1
|
Ndou L, Chambuso R, Valley-Omar Z, Rebello G, Algar U, Goldberg P, Boutall A, Ramesar R. Human Leukocyte Antigen-Allelic Variations May Influence the Age at Cancer Diagnosis in Lynch Syndrome. J Pers Med 2024; 14:575. [PMID: 38929796 PMCID: PMC11204704 DOI: 10.3390/jpm14060575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 05/22/2024] [Accepted: 05/24/2024] [Indexed: 06/28/2024] Open
Abstract
Lynch syndrome (LS) is an inherited cancer predisposition disorder associated with an elevated risk of developing various solid cancers, but mostly colorectal cancer (CRC). Despite having the same germline pathogenic variant (PV) in one of the mis-match repair genes or the EPCAM gene, Lynch syndrome variant heterozygotes (LSVH) exhibit a remarkable phenotypic variability in the risk of developing cancer. The role of human leukocyte antigen (HLA) in modifying cancer development risk prompted our hypothesis into whether HLA variations act as potential genetic modifiers influencing the age at cancer diagnosis in LSVH. To investigate this, we studied a unique cohort of 426 LSVH carrying the same germline PV in the hMLH1 gene (MLH1:c.1528C > T) in South Africa. We intuitively selected 100 LSVH with the greatest diversity in age at cancer diagnosis (N = 80) and the oldest cancer unaffected LSVH (N = 20) for a high-throughput HLA genotyping of 11 HLA class I and class II loci using the shotgun next-generation sequencing (NGS) technique on the Illumina MiSeq platform. