1
|
Danilov SM, Adzhubei IA, Kozuch AJ, Petukhov PA, Popova IA, Choudhury A, Sengupta D, Dudek SM. Carriers of Heterozygous Loss-of-Function ACE Mutations Are at Risk for Alzheimer's Disease. Biomedicines 2024; 12:162. [PMID: 38255267 PMCID: PMC10813023 DOI: 10.3390/biomedicines12010162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 12/29/2023] [Accepted: 01/09/2024] [Indexed: 01/24/2024] Open
Abstract
We hypothesized that subjects with heterozygous loss-of-function (LoF) ACE mutations are at risk for Alzheimer's disease because amyloid Aβ42, a primary component of the protein aggregates that accumulate in the brains of AD patients, is cleaved by ACE (angiotensin I-converting enzyme). Thus, decreased ACE activity in the brain, either due to genetic mutation or the effects of ACE inhibitors, could be a risk factor for AD. To explore this hypothesis in the current study, existing SNP databases were analyzed for LoF ACE mutations using four predicting tools, including PolyPhen-2, and compared with the topology of known ACE mutations already associated with AD. The combined frequency of >400 of these LoF-damaging ACE mutations in the general population is quite significant-up to 5%-comparable to the frequency of AD in the population > 70 y.o., which indicates that the contribution of low ACE in the development of AD could be under appreciated. Our analysis suggests several mechanisms by which ACE mutations may be associated with Alzheimer's disease. Systematic analysis of blood ACE levels in patients with all ACE mutations is likely to have clinical significance because available sequencing data will help detect persons with increased risk of late-onset Alzheimer's disease. Patients with transport-deficient ACE mutations (about 20% of damaging ACE mutations) may benefit from preventive or therapeutic treatment with a combination of chemical and pharmacological (e.g., centrally acting ACE inhibitors) chaperones and proteosome inhibitors to restore impaired surface ACE expression, as was shown previously by our group for another transport-deficient ACE mutation-Q1069R.
Collapse
Affiliation(s)
- Sergei M. Danilov
- Department of Medicine, Division of Pulmonary, Critical Care, Sleep and Allergy, University of Illinois Chicago, Chicago, IL 60612, USA; (A.J.K.); (S.M.D.)
| | - Ivan A. Adzhubei
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA 02115, USA;
| | - Alexander J. Kozuch
- Department of Medicine, Division of Pulmonary, Critical Care, Sleep and Allergy, University of Illinois Chicago, Chicago, IL 60612, USA; (A.J.K.); (S.M.D.)
| | - Pavel A. Petukhov
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois Chicago, Chicago, IL 60612, USA;
| | - Isolda A. Popova
- Toxicology Research Laboratory, University of Illinois Chicago, IL 60612, USA;
| | - Ananyo Choudhury
- Sydney Brenner Institute for Molecular Bioscience, University of the Witwatersrand, Johannesburg 2193, South Africa; (A.C.); (D.S.)
| | - Dhriti Sengupta
- Sydney Brenner Institute for Molecular Bioscience, University of the Witwatersrand, Johannesburg 2193, South Africa; (A.C.); (D.S.)
| | - Steven M. Dudek
- Department of Medicine, Division of Pulmonary, Critical Care, Sleep and Allergy, University of Illinois Chicago, Chicago, IL 60612, USA; (A.J.K.); (S.M.D.)
| |
Collapse
|
2
|
Amruta A, Iannotta D, Cheetham SW, Lammers T, Wolfram J. Vasculature organotropism in drug delivery. Adv Drug Deliv Rev 2023; 201:115054. [PMID: 37591370 PMCID: PMC10693934 DOI: 10.1016/j.addr.2023.115054] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 07/22/2023] [Accepted: 08/13/2023] [Indexed: 08/19/2023]
Abstract
Over the past decades, there has been an exponential increase in the development of preclinical and clinical nanodelivery systems, and recently, an accelerating demand to deliver RNA and protein-based therapeutics. Organ-specific vasculature provides a promising intermediary for site-specific delivery of nanoparticles and extracellular vesicles to interstitial cells. Endothelial cells express organ-specific surface marker repertoires that can be used for targeted delivery. This article highlights organ-specific vasculature properties, nanodelivery strategies that exploit vasculature organotropism, and overlooked challenges and opportunities in targeting and simultaneously overcoming the endothelial barrier. Impediments in the clinical translation of vasculature organotropism in drug delivery are also discussed.
Collapse
Affiliation(s)
- A Amruta
- School of Chemical Engineering, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Dalila Iannotta
- School of Chemical Engineering, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Seth W Cheetham
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Twan Lammers
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging, RWTH Aachen University Hospital, 52074 Aachen, Germany; Helmholtz-Institute for Biomedical Engineering, Medical Faculty of RWTH Aachen University, 52074 Aachen, Germany; Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIO-ABCD), 52074 Aachen, Germany
| | - Joy Wolfram
- School of Chemical Engineering, The University of Queensland, Brisbane, QLD 4072, Australia; Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia; Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX 77030, USA.
| |
Collapse
|
3
|
Li YX, Wang HB, Li J, Jin JB, Hu JB, Yang CL. Targeting pulmonary vascular endothelial cells for the treatment of respiratory diseases. Front Pharmacol 2022; 13:983816. [PMID: 36110525 PMCID: PMC9468609 DOI: 10.3389/fphar.2022.983816] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 08/08/2022] [Indexed: 11/24/2022] Open
Abstract
Pulmonary vascular endothelial cells (VECs) are the main damaged cells in the pathogenesis of various respiratory diseases and they mediate the development and regulation of the diseases. Effective intervention targeting pulmonary VECs is of great significance for the treatment of respiratory diseases. A variety of cell markers are expressed on the surface of VECs, some of which can be specifically combined with the drugs or carriers modified by corresponding ligands such as ICAM-1, PECAM-1, and P-selectin, to achieve effective delivery of drugs in lung tissues. In addition, the great endothelial surface area of the pulmonary vessels, the “first pass effect” of venous blood in lung tissues, and the high volume and relatively slow blood perfusion rate of pulmonary capillaries further promote the drug distribution in lung tissues. This review summarizes the representative markers at the onset of respiratory diseases, drug delivery systems designed to target these markers and their therapeutic effects.
