1
|
Varricchi G, Poto R, Lommatzsch M, Brusselle G, Braido F, Virchow JC, Canonica GW. Biologics and airway remodeling in asthma: early, late, and potential preventive effects. Allergy 2025; 80:408-422. [PMID: 39520155 PMCID: PMC11804314 DOI: 10.1111/all.16382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 10/02/2024] [Accepted: 10/23/2024] [Indexed: 11/16/2024]
Abstract
Although airway remodeling in severe and/or fatal asthma is still considered irreversible, its individual components as a cause of clinical symptoms and/or lung function changes remain largely unknown. While inhaled glucocorticoids have not consistently been shown to affect airway remodeling, biologics targeting specific pathways of airway inflammation have been shown to improve lung function, mucus plugging, and airway structural changes that can exceed those seen with glucocorticoids. This superiority of biologic treatment, which cannot be solely explained by insufficient doses or limited durations of glucocorticoid therapies, needs to be further explored. For this field of research, we propose a novel classification of the potential effects of biologics on airway remodeling into three temporal effects: early effects (days to weeks, primarily modulating inflammatory processes), late effects (months to years, predominantly affecting structural changes), and potential preventive effects (outcomes of early treatment with biologics). For the identification of potential preventive effects of biologics, we call for studies exploring the impact of early biological treatment on airway remodeling in patients with moderate-to-severe asthma, which should be accompanied by a long-term evaluation of clinical parameters, biomarkers, treatment burden, and socioeconomic implications.
Collapse
Affiliation(s)
- G. Varricchi
- Department of Translational Medical SciencesUniversity of Naples Federico IINaplesItaly
- Center for Basic and Clinical Immunology Research (CISI)University of Naples Federico IINaplesItaly
- World Allergy Organization (WAO) Center of ExcellenceNaplesItaly
- Institute of Experimental Endocrinology and Oncology (IEOS)National Research CouncilNaplesItaly
| | - R. Poto
- Department of Translational Medical SciencesUniversity of Naples Federico IINaplesItaly
- Center for Basic and Clinical Immunology Research (CISI)University of Naples Federico IINaplesItaly
- World Allergy Organization (WAO) Center of ExcellenceNaplesItaly
| | - M. Lommatzsch
- Department of Pneumology and Critical Care MedicineUniversity of RostockRostockGermany
| | - G. Brusselle
- Department of Respiratory MedicineGhent University HospitalGhentBelgium
| | - F. Braido
- Respiratory Diseases and Allergy DepartmentIRCCS Polyclinic Hospital San MartinoGenoaItaly
| | - J. C. Virchow
- Department of Pneumology and Critical Care MedicineUniversity of RostockRostockGermany
| | - G. W. Canonica
- Respiratory Diseases and Allergy DepartmentIRCCS Polyclinic Hospital San MartinoGenoaItaly
- Department of Biomedical SciencesHumanitas UniversityMilanItaly
- Asthma & Allergy Unit‐IRCCS Humanitas Research HospitalMilanItaly
| |
Collapse
|
2
|
Ngo U, Shi Y, Woodruff P, Shokat K, DeGrado W, Jo H, Sheppard D, Sundaram AB. IL-13 and IL-17A activate β1 integrin through an NF-kB/Rho kinase/PIP5K1γ pathway to enhance force transmission in airway smooth muscle. Proc Natl Acad Sci U S A 2024; 121:e2401251121. [PMID: 39136993 PMCID: PMC11348015 DOI: 10.1073/pnas.2401251121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 07/14/2024] [Indexed: 08/15/2024] Open
Abstract
Integrin activation resulting in enhanced adhesion to the extracellular matrix plays a key role in fundamental cellular processes. Although integrin activation has been extensively studied in circulating cells such as leukocytes and platelets, much less is known about the regulation and functional impact of integrin activation in adherent cells such as smooth muscle. Here, we show that two different asthmagenic cytokines, IL-13 and IL-17A, activate type I and IL-17 cytokine receptor families, respectively, to enhance adhesion of airway smooth muscle. These cytokines also induce activation of β1 integrins detected by the conformation-specific antibody HUTS-4. Moreover, HUTS-4 binding is increased in the smooth muscle of patients with asthma compared to nonsmokers without lung disease, suggesting a disease-relevant role for integrin activation in smooth muscle. Indeed, integrin activation induced by the β1-activating antibody TS2/16, the divalent cation manganese, or the synthetic peptide β1-CHAMP that forces an extended-open integrin conformation dramatically enhances force transmission in smooth muscle cells and airway rings even in the absence of cytokines. We demonstrate that cytokine-induced activation of β1 integrins is regulated by a common pathway of NF-κB-mediated induction of RhoA and its effector Rho kinase, which in turn stimulates PIP5K1γ-mediated synthesis of PIP2 at focal adhesions, resulting in β1 integrin activation. Taken together, these data identify a pathway by which type I and IL-17 cytokine receptor family stimulation induces functionally relevant β1 integrin activation in adherent smooth muscle and help to explain the exaggerated force transmission that characterizes chronic airway diseases such as asthma.
Collapse
Affiliation(s)
- Uyen Ngo
- Division of Pulmonary, Critical Care, Allergy and Sleep, Department of Medicine, University of California, San Francisco, CA94143
- Sandler Asthma Basic Research Center, University of California, San Francisco, CA94143
| | - Ying Shi
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA94143
| | - Prescott Woodruff
- Division of Pulmonary, Critical Care, Allergy and Sleep, Department of Medicine, University of California, San Francisco, CA94143
- Sandler Asthma Basic Research Center, University of California, San Francisco, CA94143
| | - Kevan Shokat
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA94143
- Howard Hughes Medical Institute, University of California, San Francisco, CA94143
| | - William DeGrado
- Cardiovascular Research Institute, University of California, San Francisco, CA94143
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA94143
| | - Hyunil Jo
- Cardiovascular Research Institute, University of California, San Francisco, CA94143
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA94143
| | - Dean Sheppard
- Division of Pulmonary, Critical Care, Allergy and Sleep, Department of Medicine, University of California, San Francisco, CA94143
- Cardiovascular Research Institute, University of California, San Francisco, CA94143
| | - Aparna B. Sundaram
- Division of Pulmonary, Critical Care, Allergy and Sleep, Department of Medicine, University of California, San Francisco, CA94143
- Sandler Asthma Basic Research Center, University of California, San Francisco, CA94143
| |
Collapse
|
3
|
Reza MI, Kumar A, Pabelick CM, Britt RD, Prakash YS, Sathish V. Downregulation of protein phosphatase 2Aα in asthmatic airway smooth muscle. Am J Physiol Lung Cell Mol Physiol 2024; 326:L651-L659. [PMID: 38529552 PMCID: PMC11380972 DOI: 10.1152/ajplung.00050.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 03/18/2024] [Accepted: 03/21/2024] [Indexed: 03/27/2024] Open
Abstract
Airway smooth muscle cell (ASM) is renowned for its involvement in airway hyperresponsiveness through impaired ASM relaxation and bronchoconstriction in asthma, which poses a significant challenge in the field. Recent studies have explored different targets in ASM to alleviate airway hyperresponsiveness, however, a sizeable portion of patients with asthma still experience poor control. In our study, we explored protein phosphatase 2 A (PP2A) in ASM as it has been reported to regulate cellular contractility by controlling intracellular calcium ([Ca2+]i), ion channels, and respective regulatory proteins. We obtained human ASM cells and lung tissues from healthy and patients with asthma and evaluated PP2A expression using RNA-Seq data, immunofluorescence, and immunoblotting. We further investigated the functional importance of PP2A by determining its role in bronchoconstriction using mouse bronchus and human ASM cell [Ca2+]i regulation. We found robust expression of PP2A isoforms in human ASM cells with PP2Aα being highly expressed. Interestingly, PP2Aα was significantly downregulated in asthmatic tissue and human ASM cells exposed to proinflammatory cytokines. Functionally, FTY720 (PP2A agonist) inhibited acetylcholine- or methacholine-induced bronchial contraction in mouse bronchus and further potentiated isoproterenol-induced bronchial relaxation. Mechanistically, FTY720 inhibited histamine-evoked [Ca2+]i response and myosin light chain (MLC) phosphorylation in the presence of interleukin-13 (IL-13) in human ASM cells. To conclude, we for the first time established PP2A signaling in ASM, which can be further explored to develop novel therapeutics to alleviate airway hyperresponsiveness in asthma.NEW & NOTEWORTHY This novel study deciphered the expression and function of protein phosphatase 2Aα (PP2Aα) in airway smooth muscle (ASM) during asthma and/or inflammation. We showed robust expression of PP2Aα in human ASM while its downregulation in asthmatic ASM. Similarly, we demonstrated reduced PP2Aα expression in ASM exposed to proinflammatory cytokines. PP2Aα activation inhibited bronchoconstriction of isolated mouse bronchi. In addition, we unveiled that PP2Aα activation inhibits the intracellular calcium release and myosin light chain phosphorylation in human ASM.
Collapse
Affiliation(s)
- Mohammad Irshad Reza
- Department of Pharmaceutical Sciences, North Dakota State University, Fargo, North Dakota, United States
| | - Ashish Kumar
- Department of Pharmaceutical Sciences, North Dakota State University, Fargo, North Dakota, United States
| | - Christina M Pabelick
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota, United States
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, United States
| | - Rodney D Britt
- Center for Perinatal Research, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, Ohio, United States
- Department of Pediatrics, The Ohio State University, Columbus, Ohio, United States
| | - Y S Prakash
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota, United States
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, United States
| | - Venkatachalem Sathish
- Department of Pharmaceutical Sciences, North Dakota State University, Fargo, North Dakota, United States
| |
Collapse
|
4
|
Sheng H, Zhang J, Pan C, Wang S, Gu S, Li F, Ma Y, Ma Y. Genome-wide identification of bovine ADAMTS gene family and analysis of its expression profile in the inflammatory process of mammary epithelial cells. Int J Biol Macromol 2023:125304. [PMID: 37315674 DOI: 10.1016/j.ijbiomac.2023.125304] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 05/29/2023] [Accepted: 06/04/2023] [Indexed: 06/16/2023]
Abstract
ADAM metallopeptidase with thrombospondin type 1 motif (ADAMTS) are secreted, multi-domain matrix-related zinc endopeptidases that play a role in organogenesis, assembly and degradation of extracellular matrix (ECM), cancer and inflammation. Genome-wide identification and analysis of the bovine ADAMTS gene family has not yet been carried out. In this study, 19 ADAMTS family genes were identified in Bos taurus by genome-wide bioinformatics analysis, and they were unevenly distributed on 12 chromosomes. Phylogenetic analysis shows that the Bos taurus ADAMTS are divided into eight subfamilies, with highly consistent gene structures and motifs within the same subfamily. Collinearity analysis showed that the Bos taurus ADAMTS gene family is homologous to other bovine subfamily species, and many ADAMTS genes may be derived from tandem replication and segmental replication. In addition, based on the analysis of RNA-seq data, we found the expression pattern of ADAMTS gene in different tissues. Meanwhile, we also analyzed the expression profile of ADAMTS gene in the inflammatory response of bovine mammary epithelial cells (BMECs) stimulated by LPS by qRT-PCR. The results can provide ideas for understanding the evolutionary relationship and expression pattern of ADAMTS gene in Bovidae, and clarify the theoretical basis of the function of ADAMTS in inflammation.
Collapse
Affiliation(s)
- Hui Sheng
- School of Agriculture, Ningxia University, Yinchuan 750021, China; Key Laboratory of Ruminant Molecular and Cellular Breeding, School of Agriculture, Ningxia University, Yinchuan 750021, China
| | - Junxing Zhang
- School of Agriculture, Ningxia University, Yinchuan 750021, China; Key Laboratory of Ruminant Molecular and Cellular Breeding, School of Agriculture, Ningxia University, Yinchuan 750021, China
| | - Cuili Pan
- School of Agriculture, Ningxia University, Yinchuan 750021, China; Key Laboratory of Ruminant Molecular and Cellular Breeding, School of Agriculture, Ningxia University, Yinchuan 750021, China
| | - Shuzhe Wang
- School of Agriculture, Ningxia University, Yinchuan 750021, China; Key Laboratory of Ruminant Molecular and Cellular Breeding, School of Agriculture, Ningxia University, Yinchuan 750021, China
| | - Shuaifeng Gu
- School of Agriculture, Ningxia University, Yinchuan 750021, China; Key Laboratory of Ruminant Molecular and Cellular Breeding, School of Agriculture, Ningxia University, Yinchuan 750021, China
| | - Fen Li
- School of Agriculture, Ningxia University, Yinchuan 750021, China; Key Laboratory of Ruminant Molecular and Cellular Breeding, School of Agriculture, Ningxia University, Yinchuan 750021, China
| | - Yanfen Ma
- School of Agriculture, Ningxia University, Yinchuan 750021, China; Key Laboratory of Ruminant Molecular and Cellular Breeding, School of Agriculture, Ningxia University, Yinchuan 750021, China
| | - Yun Ma
- School of Agriculture, Ningxia University, Yinchuan 750021, China; Key Laboratory of Ruminant Molecular and Cellular Breeding, School of Agriculture, Ningxia University, Yinchuan 750021, China.
| |
Collapse
|
5
|
Enayati P, Dehdar K, Javan M, Raoufy MR. The protective effect of inhaled corticosteroid on lung inflammation and breathing pattern complexity in a rat model of asthma. Respir Physiol Neurobiol 2023; 314:104072. [PMID: 37182593 DOI: 10.1016/j.resp.2023.104072] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/05/2023] [Accepted: 05/07/2023] [Indexed: 05/16/2023]
Abstract
Asthma is a heterogeneous disease in which the complexity of the breathing pattern reduces as the severity of the disease increases. Since the pathophysiological basis of reduced breathing pattern complexity in asthma is unclear, in this study, we investigated the effect of reducing inflammation using an inhaled corticosteroid (fluticasone propionate) on the breathing pattern of a rat model of asthma. Detrended fluctuation analysis, sample entropy, and cross-sample entropy analysis of both inter-breath interval and respiratory volume time series showed that early treatment with inhaled corticosteroids not only diminishes lung inflammation and airway hyper-responsiveness, but also has a protective effect against the reduction of breathing pattern complexity due to asthma. However, late treatment had a partial effect on asthma-induced respiratory pattern changes. Since inflammation is a key factor in shifting breathing dynamics away from normal fluctuations, these findings further emphasize the importance of early treatment of asthma with corticosteroids.
Collapse
Affiliation(s)
- Parisa Enayati
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Kolsum Dehdar
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Mohammad Javan
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Mohammad Reza Raoufy
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
6
|
Borkar NA, Ambhore NS, Kalidhindi RSR, Pabelick CM, Prakash YS, Sathish V. Kisspeptins inhibit human airway smooth muscle proliferation. JCI Insight 2022; 7:152762. [PMID: 35420998 DOI: 10.1172/jci.insight.152762] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 04/12/2022] [Indexed: 11/17/2022] Open
Abstract
Sex/gender disparity in asthma is recognized, and suggests a modulatory role for sex-steroids, particularly estrogen. However, studies including our own show a dichotomous role for estrogen in airway remodeling, making it unclear whether sex hormones are protective or detrimental in asthma, and suggesting a need to explore mechanisms upstream or independent of estrogen. We hypothesize that Kisspeptin (Kp)/KISS1R signaling serves this role. Airway smooth muscle (ASM) is a key structural cell type that contributes to remodeling in asthma. We explored the role of Kp/KISS1R in regulating ASM proliferation. We report novel data that Kp and KISS1R are expressed in human airways, especially ASM, with lower expression in ASM from females compared to males, and asthmatics showing lowest expression compared to non-asthmatics. Proliferation studies showed that cleaved forms of Kp, particularly Kp-10 mitigates PDGF-induced ASM proliferation. Pharmacological inhibition and shRNA knockdown of KISS1R increased basal ASM proliferation, further amplified by PDGF. The anti-proliferative effect of Kp-10 in ASM was found to be mediated by inhibition of MAPK-ERK-Akt pathways, with altered expression of PCNA, C/EBP-alpha, Ki-67, Cyclin-D1, and Cyclin-E leading to cell-cycle arrest at G0/G1 phase. Overall, we demonstrate the importance of Kp/KISS1R signaling in regulating ASM proliferation and a potentially novel therapeutic avenue to blunt remodeling in asthma.
