1
|
Ozkalayci H, Bora E, Cankaya T, Kocabey M, Zubari NC, Yis U, Giray Bozkaya O, Turan S, Pekcanlar Akay A, Caglayan AO, Ulgenalp A. Investigation of genotype-phenotype and familial features of Turkish dystrophinopathy patients. Neurogenetics 2024; 25:201-213. [PMID: 38850354 DOI: 10.1007/s10048-024-00765-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 05/31/2024] [Indexed: 06/10/2024]
Abstract
Duchenne muscular dystrophy (DMD) and Becker muscular dystrophy (BMD) are X-linked recessive allelic muscle diseases caused by dystrophin gene mutations. Eight hundred thirty-seven patients admitted between 1997 and 2022 were included in the study. Two hundred twenty patients were analyzed by multiplex PCR (mPCR) alone. Five hundred ninety-five patients were investigated by multiplex ligation-dependent probe amplification (MLPA), and 54 patients were examined by sequencing. Deletion was detected in 60% (132/220) of the cases in the mPCR group only and in 58.3% (347/595) of the cases with MLPA analysis. The rates of deletion and duplication were 87.7% and 12.3%, respectively, in the MLPA analysis. Single exon deletions were the most common mutation type. The introns 43-55 (81.8%) and exons 2-21 (13.1%) regions were detected as hot spots in deletions. It was determined that 89% of the mutations were suitable for exon skipping therapy. The reading frame rule did not hold in 7.6% of D/BMD cases (17/224). We detected twenty-five pathogenic/likely pathogenic variants in sequencing, five of which were novel variants. Nonsense mutation was the most common small mutation (44%). 21% of DMD patients were familial. We detected germline mosaicism in four families (4.3%) in the large rearrangement group and one gonosomal mosaicism in a family with a nonsense mutation. This is the largest study examining genotype and phenotype data in Turkish D/BMD families investigated by MLPA analysis. The reading frame hypothesis is not valid in all cases. Sharing the genotype and phenotype characteristics of these cases in the literature will shed light on the molecular structure of DMD and guide gene therapy research. In genetic counseling, carrier screening in the family and possible gonadal mosaicism should be emphasized.
Collapse
Affiliation(s)
- Hande Ozkalayci
- Department of Medical Genetics, Faculty of Medicine, Dokuz Eylul University, Izmir, 35340, Turkey.
- Department of Medical Genetics, Istanbul Training and Research Hospital, Istanbul, 34146, Turkey.
| | - Elcin Bora
- Department of Medical Genetics, Faculty of Medicine, Dokuz Eylul University, Izmir, 35340, Turkey
| | - Tufan Cankaya
- Department of Medical Genetics, Faculty of Medicine, Dokuz Eylul University, Izmir, 35340, Turkey
| | - Mehmet Kocabey
- Department of Medical Genetics, Faculty of Medicine, Dokuz Eylul University, Izmir, 35340, Turkey
| | - Nadide Cemre Zubari
- Department of Medical Genetics, Faculty of Medicine, Dokuz Eylul University, Izmir, 35340, Turkey
| | - Uluc Yis
- Department of Pediatric Neurology, Faculty of Medicine, Dokuz Eylul University, Izmir, 35340, Turkey
| | - Ozlem Giray Bozkaya
- Department of Pediatric Genetics, Faculty of Medicine, Dokuz Eylul University, Izmir, 35340, Turkey
| | - Serkan Turan
- Department of Child And Adolescent Psychiatry, Faculty of Medicine, Dokuz Eylul University, Izmir, 35340, Turkey
| | - Aynur Pekcanlar Akay
- Department of Child And Adolescent Psychiatry, Faculty of Medicine, Dokuz Eylul University, Izmir, 35340, Turkey
| | - Ahmet Okay Caglayan
- Department of Medical Genetics, Faculty of Medicine, Dokuz Eylul University, Izmir, 35340, Turkey
| | - Ayfer Ulgenalp
- Department of Medical Genetics, Faculty of Medicine, Dokuz Eylul University, Izmir, 35340, Turkey
| |
Collapse
|
2
|
Mårtensson A, Letelier A, Manderstedt E, Glosli H, Ljung R. Origin of pathogenic variant and mosaicism in families with a sporadic case of haemophilia B. Haemophilia 2024; 30:774-779. [PMID: 38632836 DOI: 10.1111/hae.15019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 03/04/2024] [Accepted: 04/04/2024] [Indexed: 04/19/2024]
Abstract
INTRODUCTION Of newly diagnosed cases of haemophilia B, the proportion of sporadic cases is usually 50% of severe cases and 25% of moderate/mild cases. However, cases presumed to be sporadic due to family history may not always be sporadic. Few case reports have been published on mosaicism in haemophilia B. AIM The present study aimed to trace the origin of the pathogenic variant in a well-defined cohort of sporadic cases of haemophilia B by haplotyping markers. It also aimed to determine the frequency of mosaicism in presumed non-carrier mothers. METHODS The study group was 40 families, each with a sporadic case of haemophilia B analysed in two-to-three generations by Sanger sequencing, haplotyping and using the sensitive droplet digital polymerase chain reaction (ddPCR) technique. RESULTS In 31/40 (78%) of the families, the mother carried the same pathogenic variant as her son, while Sanger sequencing showed that 9/40 (22%) of the mothers did not carry this variant. Of these variants, 2/9 (22%) were shown to be mosaics by using the ddPCR technique. 16/21 carrier mothers, with samples from three generations available, had a de novo pathogenic variant of which 14 derived from the healthy maternal grandfather. CONCLUSION The origin of the pathogenic variant in sporadic cases of haemophilia B is most often found in the X-chromosome derived from the maternal grandfather or, less often, from the maternal grandmother. Mosaic females seem to be found at the same frequency as in haemophilia A but at a lower percentage of the pathogenic variant.
Collapse
Affiliation(s)
- Annika Mårtensson
- Department of Clinical Sciences Lund - Paediatrics, Lund University, Lund, Sweden
- Department of Paediatrics, Skåne University Hospital, Lund, Sweden
| | - Anna Letelier
- Department of Clinical Sciences Lund - Paediatrics, Lund University, Lund, Sweden
| | - Eric Manderstedt
- Department of Clinical Sciences, Center for Primary Health Care Research, Lund University, Lund, Sweden
| | - Heidi Glosli
- Centre for Rare Disorders, Oslo University Hospital, Oslo, Norway
| | - Rolf Ljung
- Department of Clinical Sciences Lund - Paediatrics, Lund University, Lund, Sweden
| |
Collapse
|
3
|
Dwianingsih EK, Iskandar K, Hapsara S, Ping Liu C, Malueka RG, Gunadi, Matsuo M, Lai PS. Mutation spectrum analysis of DMD gene in Indonesian Duchenne and Becker muscular dystrophy patients. F1000Res 2023; 11:148. [PMID: 38009102 PMCID: PMC10668572 DOI: 10.12688/f1000research.73476.3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/13/2023] [Indexed: 11/28/2023] Open
Abstract
Background Duchenne muscular dystrophy (DMD) and Becker muscular dystrophy (BMD) are allelic disorders caused by mutations in the DMD gene. The full mutation spectrum of the DMD gene in Indonesian patients is currently unknown. Mutation-specific therapies are currently being developed, such as exon skipping or stop codon read-through therapy. This study was conducted with the aim of identifying the mutation spectrum of the DMD gene in Indonesia to guide future development and application of feasible therapeutic strategies. Methods This study is a cross sectional study that enrolled 43 male patients with a clinical suspicion of DMD or BMD. Multiplex ligation-dependent probe amplification (MLPA) reaction was performed to screen for the common mutations in the DMD gene. Results Out of 43 subjects, deletions accounted for 69.77% (n=30) cases, while duplications were found in 11.63% (n=5) cases. One novel duplication spanning exons 2 to 62 was identified. Deletion mutations clustered around the distal (66.67%) and proximal (26.67%) hot spot regions of the DMD gene while duplication mutations were observed solely at the proximal region. Two false positive cases of single exon deletion detected through MLPA were attributed to sequence mutations affecting primer ligation sites, confirming the need to validate all single exon deletions when using this screening method. Analysis of available maternal DNA samples showed that the rate of de novo mutations (48.15%) appears higher than expected in this population. Out of 31 patients who were classified as DMD based on clinical and genotype characterizations, 60.47% (n=26) of cases were suitable for exon skipping therapy. Conclusion This is the first comprehensive study showing the feasibility of implementing the MLPA method for routine screening of DMD patients in Indonesia. This is also the first study showing the potential applicability of exon skipping therapy in the majority of DMD cases in the country.
Collapse
Affiliation(s)
- Ery Kus Dwianingsih
- Genetics Working Group, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, 55281, Indonesia
- Dr. Sardjito General Hospital, Yogyakarta, 55281, Indonesia
- Department of Anatomical Pathology, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, 55281, Indonesia
| | - Kristy Iskandar
- Genetics Working Group, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, 55281, Indonesia
- Academic Hospital, Universitas Gadjah Mada, Yogyakarta, 55291, Indonesia
- Department of Child Health, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, 55281, Indonesia
| | - Sunartini Hapsara
- Academic Hospital, Universitas Gadjah Mada, Yogyakarta, 55291, Indonesia
- Department of Child Health, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, 55281, Indonesia
| | - Chun Ping Liu
- Department of Pediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119228, Singapore
| | - Rusdy Ghazali Malueka
- Genetics Working Group, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, 55281, Indonesia
- Dr. Sardjito General Hospital, Yogyakarta, 55281, Indonesia
- Department of Neurology, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, 55281, Indonesia
| | - Gunadi
- Genetics Working Group, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, 55281, Indonesia
- Dr. Sardjito General Hospital, Yogyakarta, 55281, Indonesia
- Pediatric Surgery Division, Department of Surgery, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, 55281, Indonesia
| | - Masafumi Matsuo
- KNC Department of Nucleic Acid Drug Discovery, Faculty of Rehabilitation, Kobegakuin University, Kobe, 651-2180, Japan
| | - Poh San Lai
- Department of Pediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119228, Singapore
| |
Collapse
|
4
|
Tang F, Xiao Y, Zhou C, Zhang H, Wang J, Zeng Y. NGS-based targeted sequencing identified six novel variants in patients with Duchenne/Becker muscular dystrophy from southwestern China. BMC Med Genomics 2023; 16:121. [PMID: 37254189 DOI: 10.1186/s12920-023-01556-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 05/22/2023] [Indexed: 06/01/2023] Open
Abstract
BACKGROUND At present, Multiplex ligation-dependent probe amplification (MLPA) and exome sequencing are common gene detection methods in patients with Duchenne muscular dystrophy or Becker muscular dystrophy (DMD/BMD), but they can not cover the whole-genome sequence of the DMD gene. In this study, the whole genome capture of the DMD gene and next-generation sequencing (NGS) technology were used to detect the patients with DMD/BMD in Southwest China, to clarify the application value of this technology and further study the gene variant spectrum. METHODS From 2017 to 2020, 51 unrelated patients with DMD/BMD in southwestern China were clinically diagnosed at West China Second University Hospital of Sichuan University (Chengdu, China). The whole-genome of the DMD gene was captured from the peripheral blood of all patients, and next-generation sequencing was performed. Large copy number variants (CNVs) in the exon regions of the DMD gene were verified through MLPA, and small variations (such as single nucleotide variation and < 50 bp fragment insertions/deletions) were validated using Sanger sequencing. RESULTS Among the 51 patients, 49 (96.1% [49/51]) had pathogenic or likely pathogenic variants in the DMD gene. Among the 49 positive samples, 17 patients (34.7% [17/49]) had CNVs in the exon regions and 32 patients (65.3% [32/49]) had small variations. A total of six novel variants were identified: c.10916_10917del, c.1790T>A, c.1842del, c.5015del, c.5791_5792insCA, and exons 38-50 duplication. CONCLUSIONS Pathogenic or likely pathogenic variants of the DMD gene were detected in 49 patients (96.1% [49/51]), of which 6 variants (12.2% [6/49]) had not been previously reported. This study confirmed the value of NGS-based targeted sequencing for the DMD gene expanding the spectrum of variants in DMD, which may provide effective genetic counseling and prenatal diagnosis for families.
Collapse
Affiliation(s)
- Feng Tang
- Department of Medical Genetics, West China Second University Hospital of Sichuan University, Chengdu, People's Republic of China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China
| | - Yuanyuan Xiao
- Department of Medical Genetics, West China Second University Hospital of Sichuan University, Chengdu, People's Republic of China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China
| | - Cong Zhou
- Department of Medical Genetics, West China Second University Hospital of Sichuan University, Chengdu, People's Republic of China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China
| | - Haixia Zhang
- Department of Medical Genetics, West China Second University Hospital of Sichuan University, Chengdu, People's Republic of China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China
| | - Jing Wang
- Department of Medical Genetics, West China Second University Hospital of Sichuan University, Chengdu, People's Republic of China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China
| | - Yang Zeng
- Department of Medical Genetics, West China Second University Hospital of Sichuan University, Chengdu, People's Republic of China.
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China.
| |
Collapse
|
5
|
Indications and management of preimplantation genetic testing for monogenic conditions: a committee opinion. Fertil Steril 2023:S0015-0282(23)00210-8. [PMID: 37162432 DOI: 10.1016/j.fertnstert.2023.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 03/06/2023] [Indexed: 05/11/2023]
Abstract
This statement is offered to update and expand on the prior American Society for Reproductive Medicine preimplantation genetic testing (PGT) opinion, elucidate the current clinical and technical complexities specific to PGT for monogenic conditions, assist providers in supporting patient understanding of and access to this technology, and offer considerations for the development of future clinical and laboratory guidelines on PGT for monogenic conditions.
Collapse
|
6
|
Langley E, Farach LS, Mowrey K. Case Report: Novel pathogenic variant in NFIX in two sisters with Malan syndrome due to germline mosaicism. Front Genet 2022; 13:1044660. [DOI: 10.3389/fgene.2022.1044660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 10/31/2022] [Indexed: 11/11/2022] Open
Abstract
Malan syndrome is an autosomal dominant disorder caused by pathogenic variants in NFIX with less than 100 cases reported thus far. NFIX is important for stem cell proliferation, quiescence, and differentiation during development and its protein plays a role in replication, signal transduction, and transcription. As a result of pathogenic variants, symptoms of Malan syndrome include overgrowth, intellectual disability, speech delay, and dysmorphic features. Currently, the recurrence risk for this disorder is indicated at less than 1%, standard for de novo autosomal dominant disorders. Herein, we report an additional set of sisters with the same novel pathogenic variant in NFIX and clinical features consistent with Malan syndrome providing evidence of germline mosaicism. Considering the rarity of this condition in conjunction with three previous reports of germline mosaicism, it is worthwhile to investigate and re-evaluate the proper recurrence risk for this condition. This discovery would be paramount for family planning and genetic counseling practices in families with affected individuals.
Collapse
|
7
|
Gil-Salvador M, Latorre-Pellicer A, Lucia-Campos C, Arnedo M, Darnaude MT, Díaz de Bustamante A, Villares R, Palma Milla C, Puisac B, Musio A, Ramos FJ, Pié J. Case report: A novel case of parental mosaicism in SMC1A gene causes inherited Cornelia de Lange syndrome. Front Genet 2022; 13:993064. [PMID: 36246631 PMCID: PMC9554350 DOI: 10.3389/fgene.2022.993064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 09/05/2022] [Indexed: 11/18/2022] Open
Abstract
Ultimate advances in genetic technologies have permitted the detection of transmitted cases of congenital diseases due to parental gonadosomatic mosaicism. Regarding Cornelia de Lange syndrome (CdLS), up to date, only a few cases are known to follow this inheritance pattern. However, the high prevalence of somatic mosaicism recently reported in this syndrome (∼13%), together with the disparity observed in tissue distribution of the causal variant, suggests that its prevalence in this disorder could be underestimated. Here, we report a new case of parental gonadosomatic mosaicism in SMC1A gene that causes inherited CdLS, in which the mother of the patient carries the causative variant in very low allele frequencies in buccal swab and blood. While the affected child presents with typical CdLS phenotype, his mother does not show any clinical manifestations. As regards SMC1A, the difficulty of clinical identification of carrier females has been already recognized, as well as the gender differences observed in CdLS expressivity when the causal variant is found in this gene. Currently, the use of DNA deep-sequencing techniques is highly recommended when it comes to molecular diagnosis of patients, as well as in co-segregation studies. These enable us to uncover gonadosomatic mosaic events in asymptomatic or oligosymptomatic parents that had been overlooked so far, which might have great implications regarding genetic counseling for recurrence risk.
Collapse
Affiliation(s)
- Marta Gil-Salvador
- Unit of Clinical Genetics and Functional Genomics, Department of Pharmacology and Physiology, School of Medicine, CIBERER and IIS-Aragon, University of Zaragoza, Zaragoza, Spain
| | - Ana Latorre-Pellicer
- Unit of Clinical Genetics and Functional Genomics, Department of Pharmacology and Physiology, School of Medicine, CIBERER and IIS-Aragon, University of Zaragoza, Zaragoza, Spain
| | - Cristina Lucia-Campos
- Unit of Clinical Genetics and Functional Genomics, Department of Pharmacology and Physiology, School of Medicine, CIBERER and IIS-Aragon, University of Zaragoza, Zaragoza, Spain
| | - María Arnedo
- Unit of Clinical Genetics and Functional Genomics, Department of Pharmacology and Physiology, School of Medicine, CIBERER and IIS-Aragon, University of Zaragoza, Zaragoza, Spain
| | | | | | - Rebeca Villares
- Neuropediatrics, University Hospital of Móstoles, Madrid, Spain
| | | | - Beatriz Puisac
- Unit of Clinical Genetics and Functional Genomics, Department of Pharmacology and Physiology, School of Medicine, CIBERER and IIS-Aragon, University of Zaragoza, Zaragoza, Spain
| | - Antonio Musio
- Institute for Biomedical Technologies (ITB), National Research Council (CNR), Pisa, Italy
| | - Feliciano J. Ramos
- Unit of Clinical Genetics, Service of Paediatrics, Department of Paediatrics, University Hospital “Lozano Blesa”, School of Medicine, CIBERER and IIS-Aragon, University of Zaragoza, Zaragoza, Spain
| | - Juan Pié
- Unit of Clinical Genetics and Functional Genomics, Department of Pharmacology and Physiology, School of Medicine, CIBERER and IIS-Aragon, University of Zaragoza, Zaragoza, Spain
- *Correspondence: Juan Pié,
| |
Collapse
|
8
|
Mohiuddin M, Kooy RF, Pearson CE. De novo mutations, genetic mosaicism and human disease. Front Genet 2022; 13:983668. [PMID: 36226191 PMCID: PMC9550265 DOI: 10.3389/fgene.2022.983668] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 09/08/2022] [Indexed: 11/23/2022] Open
Abstract
Mosaicism—the existence of genetically distinct populations of cells in a particular organism—is an important cause of genetic disease. Mosaicism can appear as de novo DNA mutations, epigenetic alterations of DNA, and chromosomal abnormalities. Neurodevelopmental or neuropsychiatric diseases, including autism—often arise by de novo mutations that usually not present in either of the parents. De novo mutations might occur as early as in the parental germline, during embryonic, fetal development, and/or post-natally, through ageing and life. Mutation timing could lead to mutation burden of less than heterozygosity to approaching homozygosity. Developmental timing of somatic mutation attainment will affect the mutation load and distribution throughout the body. In this review, we discuss the timing of de novo mutations, spanning from mutations in the germ lineage (all ages), to post-zygotic, embryonic, fetal, and post-natal events, through aging to death. These factors can determine the tissue specific distribution and load of de novo mutations, which can affect disease. The disease threshold burden of somatic de novo mutations of a particular gene in any tissue will be important to define.
Collapse
Affiliation(s)
- Mohiuddin Mohiuddin
- Program of Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada
- *Correspondence: Mohiuddin Mohiuddin, ; Christopher E. Pearson,
| | - R. Frank Kooy
- Department of Medical Genetics, University of Antwerp, Edegem, Belgium
| | - Christopher E. Pearson
- Program of Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
- *Correspondence: Mohiuddin Mohiuddin, ; Christopher E. Pearson,
| |
Collapse
|
9
|
Zemet R, Van den Veyver IB, Stankiewicz P. Parental mosaicism for apparent de novo genetic variants: Scope, detection, and counseling challenges. Prenat Diagn 2022; 42:811-821. [PMID: 35394072 PMCID: PMC9995893 DOI: 10.1002/pd.6144] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 04/04/2022] [Accepted: 04/04/2022] [Indexed: 11/07/2022]
Abstract
The disease burden of de novo mutations (DNMs) has been evidenced only recently when the common application of next-generation sequencing technologies enabled their reliable and affordable detection through family-based clinical exome or genome sequencing. Implementation of exome sequencing into prenatal diagnostics revealed that up to 63% of pathogenic or likely pathogenic variants associated with fetal structural anomalies are apparently de novo, primarily for autosomal dominant disorders. Apparent DNMs have been considered to primarily occur as germline or zygotic events, with consequently negligible recurrence risks. However, there is now evidence that a considerable proportion of them are in fact inherited from a parent mosaic for the variant. Here, we review the burden of DNMs in prenatal diagnostics and the influence of parental mosaicism on the interpretation of apparent DNMs and discuss the challenges with detecting and quantifying parental mosaicism and its effect on recurrence risk. We also describe new bioinformatic and technological tools developed to assess mosaicism and discuss how they improve the accuracy of reproductive risk counseling when parental mosaicism is detected.
Collapse
Affiliation(s)
- Roni Zemet
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - Ignatia B Van den Veyver
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA.,Department of Obstetrics and Gynecology, Baylor College of Medicine, Houston, Texas, USA.,Texas Children's Hospital, Houston, Texas, USA
| | - Paweł Stankiewicz
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|
10
|
Levchenko OA, Rudenskaya GE, Markova TV, Bessonova LA, Marakhonov AV, Nagieva SE, Shchagina OA, Lavrov AV. Autosomal dominant intellectual disability associated with the MED13L gene. ROSSIYSKIY VESTNIK PERINATOLOGII I PEDIATRII (RUSSIAN BULLETIN OF PERINATOLOGY AND PEDIATRICS) 2022. [DOI: 10.21508/1027-4065-2022-67-1-101-107] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Intellectual disability is a widespread group of diseases with population frequency 1–3%. More than half of intellectual disability cases are due to various genetic causes, including monogenic ones. The paper describes three clinical cases of MED13L-associated intellectual disability with an autosomal dominant inheritance. Novel probably pathogenic variants p.Cys118delinsTrpSer and p.Gln2111fs, as well as the previously described p.Pro866Leu mutation in the MED13L gene (NM_015335), were detected in patients by massive parallel sequencing. А rare familial case with two affected maternal half-siblings was of particular interest since the mutation detected in both children was not found in the mother (blood cells and buccal epithelium were investigated). We assume the presence of gonadal mosaicism in the mother, which allows to recommend families with confirmed cases of MED13L-associated intellectual disability to plan pregnancies with prenatal or preimplantational diagnostics. The disease has been shown to have a wide clinical variability, even intrafamilial.
Collapse
Affiliation(s)
| | | | | | | | | | - S. E. Nagieva
- Sechenov First Moscow State Medical University (Sechenov University)
| | | | | |
Collapse
|
11
|
Matsuzaka Y, Hirai Y, Hashido K, Okada T. Therapeutic Application of Extracellular Vesicles-Capsulated Adeno-Associated Virus Vector via nSMase2/Smpd3, Satellite, and Immune Cells in Duchenne Muscular Dystrophy. Int J Mol Sci 2022; 23:1551. [PMID: 35163475 PMCID: PMC8836108 DOI: 10.3390/ijms23031551] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/21/2022] [Accepted: 01/25/2022] [Indexed: 02/04/2023] Open
Abstract
Duchenne muscular dystrophy (DMD) is caused by loss-of-function mutations in the dystrophin gene on chromosome Xp21. Disruption of the dystrophin-glycoprotein complex (DGC) on the cell membrane causes cytosolic Ca2+ influx, resulting in protease activation, mitochondrial dysfunction, and progressive myofiber degeneration, leading to muscle wasting and fragility. In addition to the function of dystrophin in the structural integrity of myofibers, a novel function of asymmetric cell division in muscular stem cells (satellite cells) has been reported. Therefore, it has been suggested that myofiber instability may not be the only cause of dystrophic degeneration, but rather that the phenotype might be caused by multiple factors, including stem cell and myofiber functions. Furthermore, it has been focused functional regulation of satellite cells by intracellular communication of extracellular vesicles (EVs) in DMD pathology. Recently, a novel molecular mechanism of DMD pathogenesis-circulating RNA molecules-has been revealed through the study of target pathways modulated by the Neutral sphingomyelinase2/Neutral sphingomyelinase3 (nSMase2/Smpd3) protein. In addition, adeno-associated virus (AAV) has been clinically applied for DMD therapy owing to the safety and long-term expression of transduction genes. Furthermore, the EV-capsulated AAV vector (EV-AAV) has been shown to be a useful tool for the intervention of DMD, because of the high efficacy of the transgene and avoidance of neutralizing antibodies. Thus, we review application of AAV and EV-AAV vectors for DMD as novel therapeutic strategy.
