/22/2013] [Indexed: 01/20/2023]
Abstract
Alcohol abuse and alcoholism incur a heavy socioeconomic cost in many countries. Both genetic and environmental factors contribute to variation in the inebriating effects of alcohol and alcohol addiction among individuals within and across populations. From a genetics perspective, alcohol sensitivity is a quantitative trait determined by the cumulative effects of multiple segregating genes and their interactions with the environment. This review summarizes insights from model organisms as well as human populations that represent our current understanding of the genetic and genomic underpinnings that govern alcohol metabolism and the sedative and addictive effects of alcohol on the nervous system.
Collapse
Affiliation(s)
- Tatiana V. Morozova
- Department of Biological Sciences and W. M. Keck Center for Behavioral Biology, North Carolina State University, Box 7617, Raleigh, NC 27695-7617 USA
| | - Trudy F. C. Mackay
- Department of Biological Sciences and W. M. Keck Center for Behavioral Biology, North Carolina State University, Box 7617, Raleigh, NC 27695-7617 USA
| | - Robert R. H. Anholt
- Department of Biological Sciences and W. M. Keck Center for Behavioral Biology, North Carolina State University, Box 7617, Raleigh, NC 27695-7617 USA
| |
Collapse
|
19
|
Perspectives on the neuroscience of alcohol from the National Institute on Alcohol Abuse and Alcoholism. HANDBOOK OF CLINICAL NEUROLOGY 2014; 125:15-29. [PMID: 25307566 DOI: 10.1016/b978-0-444-62619-6.00002-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Mounting evidence over the last 40 years clearly indicates that alcoholism (alcohol dependence) is a disorder of the brain. The National Institute on Alcohol Abuse and Alcoholism (NIAAA) has taken significant steps to advance research into the neuroscience of alcohol. The Division of Neuroscience and Behavior (DNB) was formed within NIAAA in 2002 to oversee, fund, and direct all research areas that examine the effects of alcohol on the brain, the genetic underpinnings of alcohol dependence, the neuroadaptations resulting from excessive alcohol consumption, advanced behavioral models of the various stages of the addiction cycle, and preclinical medications development. This research portfolio has produced important discoveries in the etiology, treatment, and prevention of alcohol abuse and dependence. Several of these salient discoveries are highlighted and future areas of neuroscience research on alcohol are presented.
Collapse
|
20
|
Spanagel R. Convergent functional genomics in addiction research - a translational approach to study candidate genes and gene networks. In Silico Pharmacol 2013; 1:18. [PMID: 25505662 PMCID: PMC4230431 DOI: 10.1186/2193-9616-1-18] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2013] [Accepted: 11/12/2013] [Indexed: 01/16/2023] Open
Abstract
Convergent functional genomics (CFG) is a translational methodology that integrates in a Bayesian fashion multiple lines of evidence from studies in human and animal models to get a better understanding of the genetics of a disease or pathological behavior. Here the integration of data sets that derive from forward genetics in animals and genetic association studies including genome wide association studies (GWAS) in humans is described for addictive behavior. The aim of forward genetics in animals and association studies in humans is to identify mutations (e.g. SNPs) that produce a certain phenotype; i.e. "from phenotype to genotype". Most powerful in terms of forward genetics is combined quantitative trait loci (QTL) analysis and gene expression profiling in recombinant inbreed rodent lines or genetically selected animals for a specific phenotype, e.g. high vs. low drug consumption. By Bayesian scoring genomic information from forward genetics in animals is then combined with human GWAS data on a similar addiction-relevant phenotype. This integrative approach generates a robust candidate gene list that has to be functionally validated by means of reverse genetics in animals; i.e. "from genotype to phenotype". It is proposed that studying addiction relevant phenotypes and endophenotypes by this CFG approach will allow a better determination of the genetics of addictive behavior.
Collapse
Affiliation(s)
- Rainer Spanagel
- Institute of Psychopharmacology, Central Institute of Mental Health, Faculty of Medicine Mannheim, University of Heidelberg, J5, 68159 Mannheim, Germany
| |
Collapse
|
21
|
Spanagel R, Durstewitz D, Hansson A, Heinz A, Kiefer F, Köhr G, Matthäus F, Nöthen MM, Noori HR, Obermayer K, Rietschel M, Schloss P, Scholz H, Schumann G, Smolka M, Sommer W, Vengeliene V, Walter H, Wurst W, Zimmermann US, Stringer S, Smits Y, Derks EM. A systems medicine research approach for studying alcohol addiction. Addict Biol 2013; 18:883-96. [PMID: 24283978 DOI: 10.1111/adb.12109] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
According to the World Health Organization, about 2 billion people drink alcohol. Excessive alcohol consumption can result in alcohol addiction, which is one of the most prevalent neuropsychiatric diseases afflicting our society today. Prevention and intervention of alcohol binging in adolescents and treatment of alcoholism are major unmet challenges affecting our health-care system and society alike. Our newly formed German SysMedAlcoholism consortium is using a new systems medicine approach and intends (1) to define individual neurobehavioral risk profiles in adolescents that are predictive of alcohol use disorders later in life and (2) to identify new pharmacological targets and molecules for the treatment of alcoholism. To achieve these goals, we will use omics-information from epigenomics, genetics transcriptomics, neurodynamics, global neurochemical connectomes and neuroimaging (IMAGEN; Schumann et al. ) to feed mathematical prediction modules provided by two Bernstein Centers for Computational Neurosciences (Berlin and Heidelberg/Mannheim), the results of which will subsequently be functionally validated in independent clinical samples and appropriate animal models. This approach will lead to new early intervention strategies and identify innovative molecules for relapse prevention that will be tested in experimental human studies. This research program will ultimately help in consolidating addiction research clusters in Germany that can effectively conduct large clinical trials, implement early intervention strategies and impact political and healthcare decision makers.
Collapse
Affiliation(s)
- Rainer Spanagel
- Insitute of Psychopharmacology; Central Institute of Mental Health; Medical Faculty Mannheim; University of Heidelberg; Germany
| | - Daniel Durstewitz
- Bernstein Center for Computational Neuroscience; Central Institute of Mental Health; Germany
| | - Anita Hansson
- Insitute of Psychopharmacology; Central Institute of Mental Health; Medical Faculty Mannheim; University of Heidelberg; Germany
| | - Andreas Heinz
- Department of Addictive Behaviour and Addiction Medicine; Central Institute of Mental Health; Germany
| | - Falk Kiefer
- Department of Genetic Epidemiology in Psychiatry; Central Institute of Mental Health; Germany
| | - Georg Köhr
- Insitute of Psychopharmacology; Central Institute of Mental Health; Medical Faculty Mannheim; University of Heidelberg; Germany
| | | | - Markus M. Nöthen
- Department of Psychiatry; Charité University Medical Center; Germany
| | - Hamid R. Noori
- Insitute of Psychopharmacology; Central Institute of Mental Health; Medical Faculty Mannheim; University of Heidelberg; Germany
| | - Klaus Obermayer
- Institute of Applied Mathematics; University of Heidelberg; Germany
| | - Marcella Rietschel
- Department of Genomics, Life & Brain Centre; University of Bonn; Germany
| | - Patrick Schloss
- Neural Information Processing Group; Technical University of Berlin; Germany
| | - Henrike Scholz
- Behavioral Neurogenetics' Zoological Institute; University of Cologne; Germany
| | - Gunter Schumann
- MRC-SGDP Centre; Institute of Psychiatry; King's College; UK
| | - Michael Smolka
- Department of Psychiatry and Psychotherapy; Technical University Dresden; Germany
| | - Wolfgang Sommer
- Insitute of Psychopharmacology; Central Institute of Mental Health; Medical Faculty Mannheim; University of Heidelberg; Germany
| | - Valentina Vengeliene
- Insitute of Psychopharmacology; Central Institute of Mental Health; Medical Faculty Mannheim; University of Heidelberg; Germany
| | - Henrik Walter
- Department of Addictive Behaviour and Addiction Medicine; Central Institute of Mental Health; Germany
| | - Wolfgang Wurst
- Institute of Developmental Genetics; Helmholtz Center Munich; Germany
| | - Uli S. Zimmermann
- Department of Psychiatry and Psychotherapy; Technical University Dresden; Germany
| | - Sven Stringer
- Psychiatry Department; Academic Medical Center; The Netherlands
- Brain Center Rudolf Magnus; University Medical Center; The Netherlands
| | - Yannick Smits
- Psychiatry Department; Academic Medical Center; The Netherlands
| | - Eske M. Derks
- Psychiatry Department; Academic Medical Center; The Netherlands
| | | |
Collapse
|
22
|
Cassidy LL, Dlugos FF, Dlugos CA. Time course of SERCA 2b and calreticulin expression in Purkinje neurons of ethanol-fed rats with behavioral correlates. Alcohol Alcohol 2013; 48:667-78. [PMID: 23884168 PMCID: PMC3799558 DOI: 10.1093/alcalc/agt062] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
UNLABELLED Chronic ethanol consumption for 40 weeks in adult rats results in dilation of the extensive smooth endoplasmic reticulum (SER), a major component of the calcium homeostatic system within Purkinje neuron (PN) dendrites. AIMS The aim of the present study was to determine whether chronic ethanol consumption results in alterations of the sarco/endoplasmic reticulum Ca(2+) ATPase pump (SERCA) on the SER membrane of PN dendrites. The density of calreticulin, a calcium chaperone, was also investigated in the PN along with balancing ability. METHODS Ninety 8-month-old rats were exposed to rat chow, the AIN-93 M liquid control or ethanol diets (30/diet) for a duration of 10, 20 or 40 weeks (30/duration). Age changes relative to the rat chow controls were assessed with 3-month-old control rats (n = 10). Balance was assessed prior to euthanasia. Quantitative immunocytochemistry was used to determine the density of SERCA 2b + dendrites and calreticulin + PN soma and nuclei. Molecular layer volumes were also determined. RESULTS Following 40 weeks of ethanol treatment, there were ethanol-induced decreases in SERCA 2b densities within the dendritic arbor and decreased balancing ability on the more difficult round rod balance test. There were no ethanol-induced changes in calreticulin densities. CONCLUSION It can be concluded that ethanol-induced decreases in the SERCA pump accompany SER dilation and contribute to previously reported ethanol-induced dendritic regression in PN. Ethanol-induced changes in balance also occurred. Chronic ethanol consumption does not alter calreticulin expression in PN.
Collapse
Affiliation(s)
- Linda L Cassidy
- Corresponding author: Department of Pathology and Anatomical Sciences, 206 Farber Hall, School of Medicine and Biomedical Sciences, Main Street, Buffalo, NY 14214, USA
| | | | | |
Collapse
|
23
|
Winham SJ, Freimuth RR, Biernacka JM. A Weighted Random Forests Approach to Improve Predictive Performance. Stat Anal Data Min 2013; 6:496-505. [PMID: 24501613 DOI: 10.1002/sam.11196] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Identifying genetic variants associated with complex disease in high-dimensional data is a challenging problem, and complicated etiologies such as gene-gene interactions are often ignored in analyses. The data-mining method Random Forests (RF) can handle high-dimensions; however, in high-dimensional data, RF is not an effective filter for identifying risk factors associated with the disease trait via complex genetic models such as gene-gene interactions without strong marginal components. Here we propose an extension called Weighted Random Forests (wRF), which incorporates tree-level weights to emphasize more accurate trees in prediction and calculation of variable importance. We demonstrate through simulation and application to data from a genetic study of addiction that wRF can outperform RF in high-dimensional data, although the improvements are modest and limited to situations with effect sizes that are larger than what is realistic in genetics of complex disease. Thus, the current implementation of wRF is unlikely to improve detection of relevant predictors in high-dimensional genetic data, but may be applicable in other situations where larger effect sizes are anticipated.