Collapse
Affiliation(s)
- Yi-Xuan Li
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, China
| | - Hong-Bo Wang
- Department of Pharmacy, Yuyao People’s Hospital, Yuyao, China
| | - Jing Li
- Department of Pharmacy, Yuyao People’s Hospital, Yuyao, China
| | - Jian-Bo Jin
- Department of Pharmacy, Yuyao People’s Hospital, Yuyao, China
| | - Jing-Bo Hu
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, China
- *Correspondence: Jing-Bo Hu, ; Chun-Lin Yang,
| | - Chun-Lin Yang
- Department of Pharmacy, Yuyao People’s Hospital, Yuyao, China
- *Correspondence: Jing-Bo Hu, ; Chun-Lin Yang,
| |
Collapse
|
4
|
Jt S, M H, Wam B, Ac B, Sa N. Adenoviral vectors for cardiovascular gene therapy applications: a clinical and industry perspective. J Mol Med (Berl) 2022; 100:875-901. [PMID: 35606652 PMCID: PMC9126699 DOI: 10.1007/s00109-022-02208-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 04/29/2022] [Accepted: 05/10/2022] [Indexed: 11/29/2022]
Abstract
Abstract Despite the development of novel pharmacological treatments, cardiovascular disease morbidity and mortality remain high indicating an unmet clinical need. Viral gene therapy enables targeted delivery of therapeutic transgenes and represents an attractive platform for tackling acquired and inherited cardiovascular diseases in the future. Current cardiovascular gene therapy trials in humans mainly focus on improving cardiac angiogenesis and function. Encouragingly, local delivery of therapeutic transgenes utilising first-generation human adenovirus serotype (HAd)-5 is safe in the short term and has shown some efficacy in drug refractory angina pectoris and heart failure with reduced ejection fraction. Despite this success, systemic delivery of therapeutic HAd-5 vectors targeting cardiovascular tissues and internal organs is limited by negligible gene transfer to target cells, elimination by the immune system, liver sequestration, off-target effects, and episomal degradation. To circumvent these barriers, cardiovascular gene therapy research has focused on determining the safety and efficacy of rare alternative serotypes and/or genetically engineered adenoviral capsid protein-modified vectors following local or systemic delivery. Pre-clinical studies have identified several vectors including HAd-11, HAd-35, and HAd-20–42-42 as promising platforms for local and systemic targeting of vascular endothelial and smooth muscle cells. In the past, clinical gene therapy trials were often restricted by limited scale-up capabilities of gene therapy medicinal products (GTMPs) and lack of regulatory guidance. However, significant improvement of industrial GTMP scale-up and purification, development of novel producer cell lines, and issuing of GTMP regulatory guidance by national regulatory health agencies have addressed many of these challenges, creating a more robust framework for future adenoviral-based cardiovascular gene therapy. In addition, this has enabled the mass roll out of adenovirus vector-based COVID-19 vaccines. Key messages First-generation HAd-5 vectors are widely used in cardiovascular gene therapy. HAd-5-based gene therapy was shown to lead to cardiac angiogenesis and improved function. Novel HAd vectors may represent promising transgene carriers for systemic delivery. Novel methods allow industrial scale-up of rare/genetically altered Ad serotypes. National regulatory health agencies have issued guidance on GMP for GTMPs.
Collapse
Affiliation(s)
- Schwartze Jt
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK.
| | - Havenga M
- Batavia Biosciences B.V., Bioscience Park Leiden, Zernikedreef 16, 2333, CL, Leiden, The Netherlands
| | - Bakker Wam
- Batavia Biosciences B.V., Bioscience Park Leiden, Zernikedreef 16, 2333, CL, Leiden, The Netherlands
| | - Bradshaw Ac
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK
| | - Nicklin Sa
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK
| |
Collapse
|
5
|
Glassman PM, Myerson JW, Ferguson LT, Kiseleva RY, Shuvaev VV, Brenner JS, Muzykantov VR. Targeting drug delivery in the vascular system: Focus on endothelium. Adv Drug Deliv Rev 2020; 157:96-117. [PMID: 32579890 PMCID: PMC7306214 DOI: 10.1016/j.addr.2020.06.013] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 06/12/2020] [Accepted: 06/13/2020] [Indexed: 12/16/2022]
Abstract
The bloodstream is the main transporting pathway for drug delivery systems (DDS) from the site of administration to the intended site of action. In many cases, components of the vascular system represent therapeutic targets. Endothelial cells, which line the luminal surface of the vasculature, play a tripartite role of the key target, barrier, or victim of nanomedicines in the bloodstream. Circulating DDS may accumulate in the vascular areas of interest and in off-target areas via mechanisms bypassing specific molecular recognition, but using ligands of specific vascular determinant molecules enables a degree of precision, efficacy, and specificity of delivery unattainable by non-affinity DDS. Three decades of research efforts have focused on specific vascular targeting, which have yielded a multitude of DDS, many of which are currently undergoing a translational phase of development for biomedical applications, including interventions in the cardiovascular, pulmonary, and central nervous systems, regulation of endothelial functions, host defense, and permeation of vascular barriers. We discuss the design of endothelial-targeted nanocarriers, factors underlying their interactions with cells and tissues, and describe examples of their investigational use in models of acute vascular inflammation with an eye on translational challenges.
Collapse
Affiliation(s)
- Patrick M Glassman
- Department of Systems Pharmacology and Translational Therapeutics, Center for Targeted Therapeutics and Translational Nanomedicine of the Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States of America.
| | - Jacob W Myerson
- Department of Systems Pharmacology and Translational Therapeutics, Center for Targeted Therapeutics and Translational Nanomedicine of the Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States of America
| | - Laura T Ferguson
- Department of Systems Pharmacology and Translational Therapeutics, Center for Targeted Therapeutics and Translational Nanomedicine of the Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States of America; Department of Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States of America
| | - Raisa Y Kiseleva
- Department of Systems Pharmacology and Translational Therapeutics, Center for Targeted Therapeutics and Translational Nanomedicine of the Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States of America
| | - Vladimir V Shuvaev
- Department of Systems Pharmacology and Translational Therapeutics, Center for Targeted Therapeutics and Translational Nanomedicine of the Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States of America
| | - Jacob S Brenner
- Department of Systems Pharmacology and Translational Therapeutics, Center for Targeted Therapeutics and Translational Nanomedicine of the Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States of America; Department of Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States of America
| | - Vladimir R Muzykantov
- Department of Systems Pharmacology and Translational Therapeutics, Center for Targeted Therapeutics and Translational Nanomedicine of the Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States of America.
| |
Collapse
|
6
|
Wang D, Chai XQ, Magnussen CG, Zosky GR, Shu SH, Wei X, Hu SS. Renin-angiotensin-system, a potential pharmacological candidate, in acute respiratory distress syndrome during mechanical ventilation. Pulm Pharmacol Ther 2019; 58:101833. [PMID: 31376462 PMCID: PMC7110665 DOI: 10.1016/j.pupt.2019.101833] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2019] [Revised: 06/24/2019] [Accepted: 07/31/2019] [Indexed: 02/06/2023]
Abstract
While effective treatments for acute respiratory distress syndrome (ARDS) are lacking, mechanical lung ventilation can sustain adequate gas exchange in critically ill patients with respiratory failure due to ARDS. However, as a result of the phenomenon of ventilator-induced lung injury (VILI), there is an increasing need to seek beneficial pharmacological therapies for ARDS. Recent studies have suggested the renin-angiotensin system (RAS), which consists of the ACE/Ang-II/AT1R axis and ACE2/Ang-(1-7)/MasR axis, plays a dual role in the pathogenesis of ARDS and VILI. This review highlights the deleterious action of ACE/Ang-II/AT1R axis and the beneficial role of ACE2/Ang-(1-7)/MasR axis, as well as AT2R, in VILI and ARDS, and also discusses the possibility of targeting RAS components with pharmacological interventions to improve outcomes in ARDS.
Collapse
Affiliation(s)
- Di Wang
- Department of Anesthesiology and Pain Medicine, Anhui Provincial Hospital, First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China (USTC), Hefei, 230001, Anhui, China
| | - Xiao-Qing Chai
- Department of Anesthesiology and Pain Medicine, Anhui Provincial Hospital, First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China (USTC), Hefei, 230001, Anhui, China.
| | - Costan G Magnussen
- Menzies Institute for Medical Research, College of Health and Medicine, University of Tasmania, Hobart, 7001, Tasmania, Australia; Research Centre of Applied and Preventive Cardiovascular Research, University of Turku, Turku, 20520, Finland
| | - Graeme R Zosky
- Menzies Institute for Medical Research, College of Health and Medicine, University of Tasmania, Hobart, 7001, Tasmania, Australia; School of Medicine, College of Health and Medicine, University of Tasmania, Hobart, 7001, Tasmania, Australia
| | - Shu-Hua Shu
- Department of Anesthesiology and Pain Medicine, Anhui Provincial Hospital, First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China (USTC), Hefei, 230001, Anhui, China
| | - Xin Wei
- Department of Anesthesiology and Pain Medicine, Anhui Provincial Hospital, First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China (USTC), Hefei, 230001, Anhui, China
| | - Shan-Shan Hu
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei, 230032, Anhui, China
| |
Collapse
|
7
|
Mudersbach T, Siuda D, Kohlstedt K, Fleming I. Epigenetic control of the angiotensin-converting enzyme in endothelial cells during inflammation. PLoS One 2019; 14:e0216218. [PMID: 31042763 PMCID: PMC6494048 DOI: 10.1371/journal.pone.0216218] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Accepted: 04/15/2019] [Indexed: 11/18/2022] Open
Abstract
The angiotensin-converting enzyme (ACE) plays a central role in the renin-angiotensin system, which is involved in the regulation of blood pressure. Alterations in ACE expression or activity are associated with various pathological phenotypes, particularly cardiovascular diseases. In human endothelial cells, ACE was shown to be negatively regulated by tumor necrosis factor (TNF) α. To examine, whether or not, epigenetic factors were involved in ACE expression regulation, methylated DNA immunoprecipitation and RNA interference experiments directed against regulators of DNA methylation homeostasis i.e., DNA methyltransferases (DNMTs) and ten-eleven translocation methylcytosine dioxygenases (TETs), were performed. TNFα stimulation enhanced DNA methylation in two distinct regions within the ACE promoter via a mechanism linked to DNMT3a and DNMT3b, but not to DNMT1. At the same time, TET1 protein expression was downregulated. In addition, DNA methylation decreased the binding affinity of the transcription factor MYC associated factor X to the ACE promoter. In conclusion, DNA methylation determines the TNFα-dependent regulation of ACE gene transcription and thus protein expression in human endothelial cells.
Collapse
Affiliation(s)
- Thomas Mudersbach
- Institute for Vascular Signalling, Centre for Molecular Medicine, Goethe University, Frankfurt am Main, Germany
- German Centre for Cardiovascular Research (DZHK), Partner site Rhein-Main, Frankfurt am Main, Germany
| | - Daniel Siuda
- Institute for Vascular Signalling, Centre for Molecular Medicine, Goethe University, Frankfurt am Main, Germany
- German Centre for Cardiovascular Research (DZHK), Partner site Rhein-Main, Frankfurt am Main, Germany
| | - Karin Kohlstedt
- Institute for Vascular Signalling, Centre for Molecular Medicine, Goethe University, Frankfurt am Main, Germany
| | - Ingrid Fleming
- Institute for Vascular Signalling, Centre for Molecular Medicine, Goethe University, Frankfurt am Main, Germany
- German Centre for Cardiovascular Research (DZHK), Partner site Rhein-Main, Frankfurt am Main, Germany
- * E-mail:
| |
Collapse
|
8
|
Brenner JS, Kiseleva RY, Glassman PM, Parhiz H, Greineder CF, Hood ED, Shuvaev VV, Muzykantov VR. The new frontiers of the targeted interventions in the pulmonary vasculature: precision and safety (2017 Grover Conference Series). Pulm Circ 2017; 8:2045893217752329. [PMID: 29261028 PMCID: PMC5768280 DOI: 10.1177/2045893217752329] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The pulmonary vasculature plays an important role in many lung pathologies, such as pulmonary arterial hypertension, primary graft dysfunction of lung transplant, and acute respiratory distress syndrome. Therapy for these diseases is quite limited, largely due to dose-limiting side effects of numerous drugs that have been trialed or approved. High doses of drugs targeting the pulmonary vasculature are needed due to the lack of specific affinity of therapeutic compounds to the vasculature. To overcome this problem, the field of targeted drug delivery aims to target drugs to the pulmonary endothelial cells, especially those in pathological regions. The field uses a variety of drug delivery systems (DDSs), ranging from nano-scale drug carriers, such as liposomes, to methods of conjugating drugs to affinity moieites, such as antibodies. These DDSs can deliver small molecule drugs, protein therapeutics, and imaging agents. Here we review targeted drug delivery to the pulmonary endothelium for the treatment of pulmonary diseases. Cautionary notes are made of the risk–benefit ratio and safety—parameters one should keep in mind when developing a translational therapeutic.