Collapse
Affiliation(s)
- Niyati A Borkar
- Department of Pharmaceutical Sciences, North Dakota State University, Fargo, United States of America
| | - Nilesh Sudhakar Ambhore
- Department of Pharmaceutical Sciences, North Dakota State University, Fargo, United States of America
| | | | - Christina M Pabelick
- Department of Anesthesiology and Physiology, Mayo Clinic, Rochester, United States of America
| | - Y S Prakash
- Department of Anesthesiology and Physiology, Mayo Clinic, Rochester, United States of America
| | - Venkatachalem Sathish
- Department of Pharmaceutical Sciences, North Dakota State University, Fargo, United States of America
| |
Collapse
|
7
|
Dekkers BG, Saad SI, van Spelde LJ, Burgess JK. Basement membranes in obstructive pulmonary diseases. Matrix Biol Plus 2021; 12:100092. [PMID: 34877523 PMCID: PMC8632995 DOI: 10.1016/j.mbplus.2021.100092] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 11/04/2021] [Accepted: 11/07/2021] [Indexed: 12/24/2022] Open
Abstract
Basement membrane composition is changed in the airways of patients with obstructive airway diseases. Basement membrane changes are linked to disease characteristics in patients. Mechanisms behind the altered BM composition remain to be elucidated. Laminin and collagen IV affect key pathological processes in obstructive airway diseases.
Increased and changed deposition of extracellular matrix proteins is a key feature of airway wall remodeling in obstructive pulmonary diseases, including asthma and chronic obstructive pulmonary disease. Studies have highlighted that the deposition of various basement membrane proteins in the lung tissue is altered and that these changes reflect tissue compartment specificity. Inflammatory responses in both diseases may result in the deregulation of production and degradation of these proteins. In addition to their role in tissue development and integrity, emerging evidence indicates that basement membrane proteins also actively modulate cellular processes in obstructive airway diseases, contributing to disease development, progression and maintenance. In this review, we summarize the changes in basement membrane composition in airway remodeling in obstructive airway diseases and explore their potential application as innovative targets for treatment development.
Collapse
Key Words
- ADAM9, a metalloproteinase domain 9
- ASM, airway smooth muscle
- Airway inflammation
- Airway remodeling
- Asthma
- BM, basement membrane
- COPD, chronic obstructive pulmonary disease
- Chronic obstructive pulmonary disease
- Col IV, collagen IV
- Collagen IV
- ECM, extracellular matrix
- LN, laminin
- Laminin
- MMP, matrix metalloproteinase
- TIMP, tissue inhibitors of metalloproteinase
- Th2, T helper 2
- VSM, vascular smooth muscle
Collapse
Affiliation(s)
- Bart G.J. Dekkers
- University of Groningen, University Medical Center Groningen, Department of Clinical Pharmacy and Pharmacology, Groningen, The Netherlands
- University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD (GRIAC), Groningen, The Netherlands
- Corresponding author at: Department of Clinical Pharmacy and Pharmacology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands.
| | - Shehab I. Saad
- University of Groningen, University Medical Centre Groningen, Department of Pathology & Medical Biology, Experimental Pulmonology and Inflammation Research, Groningen, The Netherlands
| | - Leah J. van Spelde
- University of Groningen, University Medical Centre Groningen, Department of Pathology & Medical Biology, Experimental Pulmonology and Inflammation Research, Groningen, The Netherlands
| | - Janette K. Burgess
- University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD (GRIAC), Groningen, The Netherlands
- University of Groningen, University Medical Centre Groningen, Department of Pathology & Medical Biology, Experimental Pulmonology and Inflammation Research, Groningen, The Netherlands
| |
Collapse
|
8
|
Abu-Serie MM, Hamouda AF, Habashy NH. Acacia senegal gum attenuates systemic toxicity in CCl 4-intoxicated rats via regulation of the ROS/NF-κB signaling pathway. Sci Rep 2021; 11:20316. [PMID: 34645930 PMCID: PMC8514504 DOI: 10.1038/s41598-021-99953-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 10/01/2021] [Indexed: 11/09/2022] Open
Abstract
Acacia senegal (AS) gum (Gum Arabic) is a natural emulsifier exudate from the branches and trunk of Acacia trees and it is recognized by the Food and Drug Administration (FDA) agency as a secure dietary fiber. The present research evaluated the systemic oxidative and necroinflammatory stress induced by CCl4 administration and the alleviating effect of AS gum aqueous extract (ASE, 7.5 g/Kg b.w.). The results demonstrated the presence of certain phenolic compounds in ASE, as well as its in vitro potent scavenging ability against ABTS (2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid), NO, and lipid peroxide radicals. Also, the outcomes revealed an improvement in the CCl4-induced liver, lung, brain, and spleen toxicity by reducing the levels of ROS, lipid peroxidation, NO, and the gene expression of NF-κB and its relevant ROS-mediated inflammatory genes. In contrast, the total antioxidant capacity (TAC), as well as the enzymatic and non-enzymatic antioxidants, were significantly upregulated in these organs after the treatment with ASE. These results were confirmed by improving the morphological features of each organ. Therefore, ASE can ameliorate the systemic toxicity caused by CCl4 via regulation of the ROS/NF-κB signaling pathway in the rat organs, which is owed to its phytochemical composition.
Collapse
Affiliation(s)
- Marwa M Abu-Serie
- Department of Medical Biotechnology, Genetic Engineering, and Biotechnology Research Institute, City of Scientific Research and Technological Applications (SRTA-City), New Borg EL-Arab, 21934, Alexandria, Egypt
| | - Asmaa F Hamouda
- Biochemistry Department, Faculty of Science, Alexandria University, Alexandria, 21511, Egypt
| | - Noha H Habashy
- Biochemistry Department, Faculty of Science, Alexandria University, Alexandria, 21511, Egypt.
| |
Collapse
|
9
|
Targeting ROS/NF-κB sigaling pathway by the seedless black Vitis vinifera polyphenols in CCl 4-intoxicated kidney, lung, brain, and spleen in rats. Sci Rep 2021; 11:16575. [PMID: 34400737 PMCID: PMC8367948 DOI: 10.1038/s41598-021-96008-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Accepted: 08/04/2021] [Indexed: 12/19/2022] Open
Abstract
Carbon tetrachloride (CCl4) is an abundant environmental pollutant that can generate free radicals and induce oxidative stress in different human and animal organs like the kidney, lung, brain, and spleen, causing toxicity. The present study evaluated the alleviative mechanism of the isolated polyphenolic fraction from seedless (pulp and skin) black Vitis vinifera (VVPF) on systemic oxidative and necroinflammatory stress in CCl4-intoxicated rats. Here, we found that the administration of VVPF to CCl4-intoxicated rats for ten days was obviously ameliorated the CCl4-induced systemic elevation in ROS, NO and TBARS levels, as well as MPO activity. Also, it upregulated the cellular activities of the enzymatic (SOD, and GPx) and non-enzymatic (TAC and GSH) antioxidants. Furthermore, the gene expression of the ROS-related necroinflammatory mediators (NF-κB, iNOS, COX-2, and TNF-α) in the kidney, brain, and spleen, as well as IL-1β, and IL-8 in the lung were greatly restored. The histopathological studies confirmed these biochemical results and showed a noticeable enhancing effect in the architecture of the studied organs after VVPF intake. Thus, this study indicated that VVPF had an alleviative effect on CCl4-induced necroinflammation and oxidative stress in rat kidney, lung, brain, and spleen via controlling the ROS/NF-κB pathway.
Collapse
|
10
|
Faiz A, Harkness LM, Tjin G, Bernal V, Horvatovich P, James A, Elliot JG, Burgess JK, Ashton AW. Angiogenic regulatory influence of extracellular matrix deposited by resting state asthmatic and non-asthmatic airway smooth muscle cells is similar. J Cell Mol Med 2021; 25:6438-6447. [PMID: 34146379 PMCID: PMC8256353 DOI: 10.1111/jcmm.16648] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 04/29/2021] [Accepted: 05/03/2021] [Indexed: 12/26/2022] Open
Abstract
The extracellular matrix (ECM) is the tissue microenvironment that regulates the characteristics of stromal and systemic cells to control processes such as inflammation and angiogenesis. Despite ongoing anti-inflammatory treatment, low levels of inflammation exist in the airways in asthma, which alters ECM deposition by airway smooth muscle (ASM) cells. The altered ECM causes aberrant behaviour of cells, such as endothelial cells, in the airway tissue. We therefore sought to characterize the composition and angiogenic potential of the ECM deposited by asthmatic and non-asthmatic ASM. After 72 hours under non-stimulated conditions, the ECM deposited by primary human asthmatic ASM cells was equal in total protein, collagen I, III and fibronectin content to that from non-asthmatic ASM cells. Further, the matrices of non-asthmatic and asthmatic ASM cells were equivalent in regulating the growth, activity, attachment and migration of primary human umbilical vein endothelial cells (HUVECs). Under basal conditions, asthmatic and non-asthmatic ASM cells intrinsically deposit an ECM of equivalent composition and angiogenic potential. Previous findings indicate that dysregulation of the airway ECM is driven even by low levels of inflammatory provocation. This study suggests the need for more effective anti-inflammatory therapies in asthma to maintain the airway ECM and regulate ECM-mediated aberrant angiogenesis.
Collapse
Affiliation(s)
- Alen Faiz
- Respiratory Cellular and Molecular BiologyWoolcock Institute of Medical Research. SydneyNSWAustralia
- Emphysema CenterWoolcock Institute of Medical ResearchThe University of SydneyGlebeNSWAustralia
- Respiratory Bioinformatics and Molecular BiologyFaculty of ScienceUniversity of Technology SydneyUltimoNSWAustralia
- Department of Pathology and Medical BiologyGroningen Research Institute for Asthma and COPDUniversity Medical Center GroningenUniversity of GroningenGroningenThe Netherlands
- Department of PulmonologyUniversity Medical Center GroningenUniversity of GroningenGroningenThe Netherlands
- Discipline of PharmacologySchool of Medical SciencesThe University of SydneySydneyNSWAustralia
- Central Clinical SchoolThe University of SydneySydneyNSWAustralia
| | - Louise M. Harkness
- Respiratory Cellular and Molecular BiologyWoolcock Institute of Medical Research. SydneyNSWAustralia
- Department of PulmonologyUniversity Medical Center GroningenUniversity of GroningenGroningenThe Netherlands
- Discipline of PharmacologySchool of Medical SciencesThe University of SydneySydneyNSWAustralia
| | - Gavin Tjin
- Respiratory Cellular and Molecular BiologyWoolcock Institute of Medical Research. SydneyNSWAustralia
- Discipline of PharmacologySchool of Medical SciencesThe University of SydneySydneyNSWAustralia
- Central Clinical SchoolThe University of SydneySydneyNSWAustralia
- Present address:
St Vincent’s Institute Medical ResearchFitzroyVic.Australia
| | - Victor Bernal
- Bernoulli Institute (BI)University of GroningenGroningenThe Netherlands
- Department of PharmacyAnalytical BiochemistryUniversity of GroningenGroningenThe Netherlands
| | - Peter Horvatovich
- Department of PharmacyAnalytical BiochemistryUniversity of GroningenGroningenThe Netherlands
| | - Alan James
- Department of Pulmonary Physiology and Sleep MedicineWest Australian Sleep Disorders Research InstituteSir Charles Gairdner HospitalPerthWAAustralia
- School of Medicine and PharmacologyUniversity of Western AustraliaPerthWAAustralia
| | - John G. Elliot
- Department of Pulmonary Physiology and Sleep MedicineWest Australian Sleep Disorders Research InstituteSir Charles Gairdner HospitalPerthWAAustralia
| | - Janette K. Burgess
- Respiratory Cellular and Molecular BiologyWoolcock Institute of Medical Research. SydneyNSWAustralia
- Department of Pathology and Medical BiologyGroningen Research Institute for Asthma and COPDUniversity Medical Center GroningenUniversity of GroningenGroningenThe Netherlands
- Department of PulmonologyUniversity Medical Center GroningenUniversity of GroningenGroningenThe Netherlands
- Discipline of PharmacologySchool of Medical SciencesThe University of SydneySydneyNSWAustralia
- Central Clinical SchoolThe University of SydneySydneyNSWAustralia
- Department of Pathology and Medical BiologyKOLFF InstituteUniversity Medical Center GroningenUniversity of GroningenGroningenThe Netherlands
| | - Anthony W. Ashton
- Division of Perinatal ResearchKolling Institute of Medical ResearchSydneyNSWAustralia
| |
Collapse
|
11
|
Busch SM, Lorenzana Z, Ryan AL. Implications for Extracellular Matrix Interactions With Human Lung Basal Stem Cells in Lung Development, Disease, and Airway Modeling. Front Pharmacol 2021; 12:645858. [PMID: 34054525 PMCID: PMC8149957 DOI: 10.3389/fphar.2021.645858] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Accepted: 04/29/2021] [Indexed: 12/18/2022] Open
Abstract
The extracellular matrix (ECM) is not simply a quiescent scaffold. This three-dimensional network of extracellular macromolecules provides structural, mechanical, and biochemical support for the cells of the lung. Throughout life, the ECM forms a critical component of the pulmonary stem cell niche. Basal cells (BCs), the primary stem cells of the airways capable of differentiating to all luminal cell types, reside in close proximity to the basolateral ECM. Studying BC-ECM interactions is important for the development of therapies for chronic lung diseases in which ECM alterations are accompanied by an apparent loss of the lung's regenerative capacity. The complexity and importance of the native ECM in the regulation of BCs is highlighted as we have yet to create an in vitro culture model that is capable of supporting the long-term expansion of multipotent BCs. The interactions between the pulmonary ECM and BCs are, therefore, a vital component for understanding the mechanisms regulating BC stemness during health and disease. If we are able to replicate these interactions in airway models, we could significantly improve our ability to maintain basal cell stemness ex vivo for use in in vitro models and with prospects for cellular therapies. Furthermore, successful, and sustained airway regeneration in an aged or diseased lung by small molecules, novel compounds or via cellular therapy will rely upon both manipulation of the airway stem cells and their immediate niche within the lung. This review will focus on the current understanding of how the pulmonary ECM regulates the basal stem cell function, how this relationship changes in chronic disease, and how replicating native conditions poses challenges for ex vivo cell culture.
Collapse
Affiliation(s)
- Shana M. Busch
- Hastings Center for Pulmonary Research, Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Zareeb Lorenzana
- Hastings Center for Pulmonary Research, Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Amy L. Ryan
- Hastings Center for Pulmonary Research, Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Southern California, Los Angeles, CA, United States
- Department of Stem Cell Biology and Regenerative Medicine, University of Southern California, Los Angeles, CA, United States
| |
Collapse
|
12
|
Hanh NTL, Lee YL, Lin CL, Chou CM, Cheng PC, Quang HH, Fan CK. Evidence for Asthma in the Lungs of Mice Inoculated with Different Doses of Toxocara canis. Am J Trop Med Hyg 2020; 103:2305-2314. [PMID: 32975177 DOI: 10.4269/ajtmh.20-0484] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Toxocara canis, a common roundworm that mainly causes toxocariasis, is a zoonotic parasite found worldwide. Humans, an accidental host, can acquire T. canis infection through accidental ingestion of T. canis-embryonated egg-contaminated food, water, and soil, and by encapsulated larvae in a paratenic host's viscera or meat. Long-term residence of T. canis larvae in a paratenic host's lungs may induce pulmonary inflammation that contributes to lung injury, airway inflammatory hyperresponsiveness, and collagen deposition in mice and clinical patients. This study intended to investigate the relationship between T. canis infection and allergic asthma in BALB/c mice inoculated with high, moderate, and low doses of T. canis eggs for a 13-week investigation. The airway hyperresponsiveness (AHR) to methacholine, collagen deposition, cytokine levels, and pathological changes in lung tissues was assessed in infected mice at weeks 1, 5, and 13 postinfection. The cell composition in bronchoalveolar lavage fluid of infected mice was assessed at weeks 5 and 13 postinfection. Compared with uninfected control mice, all groups of T. canis-infected mice exhibited significant AHR, a dose-dependent increase in eosinophilic infiltration leading to multifocal interstitial and alveolar inflammation with abundant mucus secretion, and collagen deposition in which the lesion size increased with the infective dose. Infected mice groups also showed significant expressions of eotaxin and type 2 T-helper-dominant cytokines such as interleukin (IL)-4, IL-5, and IL-13. Overall, these results suggest that T. canis larval invasion of the lungs may potentially cause pulmonary inflammatory injury and could subsequently contribute to the development of allergic manifestations such as asthma.
Collapse
Affiliation(s)
- Nguyen Thi Lien Hanh
- Department of Molecular Parasitology and Tropical Diseases, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.,International Ph.D. Program in Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Institute of Malariology, Parasitology and Entomology, Quy Nhon, Ministry of Health, Vietnam.,Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Yueh-Lun Lee
- Department of Microbiology and Immunology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.,International Ph.D. Program in Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Chu-Lun Lin
- Department of Microbiology and Immunology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Chia-Mei Chou
- Department of Molecular Parasitology and Tropical Diseases, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Po-Ching Cheng
- Department of Molecular Parasitology and Tropical Diseases, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.,International Ph.D. Program in Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Huynh Hong Quang
- Institute of Malariology, Parasitology and Entomology, Quy Nhon, Ministry of Health, Vietnam
| | - Chia-Kwung Fan
- International Ph.D. Program in Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Department of Molecular Parasitology and Tropical Diseases, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Cell Physiology and Molecular Image Research Center, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
13
|
Shieh JM, Tsai YJ, Chi JCY, Wu WB. TGFβ mediates collagen production in human CRSsNP nasal mucosa-derived fibroblasts through Smad2/3-dependent pathway and CTGF induction and secretion. J Cell Physiol 2018; 234:10489-10499. [PMID: 30426494 DOI: 10.1002/jcp.27718] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2018] [Accepted: 10/16/2018] [Indexed: 12/12/2022]
Abstract
Chronic rhinosinusitis without nasal polyp (CRSsNP) is characterized by tissue remodeling and fibrosis. Transforming growth factor-β (TGF-β) is considered a master switch in the induction of the profibrotic program which can induce fibroblasts to synthesize and contract extracellular matrix (ECM) proteins. A previous study has shown TGF-β1 signaling and collagen overproduction in the CRSsNP, but the responsible cells and mechanism of action remain unclear. Therefore, this study was aimed to investigate the relationship between TGF-β1 stimulation and collagen expression and to explore the role of connective tissue growth factor (CTGF) during the remodeling process using human CRSsNP nasal mucosa tissues and mucosa-derived fibroblasts as main materials. We found that TGF-β1 and its isoforms could promote collagen protein expression. Concomitantly, TGF-β1 caused CTGF expression and secretion. An addition of exogenous CTGF to fibroblasts also caused collagen expression. In accordance with these observations, TGF-β1, CTGF, and collagen were highly expressed in the subepithelial stroma region of CRSsNP nasal mucosa, as determined by immunohistochemistry. The TGF-β1-mediated collagen expression could be blocked by actinomycin D and SIS3, suggesting that the induction was through transcriptional regulation and Smad2/3-dependent pathway. Finally, we demonstrated that CTGF small interfering RNA knockdown led to a substantial decrease in TGF-β1-mediated collagen expression. Collectively, our results provide first and further evidence that TGF-β1 mediates collagen expression-production through a canonical Smad2/3-dependent pathway and CTGF induction and secretion in human nasal fibroblasts. Moreover, TGF-β1, CTGF, and collagen are highly expressed in human CRSsNP nasal mucosa specimens, suggesting their roles in tissue remodeling during CRSsNP progression.
Collapse
Affiliation(s)
- Jiunn-Min Shieh
- Department of Internal Medicine, Chi-Mei Medical Center, Tainan, Taiwan.,Department of Recreation and Healthcare Management, Chia Nan University of Pharmacy and Science, Tainan, Taiwan
| | - Yih-Jeng Tsai
- Department of Otolaryngology Head and Neck Surgery, Shin Kong Wu Ho-Su Memorial Hospital, Taipei, Taiwan.,School of Medicine, College of Medicine, Fu Jen Catholic University, New Taipei City, Taiwan
| | - Jessie Chao-Yun Chi
- Department of Otolaryngology Head and Neck Surgery, Taichung Hospital, Ministry of Health and Welfare, Taichung, Taiwan.,Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Wen-Bin Wu
- School of Medicine, College of Medicine, Fu Jen Catholic University, New Taipei City, Taiwan
| |
Collapse
|
14
|
Nissen G, Hollaender H, Tang FSM, Wegmann M, Lunding L, Vock C, Bachmann A, Lemmel S, Bartels R, Oliver BG, Burgess JK, Becker T, Kopp MV, Weckmann M. Tumstatin fragment selectively inhibits neutrophil infiltration in experimental asthma exacerbation. Clin Exp Allergy 2018; 48:1483-1493. [PMID: 30028047 DOI: 10.1111/cea.13236] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Accepted: 06/11/2018] [Indexed: 11/27/2022]
Abstract
BACKGROUND Asthma is a chronic inflammatory disease with structural changes present. Burgess and colleagues recently found tumstatin markedly reduced in adult asthmatic lung tissue compared with nonasthmatics. ECM fragments such as tumstatin are named matrikines and act independently of the parent molecule. The role of Col IV matrikines in neutrophil inflammation (eg. exacerbation in asthma) has not been investigated to date. Severe adult asthma phenotypes are dominated by neutrophilic inflammation and show a high frequency of severe exacerbations. OBJECTIVE This study sought to investigate the role of a novel active region within tumstatin (CP17) and its implication in neutrophil inflammatory responses related to asthma exacerbation. METHODS For reactive oxygen production, isolated neutrophils were preincubated with peptides or vehicle for 1 hour and stimulated (PMA). Luminescence signal was recorded (integration over 10 seconds) for 1.5 hours. Neutrophil migration was performed according to the SiMA protocol. Mice were sensitized to OVA/Alumn by intraperitoneal (i.p.) injections. Mice were then treated with CP17, vehicle (PBS) or scrambled peptide (SP17) after OVA exposure (days 27 and 28, polyI:C stimulation). All animals were killed on day 29 with lung function measurement, histology and lavage. RESULTS CP17 decreased total ROS production rate to 52.44% (0.5 μmol/L, P < 0.05 vs SP17), reduced the in vitro directionality (vs SP17, P = 1 × 10-6 ) and migration speed (5 μmol/L, P = 1 × 10-3 ). In vivo application of CP17 decreased neutrophil inflammation ~1.8-fold (P < 0.001 vs SP17) and reduced numbers of mucus-producing cells (-29%, P < 0.05). CONCLUSION CP17 reduced the ROS production rate, migrational speed and selectively inhibited neutrophil accumulation in the lung interstitium and lumen. CLINICAL RELEVANCE CP17 may serve as a potential precursor for drug development to combat overwhelming neutrophil inflammation.
Collapse
Affiliation(s)
- Gyde Nissen
- Division of Pediatric Pneumology and Allergology, University of Lübeck, Lübeck, Germany.,Airway Research Center North (ARCN), Member of the German Center for Lung Research (DZL), Luebeck, Germany
| | - Henrike Hollaender
- Division of Pediatric Pneumology and Allergology, University of Lübeck, Lübeck, Germany.,Airway Research Center North (ARCN), Member of the German Center for Lung Research (DZL), Luebeck, Germany
| | - Francesca S M Tang
- Respiratory Cell and Molecular Biology, Woolcock Institute of Medical Research, The University of Sydney, Sydney, New South Wales, Australia
| | - Michael Wegmann
- Airway Research Center North (ARCN), Member of the German Center for Lung Research (DZL), Luebeck, Germany.,Division of Asthma Exacerbation & Regulation, Program Area Asthma & Allergy, Leibniz-Center for Medicine and Biosciences, Borstel, Germany.,Program Area Asthma & Allergy, Research Center Borstel, Leibniz Lung Center, Borstel, Germany
| | - Lars Lunding
- Airway Research Center North (ARCN), Member of the German Center for Lung Research (DZL), Luebeck, Germany.,Division of Asthma Exacerbation & Regulation, Program Area Asthma & Allergy, Leibniz-Center for Medicine and Biosciences, Borstel, Germany.,Program Area Asthma & Allergy, Research Center Borstel, Leibniz Lung Center, Borstel, Germany
| | - Christina Vock
- Airway Research Center North (ARCN), Member of the German Center for Lung Research (DZL), Luebeck, Germany.,Program Area Asthma & Allergy, Research Center Borstel, Leibniz Lung Center, Borstel, Germany.,Division of Experimental Pneumology, Program Area Asthma & Allergy, Leibniz-Center for Medicine and Biosciences, Borstel, Germany
| | - Anna Bachmann
- Division of Pediatric Pneumology and Allergology, University of Lübeck, Lübeck, Germany.,Airway Research Center North (ARCN), Member of the German Center for Lung Research (DZL), Luebeck, Germany
| | - Solveig Lemmel
- Division of Pediatric Pneumology and Allergology, University of Lübeck, Lübeck, Germany.,Airway Research Center North (ARCN), Member of the German Center for Lung Research (DZL), Luebeck, Germany
| | - Rainer Bartels
- Airway Research Center North (ARCN), Member of the German Center for Lung Research (DZL), Luebeck, Germany.,Program Area Asthma & Allergy, Research Center Borstel, Leibniz Lung Center, Borstel, Germany.,Division of Structural Biochemistry, Program Area Asthma & Allergy, Leibniz-Center for Medicine and Biosciences, Borstel, Germany
| | - Brian G Oliver
- Respiratory Cell and Molecular Biology, Woolcock Institute of Medical Research, The University of Sydney, Sydney, New South Wales, Australia.,School of Life Sciences, University of Technology Sydney, Sydney, New South Wales, Australia
| | - Janette K Burgess
- Respiratory Cell and Molecular Biology, Woolcock Institute of Medical Research, The University of Sydney, Sydney, New South Wales, Australia.,Department of Pathology & Medical Biology, GRIAC (Groningen Research Institute for Asthma and COPD), University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Tim Becker
- Airway Research Center North (ARCN), Member of the German Center for Lung Research (DZL), Luebeck, Germany.,Division of Cell Technology, Fraunhofer Institute for Marine Biotechnology (Fraunhofer EMB), Lübeck, Germany
| | - Matthias V Kopp
- Division of Pediatric Pneumology and Allergology, University of Lübeck, Lübeck, Germany.,Airway Research Center North (ARCN), Member of the German Center for Lung Research (DZL), Luebeck, Germany
| | - Markus Weckmann
- Division of Pediatric Pneumology and Allergology, University of Lübeck, Lübeck, Germany.,Airway Research Center North (ARCN), Member of the German Center for Lung Research (DZL), Luebeck, Germany
| |
Collapse
|
15
|
Role of matrix metalloproteinase-9 polymorphisms in basement membrane degradation and pathogenesis of oral submucous fibrosis. Meta Gene 2018. [DOI: 10.1016/j.mgene.2018.04.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
16
|
Amarin JZ, Naffa RG, Suradi HH, Alsaket YM, Obeidat NM, Mahafza TM, Zihlif MA. An intronic single-nucleotide polymorphism (rs13217795) in FOXO3 is associated with asthma and allergic rhinitis: a case-case-control study. BMC MEDICAL GENETICS 2017; 18:132. [PMID: 29141605 PMCID: PMC5688628 DOI: 10.1186/s12881-017-0494-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Accepted: 11/09/2017] [Indexed: 11/10/2022]
Abstract
BACKGROUND Asthma and allergic rhinitis are respiratory diseases with a significant global burden. Forkhead box O3 (FOXO3) is a gene involved in the etiology of a number of respiratory diseases. The objective of this study is to assess the association of rs13217795, an intronic FOXO3 single-nucleotide polymorphism, with asthma and allergic rhinitis. METHODS In this case-case-control genetic association study, genotyping was conducted using the PCR-RFLP method. Genotype-based associations were investigated under the general, recessive, and dominant models of disease penetrance using binomial logistic regression; and, allele-based associations were tested using Pearson's chi-squared test. RESULTS The final study population consisted of 94 controls, 124 asthmatics, and 110 allergic rhinitis patients. The general and recessive models of disease penetrance were statistically significant for both case-control comparisons. Under the general model, the odds of the asthma phenotype were 1.46 (0.64 to 3.34) and 3.42 (1.37 to 8.57) times higher in heterozygotes and derived allele homozygotes, respectively, compared to ancestral allele homozygotes. The corresponding odds ratios for the allergic rhinitis phenotype were 1.05 (0.46 to 2.40) and 2.35 (0.96 to 5.73), respectively. The dominant model of disease penetrance was not statistically significant. The minor allele in all study groups was the ancestral allele, with a frequency of 0.49 in controls. There was no deviation from Hardy-Weinberg equilibrium in controls. Both case-control allele-based associations were statistically significant. CONCLUSIONS Herein we present the first report of the association between rs13217795 and allergic rhinitis, and the first independent verification of the association between rs13217795 and asthma. Marker selection in future genetic association studies of asthma and allergic rhinitis should include functional polymorphisms in linkage disequilibrium with rs13217795.
Collapse
Affiliation(s)
| | - Randa G Naffa
- Molecular Biology Research Laboratory, School of Medicine, The University of Jordan, Amman, Jordan
| | - Haya H Suradi
- School of Medicine, The University of Jordan, Amman, Jordan
| | | | - Nathir M Obeidat
- Department of Internal Medicine, School of Medicine, The University of Jordan, Amman, Jordan
| | - Tareq M Mahafza
- Department of Special Surgery, School of Medicine, The University of Jordan, Amman, Jordan
| | - Malek A Zihlif
- Department of Pharmacology, School of Medicine, The University of Jordan, Queen Rania Al-Abdullah Street, Amman, 11942, Jordan.
| |
Collapse
|
17
|
Pazhoohan S, Raoufy MR, Javan M, Hajizadeh S. Effect of Rho-kinase inhibition on complexity of breathing pattern in a guinea pig model of asthma. PLoS One 2017; 12:e0187249. [PMID: 29088265 PMCID: PMC5663484 DOI: 10.1371/journal.pone.0187249] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2017] [Accepted: 10/17/2017] [Indexed: 12/26/2022] Open
Abstract
Asthma represents an episodic and fluctuating behavior characterized with decreased complexity of respiratory dynamics. Several evidence indicate that asthma severity or control is associated with alteration in variability of lung function. The pathophysiological basis of alteration in complexity of breathing pattern in asthma has remained poorly understood. Regarding the point that Rho-kinase is involved in pathophysiology of asthma, in present study we investigated the effect of Rho-kinase inhibition on complexity of respiratory dynamics in a guinea pig model of asthma. Male Dunkin Hartley guinea pigs were exposed to 12 series of inhalations with ovalbumin or saline. Animals were treated by the Rho-kinase inhibitor Y-27632 (1mM aerosols) prior to each allergen challenge. We recorded respiration of conscious animals using whole-body plethysmography. Exposure to ovalbumin induced lung inflammation, airway hyperresponsiveness and remodeling including goblet cell hyperplasia, increase in the thickness of airways smooth muscles and subepithelial collagen deposition. Complexity analysis of respiratory dynamics revealed a dramatic decrease in irregularity of respiratory rhythm representing less complexity in asthmatic guinea pigs. Inhibition of Rho-kinase reduced the airway remodeling and hyperreponsiveness, but had no significant effect on lung inflammation and complexity of respiratory dynamics in asthmatic animals. It seems that airway hyperresponsiveness and remodeling do not significantly affect the complexity of respiratory dynamics. Our results suggest that inflammation might be the probable cause of shift in the respiratory dynamics away from the normal fluctuation in asthma.
Collapse
Affiliation(s)
- Saeed Pazhoohan
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Mohammad Reza Raoufy
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
- * E-mail: (MRR); (SH)
| | - Mohammad Javan
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Sohrab Hajizadeh
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
- * E-mail: (MRR); (SH)
| |
Collapse
|
18
|
Sheu CC, Tsai MJ, Chen FW, Chang KF, Chang WA, Chong IW, Kuo PL, Hsu YL. Identification of novel genetic regulations associated with airway epithelial homeostasis using next-generation sequencing data and bioinformatics approaches. Oncotarget 2017; 8:82674-82688. [PMID: 29137293 PMCID: PMC5669919 DOI: 10.18632/oncotarget.19752] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2017] [Accepted: 06/19/2017] [Indexed: 12/28/2022] Open
Abstract
Airway epithelial cells play important roles in airway remodeling. Understanding gene regulations in airway epithelial homeostasis may provide new insights into pathogenesis and treatment of asthma. This study aimed to combine gene expression (GE) microarray, next generation sequencing (NGS), and bioinformatics to explore genetic regulations associated with airway epithelial homeostasis. We analyzed expression profiles of mRNAs (GE microarray) and microRNAs (NGS) in normal and asthmatic bronchial epithelial cells, and identified 9 genes with potential microRNA-mRNA interactions. Of these 9 dysregulated genes, downregulation of MEF2C and MDGA1 were validated in a representative microarray (GSE43696) from the gene expression omnibus (GEO) database. Our findings suggested that upregulated mir-203a may repress MEF2C, a transcription factor, leading to decreased cellular proliferation. In addition, upregulated mir-3065-3p may repress MDGA1, a cell membrane anchor protein, resulting in suppression of cell-cell adhesion. We also found that KCNJ2, a potassium channel, was downregulated in severe asthma and may promote epithelial cell apoptosis. We proposed that aberrant regulations of mir-203a-MEF2C and mir-3065-3p-MDGA1, as well as downregulation of KCNJ2, play important roles in airway epithelial homeostasis in asthma. These findings provide new perspectives on diagnostic or therapeutic strategies targeting bronchial epithelium for asthma. The approach in this study also provides a new aspect of studying asthma.
Collapse
Affiliation(s)
- Chau-Chyun Sheu
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan.,Department of Internal Medicine, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Ming-Ju Tsai
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan.,Department of Internal Medicine, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Respiratory Therapy, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Feng-Wei Chen
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | | | - Wei-An Chang
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Inn-Wen Chong
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan.,Department of Respiratory Therapy, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Po-Lin Kuo
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Center for Biomarkers and Biotech Drugs, Kaohsiung Medical University, Kaohsiung, Taiwan.,Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Ya-Ling Hsu
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| |
Collapse
|
19
|
d'Hooghe JNS, Ten Hacken NHT, Weersink EJM, Sterk PJ, Annema JT, Bonta PI. Emerging understanding of the mechanism of action of Bronchial Thermoplasty in asthma. Pharmacol Ther 2017; 181:101-107. [PMID: 28757156 DOI: 10.1016/j.pharmthera.2017.07.015] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Bronchial Thermoplasty (BT) is an endoscopic treatment for moderate-to-severe asthma patients who are uncontrolled despite optimal medical therapy. Effectiveness of BT has been demonstrated in several randomized clinical trials. However, the asthma phenotype that benefits most of this treatment is unclear, partly because the mechanism of action is incompletely understood. BT was designed to reduce the amount of airway smooth muscle (ASM), but additional direct and indirect effects on airway pathophysiology are expected. This review will provide an overview of the different components of airway pathophysiology including remodeling, with the ASM as the key player. Current concepts in the understanding of BT clinical effectiveness with a focus on its impact on airway remodeling will be reviewed.
Collapse
Affiliation(s)
- J N S d'Hooghe
- Department of Respiratory Medicine, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - N H T Ten Hacken
- Department of Respiratory Medicine, University Medical Center Groningen, Groningen, The Netherlands
| | - E J M Weersink
- Department of Respiratory Medicine, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - P J Sterk
- Department of Respiratory Medicine, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - J T Annema
- Department of Respiratory Medicine, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - P I Bonta
- Department of Respiratory Medicine, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands.
| |
Collapse
|
20
|
Wong SLI, Sukkar MB. The SPARC protein: an overview of its role in lung cancer and pulmonary fibrosis and its potential role in chronic airways disease. Br J Pharmacol 2016; 174:3-14. [PMID: 27759879 DOI: 10.1111/bph.13653] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2015] [Revised: 10/05/2016] [Accepted: 10/11/2016] [Indexed: 12/20/2022] Open
Abstract
The SPARC (secreted protein acidic and rich in cysteine) protein is matricellular molecule regulating interactions between cells and their surrounding extracellular matrix (ECM). This protein thus governs fundamental cellular functions such as cell adhesion, proliferation and differentiation. SPARC also regulates the expression and activity of numerous growth factors and matrix metalloproteinases essential for ECM degradation and turnover. Studies in SPARC-null mice have revealed a critical role for SPARC in tissue development, injury and repair and in the regulation of the immune response. In the lung, SPARC drives pathological responses in non-small cell lung cancer and idiopathic pulmonary fibrosis by promoting microvascular remodelling and excessive deposition of ECM proteins. Remarkably, although chronic airway conditions such as asthma and chronic obstructive pulmonary disease (COPD) involve significant remodelling in both the airway and vascular compartments, the role of SPARC in these conditions has thus far been overlooked. In this review, we discuss the role of SPARC in lung cancer and pulmonary fibrosis, as well as potential mechanisms by which it may contribute to the disease process in asthma and COPD.
Collapse
Affiliation(s)
- Sharon L I Wong
- Discipline of Pharmacy, Graduate School of Health, The University of Technology Sydney, Ultimo, NSW, Australia
| | - Maria B Sukkar
- Discipline of Pharmacy, Graduate School of Health, The University of Technology Sydney, Ultimo, NSW, Australia
| |
Collapse
|
21
|
Balbinot F, da Costa Batista Guedes Á, Nascimento DZ, Zampieri JF, Alves GRT, Marchiori E, Rubin AS, Hochhegger B. Advances in Imaging and Automated Quantification of Pulmonary Diseases in Non-neoplastic Diseases. Lung 2016; 194:871-879. [PMID: 27663257 DOI: 10.1007/s00408-016-9940-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Accepted: 09/03/2016] [Indexed: 10/21/2022]
Abstract
Histological examination has always been the gold standard for the detection and quantification of lung remodeling. However, this method has some limitations regarding the invasiveness of tissue acquisition. Quantitative imaging methods enable the acquisition of valuable information on lung structure and function without the removal of tissue from the body; thus, they are useful for disease identification and follow-up. This article reviews the various quantitative imaging modalities used currently for the non-invasive study of chronic obstructive pulmonary disease, asthma, and interstitial lung diseases. Some promising computer-aided diagnosis methods are also described.
Collapse
Affiliation(s)
- Fernanda Balbinot
- Federal University of Health Sciences of Porto Alegre, Porto Alegre, Brazil. .,, Rua Coronel Vicente, 451, Centro, Porto Alegre, RS, 90030041, Brazil. .,Irmandade Santa Casa de Misericórdia de Porto Alegre, LABIMED - Laboratório de Pesquisas em Imagens Médicas, Rua Prof. Annes Dias, 28, Centro, Porto Alegre, RS, 90020090, Brazil.
| | - Álvaro da Costa Batista Guedes
- Irmandade Santa Casa de Misericórdia de Porto Alegre, LABIMED - Laboratório de Pesquisas em Imagens Médicas, Rua Prof. Annes Dias, 28, Centro, Porto Alegre, RS, 90020090, Brazil
| | - Douglas Zaione Nascimento
- Irmandade Santa Casa de Misericórdia de Porto Alegre, LABIMED - Laboratório de Pesquisas em Imagens Médicas, Rua Prof. Annes Dias, 28, Centro, Porto Alegre, RS, 90020090, Brazil
| | - Juliana Fischman Zampieri
- Irmandade Santa Casa de Misericórdia de Porto Alegre, LABIMED - Laboratório de Pesquisas em Imagens Médicas, Rua Prof. Annes Dias, 28, Centro, Porto Alegre, RS, 90020090, Brazil
| | | | - Edson Marchiori
- Federal University of Rio de Janeiro, Rua Thomaz Cameron, 43, Valparaíso, Petrópolis, RJ, 25685120, Brazil
| | - Adalberto Sperb Rubin
- Irmandade Santa Casa de Misericórdia de Porto Alegre, LABIMED - Laboratório de Pesquisas em Imagens Médicas, Rua Prof. Annes Dias, 28, Centro, Porto Alegre, RS, 90020090, Brazil
| | - Bruno Hochhegger
- Irmandade Santa Casa de Misericórdia de Porto Alegre, LABIMED - Laboratório de Pesquisas em Imagens Médicas, Rua Prof. Annes Dias, 28, Centro, Porto Alegre, RS, 90020090, Brazil
| |
Collapse
|
22
|
Aldakheel FM, Thomas PS, Bourke JE, Matheson MC, Dharmage SC, Lowe AJ. Relationships between adult asthma and oxidative stress markers and pH in exhaled breath condensate: a systematic review. Allergy 2016; 71:741-57. [PMID: 26896172 DOI: 10.1111/all.12865] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/15/2016] [Indexed: 01/02/2023]
Abstract
Oxidative stress has a recognized role in the pathophysiology of asthma. Recently, interest has increased in the assessment of pH and airway oxidative stress markers. Collection of exhaled breath condensate (EBC) and quantification of biomarkers in breath samples can potentially indicate lung disease activity and help in the study of airway inflammation, and asthma severity. Levels of oxidative stress markers in the EBC have been systematically evaluated in children with asthma; however, there is no such systematic review conducted for adult asthma. A systematic review of oxidative stress markers measured in EBC of adult asthma was conducted, and studies were identified by searching MEDLINE and SCOPUS databases. Sixteen papers met the inclusion criteria. Concentrations of exhaled hydrogen ions, nitric oxide products, hydrogen peroxide and 8-isoprostanes were generally elevated and related to lower lung function tests in adults with asthma compared to healthy subjects. Assessment of EBC markers may be a noninvasive approach to evaluate airway inflammation, exacerbations, and disease severity of asthma, and to monitor the effectiveness of anti-inflammatory treatment regimens. Longitudinal studies, using standardized analytical techniques for EBC collection, are required to establish reference values for the interpretation of EBC markers in the context of asthma.
Collapse
Affiliation(s)
- F. M. Aldakheel
- Allergy and Lung Health Unit; The University of Melbourne; Melbourne Australia
- Department of Clinical Laboratory Sciences; College of Applied Medical Sciences; King Saud University; Riyadh Saudi Arabia
| | - P. S. Thomas
- Department of Respiratory Medicine and Prince of Wales Hospital Clinical School; University of New South Wales; Sydney Australia
| | - J. E. Bourke
- Biomedicine Discovery Institute; Department of Pharmacology; Monash University; Clayton Australia
| | - M. C. Matheson
- Allergy and Lung Health Unit; The University of Melbourne; Melbourne Australia
- Murdoch Childrens Research Institute; Melbourne Australia
| | - S. C. Dharmage
- Allergy and Lung Health Unit; The University of Melbourne; Melbourne Australia
- Murdoch Childrens Research Institute; Melbourne Australia
| | - A. J. Lowe
- Allergy and Lung Health Unit; The University of Melbourne; Melbourne Australia
- Murdoch Childrens Research Institute; Melbourne Australia
| |
Collapse
|
23
|
Kobayashi H, Naito M, Masuya M, Maruyama M, Urata K, Takahashi Y, Tomaru A, Fujiwara K, Ohnishi M, Takagi T, Kobayashi T, D'Alessandro-Gabazza C, Urawa M, Gabazza EC, Taguchi O, Takei Y. Circulating fibrocytes correlate with the asthma control test score. Allergol Immunopathol (Madr) 2016; 44:191-6. [PMID: 26774356 DOI: 10.1016/j.aller.2015.09.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2015] [Revised: 09/05/2015] [Accepted: 09/30/2015] [Indexed: 11/29/2022]
Abstract
BACKGROUND Bronchial asthma is characterised by airway inflammation and remodelling with a decline of lung function. Fibrocytes are bone marrow-derived mesenchymal progenitor cells that play important roles in the pathogenesis of airway remodelling. Several clinical parameters are currently being used in routine clinical practice to assess outcome of therapy in asthma including frequency of rescue with short-acting β2-agonist and the asthma control test. In this study, we hypothesised that asthma control test is associated with circulating levels of fibrocytes in bronchial asthma. METHODS There were 20 patients with asthma and seven healthy controls. The number of CD45(+)Collagen I(+) circulating fibrocytes was assessed in the peripheral blood by flow cytometry. RESULTS The number of circulating fibrocytes was significantly increased in asthma patients with moderate and severe disease compared to controls, and it was inversely correlated with % forced expiratory volume in one second and % forced vital capacity (%FVC). The frequency of inhalation of short-acting β2 agonist and the asthma control test score was significantly and inversely correlated with the number of circulating fibrocytes. CONCLUSION The results of this study showed that the number of circulating fibrocytes is inversely correlated with clinical asthma control parameters, further supporting the relevance of measuring circulating fibrocytes as a marker of clinical control in bronchial asthma.
Collapse
Affiliation(s)
- H Kobayashi
- Department of Pulmonary and Critical Care Medicine, Mie University Graduate School of Medicine, Edobashi 2-174, Tsu City, Mie Prefecture 514-8507, Japan
| | - M Naito
- Department of Pulmonary and Critical Care Medicine, Mie University Graduate School of Medicine, Edobashi 2-174, Tsu City, Mie Prefecture 514-8507, Japan
| | - M Masuya
- Department of Hematopoietic Pathology, Mie University Graduate School of Medicine, Edobashi 2-174, Tsu City, Mie Prefecture 514-8507, Japan
| | - M Maruyama
- Department of Hematopoietic Pathology, Mie University Graduate School of Medicine, Edobashi 2-174, Tsu City, Mie Prefecture 514-8507, Japan
| | - K Urata
- Department of Pulmonary and Critical Care Medicine, Mie University Graduate School of Medicine, Edobashi 2-174, Tsu City, Mie Prefecture 514-8507, Japan
| | - Y Takahashi
- Department of Pulmonary and Critical Care Medicine, Mie University Graduate School of Medicine, Edobashi 2-174, Tsu City, Mie Prefecture 514-8507, Japan
| | - A Tomaru
- Department of Pulmonary and Critical Care Medicine, Mie University Graduate School of Medicine, Edobashi 2-174, Tsu City, Mie Prefecture 514-8507, Japan
| | - K Fujiwara
- Department of Pulmonary and Critical Care Medicine, Mie University Graduate School of Medicine, Edobashi 2-174, Tsu City, Mie Prefecture 514-8507, Japan
| | - M Ohnishi
- Department of Pulmonary and Critical Care Medicine, Mie University Graduate School of Medicine, Edobashi 2-174, Tsu City, Mie Prefecture 514-8507, Japan
| | - T Takagi
- Department of Pulmonary and Critical Care Medicine, Mie University Graduate School of Medicine, Edobashi 2-174, Tsu City, Mie Prefecture 514-8507, Japan
| | - T Kobayashi
- Department of Pulmonary and Critical Care Medicine, Mie University Graduate School of Medicine, Edobashi 2-174, Tsu City, Mie Prefecture 514-8507, Japan
| | - C D'Alessandro-Gabazza
- Department of Immunology, Mie University Graduate School of Medicine, Edobashi 2-174, Tsu City, Mie Prefecture 514-8507, Japan
| | - M Urawa
- Department of Pulmonary and Critical Care Medicine, Mie University Graduate School of Medicine, Edobashi 2-174, Tsu City, Mie Prefecture 514-8507, Japan; Department of Immunology, Mie University Graduate School of Medicine, Edobashi 2-174, Tsu City, Mie Prefecture 514-8507, Japan
| | - E C Gabazza
- Department of Immunology, Mie University Graduate School of Medicine, Edobashi 2-174, Tsu City, Mie Prefecture 514-8507, Japan.
| | - O Taguchi
- Department of Pulmonary and Critical Care Medicine, Mie University Graduate School of Medicine, Edobashi 2-174, Tsu City, Mie Prefecture 514-8507, Japan
| | - Y Takei
- Department of Pulmonary and Critical Care Medicine, Mie University Graduate School of Medicine, Edobashi 2-174, Tsu City, Mie Prefecture 514-8507, Japan
| |
Collapse
|
24
|
Bousquet J, Anto JM, Wickman M, Keil T, Valenta R, Haahtela T, Lodrup Carlsen K, van Hage M, Akdis C, Bachert C, Akdis M, Auffray C, Annesi-Maesano I, Bindslev-Jensen C, Cambon-Thomsen A, Carlsen KH, Chatzi L, Forastiere F, Garcia-Aymerich J, Gehrig U, Guerra S, Heinrich J, Koppelman GH, Kowalski ML, Lambrecht B, Lupinek C, Maier D, Melén E, Momas I, Palkonen S, Pinart M, Postma D, Siroux V, Smit HA, Sunyer J, Wright J, Zuberbier T, Arshad SH, Nadif R, Thijs C, Andersson N, Asarnoj A, Ballardini N, Ballereau S, Bedbrook A, Benet M, Bergstrom A, Brunekreef B, Burte E, Calderon M, De Carlo G, Demoly P, Eller E, Fantini MP, Hammad H, Hohman C, Just J, Kerkhof M, Kogevinas M, Kull I, Lau S, Lemonnier N, Mommers M, Nawijn M, Neubauer A, Oddie S, Pellet J, Pin I, Porta D, Saes Y, Skrindo I, Tischer CG, Torrent M, von Hertzen L. Are allergic multimorbidities and IgE polysensitization associated with the persistence or re-occurrence of foetal type 2 signalling? The MeDALL hypothesis. Allergy 2015; 70:1062-78. [PMID: 25913421 DOI: 10.1111/all.12637] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/22/2015] [Indexed: 12/22/2022]
Abstract
Allergic diseases [asthma, rhinitis and atopic dermatitis (AD)] are complex. They are associated with allergen-specific IgE and nonallergic mechanisms that may coexist in the same patient. In addition, these diseases tend to cluster and patients present concomitant or consecutive diseases (multimorbidity). IgE sensitization should be considered as a quantitative trait. Important clinical and immunological differences exist between mono- and polysensitized subjects. Multimorbidities of allergic diseases share common causal mechanisms that are only partly IgE-mediated. Persistence of allergic diseases over time is associated with multimorbidity and/or IgE polysensitization. The importance of the family history of allergy may decrease with age. This review puts forward the hypothesis that allergic multimorbidities and IgE polysensitization are associated and related to the persistence or re-occurrence of foetal type 2 signalling. Asthma, rhinitis and AD are manifestations of a common systemic immune imbalance (mesodermal origin) with specific patterns of remodelling (ectodermal or endodermal origin). This study proposes a new classification of IgE-mediated allergic diseases that allows the definition of novel phenotypes to (i) better understand genetic and epigenetic mechanisms, (ii) better stratify allergic preschool children for prognosis and (iii) propose novel strategies of treatment and prevention.
Collapse
Affiliation(s)
- J. Bousquet
- University Hospital; Montpellier France
- MACVIA-LR; Contre les MAladies Chroniques pour un VIeillissement Actif en Languedoc-Roussillon; European Innovation Partnership on Active and Healthy Ageing Reference Site; Paris France
- INSERM; VIMA: Ageing and Chronic Diseases Epidemiological and Public Health Approaches, U1168; Paris France
- UVSQ; UMR-S 1168; Université Versailles St-Quentin-en-Yvelines; Versailles France
| | - J. M. Anto
- Centre for Research in Environmental Epidemiology (CREAL); Barcelona Spain
- Hospital del Mar Research Institute (IMIM); Barcelona Spain
- CIBER Epidemiología y Salud Pública (CIBERESP); Barcelona Spain
- Department of Experimental and Health Sciences; University of Pompeu Fabra (UPF); Barcelona Spain
| | - M. Wickman
- Sachs’ Children's Hospital; Stockholm Sweden
- Institute of Environmental Medicine; Karolinska Institutet; Stockholm Sweden
| | - T. Keil
- Institute of Social Medicine, Epidemiology and Health Economics; Charité - Universitätsmedizin Berlin; Berlin Germany
- Institute for Clinical Epidemiology and Biometry; University of Wuerzburg; Wuerzburg Germany
| | - R. Valenta
- Division of Immunopathology; Department of Pathophysiology and Allergy Research; Center for Pathophysiology, Infectiology and Immunology; Medical University of Vienna; Vienna Austria
| | - T. Haahtela
- Skin and Allergy Hospital; Helsinki University Hospital; Helsinki Finland
| | - K. Lodrup Carlsen
- Department of Paediatrics; Oslo University Hospital; Oslo Norway
- Faculty of Medicine; Institute of Clinical Medicine; University of Oslo; Oslo Norway
| | - M. van Hage
- Clinical Immunology and Allergy Unit; Department of Medicine Solna; Karolinska Institutet and University Hospital; Stockholm Sweden
| | - C. Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF); University of Zurich; Davos Switzerland
| | - C. Bachert
- ENT Department; Ghent University Hospital; Gent Belgium
| | - M. Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF); University of Zurich; Davos Switzerland
| | - C. Auffray
- European Institute for Systems Biology and Medicine; Lyon France
| | - I. Annesi-Maesano
- EPAR U707 INSERM; Paris France
- EPAR UMR-S UPMC; Paris VI; Paris France
| | - C. Bindslev-Jensen
- Department of Dermatology and Allergy Centre; Odense University Hospital; Odense Denmark
| | - A. Cambon-Thomsen
- UMR Inserm U1027; Université de Toulouse III Paul Sabatier; Toulouse France
| | - K. H. Carlsen
- Department of Paediatrics; Oslo University Hospital; Oslo Norway
- University of Oslo; Oslo Norway
| | - L. Chatzi
- Department of Social Medicine; Faculty of Medicine; University of Crete; Heraklion Crete Greece
| | - F. Forastiere
- Department of Epidemiology; Regional Health Service Lazio Region; Rome Italy
| | - J. Garcia-Aymerich
- Centre for Research in Environmental Epidemiology (CREAL); Barcelona Spain
- Hospital del Mar Research Institute (IMIM); Barcelona Spain
- CIBER Epidemiología y Salud Pública (CIBERESP); Barcelona Spain
- Department of Experimental and Health Sciences; University of Pompeu Fabra (UPF); Barcelona Spain
| | - U. Gehrig
- Julius Center of Health Sciences and Primary Care; University Medical Center Utrecht; University of Utrecht; Utrecht the Netherlands
| | - S. Guerra
- Centre for Research in Environmental Epidemiology (CREAL); Barcelona Spain
| | - J. Heinrich
- Institute of Epidemiology; German Research Centre for Environmental Health; Helmholtz Zentrum München; Neuherberg Germany
| | - G. H. Koppelman
- Department of Pediatric Pulmonology and Pediatric Allergology; GRIAC Research Institute; University Medical Center Groningen; Beatrix Children's Hospital; University of Groningen; Groningen the Netherlands
| | - M. L. Kowalski
- Department of Immunology, Rheumatology and Allergy; Medical University of Lodz; Lodz Poland
| | - B. Lambrecht
- VIB Inflammation Research Center; Ghent University; Ghent Belgium
| | - C. Lupinek
- Division of Immunopathology; Department of Pathophysiology and Allergy Research; Center for Pathophysiology, Infectiology and Immunology; Medical University of Vienna; Vienna Austria
| | | | - E. Melén
- Institute of Environmental Medicine; Karolinska Institutet; Stockholm Sweden
| | - I. Momas
- Department of Public Health and Biostatistics, EA 4064; Paris Descartes University; Paris France
- Paris Municipal Department of Social Action, Childhood, and Health; Paris France
| | - S. Palkonen
- EFA European Federation of Allergy and Airways Diseases Patients' Associations; Brussels Belgium
| | - M. Pinart
- Centre for Research in Environmental Epidemiology (CREAL); Barcelona Spain
| | - D. Postma
- Department of Respiratory Medicine; GRIAC Research Institute; University Medical Center Groningen; Beatrix Children's Hospital; University of Groningen; Groningen the Netherlands
| | | | - H. A. Smit
- Julius Center of Health Sciences and Primary Care; University Medical Center Utrecht; University of Utrecht; Utrecht the Netherlands
| | - J. Sunyer
- Centre for Research in Environmental Epidemiology (CREAL); Barcelona Spain
- Hospital del Mar Research Institute (IMIM); Barcelona Spain
- CIBER Epidemiología y Salud Pública (CIBERESP); Barcelona Spain
- Department of Experimental and Health Sciences; University of Pompeu Fabra (UPF); Barcelona Spain
| | - J. Wright
- Bradford Institute for Health Research; Bradford Royal Infirmary; Bradford UK
| | - T. Zuberbier
- Allergy-Centre-Charité at the Department of Dermatology; Charité - Universitätsmedizin Berlin; Berlin Germany
- Secretary General of the Global Allergy and Asthma European Network (GA2LEN); Berlin Germany
| | - S. H. Arshad
- David Hide Asthma and Allergy Research Centre; Isle of Wight UK
| | - R. Nadif
- INSERM; VIMA: Ageing and Chronic Diseases Epidemiological and Public Health Approaches, U1168; Paris France
- UVSQ; UMR-S 1168; Université Versailles St-Quentin-en-Yvelines; Versailles France
| | - C. Thijs
- Department of Epidemiology; CAPHRI School of Public Health and Primary Care; Maastricht University; Maastricht the Netherlands
| | - N. Andersson
- Sachs’ Children's Hospital; Stockholm Sweden
- Institute of Environmental Medicine; Karolinska Institutet; Stockholm Sweden
| | - A. Asarnoj
- Sachs’ Children's Hospital; Stockholm Sweden
- Institute of Environmental Medicine; Karolinska Institutet; Stockholm Sweden
| | - N. Ballardini
- Sachs’ Children's Hospital; Stockholm Sweden
- Institute of Environmental Medicine; Karolinska Institutet; Stockholm Sweden
| | - S. Ballereau
- European Institute for Systems Biology and Medicine; Lyon France
| | - A. Bedbrook
- MACVIA-LR; Contre les MAladies Chroniques pour un VIeillissement Actif en Languedoc-Roussillon; European Innovation Partnership on Active and Healthy Ageing Reference Site; Paris France
| | - M. Benet
- Centre for Research in Environmental Epidemiology (CREAL); Barcelona Spain
| | - A. Bergstrom
- Sachs’ Children's Hospital; Stockholm Sweden
- Institute of Environmental Medicine; Karolinska Institutet; Stockholm Sweden
| | - B. Brunekreef
- Julius Center of Health Sciences and Primary Care; University Medical Center Utrecht; University of Utrecht; Utrecht the Netherlands
| | - E. Burte
- INSERM; VIMA: Ageing and Chronic Diseases Epidemiological and Public Health Approaches, U1168; Paris France
- UVSQ; UMR-S 1168; Université Versailles St-Quentin-en-Yvelines; Versailles France
| | - M. Calderon
- National Heart and Lung Institute; Imperial College London; Royal Brompton Hospital NHS; London UK
| | - G. De Carlo
- EFA European Federation of Allergy and Airways Diseases Patients' Associations; Brussels Belgium
| | - P. Demoly
- Department of Respiratory Diseases; Montpellier University Hospital; Montpellier France
| | - E. Eller
- Department of Dermatology and Allergy Centre; Odense University Hospital; Odense Denmark
| | - M. P. Fantini
- Department of Medicine and Public Health; Alma Mater Studiorum - University of Bologna; Bologna Italy
| | - H. Hammad
- VIB Inflammation Research Center; Ghent University; Ghent Belgium
| | - C. Hohman
- Institute of Social Medicine, Epidemiology and Health Economics; Charité - Universitätsmedizin Berlin; Berlin Germany
| | - J. Just
- Allergology Department; Centre de l'Asthme et des Allergies; Hôpital d'Enfants Armand-Trousseau (APHP); Paris France
- Institut Pierre Louis d'Epidémiologie et de Santé Publique; Equipe EPAR; Sorbonne Universités, UPMC Univ Paris 06, UMR_S 1136; Paris France
| | - M. Kerkhof
- Department of Respiratory Medicine; GRIAC Research Institute; University Medical Center Groningen; Beatrix Children's Hospital; University of Groningen; Groningen the Netherlands
| | - M. Kogevinas
- Centre for Research in Environmental Epidemiology (CREAL); Barcelona Spain
- Hospital del Mar Research Institute (IMIM); Barcelona Spain
- CIBER Epidemiología y Salud Pública (CIBERESP); Barcelona Spain
- Department of Experimental and Health Sciences; University of Pompeu Fabra (UPF); Barcelona Spain
| | - I. Kull
- Sachs’ Children's Hospital; Stockholm Sweden
- Institute of Environmental Medicine; Karolinska Institutet; Stockholm Sweden
| | - S. Lau
- Department for Pediatric Pneumology and Immunology; Charité Medical University; Berlin Germany
| | - N. Lemonnier
- European Institute for Systems Biology and Medicine; Lyon France
| | - M. Mommers
- Department of Epidemiology; CAPHRI School of Public Health and Primary Care; Maastricht University; Maastricht the Netherlands
| | - M. Nawijn
- Department of Pediatric Pulmonology and Pediatric Allergology; GRIAC Research Institute; University Medical Center Groningen; Beatrix Children's Hospital; University of Groningen; Groningen the Netherlands
| | | | - S. Oddie
- Bradford Institute for Health Research; Bradford Royal Infirmary; Bradford UK
| | - J. Pellet
- European Institute for Systems Biology and Medicine; Lyon France
| | - I. Pin
- Département de pédiatrie; CHU de Grenoble; Grenoble Cedex 9 France
| | - D. Porta
- Department of Epidemiology; Regional Health Service Lazio Region; Rome Italy
| | - Y. Saes
- VIB Inflammation Research Center; Ghent University; Ghent Belgium
| | - I. Skrindo
- Department of Paediatrics; Oslo University Hospital; Oslo Norway
- Faculty of Medicine; Institute of Clinical Medicine; University of Oslo; Oslo Norway
| | - C. G. Tischer
- Institute of Epidemiology; German Research Centre for Environmental Health; Helmholtz Zentrum München; Neuherberg Germany
| | - M. Torrent
- Centre for Research in Environmental Epidemiology (CREAL); Barcelona Spain
- Area de Salut de Menorca, ib-salut; Illes Balears Spain
| | - L. von Hertzen
- Skin and Allergy Hospital; Helsinki University Hospital; Helsinki Finland
| |
Collapse
|
25
|
Haahtela T, Selroos O, O'Byrne PM. Revisiting early intervention in adult asthma. ERJ Open Res 2015; 1:00022-2015. [PMID: 27730140 PMCID: PMC5005140 DOI: 10.1183/23120541.00022-2015] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Accepted: 07/31/2015] [Indexed: 11/13/2022] Open
Abstract
The term "early intervention" with inhaled corticosteroids (ICS) in asthma is used in different ways, thereby causing confusion and misinterpretation of data. We propose that the term should be reserved for start of ICS therapy in patients with a diagnosis of asthma but within a short period of time after the first symptoms, not from the date of diagnosis. Prospective clinical studies suggest a time frame of 2 years for the term "early" from the onset of symptoms to starting anti-inflammatory treatment with ICS. The current literature supports early intervention with ICS for all patients with asthma including patients with mild disease, who often have normal or near-normal lung function. This approach reduces symptoms rapidly and allows patients to achieve early asthma control. Later introduction of ICS therapy may not reduce effectiveness in terms of lung function but delays asthma control and exposes patients to unnecessary morbidity. Results of nationwide intervention programmes support the early use of ICS, as it significantly minimises the disease burden. Acute asthma exacerbations are usually preceded by progressing symptoms and lung function decline over a period of 1-2 weeks. Treatment with an increased dose of ICS together with a rapid- and long-acting inhaled β2-agonist during this phase has reduced the risk of severe exacerbations.