Collapse
Affiliation(s)
- Stacey J Winham
- Department of Health Sciences Research, Mayo Clinic, 200 First Street Southwest, Rochester, MN 55905 USA
| | - Robert R Freimuth
- Department of Health Sciences Research, Mayo Clinic, 200 First Street Southwest, Rochester, MN 55905 USA
| | - Joanna M Biernacka
- Department of Health Sciences Research, Mayo Clinic, 200 First Street Southwest, Rochester, MN 55905 USA ; Department of Psychiatry and Psychology, Mayo Clinic, 200 First Street Southwest, Rochester, MN 55905 USA
| |
Collapse
|
24
|
Fliegel S, Brand I, Spanagel R, Noori HR. Ethanol-induced alterations of amino acids measured by in vivo microdialysis in rats: a meta-analysis. In Silico Pharmacol 2013; 1:7. [PMID: 25505652 PMCID: PMC4230485 DOI: 10.1186/2193-9616-1-7] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2013] [Accepted: 05/07/2013] [Indexed: 12/14/2022] Open
Abstract
PURPOSE In recent years in vivo microdialysis has become an important method in research studies investigating the alterations of neurotransmitters in the extracellular fluid of the brain. Based on the major involvement of glutamate and γ-aminobutyric acid (GABA) in mediating a variety of alcohol effects in the mammalian brain, numerous microdialysis studies have focused on the dynamical behavior of these systems in response to alcohol. METHODS Here we performed multiple meta-analyses on published datasets from the rat brain: (i) we studied basal extracellular concentrations of glutamate and GABA in brain regions that belong to a neurocircuitry involved in neuropsychiatric diseases, especially in alcoholism (Noori et al., Addict Biol 17:827-864, 2012); (ii) we examined the effect of acute ethanol administration on glutamate and GABA levels within this network and (iii) we studied alcohol withdrawal-induced alterations in glutamate and GABA levels within this neurocircuitry. RESULTS For extraction of basal concentrations of these neurotransmitters, datasets of 6932 rats were analyzed and the absolute basal glutamate and GABA levels were estimated for 18 different brain sites. In response to different doses of acute ethanol administration, datasets of 529 rats were analyzed and a non-linear dose response (glutamate and GABA release) relationship was observed in several brain sites. Specifically, glutamate in the nucleus accumbens shows a decreasing logarithmic dose response curve. Finally, regression analysis of 11 published reports employing brain microdialysis experiments in 104 alcohol-dependent rats reveals very consistent augmented extracellular glutamate and GABA levels in various brain sites that correlate with the intensity of the withdrawal response were identified. CONCLUSIONS In summary, our results provide standardized basal values for future experimental and in silico studies on neurotransmitter release in the rat brain and may be helpful to understand the effect of ethanol on neurotransmitter release. Furthermore, this study illustrates the benefit of meta-analyses using the generalization of a wide range of preclinical data.
Collapse
Affiliation(s)
- Sarah Fliegel
- Institute of Psychopharmacology, Central Institute of Mental Health, Faculty of Medicine Mannheim, University of Heidelberg, J5, 68159 Mannheim, Germany
| | - Ines Brand
- Institute of Psychopharmacology, Central Institute of Mental Health, Faculty of Medicine Mannheim, University of Heidelberg, J5, 68159 Mannheim, Germany
| | - Rainer Spanagel
- Institute of Psychopharmacology, Central Institute of Mental Health, Faculty of Medicine Mannheim, University of Heidelberg, J5, 68159 Mannheim, Germany
| | - Hamid R Noori
- Institute of Psychopharmacology, Central Institute of Mental Health, Faculty of Medicine Mannheim, University of Heidelberg, J5, 68159 Mannheim, Germany
| |
Collapse
|
25
|
Michaelides M, Miller ML, Subrize M, Kim R, Robison L, Hurd YL, Wang GJ, Volkow ND, Thanos PK. Limbic activation to novel versus familiar food cues predicts food preference and alcohol intake. Brain Res 2013; 1512:37-44. [PMID: 23506787 DOI: 10.1016/j.brainres.2013.03.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2012] [Revised: 02/07/2013] [Accepted: 03/07/2013] [Indexed: 12/14/2022]
Abstract
Expectation of salient rewards and novelty seeking are processes implicated in substance use disorders but the neurobiological substrates underlying these associations are not well understood. To better understand the regional circuitry of novelty and reward preference, rats were conditioned to pair unique cues with bacon, an initially novel food, or chow, a familiar food. In the same animals, after training, cue-induced brain activity was measured, and the relationships between activity and preference for three rewards, the conditioned foods and ethanol (EtOH), were separately determined. Activity in response to the food paired cues was measured using brain glucose metabolism (BGluM). Rats favoring bacon-paired (BAP) cues had increased BGluM in mesocorticolimbic brain regions after exposure to these cues, while rats favoring chow-paired (CHP) cues showed relative deactivation in these regions. Rats exhibiting BAP cue-induced activation in prefrontal cortex (PFC) also consumed more EtOH while rats with cortical activation in response to CHP cues showed lower EtOH consumption. Additionally, long-term stable expression levels of PFC Grin2a, a subunit of the NMDA receptor, correlated with individual differences in EtOH preference insomuch that rats with high EtOH preference had enduringly low PFC Grin2a mRNA expression. No other glutamatergic, dopaminergic or endocannabinoid genes studied showed this relationship. Overall, these results suggest that natural variation in mesocorticolimbic sensitivity to reward-paired cues underlies behavioral preferences for and vulnerability to alcohol abuse, and support the notion of common neuronal circuits involved in food- and drug-seeking behavior. The findings also provide evidence that PFC NMDA-mediated glutamate signaling may modulate these associations.