Collapse
Affiliation(s)
- Jacob S Brenner
- 1 14640 Pulmonary, Allergy, & Critical Care Division, University of Pennsylvania, Philadelphia, PA, USA
| | - Raisa Yu Kiseleva
- 2 14640 Department of Pharmacology, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Patrick M Glassman
- 2 14640 Department of Pharmacology, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Hamideh Parhiz
- 2 14640 Department of Pharmacology, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Colin F Greineder
- 2 14640 Department of Pharmacology, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Elizabeth D Hood
- 2 14640 Department of Pharmacology, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Vladimir V Shuvaev
- 2 14640 Department of Pharmacology, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Vladimir R Muzykantov
- 2 14640 Department of Pharmacology, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
9
|
Efimov GA, Raats JMH, Chirivi RGS, van Rosmalen JWG, Nedospasov SA. Humanization of Murine Monoclonal anti-hTNF Antibody: The F10 Story. Mol Biol 2017. [DOI: 10.1134/s0026893317060061] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
10
|
Danilov SM. Conformational Fingerprinting Using Monoclonal Antibodies (on the Example of Angiotensin I-Converting Enzyme-ACE). Mol Biol 2017; 51:906-920. [PMID: 32287393 PMCID: PMC7102274 DOI: 10.1134/s0026893317060048] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2017] [Accepted: 06/02/2017] [Indexed: 11/22/2022]
Abstract
During the past 30 years my laboratory has generated 40+ monoclonal antibodies (mAbs) directed to structural and conformational epitopes on human ACE as well as ACE from rats, mice and other species. These mAbs were successfully used for detection and quantification of ACE by ELISA, Western blotting, flow cytometry and immunohistochemistry. In all these applications mainly single mAbs were used. We hypothesized that we can obtain a completely new kind of information about ACE structure and function if we use the whole set of mAbs directed to different epitopes on the ACE molecule. When we finished epitope mapping of all mAbs to ACE (and especially, those recognizing conformational epitopes), we realized that we had obtained a new tool to study ACE. First, we demonstrated that binding of some mAbs is very sensitive to local conformational changes on the ACE surface-due to local denaturation, inactivation, ACE inhibitor or mAbs binding or due to diseases. Second, we were able to detect, localize and characterize several human ACE mutations. And, finally, we established a new concept-conformational fingerprinting of ACE using mAbs that in turn allowed us to obtain evidence for tissue specificity of ACE, which has promising scientific and diagnostic perspectives. The initial goal for the generation of mAbs to ACE 30 years ago was obtaining mAbs to organ-specific endothelial cells, which could be used for organ-specific drug delivery. Our systematic work on characterization of mAbs to numerous epitopes on ACE during these years has lead not only to the generation of the most effective mAbs for specific drug/gene delivery into the lung capillaries, but also to the establishment of the concept of conformational fingerprinting of ACE, which in turn gives a theoretical base for the generation of mAbs, specific for ACE from different organs. We believe that this concept could be applicable for any glycoprotein against which there is a set of mAbs to different epitopes.
Collapse
Affiliation(s)
- S. M. Danilov
- University of Illinois at Chicago, Chicago, USA
- Arizona University, Tucson, USA
- Medical Scientific and Educational Center of Moscow State University, Moscow, 119991 Russia
| |
Collapse
|
11
|
Feng F, Harper RL, Reynolds PN. BMPR2 gene delivery reduces mutation-related PAH and counteracts TGF-β-mediated pulmonary cell signalling. Respirology 2015; 21:526-32. [DOI: 10.1111/resp.12712] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Revised: 08/10/2015] [Accepted: 09/06/2015] [Indexed: 11/28/2022]
Affiliation(s)
- Feng Feng
- Lung Research Laboratory; Hanson Institute; Adelaide South Australia Australia
- Thoracic Medicine; Royal Adelaide Hospital; Adelaide South Australia Australia
| | - Rebecca L Harper
- Lung Research Laboratory; Hanson Institute; Adelaide South Australia Australia
- Thoracic Medicine; Royal Adelaide Hospital; Adelaide South Australia Australia
- Department of Medicine; University of Adelaide; Adelaide South Australia Australia
| | - Paul N Reynolds
- Lung Research Laboratory; Hanson Institute; Adelaide South Australia Australia
- Thoracic Medicine; Royal Adelaide Hospital; Adelaide South Australia Australia
- Department of Medicine; University of Adelaide; Adelaide South Australia Australia
| |
Collapse
|
12
|
Shuvaev VV, Brenner JS, Muzykantov VR. Targeted endothelial nanomedicine for common acute pathological conditions. J Control Release 2015; 219:576-595. [PMID: 26435455 DOI: 10.1016/j.jconrel.2015.09.055] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Revised: 09/24/2015] [Accepted: 09/25/2015] [Indexed: 12/16/2022]
Abstract
Endothelium, a thin monolayer of specialized cells lining the lumen of blood vessels is the key regulatory interface between blood and tissues. Endothelial abnormalities are implicated in many diseases, including common acute conditions with high morbidity and mortality lacking therapy, in part because drugs and drug carriers have no natural endothelial affinity. Precise endothelial drug delivery may improve management of these conditions. Using ligands of molecules exposed to the bloodstream on the endothelial surface enables design of diverse targeted endothelial nanomedicine agents. Target molecules and binding epitopes must be accessible to drug carriers, carriers must be free of harmful effects, and targeting should provide desirable sub-cellular addressing of the drug cargo. The roster of current candidate target molecules for endothelial nanomedicine includes peptidases and other enzymes, cell adhesion molecules and integrins, localized in different domains of the endothelial plasmalemma and differentially distributed throughout the vasculature. Endowing carriers with an affinity to specific endothelial epitopes enables an unprecedented level of precision of control of drug delivery: binding to selected endothelial cell phenotypes, cellular addressing and duration of therapeutic effects. Features of nanocarrier design such as choice of epitope and ligand control delivery and effect of targeted endothelial nanomedicine agents. Pathological factors modulate endothelial targeting and uptake of nanocarriers. Selection of optimal binding sites and design features of nanocarriers are key controllable factors that can be iteratively engineered based on their performance from in vitro to pre-clinical in vivo experimental models. Targeted endothelial nanomedicine agents provide antioxidant, anti-inflammatory and other therapeutic effects unattainable by non-targeted counterparts in animal models of common acute severe human disease conditions. The results of animal studies provide the basis for the challenging translation endothelial nanomedicine into the clinical domain.
Collapse
Affiliation(s)
- Vladimir V Shuvaev
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States; Center for Translational Targeted Therapeutics and Nanomedicine of the Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States
| | - Jacob S Brenner
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States; Center for Translational Targeted Therapeutics and Nanomedicine of the Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States
| | - Vladimir R Muzykantov
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States; Center for Translational Targeted Therapeutics and Nanomedicine of the Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States.
| |
Collapse
|
13
|
Vahidinia A, Heshmatian B, Salehi I, Zarei M. Garlic Powder Effect on Plasma Renin Activity, and Cardiovascular Effects of Intravenous Angiotensin I and Angiotensin II in Normotensive and Hypertensive Male Rats. AVICENNA JOURNAL OF MEDICAL BIOCHEMISTRY 2015. [DOI: 10.17795/ajmb-28581] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
14
|
Brenner JS, Greineder C, Shuvaev V, Muzykantov V. Endothelial nanomedicine for the treatment of pulmonary disease. Expert Opin Drug Deliv 2014; 12:239-61. [PMID: 25394760 DOI: 10.1517/17425247.2015.961418] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
INTRODUCTION Even though pulmonary diseases are among the leading causes of morbidity and mortality in the world, exceedingly few life-prolonging therapies have been developed for these maladies. Relief may finally come from nanomedicine and targeted drug delivery. AREAS COVERED Here, we focus on four conditions for which the pulmonary endothelium plays a pivotal role: acute respiratory distress syndrome, primary graft dysfunction occurring immediately after lung transplantation, pulmonary arterial hypertension and pulmonary embolism. For each of these diseases, we first evaluate the targeted drug delivery approaches that have been tested in animals. Then we suggest a 'need specification' for each disease: a list of criteria (e.g., macroscale delivery method, stability, etc.) that nanomedicine agents must meet in order to warrant human clinical trials and investment from industry. EXPERT OPINION For the diseases profiled here, numerous nanomedicine agents have shown promise in animal models. However, to maximize the chances of creating products that reach patients, nanomedicine engineers and clinicians must work together and use each disease's need specification to guide the design of practical and effective nanomedicine agents.