Collapse
Affiliation(s)
- Yasunari Matsuzaka
- Division of Molecular and Medical Genetics, Center for Gene and Cell Therapy, The Institute of Medical Science, University of Tokyo, Minato-ku, Tokyo 108-8639, Japan;
- Administrative Section of Radiation Protection, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Tokyo 187-8551, Japan;
| | - Yukihiko Hirai
- Division of Molecular and Medical Genetics, Center for Gene and Cell Therapy, The Institute of Medical Science, University of Tokyo, Minato-ku, Tokyo 108-8639, Japan;
| | - Kazuo Hashido
- Administrative Section of Radiation Protection, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Tokyo 187-8551, Japan;
| | - Takashi Okada
- Division of Molecular and Medical Genetics, Center for Gene and Cell Therapy, The Institute of Medical Science, University of Tokyo, Minato-ku, Tokyo 108-8639, Japan;
| |
Collapse
|
12
|
Lin J, Li H, Liao Z, Wang L, Zhang C. Comparison of Carrier and de novo Pathogenic Variants in a Chinese DMD/BMD Cohort. Front Neurol 2021; 12:714677. [PMID: 34421809 PMCID: PMC8375267 DOI: 10.3389/fneur.2021.714677] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 07/14/2021] [Indexed: 01/14/2023] Open
Abstract
Background: Duchenne and Becker muscular dystrophy (DMD/BMD) are X-linked recessively inherited neuromuscular disorders caused by deletions, duplications, or small mutations in the DMD gene. With advances in prenatal diagnosis decreasing the number of affected offspring from carrier mothers, the frequency of de novo variants could increase. Therefore, determining the differences between the carrier and de novo variants of the DMD gene, which are rarely explored, is important for trial planning and genetic diagnosis in the future. Methods: A total of 440 patients, 349 of whom had DMD and 91 had BMD, diagnosed in our department between 2012 and 2019, along with their respective mothers, were included in this study. Multiplex ligation-dependent probe amplification was used to detected deletions and duplications in patients and their mothers. Small mutations were detected using next-generation sequencing in the patients, followed by Sanger sequencing in the mothers. Results: Deletions, duplications, and small mutations were identified in 204, 46, and 99 of the 349 patients with DMD and in 50, 10, and 31 of the 91 patients with BMD, respectively. De novo deletions were more concentrated in hotspot regions than carrier deletions of DMD/BMD. No clear bias was observed in the variant distribution between carriers, de novo duplications, and small mutations in DMD/BMD. The carrier frequency of DMD (61.6%) was lower than that of BMD (69.2%), but the difference was not statistically significant. The carrier frequency of deletions of the DMD gene (51.2%) was significantly lower than those of duplications (75%) and small mutations (81.5%). Conclusion: Compared to de novo deletions, deletions from carrier mothers had a wider distribution. Moreover, there was no significant difference between the carrier frequencies of DMD and BMD. Duplications and small mutations were more commonly inherited, while deletions were present de novo.
Collapse
Affiliation(s)
- Jinfu Lin
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, Guangzhou, China
| | - Huan Li
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, Guangzhou, China
| | - Ziyu Liao
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, Guangzhou, China
| | - Liang Wang
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, Guangzhou, China
| | - Cheng Zhang
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, Guangzhou, China
| |
Collapse
|
13
|
Abstract
Advances in genetic technology have decreased the cost and increased the accessibility of genetic testing, and introduced new therapeutic options for many genetic conditions. With new treatments available for previously untreatable neurogenetic conditions, identifying a genetic diagnosis has become of great importance. This article provides a review of basic genetic concepts, ethical and counseling considerations with genetic testing, and genetic testing strategies, and highlights a series of clinical care pearls.
Collapse
Affiliation(s)
- Roa Sadat
- Pediatric Neurogenetics Clinic, Blue Bird Circle Clinic for Pediatric Neurology, Section of Pediatric Neurology and Developmental Neuroscience, Texas Children's Hospital
- Baylor College of Medicine, 6701 Fannin St., Suite 1250.07, Houston, TX 77030, USA.
| | - Lisa Emrick
- Pediatric Neurogenetics Clinic, Blue Bird Circle Clinic for Pediatric Neurology, Section of Pediatric Neurology and Developmental Neuroscience, Texas Children's Hospital
- Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
14
|
Zhytnik L, Peters M, Tilk K, Simm K, Tõnisson N, Reimand T, Maasalu K, Acharya G, Krjutškov K, Salumets A. From late fatherhood to prenatal screening of monogenic disorders: evidence and ethical concerns. Hum Reprod Update 2021; 27:1056-1085. [PMID: 34329448 DOI: 10.1093/humupd/dmab023] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 06/27/2021] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND With the help of ART, an advanced parental age is not considered to be a serious obstacle for reproduction anymore. However, significant health risks for future offspring hide behind the success of reproductive medicine for the treatment of reduced fertility associated with late parenthood. Although an advanced maternal age is a well-known risk factor for poor reproductive outcomes, understanding the impact of an advanced paternal age on offspring is yet to be elucidated. De novo monogenic disorders (MDs) are highly associated with late fatherhood. MDs are one of the major sources of paediatric morbidity and mortality, causing significant socioeconomic and psychological burdens to society. Although individually rare, the combined prevalence of these disorders is as high as that of chromosomal aneuploidies, indicating the increasing need for prenatal screening. With the help of advanced reproductive technologies, families with late paternity have the option of non-invasive prenatal testing (NIPT) for multiple MDs (MD-NIPT), which has a sensitivity and specificity of almost 100%. OBJECTIVE AND RATIONALE The main aims of the current review were to examine the effect of late paternity on the origin and nature of MDs, to highlight the role of NIPT for the detection of a variety of paternal age-associated MDs, to describe clinical experiences and to reflect on the ethical concerns surrounding the topic of late paternity and MD-NIPT. SEARCH METHODS An extensive search of peer-reviewed publications (1980-2021) in English from the PubMed and Google Scholar databases was based on key words in different combinations: late paternity, paternal age, spermatogenesis, selfish spermatogonial selection, paternal age effect, de novo mutations (DNMs), MDs, NIPT, ethics of late fatherhood, prenatal testing and paternal rights. OUTCOMES An advanced paternal age provokes the accumulation of DNMs, which arise in continuously dividing germline cells. A subset of DNMs, owing to their effect on the rat sarcoma virus protein-mitogen-activated protein kinase signalling pathway, becomes beneficial for spermatogonia, causing selfish spermatogonial selection and outgrowth, and in some rare cases may lead to spermatocytic seminoma later in life. In the offspring, these selfish DNMs cause paternal age effect (PAE) disorders with a severe and even life-threatening phenotype. The increasing tendency for late paternity and the subsequent high risk of PAE disorders indicate an increased need for a safe and reliable detection procedure, such as MD-NIPT. The MD-NIPT approach has the capacity to provide safe screening for pregnancies at risk of PAE disorders and MDs, which constitute up to 20% of all pregnancies. The primary risks include pregnancies with a paternal age over 40 years, a previous history of an affected pregnancy/child, and/or congenital anomalies detected by routine ultrasonography. The implementation of NIPT-based screening would support the early diagnosis and management needed in cases of affected pregnancy. However, the benefits of MD-NIPT need to be balanced with the ethical challenges associated with the introduction of such an approach into routine clinical practice, namely concerns regarding reproductive autonomy, informed consent, potential disability discrimination, paternal rights and PAE-associated issues, equity and justice in accessing services, and counselling. WIDER IMPLICATIONS Considering the increasing parental age and risks of MDs, combined NIPT for chromosomal aneuploidies and microdeletion syndromes as well as tests for MDs might become a part of routine pregnancy management in the near future. Moreover, the ethical challenges associated with the introduction of MD-NIPT into routine clinical practice need to be carefully evaluated. Furthermore, more focus and attention should be directed towards the ethics of late paternity, paternal rights and paternal genetic guilt associated with pregnancies affected with PAE MDs.
Collapse
Affiliation(s)
- Lidiia Zhytnik
- Competence Centre on Health Technologies, Tartu, Estonia
| | - Maire Peters
- Competence Centre on Health Technologies, Tartu, Estonia.,Department of Obstetrics and Gynaecology, Institute of Clinical Medicine, University of Tartu, Tartu, Estonia
| | - Kadi Tilk
- Competence Centre on Health Technologies, Tartu, Estonia
| | - Kadri Simm
- Institute of Philosophy and Semiotics, Faculty of Arts and Humanities, University of Tartu, Tartu, Estonia.,Centre of Ethics, University of Tartu, Tartu, Estonia
| | - Neeme Tõnisson
- Institute of Genomics, University of Tartu, Tartu, Estonia.,Department of Clinical Genetics, United Laboratories, Tartu University Hospital, Tartu, Estonia.,Department of Reproductive Medicine, West Tallinn Central Hospital, Tallinn, Estonia
| | - Tiia Reimand
- Department of Clinical Genetics, United Laboratories, Tartu University Hospital, Tartu, Estonia.,Department of Clinical Genetics, Institute of Clinical Medicine, University of Tartu, Tartu, Estonia
| | - Katre Maasalu
- Clinic of Traumatology and Orthopaedics, Tartu University Hospital, Tartu, Estonia.,Department of Traumatology and Orthopaedics, Institute of Clinical Medicine, University of Tartu, Tartu, Estonia
| | - Ganesh Acharya
- Division of Obstetrics and Gynaecology, Department of Clinical Science, Intervention and Technology (CLINTEC), Karolinska Institutet, Stockholm, Sweden
| | - Kaarel Krjutškov
- Competence Centre on Health Technologies, Tartu, Estonia.,Department of Obstetrics and Gynaecology, Institute of Clinical Medicine, University of Tartu, Tartu, Estonia
| | - Andres Salumets
- Competence Centre on Health Technologies, Tartu, Estonia.,Department of Obstetrics and Gynaecology, Institute of Clinical Medicine, University of Tartu, Tartu, Estonia.,Institute of Genomics, University of Tartu, Tartu, Estonia.,Division of Obstetrics and Gynaecology, Department of Clinical Science, Intervention and Technology (CLINTEC), Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
15
|
Zhong X, Cui S, Liu L, Yang Y, Kong X. DMD/BMD prenatal diagnosis and treatment expectation in a single centre in China for 15 years. BMC Med Genomics 2021; 14:181. [PMID: 34238289 PMCID: PMC8268296 DOI: 10.1186/s12920-021-01024-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Accepted: 06/28/2021] [Indexed: 12/15/2022] Open
Abstract
OBJECTIVE DMD/BMD prenatal diagnosis for 931 foetuses. BACKGROUND DMD is the most common fatal X-linked recessive muscular disease. There is no effective clinical treatment method at present. Accurate gene diagnosis and prenatal diagnosis technology are important ways for early detection, early prevention and early treatment. METHODS A total of 931 prenatal diagnoses were performed for pregnant women with a definite family history of DMD or a history of DMD childbirth between 2005 and 2019. This report may be considered the largest DMD prenatal diagnosis report in a single centre worldwide. Multiple ligation-dependent probe amplification (MLPA) and next-generation sequencing were used in combination. Techniques and short tandem repeat (STR) linkage analysis were used to determine the location of the DMD gene mutation in the pregnant woman and then to detect the DMD gene in the foetuses. RESULTS There were 872 families in our study. Among all 931 foetuses, 20.73% (193/931) were males expected to develop DMD and 16.33% (152/931) were female carriers. In addition, gonadal mosaicism was observed in 5 mothers, and gene recombination was identified in three foetuses. The results of the prenatal diagnosis were consistent with the results of the CPK analysis, and the results of the prenatal diagnosis were 100% accurate. CONCLUSIONS MLPA and Sanger sequencing, when combined with STR linkage analyses, can provide an accurate and rapid prenatal diagnosis. Due to the high de novo rate, prenatal diagnosis and genetic counselling should be given great attention.
Collapse
Affiliation(s)
- Xingjian Zhong
- The Genetics and Prenatal Diagnosis Center, The First Affiliated Hospital of Zhengzhou University, No. 1, Jianshe East Rd., Erqi District, Zhengzhou, Henan Province, China
| | - Siying Cui
- The Genetics and Prenatal Diagnosis Center, The First Affiliated Hospital of Zhengzhou University, No. 1, Jianshe East Rd., Erqi District, Zhengzhou, Henan Province, China
| | - Lina Liu
- The Genetics and Prenatal Diagnosis Center, The First Affiliated Hospital of Zhengzhou University, No. 1, Jianshe East Rd., Erqi District, Zhengzhou, Henan Province, China
| | - Yuxia Yang
- The Genetics and Prenatal Diagnosis Center, The First Affiliated Hospital of Zhengzhou University, No. 1, Jianshe East Rd., Erqi District, Zhengzhou, Henan Province, China.
| | - Xiangdong Kong
- The Genetics and Prenatal Diagnosis Center, The First Affiliated Hospital of Zhengzhou University, No. 1, Jianshe East Rd., Erqi District, Zhengzhou, Henan Province, China.
| |
Collapse
|
16
|
Scanga HL, Liasis A, Pihlblad MS, Nischal KK. NYX-related Congenital Stationary Night Blindness in Two Siblings due to Probable Maternal Germline Mosaicism. Ophthalmic Genet 2021; 42:588-592. [PMID: 34165036 DOI: 10.1080/13816810.2021.1941129] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Background: Congenital Stationary Night Blindness (CSNB) is a clinically and genetically heterogenous inherited retinal disorder associated with nystagmus, myopia, strabismus, defective dark adaptation, and decreased vision. Pathogenic variants in at least 17 genes have been associated with CSNB, where a hemizygous variant of NYX causing an X-linked form of the disorder is among the commonest causes.Materials and Methods: A retrospective chart review of a single pedigree was performed. Three pediatric patients underwent ophthalmic examinations, visual electrophysiology, and ocular imaging. Molecular genetic testing for CSNB was pursued where clinically indicated.Results: Two male siblings demonstrated clinical and electroretinographic evidence of complete CSNB. Genetic testing identified a NYX pathogenic, in-frame deletion in both children. Targeted variant analysis of the mother failed to identify the variant in two independent samples, most consistent with mosaicism.Conclusions: Clinical and molecular analyses within the described family demonstrate the possibility of maternal mosaicism in NYX-related CSNB. The importance of cascade molecular testing is highlighted. The prospect of somatic or germline mosaicism in NYX-related CSNB informs genetic counseling, genetic testing decisions, and risk assessment in affected families.