Collapse
Affiliation(s)
- Michael Michaelides
- Department of Pharmacology and Systems Therapeutics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Genome-wide gene-set analysis for identification of pathways associated with alcohol dependence. Int J Neuropsychopharmacol 2013; 16:271-8. [PMID: 22717047 PMCID: PMC3854955 DOI: 10.1017/s1461145712000375] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
It is believed that multiple genetic variants with small individual effects contribute to the risk of alcohol dependence. Such polygenic effects are difficult to detect in genome-wide association studies that test for association of the phenotype with each single nucleotide polymorphism (SNP) individually. To overcome this challenge, gene-set analysis (GSA) methods that jointly test for the effects of pre-defined groups of genes have been proposed. Rather than testing for association between the phenotype and individual SNPs, these analyses evaluate the global evidence of association with a set of related genes enabling the identification of cellular or molecular pathways or biological processes that play a role in development of the disease. It is hoped that by aggregating the evidence of association for all available SNPs in a group of related genes, these approaches will have enhanced power to detect genetic associations with complex traits. We performed GSA using data from a genome-wide study of 1165 alcohol-dependent cases and 1379 controls from the Study of Addiction: Genetics and Environment (SAGE), for all 200 pathways listed in the Kyoto Encyclopedia of Genes and Genomes (KEGG) database. Results demonstrated a potential role of the 'synthesis and degradation of ketone bodies' pathway. Our results also support the potential involvement of the 'neuroactive ligand-receptor interaction' pathway, which has previously been implicated in addictive disorders. These findings demonstrate the utility of GSA in the study of complex disease, and suggest specific directions for further research into the genetic architecture of alcohol dependence.
Collapse
|
27
|
Palmer AA, de Wit H. Translational genetic approaches to substance use disorders: bridging the gap between mice and humans. Hum Genet 2012; 131:931-9. [PMID: 22170288 PMCID: PMC3352994 DOI: 10.1007/s00439-011-1123-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2011] [Accepted: 11/27/2011] [Indexed: 10/14/2022]
Abstract
While substance abuse disorders only occur in humans, mice and other model organisms can make valuable contributions to genetic studies of these disorders. In this review, we consider a few specific examples of how model organisms have been used in conjunction with studies in humans to study the role of genetic factors in substance use disorders. In some examples genes that were first discovered in mice were subsequently studied in humans. In other examples genes or specific polymorphisms in genes were first studied in humans and then modeled in mice. Using anatomically and temporally specific genetic, pharmacological and other environmental manipulations in conjunction with histological analyses, mechanistic insights that would be difficult to obtain in humans have been obtained in mice. We hope these examples illustrate how novel biological insights about the effect of genes on substance use disorders can be obtained when mouse and human genetic studies are successfully integrated.
Collapse
Affiliation(s)
- Abraham A Palmer
- Department of Human Genetics, The University of Chicago, Chicago, IL 60637, USA.
| | | |
Collapse
|