Collapse
Affiliation(s)
- Jacob S Brenner
- University of Pennsylvania, Perelman School of Medicine, Department of Pharmacology and Center for Targeted Therapeutics and Translational Nanomedicine , TRC10-125, 3600 Civic Center Boulevard, Philadelphia, PA 19104 , USA +1 215 898 9823 ; +1 215 573 9135 ;
| | | | | | | |
Collapse
|
15
|
Castro EC, Parks WT, Galambos C. The ontogeny of human pulmonary angiotensin-converting enzyme and its aberrant expression may contribute to the pathobiology of bronchopulmonary dysplasia (BPD). Pediatr Pulmonol 2014; 49:985-90. [PMID: 24574430 DOI: 10.1002/ppul.22911] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2013] [Accepted: 09/04/2013] [Indexed: 11/11/2022]
Abstract
INTRODUCTION The mammalian lung possesses the highest level of angiotensin converting enzyme (ACE) amongst all the organs. ACE is known to generate angiotensin (AT)-II from AT-I and to regulate serum bradykinin level, thereby controlling blood pressure. Recent data, however, indicate a role for ACE derived AT-II in angiogenesis, pulmonary hypertension, and neonatal lung disease. The ontogeny of ACE in humans has not been investigated. We studied pulmonary ACE expression during human lung development and in human bronchopulmonary dysplasia (BPD). MATERIAL AND METHODS Human fetal autopsy lung tissue representing all three trimesters (12, 13, 16, 18, 24, 34, 39, and 40 weeks of gestational age (WGA)), as well as from 1 to 10 years of age with no significant lung pathology were used. In addition lung sections of patients with BPD (n = 5) were selected. The slides were immunostained using an anti-ACE monoclonal antibody. The temporal and spatial pattern of ACE expression was contrasted to that of the pan-endothelial marker CD31. Staining intensity was graded. RESULTS Mildly diffuse and strong microvascular endothelial immunreactivity for ACE was seen in the human fetus as early as 12 WGA. ACE expression peaked at mid gestation and remained high throughout gestation and postnatally. In BPD lungs ACE endothelial staining was largely absent, and when focal staining was observed the intensity was weak. CONCLUSION We established that ACE expression is present in the human fetal lung as early as 12 WGA, remains active pre- and postnatally, and ACE expression was downregulated in BPD lungs. We speculate that ACE may be involved in the process of lung development.
Collapse
Affiliation(s)
- E C Castro
- Department of Pathology, Texas Children's Hospital, Baylor College of Medicine, Houston, Texas
| | | | | |
Collapse
|
16
|
Abstract
Endothelial cells represent important targets for therapeutic and diagnostic interventions in many cardiovascular, pulmonary, neurological, inflammatory, and metabolic diseases. Targeted delivery of drugs (especially potent and labile biotherapeutics that require specific subcellular addressing) and imaging probes to endothelium holds promise to improve management of these maladies. In order to achieve this goal, drug cargoes or their carriers including liposomes and polymeric nanoparticles are chemically conjugated or fused using recombinant techniques with affinity ligands of endothelial surface molecules. Cell adhesion molecules, constitutively expressed on the endothelial surface and exposed on the surface of pathologically altered endothelium—selectins, VCAM-1, PECAM-1, and ICAM-1—represent good determinants for such a delivery. In particular, PECAM-1 and ICAM-1 meet criteria of accessibility, safety, and relevance to the (patho)physiological context of treatment of inflammation, ischemia, and thrombosis and offer a unique combination of targeting options including surface anchoring as well as intra- and transcellular targeting, modulated by parameters of the design of drug delivery system and local biological factors including flow and endothelial phenotype. This review includes analysis of these factors and examples of targeting selected classes of therapeutics showing promising results in animal studies, supporting translational potential of these interventions.
Collapse
|
17
|
Okwan-Duodu D, Landry J, Shen XZ, Diaz R. Angiotensin-converting enzyme and the tumor microenvironment: mechanisms beyond angiogenesis. Am J Physiol Regul Integr Comp Physiol 2013; 305:R205-15. [DOI: 10.1152/ajpregu.00544.2012] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The renin angiotensin system (RAS) is a network of enzymes and peptides that coalesce primarily on the angiotensin II type 1 receptor (AT1R) to induce cell proliferation, angiogenesis, fibrosis, and blood pressure control. Angiotensin-converting enzyme (ACE), the key peptidase of the RAS, is promiscuous in that it cleaves other substrates such as substance P and bradykinin. Accumulating evidence implicates ACE in the pathophysiology of carcinogenesis. While the role of ACE and its peptide network in modulating angiogenesis via the AT1R is well documented, its involvement in shaping other aspects of the tumor microenvironment remains largely unknown. Here, we review the role of ACE in modulating the immune compartment of the tumor microenvironment, which encompasses the immunosuppressive, cancer-promoting myeloid-derived suppressor cells, alternatively activated tumor-associated macrophages, and T regulatory cells. We also discuss the potential roles of peptides that accumulate in the setting of chronic ACE inhibitor use, such as bradykinin, substance P, and N-acetyl-seryl-aspartyl-lysyl-proline (Ac-SDKP), and how they may undercut the gains of anti-angiogenesis from ACE inhibition. These emerging mechanisms may harmonize the often-conflicting results on the role of ACE inhibitors and ACE polymorphisms in various cancers and call for further investigations into the potential benefit of ACE inhibitors in some neoplasms.