Collapse
Affiliation(s)
- H L Scanga
- Division of Pediatric Ophthalmology, Strabismus, and Adult Motility, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - A Liasis
- Division of Pediatric Ophthalmology, Strabismus, and Adult Motility, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA.,UPMC Eye Center, University of Pittsburgh Medical Center, Pittsbrugh, USA
| | - M S Pihlblad
- Division of Pediatric Ophthalmology, Strabismus, and Adult Motility, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA.,UPMC Eye Center, University of Pittsburgh Medical Center, Pittsbrugh, USA
| | - K K Nischal
- Division of Pediatric Ophthalmology, Strabismus, and Adult Motility, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA.,UPMC Eye Center, University of Pittsburgh Medical Center, Pittsbrugh, USA
| |
Collapse
|
17
|
Shastry A, Aravind S, Sunil M, Ramesh K, Ashley B, T. N, Ramprasad VL, Gupta R, Seshagiri S, Nongthomba U, Phalke S. Matrilineal analysis of mutations in the DMD gene in a multigenerational South Indian cohort using DMD gene panel sequencing. Mol Genet Genomic Med 2021; 9:e1633. [PMID: 33960727 PMCID: PMC8172192 DOI: 10.1002/mgg3.1633] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 01/28/2021] [Accepted: 02/09/2021] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND Duchenne muscular dystrophy (DMD) is an X-linked recessive neuromuscular disorder characterised by progressive irreversible muscle weakness, primarily of the skeletal and the cardiac muscles. DMD is characterised by mutations in the dystrophin gene, resulting in the absence or sparse quantities of dystrophin protein. A precise and timely molecular detection of DMD mutations encourages interventions such as carrier genetic counselling and in undertaking therapeutic measures for the DMD patients. RESULTS In this study, we developed a 2.1 Mb custom DMD gene panel that spans the entire DMD gene, including the exons and introns. The panel also includes the probes against 80 additional genes known to be mutated in other muscular dystrophies. This custom DMD gene panel was used to identify single nucleotide variants (SNVs) and large deletions with precise breakpoints in 77 samples that included 24 DMD patients and their matrilineage across four generations. We used this panel to evaluate the inheritance pattern of DMD mutations in maternal subjects representing 24 DMD patients. CONCLUSION Here we report our observations on the inheritance pattern of DMD gene mutations in matrilineage samples across four generations. Additionally, our data suggest that the DMD gene panel designed by us can be routinely used as a single genetic test to identify all DMD gene variants in DMD patients and the carrier mothers.
Collapse
Affiliation(s)
- Arun Shastry
- Dystrophy Annihilation Research Trust (DART)BangaloreIndia
| | - Sankaramoorthy Aravind
- Dystrophy Annihilation Research Trust (DART)BangaloreIndia
- Indian Institute of Science (IISc)BangaloreIndia
| | | | - Keerthi Ramesh
- Dystrophy Annihilation Research Trust (DART)BangaloreIndia
| | - Berty Ashley
- Dystrophy Annihilation Research Trust (DART)BangaloreIndia
| | | | | | | | | | | | - Sameer Phalke
- MedGenome LabsBangaloreIndia
- SciGenom Labs Pvt LtdCochinIndia
| |
Collapse
|
18
|
Sun H, Shen XR, Fang ZB, Jiang ZZ, Wei XJ, Wang ZY, Yu XF. Next-Generation Sequencing Technologies and Neurogenetic Diseases. Life (Basel) 2021; 11:life11040361. [PMID: 33921670 PMCID: PMC8072598 DOI: 10.3390/life11040361] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 04/05/2021] [Accepted: 04/16/2021] [Indexed: 12/18/2022] Open
Abstract
Next-generation sequencing (NGS) technology has led to great advances in understanding the causes of Mendelian and complex neurological diseases. Owing to the complexity of genetic diseases, the genetic factors contributing to many rare and common neurological diseases remain poorly understood. Selecting the correct genetic test based on cost-effectiveness, coverage area, and sequencing range can improve diagnosis, treatments, and prevention. Whole-exome sequencing and whole-genome sequencing are suitable methods for finding new mutations, and gene panels are suitable for exploring the roles of specific genes in neurogenetic diseases. Here, we provide an overview of the classifications, applications, advantages, and limitations of NGS in research on neurological diseases. We further provide examples of NGS-based explorations and insights of the genetic causes of neurogenetic diseases, including Charcot-Marie-Tooth disease, spinocerebellar ataxias, epilepsy, and multiple sclerosis. In addition, we focus on issues related to NGS-based analyses, including interpretations of variants of uncertain significance, de novo mutations, congenital genetic diseases with complex phenotypes, and single-molecule real-time approaches.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Xue-Fan Yu
- Correspondence: ; Tel.: +86-157-5430-1836
| |
Collapse
|
19
|
Xia Y, Feng Y, Xu L, Chen X, Gao F, Mao S. Case Report: Whole-Exome Sequencing With MLPA Revealed Variants in Two Genes in a Patient With Combined Manifestations of Spinal Muscular Atrophy and Duchenne Muscular Dystrophy. Front Genet 2021; 12:605611. [PMID: 33777091 PMCID: PMC7987946 DOI: 10.3389/fgene.2021.605611] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Accepted: 02/02/2021] [Indexed: 11/24/2022] Open
Abstract
Spinal muscular atrophy (SMA) and Duchenne muscular dystrophy (DMD) are two common kinds of neuromuscular disorders sharing various similarities in clinical manifestations. SMA is an autosomal recessive genetic disorder that results from biallelic mutations of the survival motor neuron 1 gene (SMN1; OMIM 600354) on the 5q13 chromosome. DMD is an X-linked disorder caused by defects in the DMD gene (OMIM 300377) on the X chromosome. Here, for the first time, we report a case from a Chinese family who present with clinical manifestations of both two diseases, including poor motor development and progressive muscle weakness. We identified a homozygous deletion in exons 7 and 8 of the SMN1 gene and a deletion in exon 50 of the DMD gene by whole-exome sequencing (WES) and multiplex ligation-dependent probe amplification (MLPA). This case expands our understanding of diagnosis for synchronous SMA and DMD and highlights the importance of various genetic testing methods, including WES, in differential diagnosis of neuromuscular diseases.
Collapse
Affiliation(s)
- Yu Xia
- National Clinical Research Center for Child Health, Department of Neurology, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yijie Feng
- National Clinical Research Center for Child Health, Department of Neurology, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Lu Xu
- National Clinical Research Center for Child Health, Department of Neurology, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaoyang Chen
- National Clinical Research Center for Child Health, Department of Developmental and Behavioral Pediatrics, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Feng Gao
- National Clinical Research Center for Child Health, Department of Neurology, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Shanshan Mao
- National Clinical Research Center for Child Health, Department of Neurology, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
20
|
Antonarakis SE, Holoubek A, Rapti M, Rademaker J, Meylan J, Iwaszkiewicz J, Zoete V, Wilson C, Taylor J, Ansar M, Borel C, Menzel O, Kuželová K, Santoni FA. Dominant monoallelic variant in the PAK2 gene causes Knobloch syndrome type 2. Hum Mol Genet 2021; 31:1-9. [PMID: 33693784 DOI: 10.1093/hmg/ddab026] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 01/11/2021] [Accepted: 01/31/2021] [Indexed: 11/12/2022] Open
Abstract
Knobloch syndrome is an autosomal recessive phenotype mainly characterized by retinal detachment and encephalocele caused by biallelic pathogenic variants in the COL18A1 gene. However, there are patients clinically diagnosed as Knobloch syndrome with unknown molecular etiology not linked to COL18A1. We studied an historical pedigree (published in 1998) designated as KNO2 (Knobloch type 2 syndrome with intellectual disability, autistic behavior, retinal degeneration, encephalocele). Whole exome sequencing of the two affected siblings and the normal parents resulted in the identification of a PAK2 non-synonymous substitution p.(Glu435Lys) as a causative variant. The variant was monoallelic and apparently de novo in both siblings indicating a likely germline mosaicism in one of the parents; the mosaicism however could not be observed after deep sequencing of blood parental DNA. PAK2 encodes a member of a small group of serine/threonine kinases; these P21-activating kinases (PAKs) are essential in signal transduction and cellular regulation (cytoskeletal dynamics, cell motility, death and survival signaling, and cell cycle progression). Structural analysis of the PAK2 p.(Glu435Lys) variant which is located in the kinase domain of the protein predicts a possible compromise in the kinase activity. Functional analysis of the p.(Glu435Lys) PAK2 variant in transfected HEK293T cells results in a partial loss of the kinase activity. PAK2 has been previously suggested as an autism related gene. Our results show that PAK2 induced phenotypic spectrum is broad and not fully understood. We conclude that the KNO2 syndrome in the studied family is dominant and caused by a deleterious variant in the PAK2 gene.
Collapse
Affiliation(s)
- Stylianos E Antonarakis
- Department of Genetic Medicine and Development, University of Geneva Medical Faculty, Geneva 1211, Switzerland.,iGE3 Institute of Genetics and Genomics of Geneva, Geneva 1211, Switzerland
| | - Ales Holoubek
- Department of Proteomics, Institute of Hematology and Blood Transfusion, Prague, Czech Republic
| | - Melivoia Rapti
- Department of Endocrinology Diabetes and Metabolism, Lausanne University Hospital, Lausanne 1011, Switzerland
| | - Jesse Rademaker
- Department of Endocrinology Diabetes and Metabolism, Lausanne University Hospital, Lausanne 1011, Switzerland
| | - Jenny Meylan
- Department of Endocrinology Diabetes and Metabolism, Lausanne University Hospital, Lausanne 1011, Switzerland
| | - Justyna Iwaszkiewicz
- Molecular Modeling Group, Swiss Institute of Bioinformatics, Lausanne 1015, Switzerland
| | - Vincent Zoete
- Molecular Modeling Group, Swiss Institute of Bioinformatics, Lausanne 1015, Switzerland.,Department of Fundamental Oncology, Ludwig Institute for Cancer Research, Lausanne University, Epalinges 1066, Switzerland
| | - Callum Wilson
- National Metabolic Service, Starship Children's Hospital, Auckland 1142, New Zealand
| | - Juliet Taylor
- National Metabolic Service, Starship Children's Hospital, Auckland 1142, New Zealand
| | - Muhammad Ansar
- Institute of Molecular and Clinical Ophthalmology, Basel 4031, Switzerland
| | - Christelle Borel
- Department of Genetic Medicine and Development, University of Geneva Medical Faculty, Geneva 1211, Switzerland
| | - Olivier Menzel
- Health 2030 Genome Center, Foundation Campus Biotech Geneva Foundation, Geneva 1202, Switzerland
| | - Kateřina Kuželová
- Department of Proteomics, Institute of Hematology and Blood Transfusion, Prague, Czech Republic
| | - Federico A Santoni
- Department of Endocrinology Diabetes and Metabolism, Lausanne University Hospital, Lausanne 1011, Switzerland.,Faculty of Biology and Medicine, University of Lausanne, Lausanne 1011, Switzerland
| |
Collapse
|
21
|
Abstract
Duchenne muscular dystrophy is a severe, progressive, muscle-wasting disease that leads to difficulties with movement and, eventually, to the need for assisted ventilation and premature death. The disease is caused by mutations in DMD (encoding dystrophin) that abolish the production of dystrophin in muscle. Muscles without dystrophin are more sensitive to damage, resulting in progressive loss of muscle tissue and function, in addition to cardiomyopathy. Recent studies have greatly deepened our understanding of the primary and secondary pathogenetic mechanisms. Guidelines for the multidisciplinary care for Duchenne muscular dystrophy that address obtaining a genetic diagnosis and managing the various aspects of the disease have been established. In addition, a number of therapies that aim to restore the missing dystrophin protein or address secondary pathology have received regulatory approval and many others are in clinical development.
Collapse
Affiliation(s)
- Dongsheng Duan
- Department of Molecular Microbiology and Immunology and Department of Neurology, School of Medicine; Department of Biomedical Sciences, College of Veterinary Medicine; Department of Biomedical, Biological & Chemical Engineering, College of Engineering, University of Missouri, Columbia, MO, USA
| | - Nathalie Goemans
- Department of Child Neurology, University Hospitals Leuven, Leuven, Belgium
| | | | - Eugenio Mercuri
- Centro Clinico Nemo, Policlinico Gemelli, Rome, Italy
- Peadiatric Neurology, Catholic University, Rome, Italy
| | - Annemieke Aartsma-Rus
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands.
| |
Collapse
|
22
|
EMQN best practice guidelines for genetic testing in dystrophinopathies. Eur J Hum Genet 2020; 28:1141-1159. [PMID: 32424326 PMCID: PMC7608854 DOI: 10.1038/s41431-020-0643-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 03/03/2020] [Accepted: 04/28/2020] [Indexed: 02/04/2023] Open
Abstract
Dystrophinopathies are X-linked diseases, including Duchenne muscular dystrophy and Becker muscular dystrophy, due to DMD gene variants. In recent years, the application of new genetic technologies and the availability of new personalised drugs have influenced diagnostic genetic testing for dystrophinopathies. Therefore, these European best practice guidelines for genetic testing in dystrophinopathies have been produced to update previous guidelines published in 2010.These guidelines summarise current recommended technologies and methodologies for analysis of the DMD gene, including testing for deletions and duplications of one or more exons, small variant detection and RNA analysis. Genetic testing strategies for diagnosis, carrier testing and prenatal diagnosis (including non-invasive prenatal diagnosis) are then outlined. Guidelines for sequence variant annotation and interpretation are provided, followed by recommendations for reporting results of all categories of testing. Finally, atypical findings (such as non-contiguous deletions and dual DMD variants), implications for personalised medicine and clinical trials and incidental findings (identification of DMD gene variants in patients where a clinical diagnosis of dystrophinopathy has not been considered or suspected) are discussed.
Collapse
|
23
|
Young E, Bowns B, Gerrish A, Parks M, Court S, Clokie S, Mashayamombe-Wolfgarten C, Hewitt J, Williams D, Cole T, Allen S. Clinical Service Delivery of Noninvasive Prenatal Diagnosis by Relative Haplotype Dosage for Single-Gene Disorders. J Mol Diagn 2020; 22:1151-1161. [PMID: 32553884 PMCID: PMC7471768 DOI: 10.1016/j.jmoldx.2020.06.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 04/30/2020] [Accepted: 06/01/2020] [Indexed: 11/17/2022] Open
Abstract
A relative haplotype dosage (RHDO)-based method was developed and implemented into routine clinical practice for noninvasive prenatal diagnosis (NIPD) of multiple single-gene disorders: spinal muscular atrophy, Duchenne and Becker muscular dystrophies, and cystic fibrosis. This article describes the experiences of the first 152 pregnancies to have NIPD by RHDO as part of a routine clinical service. Provision of results within a clinically useful time frame (mean, 11 calendar days) was shown to be possible, with a very low failure rate (4%), none being due to a technical failure. Where follow-up confirmatory testing was performed for audit purposes, 100% concordance was seen with the NIPD result, and no discrepancies have been reported. The robust performance of the assay, together with high sensitivity and specificity, demonstrates that NIPD by RHDO is feasible for use in a clinical setting.
Collapse
Affiliation(s)
- Elizabeth Young
- West Midlands Regional Genetics Service, Birmingham Women's and Children's NHS Foundation Trust, Edgbaston, United Kingdom.
| | - Benjamin Bowns
- West Midlands Regional Genetics Service, Birmingham Women's and Children's NHS Foundation Trust, Edgbaston, United Kingdom
| | - Amy Gerrish
- West Midlands Regional Genetics Service, Birmingham Women's and Children's NHS Foundation Trust, Edgbaston, United Kingdom
| | - Michael Parks
- West Midlands Regional Genetics Service, Birmingham Women's and Children's NHS Foundation Trust, Edgbaston, United Kingdom
| | - Samantha Court
- West Midlands Regional Genetics Service, Birmingham Women's and Children's NHS Foundation Trust, Edgbaston, United Kingdom
| | - Samuel Clokie
- West Midlands Regional Genetics Service, Birmingham Women's and Children's NHS Foundation Trust, Edgbaston, United Kingdom
| | - Chipo Mashayamombe-Wolfgarten
- West Midlands Regional Genetics Service, Birmingham Women's and Children's NHS Foundation Trust, Edgbaston, United Kingdom
| | - Julie Hewitt
- West Midlands Regional Genetics Service, Birmingham Women's and Children's NHS Foundation Trust, Edgbaston, United Kingdom
| | - Denise Williams
- West Midlands Regional Genetics Service, Birmingham Women's and Children's NHS Foundation Trust, Edgbaston, United Kingdom
| | - Trevor Cole
- West Midlands Regional Genetics Service, Birmingham Women's and Children's NHS Foundation Trust, Edgbaston, United Kingdom
| | - Stephanie Allen
- West Midlands Regional Genetics Service, Birmingham Women's and Children's NHS Foundation Trust, Edgbaston, United Kingdom
| |
Collapse
|
24
|
Toksoy G, Durmus H, Aghayev A, Bagirova G, Sevinc Rustemoglu B, Basaran S, Avci S, Karaman B, Parman Y, Altunoglu U, Yapici Z, Tekturk P, Deymeer F, Topaloglu H, Kayserili H, Oflazer-Serdaroglu P, Uyguner ZO. Mutation spectrum of 260 dystrophinopathy patients from Turkey and important highlights for genetic counseling. Neuromuscul Disord 2019; 29:601-613. [DOI: 10.1016/j.nmd.2019.03.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 03/20/2019] [Accepted: 03/25/2019] [Indexed: 12/24/2022]
|
25
|
Mehravar M, Shirazi A, Nazari M, Banan M. Mosaicism in CRISPR/Cas9-mediated genome editing. Dev Biol 2019; 445:156-162. [DOI: 10.1016/j.ydbio.2018.10.008] [Citation(s) in RCA: 113] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 10/09/2018] [Accepted: 10/15/2018] [Indexed: 12/26/2022]
|
26
|
Zampatti S, Mela J, Peconi C, Pagliaroli G, Carboni S, Barrano G, Zito I, Cascella R, Marella G, Milano F, Arcangeli M, Caltagirone C, Novelli A, Giardina E. Identification of Duchenne/Becker muscular dystrophy mosaic carriers through a combined DNA/RNA analysis. Prenat Diagn 2018; 38:1096-1102. [PMID: 30303263 DOI: 10.1002/pd.5369] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 08/22/2018] [Accepted: 10/02/2018] [Indexed: 11/11/2022]
Abstract
OBJECTIVE The Duchenne/Becker muscular dystrophy (DMD) carrier screening includes the evaluation of mutations in DMD gene, and the most widely used analysis is the multiplex ligation-dependent probe amplification (MLPA) for the DMD deletions/duplications detection. The high frequency of de novo mutations permits to estimate a risk up to 20% of mosaicisms for mothers of sporadic DMD children. The purpose of this study is to evaluate alternative analytical strategy for the detection of mosaics carrier women, in order to improve the recurrence risk estimation. METHOD Different DNA and RNA analyses were conducted on samples from a woman that conceived a DMD fetus without previous family history of dystrophynopathy. RESULTS Standard MLPA analysis failed to identify mosaicism, even if MLPA doses suggested it. Electrophoresis and direct sequencing conducted on RNA permitted to detect two different amplicons of cDNAs, demonstrating the presence of somatic mosaicism. Subsequent detection of a second affected fetus confirmed the mosaic status on the mother. CONCLUSION The implementation of RNA analysis in diagnostic algorithm can increase the sensitivity of carrier test for mothers of sporadic affected patients, permitting detection of mosaic status. A revision of analytical guidelines is needed in order to improve the recurrence risk estimation and support prenatal genetic counseling.
Collapse
Affiliation(s)
- Stefania Zampatti
- Molecular Genetics Laboratory UILDM, Santa Lucia Foundation, IRCCS, Rome, Italy
| | - Julia Mela
- Molecular Genetics Laboratory UILDM, Santa Lucia Foundation, IRCCS, Rome, Italy
| | - Cristina Peconi
- Molecular Genetics Laboratory UILDM, Santa Lucia Foundation, IRCCS, Rome, Italy
| | - Giulia Pagliaroli
- Molecular Genetics Laboratory UILDM, Santa Lucia Foundation, IRCCS, Rome, Italy
| | - Stefania Carboni
- Molecular Genetics Laboratory UILDM, Santa Lucia Foundation, IRCCS, Rome, Italy
| | - Giuseppe Barrano
- S. Pietro Fatebenefratelli Hospital, UOSD Medical Genetics, Rome, Italy
| | - Ilaria Zito
- S. Pietro Fatebenefratelli Hospital, UOSD Medical Genetics, Rome, Italy
| | - Raffaella Cascella
- Department of Biomedicine and Prevention, School of Medicine, University of Rome 'Tor Vergata', Rome, Italy.,Department of Chemical-Toxicological and Pharmacological Evaluation of Drugs, Catholic University Our Lady of Good Counsel, Tirana, Albania
| | - Gianluca Marella
- Department of Experimental Medicine and Surgery, School of Medicine, University of Rome "Tor Vergata", Rome, Italy
| | - Filippo Milano
- Department of Biomedicine and Prevention, School of Medicine, University of Rome 'Tor Vergata', Rome, Italy
| | - Mauro Arcangeli
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Carlo Caltagirone
- Laboratory of Clinical and Behavioral Neurology, IRCCS Santa Lucia Foundation
| | - Antonio Novelli
- S. Pietro Fatebenefratelli Hospital, UOSD Medical Genetics, Rome, Italy.,Medical Genetics Unit, Medical Genetics Laboratory, Bambino Gesù Pediatric Hospital, IRCCS, Rome, Italy
| | - Emiliano Giardina
- Molecular Genetics Laboratory UILDM, Santa Lucia Foundation, IRCCS, Rome, Italy.,Department of Biomedicine and Prevention, School of Medicine, University of Rome 'Tor Vergata', Rome, Italy
| |
Collapse
|
27
|
Jónsson H, Sulem P, Arnadottir GA, Pálsson G, Eggertsson HP, Kristmundsdottir S, Zink F, Kehr B, Hjorleifsson KE, Jensson BÖ, Jonsdottir I, Marelsson SE, Gudjonsson SA, Gylfason A, Jonasdottir A, Jonasdottir A, Stacey SN, Magnusson OT, Thorsteinsdottir U, Masson G, Kong A, Halldorsson BV, Helgason A, Gudbjartsson DF, Stefansson K. Multiple transmissions of de novo mutations in families. Nat Genet 2018; 50:1674-1680. [DOI: 10.1038/s41588-018-0259-9] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Accepted: 09/19/2018] [Indexed: 11/09/2022]
|
28
|
Mensa-Vilaró A, Bravo García-Morato M, de la Calle-Martin O, Franco-Jarava C, Martínez-Saavedra MT, González-Granado LI, González-Roca E, Fuster JL, Alsina L, Mutchinick OM, Balderrama-Rodríguez A, Ramos E, Modesto C, Mesa-Del-Castillo P, Ortego-Centeno N, Clemente D, Souto A, Palmou N, Remesal A, Leslie KS, Gómez de la Fuente E, Yadira Bravo Gallego L, Campistol JM, Dhouib NG, Bejaoui M, Dutra LA, Terreri MT, Mosquera C, González T, Cañellas J, García-Ruiz de Morales JM, Wouters CH, Bosque MT, Cham WT, Jiménez-Treviño S, de Inocencio J, Bloomfield M, Pérez de Diego R, Martínez-Pomar N, Rodríguez-Pena R, González-Santesteban C, Soler-Palacín P, Casals F, Yagüe J, Allende LM, Rodríguez-Gallego JC, Colobran R, Martínez-Martínez L, López-Granados E, Aróstegui JI. Unexpected relevant role of gene mosaicism in patients with primary immunodeficiency diseases. J Allergy Clin Immunol 2018; 143:359-368. [PMID: 30273710 DOI: 10.1016/j.jaci.2018.09.009] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 08/21/2018] [Accepted: 09/08/2018] [Indexed: 12/15/2022]
Abstract
BACKGROUND Postzygotic de novo mutations lead to the phenomenon of gene mosaicism. The 3 main types are called somatic, gonadal, and gonosomal mosaicism, which differ in terms of the body distribution of postzygotic mutations. Mosaicism has been reported occasionally in patients with primary immunodeficiency diseases (PIDs) since the early 1990s, but its real involvement has not been systematically addressed. OBJECTIVE We sought to investigate the incidence of gene mosaicism in patients with PIDs. METHODS The amplicon-based deep sequencing method was used in the 3 parts of the study that establish (1) the allele frequency of germline variants (n = 100), (2) the incidence of parental gonosomal mosaicism in families with PIDs with de novo mutations (n = 92), and (3) the incidence of mosaicism in families with PIDs with moderate-to-high suspicion of gene mosaicism (n = 36). Additional investigations evaluated body distribution of postzygotic mutations, their stability over time, and their characteristics. RESULTS The range of allele frequency (44.1% to 55.6%) was established for germline variants. Those with minor allele frequencies of less than 44.1% were assumed to be postzygotic. Mosaicism was detected in 30 (23.4%) of 128 families with PIDs, with a variable minor allele frequency (0.8% to 40.5%). Parental gonosomal mosaicism was detected in 6 (6.5%) of 92 families with de novo mutations, and a high incidence of mosaicism (63.9%) was detected among families with moderate-to-high suspicion of gene mosaicism. In most analyzed cases mosaicism was found to be both uniformly distributed and stable over time. CONCLUSION This study represents the largest performed to date to investigate mosaicism in patients with PIDs, revealing that it affects approximately 25% of enrolled families. Our results might have serious consequences regarding treatment and genetic counseling and reinforce the use of next-generation sequencing-based methods in the routine analyses of PIDs.