Collapse
Affiliation(s)
- Tari Haahtela
- Skin and Allergy Hospital, Helsinki University Central Hospital, Helsinki, Finland
| | - Olof Selroos
- Semeco AB, Ängelholm, Sweden and Helsinki University, Helsinki, Finland
| | - Paul M. O'Byrne
- Firestone Institute for Respiratory Health, St Joseph's Hospital and McMaster University, Hamilton, ON, Canada
| |
Collapse
|
26
|
Yawn J, Lawrence LA, Carroll WW, Mulligan JK. Vitamin D for the treatment of respiratory diseases: is it the end or just the beginning? J Steroid Biochem Mol Biol 2015; 148:326-37. [PMID: 25625665 DOI: 10.1016/j.jsbmb.2015.01.017] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Revised: 12/16/2014] [Accepted: 01/22/2015] [Indexed: 12/22/2022]
Abstract
A large number of human, animal and in vitro studies have suggested that vitamin D3 (VD3) plays a critical role in inflammatory airway diseases such as asthma, chronic rhinosinusitis, and allergic rhinitis. VD3 acts upon a broad range of immune cells involved in the pathogenesis of these diseases including T-cells, dendritic cells (DCs), macrophages, and B-cells. In addition, VD3 can also regulate the functions of a number of non-immune cells including epithelial cells, fibroblasts, and smooth muscle cells. Given that VD3 has known effects on the immune system, it seems logical that supplementation with VD3 would prove efficacious in the treatment of these three diseases. While many studies, most of which are observational, have suggested that VD3 deficiency is associated with more severe disease, VD3 supplementation trials in humans have resulted in varied outcomes in terms of efficacy. In this review article we will discuss the role of VD3 in these three commonly associated respiratory diseases. We will explore the literature describing associations of VD3 deficiency with patient outcomes, cells in the respiratory microenvironment susceptible to VD3 regulation, conflicting results of VD3 supplementation trials, and potential gaps in our knowledge that may be limiting the widespread use of VD3 for the treatment of respiratory diseases such asthma, chronic rhinosinusitis and allergic rhinitis. This article is part of a Special Issue entitled '17th Vitamin D Workshop'.
Collapse
Affiliation(s)
- James Yawn
- Department of Otolaryngology-Head & Neck Surgery, Medical University of South Carolina, Charleston, SC, United States
| | - Lauren A Lawrence
- Department of Otolaryngology-Head & Neck Surgery, Medical University of South Carolina, Charleston, SC, United States
| | - William W Carroll
- Department of Otolaryngology-Head & Neck Surgery, Medical University of South Carolina, Charleston, SC, United States
| | - Jennifer K Mulligan
- Department of Otolaryngology-Head & Neck Surgery, Medical University of South Carolina, Charleston, SC, United States; Department of Pediatrics, Medical University of South Carolina, Charleston, SC, United States; Ralph H. Johnson VA Medical Center, Charleston, SC, United States.
| |
Collapse
|
27
|
Alagha K, Jarjour B, Bommart S, Aviles B, Varrin M, Gamez AS, Molinari N, Vachier I, Paganin F, Chanez P, Bourdin A. Persistent severe hypereosinophilic asthma is not associated with airway remodeling. Respir Med 2015; 109:180-7. [PMID: 25592243 DOI: 10.1016/j.rmed.2014.12.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Revised: 11/17/2014] [Accepted: 12/23/2014] [Indexed: 12/12/2022]
Abstract
Hypereosinophilic asthma (HEA) is considered as a specific severe asthma phenotype. Whether eosinophils have a link with airway remodeling characterized by pathological (thickening of the basement membrane), functional (persistent airflow impairment and decline in lung function) and imaging features (increase airway wall thickness at CT scan) is still debated. In a one year prospective cohort of 142 severe asthma patients (according to IMI), 14 persistent HEA patients (defined by a persistent blood eosinophilia >500/mm(3) at two consecutive visits) were identified and compared with ten patients without any blood eosinophilia during the follow-up period (NEA, blood eosinophilia always <500/mm(3)). Airflow and lung volumes were recorded. Bronchial biopsies obtained at enrollment were stained for eosinophils (EG2) and basement membrane thickness (BM) was quantified. Imaging by CT scan acquisition was standardized and bronchial abnormalities quantified. ACQ score and exacerbations were prospectively recorded. HEA was not associated with preeminent features of airway remodeling assessed by airflow impairment (Best ever FEV1 values 97% ± 20 in HEA vs. 80 ± 24% in NEA, p = 0.020), decline of FEV1 (FEV1 Decline 40 ± 235 ml/y in HEA vs. 19 ± 40 ml/y in NEA, P = 0.319), submucosal abnormalities (BM thickness 7.80 ± 2.66 μm in HEA vs. 6.84 ± 2.59 in NEA, p = 0.37) and airway wall thickening at CT-scan (0.250 ± 0.036 mm vs. 0.261 ± 0.043, p = 0.92). Eosinophils blood count was inversely correlated with semiquantitative imaging score (rho -0.373, p = 0.039). Smoking history and positive skin prick tests were independent risk factors for increased BM thickening. Outcomes were similar in both populations (Control and exacerbations). Persistent HEA is not associated with evidences of airway remodeling.
Collapse
Affiliation(s)
- Khuder Alagha
- Department of Respiratory Disease, APHM, Marseille, France
| | - Baihas Jarjour
- Department of Respiratory Disease, CHU Montpellier, Montpellier, France
| | - Sebastien Bommart
- Department of Radiology, CHU Montpellier, Montpellier, France; INSERM U1046, Université Montpellier I et II, Montpellier, France
| | - Berta Aviles
- Department of Respiratory Disease, Palamos, Spain
| | - Muriel Varrin
- Department of Biostatistics, CHU Montpellier, Montpellier, France
| | - Anne Sophie Gamez
- Department of Respiratory Disease, CHU Montpellier, Montpellier, France
| | - Nicolas Molinari
- Department of Biostatistics, CHU Montpellier, Montpellier, France
| | - Isabelle Vachier
- Department of Respiratory Disease, CHU Montpellier, Montpellier, France
| | - Fabrice Paganin
- Department of Respiratory Disease, GHSR, Saint Pierre de La Réunion, France; INSERM UMR, Université Aix Marseille, France
| | - Pascal Chanez
- Department of Respiratory Disease, APHM, Marseille, France; INSERM UMR, Université Aix Marseille, France
| | - Arnaud Bourdin
- Department of Respiratory Disease, CHU Montpellier, Montpellier, France; INSERM U1046, Université Montpellier I et II, Montpellier, France.
| |
Collapse
|
28
|
Dekkers BGJ, Naeimi S, Bos IST, Menzen MH, Halayko AJ, Hashjin GS, Meurs H. L-thyroxine promotes a proliferative airway smooth muscle phenotype in the presence of TGF-β1. Am J Physiol Lung Cell Mol Physiol 2014; 308:L301-6. [PMID: 25480330 DOI: 10.1152/ajplung.00071.2014] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Hypothyroidism may reduce, whereas hyperthyroidism may aggravate, asthma symptoms. The mechanisms underlying this relationship are largely unknown. Since thyroid hormones have central roles in cell growth and differentiation, we hypothesized that airway remodeling, in particular increased airway smooth muscle (ASM) mass, may be involved. To address this hypothesis, we investigated the effects of triiodothyronine (T3) and l-thyroxine (T4) in the absence and presence of the profibrotic transforming growth factor (TGF)-β1 on human ASM cell phenotype switching. T3 (1-100 nM) and T4 (1-100 nM) did not affect basal ASM proliferation. However, when combined with TGF-β1 (2 ng/ml), T4 synergistically increased the proliferative response, whereas only a minor effect was observed for T3. In line with a switch from a contractile to a proliferative ASM phenotype, T4 reduced the TGF-β1-induced contractile protein expression by ∼50%. Cotreatment with T3 reduced TGF-β1-induced contractile protein expression by ∼25%. The synergistic increase in proliferation was almost fully inhibited by the integrin αvβ3 antagonist tetrac (100 nM), whereas no significant effects of the thyroid receptor antagonist 1-850 (3 μM) were observed. Inhibition of MEK1/2, downstream of the integrin αvβ3, also inhibited the T4- and TGF-β1-induced proliferative responses. Collectively, the results indicate that T4, and to a lesser extent T3, promotes a proliferative ASM phenotype in the presence of TGF-β1, which is predominantly mediated by the membrane-bound T4 receptor αvβ3. These results indicate that thyroid hormones may enhance ASM remodeling in asthma, which could be of relevance for hyperthyroid patients with this disease.
Collapse
Affiliation(s)
- Bart G J Dekkers
- Department of Molecular Pharmacology, University of Groningen, Groningen, The Netherlands; Groningen Research Institute for Asthma and COPD, University of Groningen, Groningen, The Netherlands;
| | - Saeideh Naeimi
- Department of Molecular Pharmacology, University of Groningen, Groningen, The Netherlands; Department of Pharmacology, Faculty of Veterinary Medicine, Semnan University, Semnan, Iran
| | - I Sophie T Bos
- Department of Molecular Pharmacology, University of Groningen, Groningen, The Netherlands; Groningen Research Institute for Asthma and COPD, University of Groningen, Groningen, The Netherlands
| | - Mark H Menzen
- Department of Molecular Pharmacology, University of Groningen, Groningen, The Netherlands; Groningen Research Institute for Asthma and COPD, University of Groningen, Groningen, The Netherlands
| | - Andrew J Halayko
- Department of Physiology, University of Manitoba, Winnipeg, Canada; and
| | - Goudarz Sadeghi Hashjin
- Department of Pharmacology, Faculty of Veterinary Medicine, University of Tehran, Teheran, Iran
| | - Herman Meurs
- Department of Molecular Pharmacology, University of Groningen, Groningen, The Netherlands; Groningen Research Institute for Asthma and COPD, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
29
|
Harkness LM, Ashton AW, Burgess JK. Asthma is not only an airway disease, but also a vascular disease. Pharmacol Ther 2014; 148:17-33. [PMID: 25460035 DOI: 10.1016/j.pharmthera.2014.11.010] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Accepted: 07/29/2014] [Indexed: 12/24/2022]
Abstract
Multiple studies have identified an expansion and morphological dysregulation of the bronchial vascular network in the airways of asthmatics. Increased number, size and density of blood vessels, as well as vascular leakage and plasma engorgement, have been reported in the airways of patients with all grades of asthma from mild to fatal. This neovascularisation is an increasingly commonly reported feature of airway remodelling; however, the pathophysiological impact of the increased vasculature in the bronchial wall and its significance to pulmonary function in asthma are unrecognised at this time. Multiple factors capable of influencing the development and persistence of the vascular network exist within asthmatic airway tissue. These include structural components of the altered extracellular matrix (ECM), imbalance of proteases and their endogenous inhibitors, release of active matrikines and the dysregulated levels of both soluble and matrix sequestered growth factors. This review will explore the features of the asthmatic airway which influence the development and persistence of the increased vascular network, as well as the effect of enhanced tissue perfusion on chronic inflammation and airway dynamics. The response of cells of the airways to the altered vascular profile and the subsequent influence on the features of airway remodelling will also be highlighted. We will explore the failure of current asthma therapeutics in "normalising" this vascular remodelling. Finally, we will summarize the outcomes of recent clinical trials which provide hope that anti-angiogenic therapies may be a potent asthma-resolving class of drugs and provide a new approach to asthma management in the future.
Collapse
Affiliation(s)
- Louise M Harkness
- Respiratory Cellular and Molecular Biology, Woolcock Institute of Medical Research, The University of Sydney, Sydney, NSW, Australia; Discipline of Pharmacology, The University of Sydney, Sydney, NSW, Australia
| | - Anthony W Ashton
- Division of Perinatal Research, Kolling Institute, Sydney, NSW, Australia
| | - Janette K Burgess
- Respiratory Cellular and Molecular Biology, Woolcock Institute of Medical Research, The University of Sydney, Sydney, NSW, Australia; Discipline of Pharmacology, The University of Sydney, Sydney, NSW, Australia.
| |
Collapse
|
30
|
Haffor ASA, Ismaeel M. A simple, reliable quantitative score for grading chest X-ray in adult asthma. EGYPTIAN JOURNAL OF CHEST DISEASES AND TUBERCULOSIS 2014. [DOI: 10.1016/j.ejcdt.2014.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
31
|
Park SJ, Jun YJ, Kim TH, Jung JY, Hwang GH, Jung KJ, Lee SH, Lee HM, Lee SH. Increased expression of YKL-40 in mild and moderate/severe persistent allergic rhinitis and its possible contribution to remodeling of nasal mucosa. Am J Rhinol Allergy 2014; 27:372-80. [PMID: 24119600 DOI: 10.2500/ajra.2013.27.3941] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
BACKGROUND Prominent expression of YKL-40 has been associated with pathological conditions characterized by tissue remodeling. We determined the expression level and distribution pattern of YKL-40 in allergic nasal mucosa and evaluated the effect of YKL-40 on the proliferation and migration of fibroblasts, the production of the mediators related to tissue remodeling, and collagen production. Additionally, the cytokine-driven regulation of YKL-40 expression was evaluated in cultured epithelial cells. METHODS The expression of YKL-40 in normal, mild, and moderate/severe allergic nasal mucosa was evaluated using real-time polymerase chain reaction (PCR), Western blot, and immunohistochemistry. Fibroblast migration was observed using a scratch wound method, and proliferation was determined by the MTT methods. Expression of proteoglycans, transforming growth factor (TGF) beta1, MMP2, MMP9, TIMP1, TIMP2, and collagen concentration were analyzed in fibroblasts treated with YKL-40. The expression levels of YKL-40 in cultured epithelial cells were examined after stimulation with mediators including Th2 cytokines, interferon (IFN)gamma, and TNF-alpha with real-time PCR and ELISA. RESULTS The expression of YKL-40 was up-regulated in allergic rhinitis and distributed in superficial epithelium, submucosal glands, and vascular endothelium, in addition to infiltrating cells. TGF-beta1, TIMP1, MMP9, and biglycan were up-regulated in fibroblasts on stimulation with YKL-40, accompanying increased proliferation and migration, and collagen production. IL-13, IFN-gamma, and TNF-alpha induced the increased production of YKL-40 in cultured epithelial cells. CONCLUSION YKL-40 is up-regulated in mild and moderate/severe persistent allergic rhinitis, and its expression can be regulated differentially by different cytokines, possibly contributing to the remodeling of nasal mucosa in allergic rhinitis.