Collapse
Affiliation(s)
- Derick Okwan-Duodu
- Department of Radiation Oncology, Emory University School of Medicine, Atlanta, Georgia; and
| | - Jerome Landry
- Department of Radiation Oncology, Emory University School of Medicine, Atlanta, Georgia; and
| | - Xiao Z. Shen
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California
| | - Roberto Diaz
- Department of Radiation Oncology, Emory University School of Medicine, Atlanta, Georgia; and
| |
Collapse
|
18
|
Petrov MN, Shilo VY, Tarasov AV, Schwartz DE, Garcia JGN, Kost OA, Danilov SM. Conformational changes of blood ACE in chronic uremia. PLoS One 2012; 7:e49290. [PMID: 23166630 PMCID: PMC3500299 DOI: 10.1371/journal.pone.0049290] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2012] [Accepted: 10/08/2012] [Indexed: 11/30/2022] Open
Abstract
Background The pattern of binding of monoclonal antibodies (mAbs) to 16 epitopes on human angiotensin I-converting enzyme (ACE) comprise a conformational ACE fingerprint and is a sensitive marker of subtle protein conformational changes. Hypothesis Toxic substances in the blood of patients with uremia due to End Stage Renal Disease (ESRD) can induce local conformational changes in the ACE protein globule and alter the efficacy of ACE inhibitors. Methodology/Principal Findings The recognition of ACE by 16 mAbs to the epitopes on the N and C domains of ACE was estimated using an immune-capture enzymatic plate precipitation assay. The precipitation pattern of blood ACE by a set of mAbs was substantially influenced by the presence of ACE inhibitors with the most dramatic local conformational change noted in the N-domain region recognized by mAb 1G12. The “short” ACE inhibitor enalaprilat (tripeptide analog) and “long” inhibitor teprotide (nonapeptide) produced strikingly different mAb 1G12 binding with enalaprilat strongly increasing mAb 1G12 binding and teprotide decreasing binding. Reduction in S-S bonds via glutathione and dithiothreitol treatment increased 1G12 binding to blood ACE in a manner comparable to enalaprilat. Some patients with uremia due to ESRD exhibited significantly increased mAb 1G12 binding to blood ACE and increased ACE activity towards angiotensin I accompanied by reduced ACE inhibition by inhibitory mAbs and ACE inhibitors. Conclusions/Significance The estimation of relative mAb 1G12 binding to blood ACE detects a subpopulation of ESRD patients with conformationally changed ACE, which activity is less suppressible by ACE inhibitors. This parameter may potentially serve as a biomarker for those patients who may need higher concentrations of ACE inhibitors upon anti-hypertensive therapy.
Collapse
Affiliation(s)
- Maxim N. Petrov
- Department of Chemistry, Lomonosov Moscow State University, Moscow, Russia
| | - Valery Y. Shilo
- Department of Nephrology, Moscow University for Medicine and Dentistry, Moscow, Russia
| | | | - David E. Schwartz
- Department of Anesthesiology, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Joe G. N. Garcia
- Institute for Personalized Respiratory Medicine, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Olga A. Kost
- Department of Chemistry, Lomonosov Moscow State University, Moscow, Russia
| | - Sergei M. Danilov
- Department of Anesthesiology, University of Illinois at Chicago, Chicago, Illinois, United States of America
- Institute for Personalized Respiratory Medicine, University of Illinois at Chicago, Chicago, Illinois, United States of America
- National Cardiology Research Center, Moscow, Russia
- * E-mail:
| |
Collapse
|
19
|
Adipocyte-derived lipids increase angiotensin-converting enzyme (ACE) expression and modulate macrophage phenotype. Basic Res Cardiol 2010; 106:205-15. [DOI: 10.1007/s00395-010-0137-9] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2010] [Revised: 10/20/2010] [Accepted: 11/08/2010] [Indexed: 10/18/2022]
|
20
|
Danilov SM, Balyasnikova IV, Danilova AS, Naperova IA, Arablinskaya NE, Borisov SE, Metzger R, Franke FE, Schwartz DE, Gachok IV, Trakht IN, Kost OA, Garcia JGN. Conformational fingerprinting of the angiotensin I-converting enzyme (ACE). 1. Application in sarcoidosis. J Proteome Res 2010; 9:5782-93. [PMID: 20873814 DOI: 10.1021/pr100564r] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Fine epitope mapping of monoclonal antibodies (mAbs) to 16 epitopes on human angiotensin I-converting enzyme (ACE) revealed that the epitopes of all mAbs contained putative glycosylation sites. ACE glycosylation is both cell- and tissue-specific and, therefore, the local conformation of ACE produced by different cells could be also unique. The pattern of ACE binding by a set of mAbs to 16 epitopes of human ACE - "conformational fingerprint of ACE" - is the most sensitive marker of ACE conformation and could be cell- and tissue-specific. The recognition of ACEs by mAbs to ACE was estimated using an immune-capture enzymatic plate precipitation assay. Precipitation patterns of soluble recombinant ACE released from Chinese hamster ovary (CHO)-ACE cells was influenced by conditions that alter ACE glycosylation. This pattern was also strongly cell type specific. Patients with sarcoidosis exhibited conformational fingerprints of tissue ACE (lungs and lymph nodes), as well as blood ACE, which were distinct from controls. Conformational fingerprinting of ACE may detect ACE originated from the cells other than endothelial cells in the blood and when combined with elevated blood ACE levels in patients with sarcoidosis may potentially reflect extrapulmonary sarcoidosis involvement (bone marrow, spleen, liver). If proven true, this would serve as a biomarker of enormous potential clinical significance.
Collapse
Affiliation(s)
- Sergei M Danilov
- Department of Anesthesiology, University of Illinois, Chicago, IL, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Singleton PA, Mirzapoiazova T, Guo Y, Sammani S, Mambetsariev N, Lennon FE, Moreno-Vinasco L, Garcia JGN. High-molecular-weight hyaluronan is a novel inhibitor of pulmonary vascular leakiness. Am J Physiol Lung Cell Mol Physiol 2010; 299:L639-51. [PMID: 20709728 DOI: 10.1152/ajplung.00405.2009] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Endothelial cell (EC) barrier dysfunction results in increased vascular permeability, a perturbation observed in inflammatory states, tumor angiogenesis, atherosclerosis, and both sepsis and acute lung injury. Therefore, agents that enhance EC barrier integrity have important therapeutic implications. We observed that binding of high-molecular-weight hyaluronan (HMW-HA) to its cognate receptor CD44 within caveolin-enriched microdomains (CEM) enhances human pulmonary EC barrier function. Immunocytochemical analysis indicated that HMW-HA promotes redistribution of a significant population of CEM to areas of cell-cell contact. Quantitative proteomic analysis of CEM isolated from human EC demonstrated HMW-HA-mediated recruitment of cytoskeletal regulatory proteins (annexin A2, protein S100-A10, and filamin A/B). Inhibition of CEM formation [caveolin-1 small interfering RNA (siRNA) and cholesterol depletion] or silencing (siRNA) of CD44, annexin A2, protein S100-A10, or filamin A/B expression abolished HMW-HA-induced actin cytoskeletal reorganization and EC barrier enhancement. To confirm our in vitro results in an in vivo model of inflammatory lung injury with vascular hyperpermeability, we observed that the protective effects of HMW-HA on LPS-induced pulmonary vascular leakiness were blocked in caveolin-1 knockout mice. Furthermore, targeted inhibition of CD44 expression in the mouse pulmonary vasculature significantly reduced HMW-HA-mediated protection from LPS-induced hyperpermeability. These data suggest that HMW-HA, via CD44-mediated CEM signaling events, represents a potentially useful therapeutic agent for syndromes of increased vascular permeability.