Collapse
Affiliation(s)
- Anna Mensa-Vilaró
- Department of Immunology-CDB, Hospital Clínic-IDIBAPS, Barcelona, Spain.
| | | | | | - Clara Franco-Jarava
- Department of Immunology, Hospital Universitari Vall d'Hebron, Vall d'Hebron Research Institute, Barcelona, Spain; Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiencies, Barcelona, Spain
| | | | - Luis I González-Granado
- Primary Immunodeficiencies Unit, Department of Pediatrics, Hospital Universitario 12 de Octubre, Madrid, Spain; Instituto de Investigación i+12, Hospital Universitario 12 de Octubre, Madrid, Spain; Universidad Complutense, Madrid, Spain
| | - Eva González-Roca
- Department of Immunology-CDB, Hospital Clínic-IDIBAPS, Barcelona, Spain
| | - Jose Luis Fuster
- Department of Hematology, Hospital Clínico Universitario Virgen de la Arrixaca, Murcia, Spain
| | - Laia Alsina
- Department of Allergy and Clinical Immunology, Hospital Sant Joan de Deu, Esplugues, Spain; Institut de Recerca Pediàtrica Hospital Sant Joan de Déu, Esplugues, Spain
| | - Osvaldo M Mutchinick
- Department of Genetics, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | | | - Eduardo Ramos
- Department of Pediatrics, Hospital Universitario Central de Asturias, Oviedo, Spain
| | - Consuelo Modesto
- Department of Pediatric Rheumatology, Hospital Universitari Vall d'Hebron, Barcelona, Spain
| | - Pablo Mesa-Del-Castillo
- Department of Pediatric Rheumatology, Hospital Clínico Universitario Virgen de la Arrixaca, Murcia, Spain
| | | | - Daniel Clemente
- Department of Pediatric Rheumatology, Hospital Universitario Niño Jesús, Madrid, Spain
| | - Alejandro Souto
- Department of Rheumatology, Hospital Clinico Universitario de Santiago, Santiago de Compostela, Spain
| | - Natalia Palmou
- Department of Rheumatology, Hospital Universitario Marques de Valdecilla, Santander, Spain
| | - Agustín Remesal
- Department of Pediatric Rheumatology, Hospital Universitario La Paz, Madrid, Spain
| | - Kieron S Leslie
- Department of Dermatology, University of California San Francisco, San Francisco, Calif
| | | | | | | | - Naouel Guirat Dhouib
- Pediatric Immuno-Hematology Unit, Bone Marrow Transplantation Center, Tunis, Tunisia
| | - Mohamed Bejaoui
- Pediatric Immuno-Hematology Unit, Bone Marrow Transplantation Center, Tunis, Tunisia
| | - Lívia Almeida Dutra
- Division of General Neurology, Escola Paulista de Medicina, Universidade Federal de Sao Paulo, Sao Paulo, Brazil
| | - Maria Teresa Terreri
- Department of Pediatrics, Escola Paulista de Medicina, Universidade Federal de Sao Paulo, Sao Paulo, Brazil
| | - Catalina Mosquera
- Department of Pediatric Rheumatology, Universidad El Bosque, Bogota, Colombia
| | - Tatiana González
- Department of Pediatric Rheumatology, Universidad de Cartagena, Cartagena, Colombia
| | - Jerónima Cañellas
- Department of Rheumatology, Hospital Universitari Germans Trias i Pujol, Badalona, Spain
| | | | - Carine H Wouters
- Departments of Pediatric Rheumatology, Microbiology and Immunology, University Hospitals Leuven, KU University of Leuven, Leuven, Belgium
| | - María Teresa Bosque
- Department of Rheumatology, Hospital Clinico Universitario Lozano Blesa, Zaragoza, Spain
| | - Weng Tarng Cham
- Department of Pediatric Rheumatology, Sunway Medical Centre, Kuala Lumpur, Malaysia
| | | | - Jaime de Inocencio
- Instituto de Investigación i+12, Hospital Universitario 12 de Octubre, Madrid, Spain; Department of Pediatric Rheumatology, Hospital Universitario 12 de Octubre, Madrid, Spain
| | - Markéta Bloomfield
- Department of Immunology, 2(nd) Faculty of Medicine, Charles University and University Hospital in Motol, Prague, Czech Republic
| | - Rebeca Pérez de Diego
- Laboratory of Immunogenetics of Diseases, IdiPAZ Institute for Health Research, Hospital Universitario La Paz, Madrid, Spain; Innate Immunity Group, IdiPAZ Institute for Health Research, Hospital Universitario La Paz, Madrid, Spain
| | | | | | | | - Pere Soler-Palacín
- Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiencies, Barcelona, Spain; Pediatric Infectious Diseases and Immunodeficiencies Unit, Hospital Universitari Vall d'Hebron, Vall d'Hebron Institut de Recerca, Barcelona, Spain
| | - Ferran Casals
- Department of Genomics, Universitat Pompeu Fabra, Barcelona, Spain
| | - Jordi Yagüe
- Department of Immunology-CDB, Hospital Clínic-IDIBAPS, Barcelona, Spain
| | - Luis M Allende
- Instituto de Investigación i+12, Hospital Universitario 12 de Octubre, Madrid, Spain; Universidad Complutense, Madrid, Spain; Department of Immunology, Hospital Universitario 12 de Octubre, Madrid, Spain
| | | | - Roger Colobran
- Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiencies, Barcelona, Spain; Immunology Division, Department of Clinical and Molecular Genetics, Hospital Universitari Vall d'Hebron, Vall d'Hebron Institut de Recerca, Barcelona, Spain; Department of Cell Biology, Physiology and Immunology, Autonomous University of Barcelona, Barcelona, Spain
| | | | | | - Juan I Aróstegui
- Department of Immunology-CDB, Hospital Clínic-IDIBAPS, Barcelona, Spain.
| |
Collapse
|
29
|
Koczok K, Merő G, Szabó GP, Madar L, Gombos É, Ajzner É, Mótyán JA, Hortobágyi T, Balogh I. A novel point mutation affecting Asn76 of dystrophin protein leads to dystrophinopathy. Neuromuscul Disord 2018; 28:129-136. [DOI: 10.1016/j.nmd.2017.12.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Revised: 10/11/2017] [Accepted: 12/04/2017] [Indexed: 11/26/2022]
|
30
|
Zimowski JG, Pawelec M, Purzycka JK, Szirkowiec W, Zaremba J. Deletions, not duplications or small mutations, are the predominante new mutations in the dystrophin gene. J Hum Genet 2017; 62:885-888. [PMID: 28680110 DOI: 10.1038/jhg.2017.70] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 04/20/2017] [Accepted: 05/26/2017] [Indexed: 01/15/2023]
Abstract
Examination of the carrier state was performed in 744 unrelated mothers of the Duchenne muscular dystrophy/Becker muscular dystrophy (DMD/BMD) probands with identified mutations in the dystrophin gene. Owing to that it was possible to assess frequency and type of new mutations in the gene. Contrary to the Japanese observations of Lee et al. published in this journal, we did not find significant differences in the carrier frequency between mothers of DMD and BMD patients. However, we found that new mutations in patients with deletions were significantly more frequent than in those with duplications and small mutations: of 564 unrelated patients with deletions, 236 (41.8%) carried new mutations, the respective values for duplications and small mutations were 21 of 95 patients (22.1%) and 18 of 85 patients (21.2%)-the differences highly significant (P<0.0001).
Collapse
Affiliation(s)
- Janusz G Zimowski
- Department of Genetics, Institute of Psychiatry and Neurology, Warsaw, Poland
| | - Magdalena Pawelec
- Department of Genetics, Institute of Psychiatry and Neurology, Warsaw, Poland
| | - Joanna K Purzycka
- Department of Genetics, Institute of Psychiatry and Neurology, Warsaw, Poland
| | | | - Jacek Zaremba
- Department of Genetics, Institute of Psychiatry and Neurology, Warsaw, Poland
| |
Collapse
|
31
|
Kravchenko SA, Nechyporenko MV, Livshits LA. Origin of dystrophin gene deletions in Duchenne and Becker muscular dystrophy patients from Ukraine. CYTOL GENET+ 2017. [DOI: 10.3103/s0095452717030057] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
32
|
Massalska D, Zimowski JG, Roszkowski T, Bijok J, Pawelec M, Bednarska-Makaruk M. Prenatal diagnosis of Duchenne and Becker muscular dystrophies: Underestimated problem of the secondary prevention of monogenetic disorders. J Obstet Gynaecol Res 2017; 43:1111-1121. [PMID: 28561990 DOI: 10.1111/jog.13344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Revised: 02/02/2017] [Accepted: 02/19/2017] [Indexed: 11/27/2022]
Abstract
AIM The aim of this study was to analyze the influence of effective preconceptional testing for carrier status in women at risk for Duchenne and Becker muscular dystrophies (D/BMD) on the prenatal diagnosis. METHODS A retrospective analysis of 201 prenatal tests was performed in 169 Polish women at risk, in regard to time of testing for carrier status (prior to conception or during pregnancy) and carrier status of tested women, including confirmed D/BMD carriers (n = 78; 46.2%), D/BMD non-carriers - tested for germline mosaicism risk (n = 23; 13.6%), and women at risk with uncertain carrier status (n = 68; 40.2%). RESULTS Only 52.7% of women were tested for D/BMD carrier status prior to conception and in these women prenatal diagnosis was carried out more frequently in the first trimester of pregnancy (64.7% vs 47.8%; P = 0.035). The results of prenatal testing in male fetuses in pregnancies of confirmed D/BMD carriers and D/BMD non-carriers - tested for germline mosaicism risk were conclusive in all cases, whereas in women with uncertain carrier status, only 60.0% of results were conclusive. Eighty-five of 103 female fetuses (82.5%) were tested prenatally and in 31.8% of them fetal carrier status was confirmed. CONCLUSION Carrier status testing in women prior to conception has a positive impact on the frequency of first-trimester prenatal diagnosis and known D/BMD carrier status on the effectiveness of prenatal diagnosis. Due to the low percentage of women tested effectively prior to conception, carrier status testing in the families at risk should be propagated (including possibility of prenatal diagnosis of female fetuses).
Collapse
Affiliation(s)
- Diana Massalska
- I Department of Obstetrics and Gynecology, Professor Witold Orlowski Clinical Hospital, Centre of Postgraduate Medical Education, Warsaw, Poland
| | | | - Tomasz Roszkowski
- I Department of Obstetrics and Gynecology, Professor Witold Orlowski Clinical Hospital, Centre of Postgraduate Medical Education, Warsaw, Poland
| | - Julia Bijok
- I Department of Obstetrics and Gynecology, Professor Witold Orlowski Clinical Hospital, Centre of Postgraduate Medical Education, Warsaw, Poland
| | - Magdalena Pawelec
- Department of Genetics, Institute of Psychiatry and Neurology, Warsaw, Poland
| | | |
Collapse
|
33
|
Wang H, Xu Y, Liu X, Wang L, Jiang W, Xiao B, Wei W, Chen Y, Ye W, Ji X. Prenatal diagnosis of Duchenne muscular dystrophy in 131 Chinese families with dystrophinopathy. Prenat Diagn 2017; 37:356-364. [PMID: 28181689 DOI: 10.1002/pd.5019] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Revised: 01/25/2017] [Accepted: 01/29/2017] [Indexed: 01/14/2023]
Abstract
OBJECTIVES The objective of this study is to report 6-year clinical prenatal diagnosis experience of Duchenne muscular dystrophy (DMD)-affected families evaluated at a single prenatal diagnosis center in China and establish a reliable and rational prenatal diagnosis procedure for DMD families. METHODS The prenatal diagnosis data of 146 at-risk pregnancies in 131 DMD families referred to our center from 2010 to 2016 were retrospectively reviewed. RESULTS The mutation detection rate of the probands was greater than 99%. In the 131 families, 50 mothers showed negative results during carrier testing, and de novo exon deletions arose in 51.1% of the probands. Of the 146 pregnancies, 91 were male fetuses, 34 of which were affected. Germline mosaicism was identified three times in this cohort, and recombination of the DMD gene was detected in nine cases. CONCLUSIONS Accurate genetic diagnosis of the proband is important for preventing recurrence in at-risk families. The present results demonstrate the importance of considering maternal germline mosaicism in the genetic assessment. Prenatal diagnosis should be suggested to the parent with a DMD proband whether carrier testing found the causative mutation in the mother's blood or not. Finally, we have developed a prenatal diagnosis algorithm for dystrophinopathies that combines multiplex ligation-dependent probe amplification, quantitative PCR, sequencing and linkage analyses. © 2017 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Huanhuan Wang
- Prenatal Diagnosis Center, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Department of Genetics, Shanghai Institute of Pediatric Research, Shanghai, China
| | - Yan Xu
- Prenatal Diagnosis Center, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Department of Genetics, Shanghai Institute of Pediatric Research, Shanghai, China
| | - Xiaoqing Liu
- Department of Genetics, Shanghai Institute of Pediatric Research, Shanghai, China.,Department of Pediatric Neurology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lei Wang
- Department of Obstetrics, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wenting Jiang
- Prenatal Diagnosis Center, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Department of Genetics, Shanghai Institute of Pediatric Research, Shanghai, China
| | - Bing Xiao
- Prenatal Diagnosis Center, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Department of Genetics, Shanghai Institute of Pediatric Research, Shanghai, China
| | - Wei Wei
- Prenatal Diagnosis Center, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Department of Genetics, Shanghai Institute of Pediatric Research, Shanghai, China
| | - Yingwei Chen
- Prenatal Diagnosis Center, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Department of Genetics, Shanghai Institute of Pediatric Research, Shanghai, China
| | - Weiping Ye
- Prenatal Diagnosis Center, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Department of Obstetrics, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xing Ji
- Prenatal Diagnosis Center, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Department of Genetics, Shanghai Institute of Pediatric Research, Shanghai, China
| |
Collapse
|
34
|
Next-generation sequencing discloses a nonsense mutation in the dystrophin gene from long preserved dried umbilical cord and low-level somatic mosaicism in the proband mother. J Hum Genet 2016; 61:351-5. [DOI: 10.1038/jhg.2015.157] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Revised: 11/09/2015] [Accepted: 11/30/2015] [Indexed: 11/08/2022]
|
35
|
Paternal germline mosaicism in collagen VI related myopathies. Eur J Paediatr Neurol 2015; 19:533-6. [PMID: 25978941 DOI: 10.1016/j.ejpn.2015.04.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2014] [Revised: 03/30/2015] [Accepted: 04/19/2015] [Indexed: 01/11/2023]
Abstract
BACKGROUND Collagen VI-related disorders are a group of muscular diseases characterized by muscle wasting and weakness, joint contractures, distal laxity, serious respiratory dysfunction and cutaneous alterations, due to mutations in the COL6A1, COL6A2 and COL6A3 genes, encoding for collagen VI, a critical component of the extracellular matrix. The severe Ullrich congenital muscular dystrophy (UCMD) can be due to autosomal recessive mutations in one of the three genes with a related 25% recurrence risk. In the majority of UCMD cases nevertheless, the underlying mutation is thought to arise de novo and the recurrence risk is considered as low. METHODS AND RESULTS Here we report a family with recurrence of UCMD in two half-sibs. In both, the molecular analysis revealed heterozygosity for the c.896G > A missense mutation in COL6A1 exon 10 (Gly299Glu) and for the COL6A1 c.1823-8G > A variation within COL6A1 intron 29. The intronic variation was inherited from the father and RNA analysis in skin fibroblasts allowed to exclude its role in affecting COL6A1 transcript processing. The Gly299Glu mutation occurred apparently de novo in the two sibs. CONCLUSION The described mutational segregation strongly suggests the occurrence of paternal germline mosaicism. This is the first report of UCMD recurrence due to a germline mosaic COL6 gene mutation. Mosaicism deserves to be considered as possible inheritance pattern in genetic counseling and recurrence risk estimation in collagen VI-related diseases.
Collapse
|
36
|
|
37
|
Dharmadhikari AV, Szafranski P, Kalinichenko VV, Stankiewicz P. Genomic and Epigenetic Complexity of the FOXF1 Locus in 16q24.1: Implications for Development and Disease. Curr Genomics 2015; 16:107-16. [PMID: 26085809 PMCID: PMC4467301 DOI: 10.2174/1389202916666150122223252] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Revised: 01/09/2015] [Accepted: 01/21/2015] [Indexed: 01/01/2023] Open
Abstract
The FOXF1 (Forkhead box F1) gene, located on chromosome 16q24.1 encodes a member of the FOX family of transcription factors characterized by a distinct forkhead DNA binding domain. FOXF1 plays an important role in epithelium-mesenchyme signaling, as a downstream target of Sonic hedgehog pathway. Heterozygous point mutations and genomic deletions involving FOXF1 have been reported in newborns with a lethal lung developmental disorder, Alveolar Capillary Dysplasia with Misalignment of Pulmonary Veins (ACDMPV). In addition, genomic deletions upstream to FOXF1 identified in ACDMPV patients have revealed that FOXF1 expression is tightly regulated by distal tissue-specific enhancers. Interestingly, FOXF1 has been found to be incompletely paternally imprinted in human lungs; characterized genomic deletions arose de novo exclusively on maternal chromosome 16, with most of them being Alu-Alu mediated. Regulation of FOXF1 expression likely utilizes a combination of chromosomal looping, differential methylation of an upstream CpG island overlapping GLI transcription factor binding sites, and the function of lung-specific long non-coding RNAs (lncRNAs). FOXF1 knock-out mouse models demonstrated its critical role in mesoderm differentiation and in the development of pulmonary vasculature. Additionally, epigenetic inactivation of FOXF1 has been reported in breast and colorectal cancers, whereas overexpression of FOXF1 has been associated with a number of other human cancers, e.g. medulloblastoma and rhabdomyosarcoma. Constitutional duplications of FOXF1 have recently been reported in congenital intestinal malformations. Thus, understanding the genomic and epigenetic complexity at the FOXF1 locus will improve diagnosis, prognosis, and treatment of ACDMPV and other human disorders associated with FOXF1 alterations.
Collapse
Affiliation(s)
- Avinash V Dharmadhikari
- Department of Molecular and Human Genetics; ; Interdepartmental Program in Translational Biology and Molecular Medicine, Baylor College of Medicine, Houston, TX, USA
| | | | - Vladimir V Kalinichenko
- Divisions of Pulmonary Biology and Developmental Biology, Perinatal Institute, Cincinnati Children's Research Foundation, Cincinnati, OH, USA
| | - Pawel Stankiewicz
- Department of Molecular and Human Genetics; ; Interdepartmental Program in Translational Biology and Molecular Medicine, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
38
|
Somatic mosaicism: implications for disease and transmission genetics. Trends Genet 2015; 31:382-92. [PMID: 25910407 DOI: 10.1016/j.tig.2015.03.013] [Citation(s) in RCA: 190] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Revised: 03/17/2015] [Accepted: 03/18/2015] [Indexed: 11/21/2022]
Abstract
Nearly all of the genetic material among cells within an organism is identical. However, single-nucleotide variants (SNVs), small insertions/deletions (indels), copy-number variants (CNVs), and other structural variants (SVs) continually accumulate as cells divide during development. This process results in an organism composed of countless cells, each with its own unique personal genome. Thus, every human is undoubtedly mosaic. Mosaic mutations can go unnoticed, underlie genetic disease or normal human variation, and may be transmitted to the next generation as constitutional variants. We review the influence of the developmental timing of mutations, the mechanisms by which they arise, methods for detecting mosaic variants, and the risk of passing these mutations on to the next generation.
Collapse
|
39
|
Esposito G, Ruggiero R, Savarese M, Savarese G, Tremolaterra MR, Salvatore F, Carsana A. Prenatal molecular diagnosis of inherited neuromuscular diseases: Duchenne/Becker muscular dystrophy, myotonic dystrophy type 1 and spinal muscular atrophy. Clin Chem Lab Med 2014; 51:2239-45. [PMID: 23729582 DOI: 10.1515/cclm-2013-0209] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2012] [Accepted: 03/08/2013] [Indexed: 11/15/2022]
Abstract
BACKGROUND Neuromuscular disease is a broad term that encompasses many diseases that either directly, via an intrinsic muscle disorder, or indirectly, via a nerve disorder, impairs muscle function. Here we report the experience of our group in the counselling and molecular prenatal diagnosis of three inherited neuromuscular diseases, i.e., Duchenne/Becker muscular dystrophy (DMD/BMD), myotonic dystrophy type 1 (DM1), spinal muscular atrophy (SMA). METHODS We performed a total of 83 DMD/BMD, 15 DM1 and 54 SMA prenatal diagnoses using a combination of technologies for either direct or linkage diagnosis. RESULTS We identified 16, 5 and 10 affected foetuses, respectively. The improvement of analytical procedures in recent years has increased the mutation detection rate and reduced the analytical time. CONCLUSIONS Due to the complexity of the experimental procedures and the high, specific professional expertise required for both laboratory activities and the related counselling, these types of analyses should be preferentially performed in reference molecular diagnostic centres.
Collapse
|
40
|
Parent of origin, mosaicism, and recurrence risk: probabilistic modeling explains the broken symmetry of transmission genetics. Am J Hum Genet 2014; 95:345-59. [PMID: 25242496 DOI: 10.1016/j.ajhg.2014.08.010] [Citation(s) in RCA: 87] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Accepted: 08/22/2014] [Indexed: 12/15/2022] Open
Abstract
Most new mutations are observed to arise in fathers, and increasing paternal age positively correlates with the risk of new variants. Interestingly, new mutations in X-linked recessive disease show elevated familial recurrence rates. In male offspring, these mutations must be inherited from mothers. We previously developed a simulation model to consider parental mosaicism as a source of transmitted mutations. In this paper, we extend and formalize the model to provide analytical results and flexible formulas. The results implicate parent of origin and parental mosaicism as central variables in recurrence risk. Consistent with empirical data, our model predicts that more transmitted mutations arise in fathers and that this tendency increases as fathers age. Notably, the lack of expansion later in the male germline determines relatively lower variance in the proportion of mutants, which decreases with paternal age. Subsequently, observation of a transmitted mutation has less impact on the expected risk for future offspring. Conversely, for the female germline, which arrests after clonal expansion in early development, variance in the mutant proportion is higher, and observation of a transmitted mutation dramatically increases the expected risk of recurrence in another pregnancy. Parental somatic mosaicism considerably elevates risk for both parents. These findings have important implications for genetic counseling and for understanding patterns of recurrence in transmission genetics. We provide a convenient online tool and source code implementing our analytical results. These tools permit varying the underlying parameters that influence recurrence risk and could be useful for analyzing risk in diverse family structures.
Collapse
|
41
|
Ji X, Zhang J, Xu Y, Long F, Sun W, Liu X, Chen Y, Jiang W. MLPA Application in Clinical Diagnosis of DMD/BMD in Shanghai. J Clin Lab Anal 2014; 29:405-11. [PMID: 25131993 DOI: 10.1002/jcla.21787] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Accepted: 05/21/2014] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Duchenne and Becker muscular dystrophy (DMD/BMD) are X-linked recessive disorders caused by mutation in dystrophin gene. We reported 3-year clinic experience from a single hospital in Shanghai using multiplex ligation dependent probe amplification (MLPA) assay to detect DMD mutations. METHODS Four hundred and fifty-one males and 184 females, who were clinically diagnosed as DMD/BMD patients or carriers at our hospital's outpatient clinic, were collected and performed with MLPA to detect DMD gene mutations. RESULTS Seventeen novel mutation points not reported in the Leiden Muscular Dystrophy pages were identified in this study. We found that the most frequent deletion spots ranged from exon45 to exon52, and exon2, exon19 were the two most frequently detected duplication spots. CONCLUSION The results of our study confirmed MLPA as an efficient clinical method for detecting DMD gene mutations in DMD/BMD patients. Single exon mutation detected by MLPA should be verified by other methods, and we should emphasize that only precise clinical molecular diagnosis can lead to the feasibility of prenatal diagnosis.