Collapse
Affiliation(s)
- Se Jin Park
- Department of Otorhinolaryngology-Head and Neck Surgery, College of Medicine, Korea University, Seoul, South Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Abstract
Asthma is a common medical condition affecting 300 million people worldwide. Airway inflammation, smooth muscle bronchoconstriction leading to airflow obstruction, and mucous hypersecretion are clinical hallmarks of asthma. The NHLBI Expert Panel Report 3 recommends inhaled corticosteroids (ICS) for patients with moderate to severe persistent asthma. Inhaled corticosteroids (ICS) target gene transcription through their interactions with the glucocorticoid (GC) receptor (GR) at the glucocorticoid response element (GRE). The GC/GR complex enhances anti-inflammatory but inhibits pro-inflammatory mediator production. Classically, asthma has been described as a Th2-associated eosinophil-predominant disease, but recently alternative models have been described including a Th17-mediated neutrophil-predominant phenotype resulting in patients with more severe disease who may be less responsive to steroids. Additional mechanisms of steroid resistance include increased activity of GR phosphorylating kinases which modify the interactions of GR with transcription factors to inhibit the ability of GR to bind with GRE, leading to an increase in pro-inflammatory gene transcription. Oxidative stress also affects the balance between pro-inflammatory and anti-inflammatory gene transcription through the modification of transcription factors and cofactors (such as PI3K) leading to the inhibition of histone deacetylase 2. Continued investigations into the mechanisms behind glucocorticoid resistance will lead to novel treatments that improve control of severe refractory asthma.
Collapse
Affiliation(s)
- J. L. Trevor
- Division of Pulmonary Allergy and Critical Care Medicine Department of Medicine The University of Alabama at Birmingham Birmingham AL USA
| | - J. S. Deshane
- Division of Pulmonary Allergy and Critical Care Medicine Department of Medicine The University of Alabama at Birmingham Birmingham AL USA
| |
Collapse
|
33
|
Barbaro MPF, Spanevello A, Palladino GP, Salerno FG, Lacedonia D, Carpagnano GE. Exhaled matrix metalloproteinase-9 (MMP-9) in different biological phenotypes of asthma. Eur J Intern Med 2014; 25:92-6. [PMID: 24070522 DOI: 10.1016/j.ejim.2013.08.705] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2013] [Revised: 07/09/2013] [Accepted: 08/24/2013] [Indexed: 12/31/2022]
Abstract
BACKGROUND AND OBJECTIVES Airway remodeling is a main feature of asthma. Different biological phenotypes of severe asthma have been recently recognized by the ENFUMOSA study group and among these one is characterized by neutrophilic airway inflammation. Concentrations of MMP-9 in airways have been suggested as a marker to monitor airway remodeling in asthma. OBJECTIVE The aim of the present study was to explore airway remodeling in different biological phenotypes of asthma by measuring MMP-9 in EBC and correlating these with other variables. METHODS Sixty consecutive subjects with asthma and 20 healthy controls were enrolled in the study. Exhaled MMP-9, pH and NO levels and inflammatory cells in sputum were measured in all subjects enrolled. RESULTS We observed an increase of exhaled MMP-9 in asthmatic subjects compared to controls. Higher exhaled MMP-9 concentrations were described in severe asthmatics compared to mild to moderate especially in those with neutrophilic airway inflammation. We further found a correlation between exhaled MMP-9 and percentage of neutrophils in sputum, FEV1, exhaled NO and pH. CONCLUSION Our results seem to substantiate the feasibility of measuring exhaled MMP-9 in the breath of asthmatic patients. MMP-9 may be considered a proxy of the amount of the ongoing airway remodeling in asthma. MMP-9 has been shown to be differentially released in different phenotypes of asthma. The measure of exhaled MMP-9 could help to monitor the ongoing airway remodeling, recognize severe stages of asthma, and possibly help determine the appropriate choice of therapy.
Collapse
Affiliation(s)
- Maria P Foschino Barbaro
- Institute of Respiratory Disease, Medical and Surgical Sciences Department, University of Foggia, Italy.
| | - Antonio Spanevello
- Institute of Respiratory Disease, University of Insubria, Varese, Italy; Fondazione Salvatore Maugeri, IRCCS, Tradate, Italy.
| | - Grazia P Palladino
- Institute of Respiratory Disease, Medical and Surgical Sciences Department, University of Foggia, Italy.
| | | | - Donato Lacedonia
- Institute of Respiratory Disease, Medical and Surgical Sciences Department, University of Foggia, Italy.
| | - Giovanna E Carpagnano
- Institute of Respiratory Disease, Medical and Surgical Sciences Department, University of Foggia, Italy.
| |
Collapse
|
34
|
Chung YJ, Kim HY, Chung SK, Dhong HJ. A time course study on the development of allergen-induced nasal airway remodeling in a rat model. Am J Rhinol Allergy 2013; 26:421-7. [PMID: 23232190 DOI: 10.2500/ajra.2012.26.3823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND Only a few studies have investigated the airway remodeling process in allergic rhinitis (AR), and the results reported are conflicting. We established an allergen-induced nasal remodeling model for AR using brown Norway rats and investigated time-dependent histological changes and the reversibility of the epithelial and subepithelial changes. METHODS Ovalbumin (OVA)-sensitized rats were exposed to OVA daily and then assigned to one of five groups depending on the duration of the challenge. Groups I, II, III, and IV rats were exposed for 1, 4, 8, and 12 weeks, respectively. Group V rats were exposed for 12 weeks and then protected from challenge for 4 weeks. Matched control rats were exposed to saline. Histological parameters of the nasal mucosa such as epithelial and subepithelial thickness, goblet cell hyperplasia, eosinophil infiltration, submucosal gland hypertrophy, and expression of matrix metalloproteinase-9 (MMP-9) and tissue inhibitor of metalloproteinase-1 (TIMP-1) were compared between groups. RESULTS Repeated challenges for 12 weeks resulted in the characteristic features of nasal airway remodeling. All parameters except epithelial thickness increased markedly. Goblet cell hyperplasia and eosinophil infiltration decreased to control group levels after cessation of challenge for 4 weeks. Subepithelial changes such as subepithelial thickening, submucosal gland hypertrophy, and increased expression of MMP-9 and TIMP-1 were still observed after 4 weeks without challenge. CONCLUSION Our results indicate that prolonged OVA challenge can induce nasal remodeling. Epithelial changes were minimal or absent after cessation of the challenge, but subepithelial changes were resistant to reversal.
Collapse
Affiliation(s)
- Young-Jun Chung
- Department of Otorhinolaryngology-Head and Neck Surgery, Dankook University College of Medicine, Cheonan, Korea
| | | | | | | |
Collapse
|
35
|
Faiz A, Tjin G, Harkness L, Weckmann M, Bao S, Black JL, Oliver BGG, Burgess JK. The expression and activity of cathepsins D, H and K in asthmatic airways. PLoS One 2013; 8:e57245. [PMID: 23483898 PMCID: PMC3590183 DOI: 10.1371/journal.pone.0057245] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2012] [Accepted: 01/18/2013] [Indexed: 12/13/2022] Open
Abstract
Tumstatin is an anti-angiogenic collagen IV α3 fragment, levels of which are reduced in the airways of asthmatics. Its reduction may be due to the degradation by extracellular matrix (ECM) proteases. Cathepsins play a role in ECM remodelling, with cathepsin D, H and K (CTSD, CTSH and CTSK) being associated with lung diseases. CTSD modulates the NC1 domains of collagen molecules including tumstatin, while CTSH and CTSK are involved in ECM degradation. The role of these cathepsins in the regulation of tumstatin in the lung has not previously been examined. We demonstrated that CTSB, D, F, H, K, L and S mRNA was expressed in the airways. Quantification of immunohistochemistry showed that there is no difference in the global expression of CTSD, CTSH and CTSK between asthmatics and non-asthmatics. CTSD and CTSK, but not CTSH had the capacity to degrade tumstatin. No difference was observed in the activity of CTSD and H in bronchoalveolar lavage fluid of asthmatic and non-asthmatics, while CTSK was undetectable. This indicates that while CTSD possesses the potential to directly regulate tumstatin, and thus angiogenesis through this mechanism however, it is not likely to be involved in the dysregulation of tumstatin found in asthmatic airways.
Collapse
Affiliation(s)
- Alen Faiz
- Cell biology, Woolcock Institute of Medical Research, Sydney, New South Wales, Australia.
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Muyal JP, Muyal V, Kotnala S, Kumar D, Bhardwaj H. Therapeutic potential of growth factors in pulmonary emphysematous condition. Lung 2012; 191:147-63. [PMID: 23161370 DOI: 10.1007/s00408-012-9438-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2012] [Accepted: 11/04/2012] [Indexed: 02/02/2023]
Abstract
Pulmonary emphysema is a major manifestation of chronic obstructive pulmonary disease (COPD), which is characterized by progressive destruction of alveolar parenchyma with persistent inflammation of the small airways. Such destruction in the distal respiratory tract is irreversible and irreparable. All-trans-retinoic acid was suggested as a novel therapy for regeneration of lost alveoli in emphysema. However, profound discrepancies were evident between studies. At present, no effective therapeutic options are available that allow for the regeneration of lost alveoli in emphysematous human lungs. Recently, some reports on rodent's models have suggested the beneficial effects of various growth factors toward alveolar maintenance and repair processes.
Collapse
Affiliation(s)
- Jai Prakash Muyal
- Department of Biotechnology, School of Biotechnology, Gautam Buddha University, Greater Noida, 201308, India.
| | | | | | | | | |
Collapse
|
37
|
Wang LF, Chien CY, Chiang FY, Chai CY, Tai CF. Corelationship between matrix metalloproteinase 2 and 9 expression and severity of chronic rhinosinusitis with nasal polyposis. Am J Rhinol Allergy 2012; 26:e1-4. [PMID: 22391064 DOI: 10.2500/ajra.2012.26.3724] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND Matrix metalloproteinase (MMP) is involved in the remodeling process of inflammatory airway diseases and is correlated with the severity of asthma. We hypothesized that MMP was associated with the severity of chronic rhinosinusitis with nasal polyps (CRSwNPs). We also investigated the effect of allergy on the expression of MMP in the polyp. METHODS The expression of MMP-2 and -9 was investigated in recurrent nasal polyps of 30 patients and in nonrecurrent nasal polyps of 31 patients undergoing endoscopic sinus surgery. These expressions were then compared with those in control nasal mucosal samples obtained from 32 patients with chronic hypertrophic rhinitis. Demographic data, Lund-Mackay (LM) score, polyp grade, and allergy status were obtained for all patients. Tissue samples were assessed via immunohistochemistry. RESULTS MMP-2 and -9 were constantly expressed in recurrent NPs, primary NPs, and control nasal mucosa. The expression of MMP-9 was significantly enhanced in glands and MMP-2 positivity was significantly increased in surface epithelium for patients with NPs when compared with control nasal mucosa. The expression of MMP-9 and -2 was not correlated with polyp grade and LM score. Allergic status is an independent factor in the expression of MMP-2 and -9. CONCLUSION These results suggested up-regulation of MMP-9, and MMP-2 in gland and surface epithelium, respectively, were characteristic of NPs. Therefore, patients with allergy will exhibit greater MMP-2 and -9 positivity. However, the MMP-2 and -9 expression intensity was not correlated with the severity of CRS with nasal polyposis.
Collapse
Affiliation(s)
- Ling-Feng Wang
- Department of Otolaryngology, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | | | | | | | | |
Collapse
|
38
|
Riccio AM, Dal Negro RW, Micheletto C, De Ferrari L, Folli C, Chiappori A, Canonica GW. Omalizumab modulates bronchial reticular basement membrane thickness and eosinophil infiltration in severe persistent allergic asthma patients. Int J Immunopathol Pharmacol 2012; 25:475-84. [PMID: 22697079 DOI: 10.1177/039463201202500217] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Severe persistent asthma causes a substantial morbidity and mortality burden and is frequently not well controlled, despite intensive guideline-based therapy. The unique monoclonal antibody approved for patients with severe allergic asthma is omalizumab: a recombinant humanised murine against IgE antibodies. The aim of the present study is to investigate the effect of long-term anti-IgE on the thickening of the reticular basement membrane (RBM) and eosinophil infiltration in bronchial biopsies from patients with severe persistent allergic asthma. Biopsies were obtained from 11 patients with severe persistent allergic asthma before and after (12 months) treatment with omalizumab. RBM thickness and eosinophils were measured by using light microscope image analysis. A significant mean reduction in RBM thickness and eosinophil infiltration were measured after one-year omalizumab treatment. No correlation between eosinophil reduction and RBM thickness reduction was found. No correlation between each of the previous two parameters and clinical parameters was detected. In conclusion, our study showed that a substantial proportion of severe asthmatics reduced the original bronchial RBM thickness and eosinophil infiltration after one-year treatment with anti-IgE, thus emphasizing the possible role of omalizumab in affecting airway remodeling in severe persistent allergic asthma.
Collapse
Affiliation(s)
- A M Riccio
- Allergy and Respiratory Diseases, DIMI, University of Genoa, Italy
| | | | | | | | | | | | | |
Collapse
|
39
|
Black JL, Panettieri RA, Banerjee A, Berger P. Airway smooth muscle in asthma: just a target for bronchodilation? Clin Chest Med 2012; 33:543-58. [PMID: 22929101 DOI: 10.1016/j.ccm.2012.05.002] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Airway smooth muscle (ASM) has long been recognized as the main cell type responsible for bronchial hyperresponsiveness. It has, thus, been considered as a target for bronchodilation. In asthma, however, there is a complex relationship between ASM and inflammatory cells, such as mast cells and T lymphocytes. Moreover, the increased ASM mass in asthmatic airways is one of the key features of airway remodeling. This article aims to review the main concepts about the 3 possible roles of ASM in asthma: (1) contractile tone, (2) inflammatory response, and (3) remodeling.
Collapse
Affiliation(s)
- Judith L Black
- University of Sydney, Discipline of Pharmacology and Woolcock Institute of Medical Research, University of Sydney, Sydney, New South Wales, 2006, Australia
| | | | | | | |
Collapse
|
40
|
Rydell-Törmänen K, Risse PA, Kanabar V, Bagchi R, Czubryt MP, Johnson JR. Smooth muscle in tissue remodeling and hyper-reactivity: airways and arteries. Pulm Pharmacol Ther 2012; 26:13-23. [PMID: 22561160 DOI: 10.1016/j.pupt.2012.04.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2012] [Revised: 04/20/2012] [Accepted: 04/23/2012] [Indexed: 01/17/2023]
Abstract
Smooth muscle comprises a key functional component of both the airways and their supporting vasculature. Dysfunction of smooth muscle contributes to and exacerbates a host of breathing-associated pathologies such as asthma, chronic obstructive pulmonary disease and pulmonary hypertension. These diseases may be marked by airway and/or vascular smooth muscle hypertrophy, proliferation and hyper-reactivity, and related conditions such as fibrosis and extracellular matrix remodeling. This review will focus on the contribution of airway or vascular smooth dysfunction to common airway diseases.