Collapse
Affiliation(s)
- Patrick A Singleton
- Dept. of Medicine, Univ. of Chicago, MC 6076, I-503C, 5841 S. Maryland Ave., Chicago, IL 60637, USA.
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Carnemolla R, Shuvaev VV, Muzykantov VR. Targeting antioxidant and antithrombotic biotherapeutics to endothelium. Semin Thromb Hemost 2010; 36:332-42. [PMID: 20490983 DOI: 10.1055/s-0030-1253455] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The endothelium is one of the key targets for pharmacological interventions in oxidative stress and thrombosis, two conditions that are notoriously difficult to treat due to limited efficacy and precision of action of current drugs. Design of molecular and nano-devices that deliver potent antioxidant and antithrombotic therapeutic enzymes to the endothelium holds promise to improve the potency, localization, timing, specificity, safety, and mechanistic precision of these interventions. In particular, cell adhesion molecules expressed on the surface of resting and pathologically altered endothelial cells can be used for drug delivery to the endothelial surface (preferable for thrombolytics) and into intracellular compartments (preferable for antioxidants). Drug delivery platforms including protein conjugates, recombinant fusion constructs, and stealth polymer carriers designed to target these drugs to endothelium are reviewed in this article.
Collapse
Affiliation(s)
- Ronald Carnemolla
- Department of Pharmacology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104-6068, USA
| | | | | |
Collapse
|
23
|
Maniatis NA, Balyasnikova IV, Metzger R, Castellon M, Visintine DJ, Schwartz DE, Minshall RD, Danilov SM. Reduced expression of angiotensin I-converting enzyme in caveolin-1 knockout mouse lungs. Microvasc Res 2010; 80:250-7. [PMID: 20430040 DOI: 10.1016/j.mvr.2010.04.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2009] [Revised: 04/19/2010] [Accepted: 04/19/2010] [Indexed: 10/19/2022]
Abstract
Reduced lung capillary expression of angiotensin I-converting enzyme (ACE), a key enzyme in cardiovascular pathophysiology, and of caveolin-1, an important regulator of endothelial cell signalling, has been demonstrated in various models of pulmonary arterial hypertension (PAH). We addressed the relationship between PAH and ACE expression in caveolin-1 knockout mice (Cav1(-/-)), which have moderate PAH. Tissue ACE activity was reduced by 50% in lungs from 3-month-old Cav1(-/-) mice compared to wild type (WT). A similar reduction in lung endothelial ACE expression was observed by measuring the lung uptake of (125)I-labeled monoclonal anti-ACE antibody and by quantitative immunohistochemistry. These alterations in ACE are limited to capillary segments of the pulmonary circulation. Functionally, the increase in pulmonary artery pressure (PAP) in response to ACE conversion of angiotensin I to angiotensin II in isolated, perfused mouse lungs was reduced significantly in Cav1(-/-) mice compared to WT. Thus, these complementary approaches demonstrate the dependence of lung microvascular endothelial cell ACE protein expression on caveolin-1 expression and underscore the vital role of caveolin-1-regulated pulmonary vascular homeostasis on endothelial ACE expression and activity. In summary, we have revealed a novel role of caveolin-1 in the regulation of ACE expression in pulmonary capillary endothelial cells. Further understanding of the mechanism by which reduced caveolin-1 expression leads altered pulmonary vascular development, PAH, and reduced ACE expression may have important clinical implications in patients with these severe lung diseases.
Collapse
|
24
|
Theoharis S, Krueger U, Tan PH, Haskard DO, Weber M, George AJ. Targeting gene delivery to activated vascular endothelium using anti E/P-Selectin antibody linked to PAMAM dendrimers. J Immunol Methods 2009; 343:79-90. [DOI: 10.1016/j.jim.2008.12.005] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2008] [Revised: 11/26/2008] [Accepted: 12/17/2008] [Indexed: 02/08/2023]
|
25
|
Simone E, Ding BS, Muzykantov V. Targeted delivery of therapeutics to endothelium. Cell Tissue Res 2008; 335:283-300. [PMID: 18815813 DOI: 10.1007/s00441-008-0676-7] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2008] [Accepted: 08/18/2008] [Indexed: 12/27/2022]
Abstract
The endothelium is a target for therapeutic and diagnostic interventions in a plethora of human disease conditions including ischemia, inflammation, edema, oxidative stress, thrombosis and hemorrhage, and metabolic and oncological diseases. Unfortunately, drugs have no affinity to the endothelium, thereby limiting the localization, timing, specificity, safety, and effectiveness of therapeutic interventions. Molecular determinants on the surface of resting and pathologically altered endothelial cells, including cell adhesion molecules, peptidases, and receptors involved in endocytosis, can be used for drug delivery to the endothelial surface and into intracellular compartments. Drug delivery platforms such as protein conjugates, recombinant fusion constructs, targeted liposomes, and stealth polymer carriers have been designed to target drugs and imaging agents to these determinants. We review endothelial target determinants and drug delivery systems, describe parameters that control the binding of drug carriers to the endothelium, and provide examples of the endothelial targeting of therapeutic enzymes designed for the treatment of acute vascular disorders including ischemia, oxidative stress, inflammation, and thrombosis.
Collapse
Affiliation(s)
- Eric Simone
- Department of Bioengineering, Program in Targeted Therapeutics of Institute for Translational Medicine and Therapeutics, University of Pennsylvania School of Engineering and Applied Sciences, Philadelphia, PA, USA
| | | | | |
Collapse
|
26
|
Naperova IA, Balyasnikova IV, Schwartz DE, Watermeyer J, Sturrock ED, Kost OA, Danilov SM. Mapping of conformational mAb epitopes to the C domain of human angiotensin I-converting enzyme. J Proteome Res 2008; 7:3396-411. [PMID: 18576678 DOI: 10.1021/pr800142w] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Angiotensin I-converting enzyme (ACE, CD143) has two homologous domains, each having a functional active site. Fine epitope mapping of 8 mAbs to the C-terminal domain of human ACE was carried out using plate precipitation assays, mAbs' cross-reactivity with ACE from different species, site-directed mutagenesis, and antigen- and cell-based ELISAs. Almost all epitopes contained potential glycosylation sites. Therefore, these mAbs could be used to distinguish different glycoforms of ACE expressed in different tissues or cell lines. mAbs 1B8 and 3F10 were especially sensitive to the composition of the N-glycan attached to Asn 731; mAbs 2H9 and 3F11 detected the glycosylation status of the glycan attached to Asn 685 and perhaps Asn1162; and mAb 1E10 and 4E3 recognized the glycan on Asn 666. The epitope of mAb 1E10 is located at the N-terminal end of the C domain, close to the unique 36 amino acid residues of testicular ACE (tACE). Moreover, it binds preferentially to tACE on the surface of human spermatozoa and thus may find application as an immunocontraceptive drug. mAb 4E3 was the best mAb for quantification of ACE-expressing somatic cells by flow cytometry. In contrast to the other mAbs, binding of mAb 2B11 was not markedly influenced by ACE glycosylation or by the cell culture conditions or cell types, making this mAb a suitable reference antibody. Epitope mapping of these C-domain mAbs, particularly those that compete with N-domain mAbs, enabled us to propose a model of the two-domain somatic ACE that might explain the interdomain cooperativity. Our findings demonstrated that mAbs directed to conformational epitopes on the C-terminal domain of human ACE are very useful for the detection of testicular and somatic ACE, quantification using flow cytometry and ELISA assays, and for the study of different aspects of ACE biology.