Collapse
Affiliation(s)
- Xing Ji
- Department of Prenatal Diagnosis Center, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Institute for Pediatric Research, Shanghai, China
| | - Jingmin Zhang
- Department of Prenatal Diagnosis Center, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Institute for Pediatric Research, Shanghai, China
| | - Yan Xu
- Department of Prenatal Diagnosis Center, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Institute for Pediatric Research, Shanghai, China
| | - Fei Long
- Shanghai Institute for Pediatric Research, Shanghai, China
| | - Wei Sun
- Shanghai Institute for Pediatric Research, Shanghai, China
| | - Xiaoqin Liu
- Shanghai Institute for Pediatric Research, Shanghai, China.,Department of Neurology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yingwei Chen
- Department of Prenatal Diagnosis Center, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Institute for Pediatric Research, Shanghai, China
| | - Wenting Jiang
- Department of Prenatal Diagnosis Center, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Institute for Pediatric Research, Shanghai, China
| |
Collapse
|
42
|
Parental somatic mosaicism is underrecognized and influences recurrence risk of genomic disorders. Am J Hum Genet 2014; 95:173-82. [PMID: 25087610 DOI: 10.1016/j.ajhg.2014.07.003] [Citation(s) in RCA: 187] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Accepted: 07/08/2014] [Indexed: 11/20/2022] Open
Abstract
New human mutations are thought to originate in germ cells, thus making a recurrence of the same mutation in a sibling exceedingly rare. However, increasing sensitivity of genomic technologies has anecdotally revealed mosaicism for mutations in somatic tissues of apparently healthy parents. Such somatically mosaic parents might also have germline mosaicism that can potentially cause unexpected intergenerational recurrences. Here, we show that somatic mosaicism for transmitted mutations among parents of children with simplex genetic disease is more common than currently appreciated. Using the sensitivity of individual-specific breakpoint PCR, we prospectively screened 100 families with children affected by genomic disorders due to rare deletion copy-number variants (CNVs) determined to be de novo by clinical analysis of parental DNA. Surprisingly, we identified four cases of low-level somatic mosaicism for the transmitted CNV in DNA isolated from parental blood. Integrated probabilistic modeling of gametogenesis developed in response to our observations predicts that mutations in parental blood increase recurrence risk substantially more than parental mutations confined to the germline. Moreover, despite the fact that maternally transmitted mutations are the minority of alleles, our model suggests that sexual dimorphisms in gametogenesis result in a greater proportion of somatically mosaic transmitting mothers who are thus at increased risk of recurrence. Therefore, somatic mosaicism together with sexual differences in gametogenesis might explain a considerable fraction of unexpected recurrences of X-linked recessive disease. Overall, our results underscore an important role for somatic mosaicism and mitotic replicative mutational mechanisms in transmission genetics.
Collapse
|
43
|
Garcia S, de Haro T, Zafra-Ceres M, Poyatos A, Gomez-Capilla JA, Gomez-Llorente C. Identification of de novo mutations of Duchénnè/Becker muscular dystrophies in southern Spain. Int J Med Sci 2014; 11:988-93. [PMID: 25076844 PMCID: PMC4115237 DOI: 10.7150/ijms.8391] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Accepted: 06/12/2014] [Indexed: 11/07/2022] Open
Abstract
BACKGROUND Duchénnè/Becker muscular dystrophies (DMD/BMD) are X-linked diseases, which are caused by a de novo gene mutation in one-third of affected males. The study objectives were to determine the incidence of DMD/BMD in Andalusia (Spain) and to establish the percentage of affected males in whom a de novo gene mutation was responsible. METHODS Multiplex ligation-dependent probe amplification (MLPA) technology was applied to determine the incidence of DMD/BMD in 84 males with suspicion of the disease and 106 female relatives. RESULTS Dystrophin gene exon deletion (89.5%) or duplication (10.5%) was detected in 38 of the 84 males by MLPA technology; de novo mutations account for 4 (16.7%) of the 24 mother-son pairs studied. CONCLUSIONS MLPA technology is adequate for the molecular diagnosis of DMD/BMD and establishes whether the mother carries the molecular alteration responsible for the disease, a highly relevant issue for genetic counseling.
Collapse
Affiliation(s)
- Susana Garcia
- 1. UGC Laboratorios Clínicos. Hospital Universitario San Cecilio. Avd/Doctor Olóriz s/n 18012 Granada, Spain
| | - Tomás de Haro
- 1. UGC Laboratorios Clínicos. Hospital Universitario San Cecilio. Avd/Doctor Olóriz s/n 18012 Granada, Spain
- 2. Instituto de Investigación Biosanitaria ibs. Granada, Spain
| | - Mercedes Zafra-Ceres
- 1. UGC Laboratorios Clínicos. Hospital Universitario San Cecilio. Avd/Doctor Olóriz s/n 18012 Granada, Spain
| | - Antonio Poyatos
- 1. UGC Laboratorios Clínicos. Hospital Universitario San Cecilio. Avd/Doctor Olóriz s/n 18012 Granada, Spain
| | - Jose A. Gomez-Capilla
- 1. UGC Laboratorios Clínicos. Hospital Universitario San Cecilio. Avd/Doctor Olóriz s/n 18012 Granada, Spain
- 2. Instituto de Investigación Biosanitaria ibs. Granada, Spain
- 3. Departamento de Bioquímica y Biología Molecular III e Inmunología. Facultad de Medicina. Universidad de Granada. Avd/ Madrid s/n 18071, Granada, Spain
| | - Carolina Gomez-Llorente
- 4. Departamento de Bioquímica y Biología Molecular II. Instituto de Nutrición y Tecnología de los Alimentos “José Mataix”. Centro de Investigaciones Biomédicas. Universidad de Granada. Avd/ Conocimiento s/n 18100 Armilla, Granada, Spain
| |
Collapse
|
44
|
López-Hernández LB, Gómez-Díaz B, Bahena-Martínez E, Neri-Gómez T, Camacho-Molina A, Ruano-Calderón LA, García S, Coral-Vázquez RM. A novel noncontiguous duplication in the DMD gene escapes the 'reading-frame rule'. J Genet 2014; 93:225-9. [PMID: 24840845 DOI: 10.1007/s12041-014-0345-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Luz Berenice López-Hernández
- Instituto de Seguridad y Servicios Sociales de los Trabajadores del Estado, Subdireccion de Ensenanza e Investigacion, Centro Medico Nacional 20 de Noviembre, Mexico, C. P. 03100, D.F., Mexico.
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Velho RV, Alegra T, Sperb F, Ludwig NF, Saraiva-Pereira ML, Matte U, Schwartz IVD. A de novo or germline mutation in a family with Mucolipidosis III gamma: Implications for molecular diagnosis and genetic counseling. Mol Genet Metab Rep 2014; 1:98-102. [PMID: 27896079 PMCID: PMC5121289 DOI: 10.1016/j.ymgmr.2014.01.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Revised: 01/26/2014] [Accepted: 01/26/2014] [Indexed: 11/23/2022] Open
Abstract
Mucolipidosis III (ML III) gamma is a very rare autosomal-recessive disorder characterized by the abnormal trafficking and subcellular localization of lysosomal enzymes due to mutations in the GNPTG gene. The present study consists of a report of a Brazilian compound heterozygote patient with ML III gamma resulting from one mutant paternal allele and one allele that had most likely undergone a de novo or maternal germline mutation. This is the first report of a de novo mutation in ML III gamma. This finding has significant implications for genetic counseling.
Collapse
Affiliation(s)
- Renata Voltolini Velho
- Gene Therapy Center, Experimental Research Center, Hospital de Clínicas de Porto Alegre, RS, Brazil; Genetics and Molecular Biology Postgraduate Program, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Taciane Alegra
- Genetics and Molecular Biology Postgraduate Program, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Fernanda Sperb
- Gene Therapy Center, Experimental Research Center, Hospital de Clínicas de Porto Alegre, RS, Brazil; Postgraduation Program in Medical Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Nataniel Floriano Ludwig
- Gene Therapy Center, Experimental Research Center, Hospital de Clínicas de Porto Alegre, RS, Brazil
| | - Maria Luiza Saraiva-Pereira
- Genetics and Molecular Biology Postgraduate Program, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; Medical Genetics Service, Hospital de Clínicas de Porto Alegre, RS, Brazil
| | - Ursula Matte
- Gene Therapy Center, Experimental Research Center, Hospital de Clínicas de Porto Alegre, RS, Brazil; Genetics and Molecular Biology Postgraduate Program, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Ida V D Schwartz
- Genetics and Molecular Biology Postgraduate Program, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; Department of Genetics and Molecular Biology, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; Postgraduation Program in Medical Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; Brain Laboratory, Experimental Research Center, Hospital de Clínicas de Porto Alegre, RS, Brazil; Medical Genetics Service, Hospital de Clínicas de Porto Alegre, RS, Brazil
| |
Collapse
|
46
|
Bermúdez-López C, Teresa BGD, Angel AGD, Alcántara-Ortigoza MA. Germinal Mosaicism in a Sample of Families with Duchenne/Becker Muscular Dystrophy with Partial Deletions in the DMD Gene. Genet Test Mol Biomarkers 2014; 18:93-7. [DOI: 10.1089/gtmb.2013.0384] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Cesárea Bermúdez-López
- Laboratorio de Biología Molecular, Departamento de Genética Humana, Instituto Nacional de Pediatría, México, D.F., México
| | - Benilde García-de Teresa
- Laboratorio de Biología Molecular, Departamento de Genética Humana, Instituto Nacional de Pediatría, México, D.F., México
| | - Ariadna González-del Angel
- Laboratorio de Biología Molecular, Departamento de Genética Humana, Instituto Nacional de Pediatría, México, D.F., México
| | | |
Collapse
|
47
|
Differences in carrier frequency between mothers of Duchenne and Becker muscular dystrophy patients. J Hum Genet 2013; 59:46-50. [PMID: 24225992 PMCID: PMC3970902 DOI: 10.1038/jhg.2013.119] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2013] [Revised: 10/15/2013] [Accepted: 10/24/2013] [Indexed: 01/26/2023]
Abstract
Duchenne and Becker muscular dystrophies (DMD/BMD) are X-linked inherited muscular disorders caused by mutations in the dystrophin gene. Two-thirds of DMD cases are thought to be caused by inheritance from carrier mothers and this study aimed to clarify and compare the carrier frequency of mothers of DMD and BMD patients according to the mutation type. We included 139 DMD and 19 BMD mothers. Of these, 113 patients (99 DMD and 14 BMD) and 13 patients (12 DMD and 1 BMD) had deletions and duplications of one or more exons, respectively. Small mutations, including nonsense mutations, small deletions/insertions and splice site mutations, were identified in 32 patients (28 DMD and four BMD). The overall carrier frequency for BMD mothers was significantly higher than for DMD (89.5% vs 57.6%, P<0.05), probably as BMD patients can leave descendants. The carrier frequency tended to be lower in mothers of DMD patients with deletion mutations than with duplications and small mutations (53.5%, 66.7% and 67.9%, respectively). It was suggested that de novo mutations are more prevalent for deletions than other mutations. This is the first report to analyze the carrier frequency according to mutation type.
Collapse
|
48
|
|
49
|
Helderman-van den Enden ATJM, Madan K, Breuning MH, van der Hout AH, Bakker E, de Die-Smulders CEM, Ginjaar HB. An urgent need for a change in policy revealed by a study on prenatal testing for Duchenne muscular dystrophy. Eur J Hum Genet 2013; 21:21-6. [PMID: 22669413 PMCID: PMC3522203 DOI: 10.1038/ejhg.2012.101] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2011] [Revised: 04/03/2012] [Accepted: 04/26/2012] [Indexed: 11/22/2022] Open
Abstract
Prenatal diagnosis for Duchenne muscular dystrophy (DMD) was introduced in the Netherlands in 1984. We have investigated the impact of 26 years (1984-2009) of prenatal testing. Of the 635 prenatal diagnoses, 51% were males; nearly half (46%) of these were affected or had an increased risk of DMD. As a result 145 male fetuses were aborted and 174 unaffected boys were born. The vast majority (78%) of females, now 16 years or older, who were identified prenatally have not been tested for carrier status. Their average risk of being a carrier is 28%. We compared the incidences of DMD in the periods 1961-1974 and 1993-2002. The incidence of DMD did not decline but the percentage of first affected boys increased from 62 to 88%. We conclude that a high proportion of families with de novo mutations in the DMD gene cannot make use of prenatal diagnosis, partly because the older affected boys are not diagnosed before the age of five. Current policy, widely accepted in the genetic community, dictates that female fetuses are not tested for carrier status. These females remain untested as adults and risk having affected offspring as well as progressive cardiac disease. We see an urgent need for a change in policy to improve the chances of prevention of DMD. The first step would be to introduce neonatal screening of males. The next is to test females for carrier status if requested, prenatally if fetal DNA is available or postnatally even before adulthood.
Collapse
|
50
|
Gauthier J, Rouleau GA. De novo mutations in neurological and psychiatric disorders: effects, diagnosis and prevention. Genome Med 2012; 4:71. [PMID: 23009675 PMCID: PMC3580441 DOI: 10.1186/gm372] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Neurological and psychiatric disorders account for a considerable proportion of the global disease burden. Although there is a high heritability and a significant genetic component in these disorders, the genetic cause of most cases has yet to be identified. Advances in DNA sequencing allowing the analysis of the whole human genome in a single experiment have led to an acceleration of the discovery of the genetic factors associated with human disease. Recent studies using these platforms have highlighted the important role of de novo mutations in neurological and psychiatric disorders. These findings have opened new avenues into the understanding of genetic disease mechanisms. These discoveries, combined with the increasing ease with which we can sequence the human genome, have important implications for diagnosis, prevention and treatment. Here, we present an overview of the recent discovery of de novo mutations using key examples of neurological and psychiatric disorders. We also discuss the impact of technological developments on diagnosis and prevention.
Collapse
Affiliation(s)
- Julie Gauthier
- Center of Excellence in Neuroscience of the Université de Montréal , Quebec, Canada H2L 4MI ; Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Quebec, Canada H2L 4MI
| | - Guy A Rouleau
- Center of Excellence in Neuroscience of the Université de Montréal , Quebec, Canada H2L 4MI ; Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Quebec, Canada H2L 4MI ; Department of Medicine, Université de Montréal, Quebec, Canada H2L 4MI
| |
Collapse
|