Collapse
|
41
|
Bassiouni A, Naidoo Y, Wormald PJ. Does mucosal remodeling in chronic rhinosinusitis result in irreversible mucosal disease? Laryngoscope 2012; 122:225-9. [PMID: 22183638 DOI: 10.1002/lary.22374] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Mucosal remodeling in the sinuses is a recently described phenomenon in which the mucosa undergoes potentially irreversible changes as a result of ongoing underlying inflammatory processes. Research into remodeling that occurs in the bronchial airways in asthmatic patients has led to modification of asthma treatment guidelines. However, remodeling in the sinuses has still not led to changes in current medical or surgical management of chronic rhinosinusitis. Upper airway remodeling constitutes a new area of research that poses many unanswered clinical questions and may potentially alter the management of patients with severe chronic rhinosinusitis.
Collapse
Affiliation(s)
- Ahmed Bassiouni
- Department of Surgery, Otorhinolaryngology-Head and Neck Surgery, University of Adelaide, Adelaide, Australia
| | | | | |
Collapse
|
42
|
Reddel CJ, Weiss AS, Burgess JK. Elastin in asthma. Pulm Pharmacol Ther 2012; 25:144-53. [PMID: 22366197 DOI: 10.1016/j.pupt.2012.02.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2011] [Revised: 01/19/2012] [Accepted: 02/08/2012] [Indexed: 12/15/2022]
Abstract
Extracellular matrix is generally increased in asthma, causing thickening of the airways which may either increase or decrease airway responsiveness, depending on the mechanical requirements of the deposited matrix. However, in vitro studies have shown that the altered extracellular matrix produced by asthmatic airway smooth muscle cells is able to induce increased proliferation of non-asthmatic smooth muscle cells, which is a process believed to contribute to airway hyper-responsiveness in asthma. Elastin is an extracellular matrix protein that is altered in asthmatic airways, but there has been no systematic investigation of the functional effect of these changes. This review reveals divergent reports of the state of elastin in the airway wall in asthma. In some layers of the airway it has been described as increased, decreased and/or fragmented, or unchanged. There is also considerable evidence for an imbalance of matrix metalloproteinases, which degrade elastin, and their respective inhibitors the tissue inhibitors of metalloproteinases, which collectively help to explain observations of both increased elastin and elastin fragments. A loss of lung elastic recoil in asthma suggests a mechanical role for disordered elastin in the aetiology of the disease, but extensive studies of elastin in other tissues show that elastin fragments elicit cellular effects such as increased proliferation and inflammation. This review summarises the current understanding of the role of elastin in the asthmatic airway.
Collapse
Affiliation(s)
- Caroline J Reddel
- School of Molecular Bioscience, University of Sydney, Sydney, NSW 2006, Australia.
| | | | | |
Collapse
|
43
|
The pivotal role of airway smooth muscle in asthma pathophysiology. J Allergy (Cairo) 2011; 2011:742710. [PMID: 22220184 PMCID: PMC3246780 DOI: 10.1155/2011/742710] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2011] [Accepted: 08/30/2011] [Indexed: 12/13/2022] Open
Abstract
Asthma is characterized by the association of airway hyperresponsiveness (AHR), inflammation, and remodelling. The aim of the present article is to review the pivotal role of airway smooth muscle (ASM) in the pathophysiology of asthma. ASM is the main effector of AHR. The mechanisms of AHR in asthma may involve a larger release of contractile mediators and/or a lower release of relaxant mediators, an improved ASM cell excitation/contraction coupling, and/or an alteration in the contraction/load coupling. Beyond its contractile function, ASM is also involved in bronchial inflammation and remodelling. Whereas ASM is a target of the inflammatory process, it can also display proinflammatory and immunomodulatory functions, through its synthetic properties and the expression of a wide range of cell surface molecules. ASM remodelling represents a key feature of asthmatic bronchial remodelling. ASM also plays a role in promoting complementary airway structural alterations, in particular by its synthetic function.
Collapse
|
44
|
Ichimaru Y, Krimmer DI, Burgess JK, Black JL, Oliver BGG. TGF-β enhances deposition of perlecan from COPD airway smooth muscle. Am J Physiol Lung Cell Mol Physiol 2011; 302:L325-33. [PMID: 22003087 DOI: 10.1152/ajplung.00453.2010] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Chronic obstructive pulmonary disease (COPD) and asthma are characterized by irreversible remodeling of the airway walls, including thickening of the airway smooth muscle layer. Perlecan is a large, multidomain, proteoglycan that is expressed in the lungs, and in other organ systems, and has been described to have a role in cell adhesion, angiogenesis, and proliferation. This study aimed to investigate functional properties of the different perlecan domains in relation to airway smooth muscle cells (ASMC). Primary human ASMC obtained from donors with asthma (n = 13), COPD (n = 12), or other lung disease (n = 20) were stimulated in vitro with 1 ng/ml transforming growth factor-β(1) (TGF-β(1)) before perlecan deposition and cytokine release were analyzed. In some experiments, inhibitors of signaling molecules were added. Perlecan domains I-V were seeded on tissue culture plates at 10 μg/ml with 1 μg/ml collagen I as a control. ASM was incubated on top of the peptides before being analyzed for attachment, proliferation, and wound healing. TGF-β(1) upregulated deposition of perlecan by ASMC from COPD subjects only. TGF-β(1) upregulated release of IL-6 into the supernatant of ASMC from all subjects. Inhibitors of SMAD and JNK signaling molecules decreased TGF-β(1)-induced perlecan deposition by COPD ASMC. Attachment of COPD ASMC was upregulated by collagen I and perlecan domains IV and V, while perlecan domain II upregulated attachment only of asthmatic ASMC. Seeding on perlecan domains did not increase proliferation of any ASMC type. TGF-β(1)-induced perlecan deposition may enhance attachment of migrating ASMC in vivo and thus may be a mechanism for ASMC layer hypertrophy in COPD.
Collapse
Affiliation(s)
- Yukikazu Ichimaru
- Cell Biology group, Woolcock Institute of Medical Research, NSW, Australia
| | | | | | | | | |
Collapse
|
45
|
Kuo C, Lim S, King NJC, Johnston SL, Burgess JK, Black JL, Oliver BG. Rhinovirus infection induces extracellular matrix protein deposition in asthmatic and nonasthmatic airway smooth muscle cells. Am J Physiol Lung Cell Mol Physiol 2011; 300:L951-7. [DOI: 10.1152/ajplung.00411.2010] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Airway remodeling, which includes increases in the extracellular matrix (ECM), is a characteristic feature of asthma and is correlated to disease severity. Rhinovirus (RV) infections are associated with increased risk of asthma development in young children and are the most common cause of asthma exacerbations. We examined whether viral infections can increase ECM deposition and whether this increased ECM modulates cell proliferation and migration. RV infection of nonasthmatic airway smooth muscle (ASM) cells significantly increased the deposition of fibronectin (40% increase, n = 12) and perlecan (80% increase, n = 14), while infection of asthmatic ASM cells significantly increased fibronectin (75% increase, n = 9) and collagen IV (15% increase, n = 9). We then treated the ASM cells with the Toll-like receptor (TLR) agonists polyinosinic:polycytidylic acid, imiquimod, and pure RV RNA and were able to show that the mechanism through which RV induced ECM deposition was via the activation of TLR3 and TLR7/8. Finally, we assessed whether the virus-induced ECM was bioactive by measuring the amount of migration and proliferation of virus-naive cells that seeded onto the ECM. Basically, ECM from asthmatic ASM cells induced twofold greater migration of virus-naive ASM cells than ECM from nonasthmatic ASM cells, and these rates of migration were further increased on RV-modulated ECM. Increased migration on the RV-modulated ECM was not due to increased cell proliferation, as RV-modulated ECM decreased the proliferation of virus-naive cells. Our results suggest that viruses may contribute to airway remodeling through increased ECM deposition, which in turn may contribute to increased ASM mass via increased cell migration.
Collapse
Affiliation(s)
- Curtis Kuo
- Discipline of Pharmacology, University of Sydney, Camperdown,
| | - Sam Lim
- Office of Clinical Science, Duke-National University of Singapore, Singapore; and
| | | | - Sebastian L. Johnston
- Department of Respiratory Medicine, National Heart and Lung Institute, Medical Research Council, and Asthma UK Centre in Allergic Mechanisms of Asthma, Imperial College London, London, United Kingdom
| | - Janette K. Burgess
- Discipline of Pharmacology, University of Sydney, Camperdown,
- Woolcock Institute of Medical Research, Sydney, Australia
| | - Judith L. Black
- Discipline of Pharmacology, University of Sydney, Camperdown,
- Woolcock Institute of Medical Research, Sydney, Australia
| | - Brian G. Oliver
- Discipline of Pharmacology, University of Sydney, Camperdown,
- Woolcock Institute of Medical Research, Sydney, Australia
| |
Collapse
|
46
|
|
47
|
Paulissen G, Rocks N, Guéders MM, Bedoret D, Crahay C, Quesada-Calvo F, Hacha J, Bekaert S, Desmet C, Foidart JM, Bureau F, Noel A, Cataldo DD. ADAM-8, a metalloproteinase, drives acute allergen-induced airway inflammation. Eur J Immunol 2010; 41:380-91. [PMID: 21268008 DOI: 10.1002/eji.200940286] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2009] [Revised: 09/16/2010] [Accepted: 11/19/2010] [Indexed: 11/08/2022]
Abstract
Asthma is a complex disease linked to various pathophysiological events including the activity of proteinases. The multifunctional A disintegrin and metalloproteinases (ADAMs) displaying the ability to cleave membrane-bound mediators or cytokines appear to be key mediators in various inflammatory processes. In the present study, we investigated ADAM-8 expression and production in a mouse model of allergen-induced airway inflammation. In allergen-exposed animals, increased expression of ADAM-8 was found in the lung parenchyma and in DC purified from the lungs. The potential role of ADAM-8 in the development of allergen-induced airway inflammation was further investigated by the use of an anti-ADAM-8 antibody and ADAM-8 knockout animals. We observed a decrease in allergen-induced acute inflammation both in BALF and the peribronchial area in anti-ADAM-8 antibody-treated mice and in ADAM-8-deficient mice (ADAM-8(-/-) ) after allergen exposure. ADAM-8 depletion led to a significant decrease of the CD11c(+) lung DC. We also report lower levels of CCL11 and CCL22 production in antibody-treated mice and ADAM-8- deficient mice that might be explained by decreased eosinophilic inflammation and lower numbers of DC, respectively. In conclusion, ADAM-8 appears to favour allergen-induced acute airway inflammation by promoting DC recruitment and CCL11 and CCL22 production.
Collapse
Affiliation(s)
- Geneviève Paulissen
- Laboratory of Tumor and Development Biology, GIGA-Research (GIGA-I3 and GIGA-cancer), University of Liege and CHU of Liege, Sart-Tilman, Belgium
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Lieberman P. Pulmonary remodeling in asthma. F1000 MEDICINE REPORTS 2010; 2. [PMID: 20948826 PMCID: PMC2954424 DOI: 10.3410/m2-74] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The inflammatory and immunologic processes responsible for asthma can produce permanently fixed obstructive lung disease unresponsive to medical therapy. This can be manifested clinically by the failure of a childhood asthmatic to reach full expected lung capacity at adulthood and by an accelerated decline in pulmonary capacity in adults. Recent studies have furthered our insight into the pathologic processes underlying these changes and the potential effects of therapy to prevent them.
Collapse
Affiliation(s)
- Phil Lieberman
- University of Tennessee, College of Medicine, Departments of Medicine and Pediatrics, Division of Allergy and Immunology Memphis, TN 38120 USA
| |
Collapse
|
49
|
Janson C. The importance of airway remodelling in the natural course of asthma. CLINICAL RESPIRATORY JOURNAL 2010; 4 Suppl 1:28-34. [PMID: 20500607 DOI: 10.1111/j.1752-699x.2010.00194.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
INTRODUCTION Asthma is associated with airflow limitation and increased decline in lung function. The underlying mechanism for this was probably that persisting inflammation leads to remodelling of the airways. OBJECTIVES To review the importance of different factors which are related to airflow limitation and lung function decline in asthma. METHODS Case report and literature review. RESULTS Asthma severity, smoking, bronchial hyperresponsiveness and eosinophil inflammation were the variables that were most convincingly related to decline in forced expiratory volume in 1 s (FEV(1)) in asthma. Treatment with inhaled corticosteroids probably decreased the rate of FEV(1) decline, although this was more uncertain because of the lack of randomised double blind studies that show such an effect. Progress in the field of the genetics of asthma may, in the near future, elucidate the role of gene-environment interaction in lung function decline in asthma. CONCLUSION Regular treatment with inhaled corticosteroids may partly have a beneficial effect on airway remodelling in asthma. Improved understanding of the processes leading to airway remodelling is, however, important in order to prevent a large number of asthmatics from developing irreversible airflow obstruction.
Collapse
Affiliation(s)
- Christer Janson
- Department of Medical Sciences: Respiratory Medicine & Allergology, Uppsala University, Akademiska sjukhuset, Uppsala, Sweden.
| |
Collapse
|
50
|
Lei F, Zhu D, Sun J, Dong Z. Effects of minimal persistent inflammation on nasal mucosa of experimental allergic rhinitis. Am J Rhinol Allergy 2010; 24:e23-8. [PMID: 20109315 DOI: 10.2500/ajra.2010.24.3414] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND Minimal persistent inflammation (MPI) is considered another piece of the complex puzzle of allergic inflammation. Although some studies regarding MPI have been reported, no study has evaluated the effects of MPI on the structure changes at the site of allergic reaction. This study investigates whether long-time MPI during allergic rhinitis (AR) results in some features of tissue remodeling in the nasal mucosa. METHODS An animal model of MPI was developed by repeated nasal challenge with low concentration of ovalbumin (OVA) in sensitized guinea pigs. The models were assessed by allergic symptom after antigen challenge, eosinophil infiltration in the nasal mucosa, and intercellular adhesion molecule (ICAM) 1 expression on nasal epithelial cells. The histopathological changes in nasal mucosa were determined by Alcian blue-periodic acid-Schiff and Masson's trichrome staining. The expression of transforming growth factor (TGF) beta(1) and matrix metalloproteinase (MMP) 9 was examined by immunofluorescence under a confocal laser scan microscope. RESULTS When sensitized animals were challenged with the low concentration of 0.01% OVA, the symptom of sneezing disappeared, but there were still mild eosinophils infiltration and weak ICAM-1 expression, which indicated the success of MPI models. Moreover, the number of goblet cells and the percentage area of collagen deposition were both mildly increased. The expression of MMP-9 and TGF-beta(1) was also weakly elevated. CONCLUSION We have successfully established MPI models and proved long-time MPI may result in mild features of remodeling in the nasal mucosa, which provide new insights into the unexpected potential effects of MPI on the structural changes.
Collapse
Affiliation(s)
- Fei Lei
- Department of Otorhinolaryngology-Head and Neck Surgery, China-Japan Union Hospital, Bethune Faculty of Medicine, Jilin University, Changchun, China
| | | | | | | |
Collapse
|