Collapse
Affiliation(s)
- Irina A Naperova
- Chemistry Faculty, Moscow State University, Russia, Department of Anesthesiology, University of Illinois at Chicago, Chicago, IL 60612, USA
| | | | | | | | | | | | | |
Collapse
|
27
|
Scharfstein J, Schmitz V, Svensjö E, Granato A, Monteiro AC. Kininogens Coordinate Adaptive Immunity through the Proteolytic Release of Bradykinin, an Endogenous Danger Signal Driving Dendritic Cell Maturation. Scand J Immunol 2007; 66:128-36. [PMID: 17635790 DOI: 10.1111/j.1365-3083.2007.01983.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Strategically positioned in peripheral tissues, immune sentinel cells sense microbes and/or their shed products through different types of pattern-recognition receptors. Upon secretion, pre-formed pro-inflammatory mediators activate the microvasculature, inducing endothelium/neutrophil adherence and impairing endothelium barrier function. As plasma proteins enter into peripheral tissues, short-lived proinflammatory peptides are rapidly generated by limited proteolysis of complement components and the kininogens (i.e. kinin-precursor proteins). While much emphasis has been placed on the studies of the vascular functions of kinins, their innate effector roles remain virtually unknown. A few years ago, we reported that exogenous bradykinin (BK) potently induces dendritic cell (DC) maturation, driving IL-12-dependent Th1 responses through the activation of G-protein-coupled BK B(2) receptors (B(2)R). The premise that immature DC might sense kinin-releasing pathogens through B(2)R was demonstrated in the subcutaneous mouse model of Trypanosoma cruzi infection. Analysis of the dynamics of parasite-evoked inflammation revealed that activation of TLR2/neutrophils drives the influx of plasma proteins, including kininogens, into peripheral tissues. Once associated to cell surfaces and/or extracellular matrices, the surface-bound kininogens are cleaved by T. cruzi cysteine proteases. Acting as short-lived 'danger' signals, kinins activate DC via B(2)R, converting them into Th1 inducers. Fine tuned control of the extravascular levels of these natural peptide adjuvants is exerted by kinin-degrading metallopeptidases, e.g. Angiotensin converting enzyme (ACE/CD143). In summary, the studies in the subcutaneous model of T. cruzi infection revealed that the peripheral levels of BK, a DC maturation signal, are controlled by TLR2/neutrophils and ACE, respectively characterized as positive and negative modulators of innate/adaptive immunity.
Collapse
Affiliation(s)
- J Scharfstein
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, CCS, Laboratório de Imunologia Molecular, Cidade Universitária Rio de Janeiro, Rio de Janeiro, Brazil.
| | | | | | | | | |
Collapse
|
28
|
Nowak K, Weih S, Metzger R, Albrecht RF, Post S, Hohenberger P, Gebhard MM, Danilov SM. Immunotargeting of catalase to lung endothelium via anti-angiotensin-converting enzyme antibodies attenuates ischemia-reperfusion injury of the lung in vivo. Am J Physiol Lung Cell Mol Physiol 2007; 293:L162-9. [PMID: 17435080 DOI: 10.1152/ajplung.00001.2007] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Limitation of reactive oxygen species-mediated ischemia-reperfusion (I/R) injury of the lung by vascular immunotargeting of antioxidative enzymes has the potential to become a promising modality for extension of the viability of banked transplantation tissue. The preferential expression of angiotensin-converting enzyme (ACE) in pulmonary capillaries makes it an ideal target for therapy directed toward the pulmonary endothelium. Conjugates of ACE monoclonal antibody (MAb) 9B9 with catalase (9B9-CAT) have been evaluated in vivo for limitation of lung I/R injury in rats. Ischemia of the right lung was induced for 60 min followed by 120 min of reperfusion. Sham-operated animals (sham, n = 6) were compared with ischemia-reperfused untreated animals (I/R, n = 6), I/R animals treated with biotinylated catalase (CAT, n = 6), and I/R rats treated with the conjugates (9B9-CAT, n = 6). The 9B9-CAT accumulation in the pulmonary endothelium of injured lungs was elucidated immunohistochemically. Arterial oxygenation during reperfusion was significantly higher in 9B9-CAT (221 +/- 36 mmHg) and sham (215 +/- 16 mmHg; P < 0.001 for both) compared with I/R (110 +/- 10 mmHg) and CAT (114 +/- 30 mmHg). Wet-dry weight ratio of I/R (6.78 +/- 0.94%) and CAT (6.54 +/- 0.87%) was significantly higher than of sham (4.85 +/- 0.29%; P < 0.05), which did not differ from 9B9-CAT (5.58 +/- 0.80%). The significantly lower degree of lung injury in 9B9-CAT-treated animals compared with I/R rats was also shown by decreased serum levels of endothelin-1 (sham, 18 +/- 9 fmol/mg; I/R, 42 +/- 12 fmol/mg; CAT, 36 +/- 11 fmol/mg; 9B9-CAT, 26 +/- 9 fmol/mg; P < 0.01) and mRNA for inducible nitric oxide synthase (iNOS) [iNOS-GAPDH ratio: sham, 0.15 +/- 0.06 arbitrary units (a.u.); I/R, 0.33 +/- 0.08 a.u.; CAT, 0.26 +/- 0.05 a.u.; 9B9-CAT, 0.14 +/- 0.04 a.u.; P < 0.001]. These results validate immunotargeting by anti-ACE conjugates as a prospective and specific strategy to augment antioxidative defenses of the pulmonary endothelium in vivo.
Collapse
Affiliation(s)
- Kai Nowak
- Department of Surgery, Clinical Medical Faculty Mannheim, University of Heidelberg, Heidelberg, Germany.
| | | | | | | | | | | | | | | |
Collapse
|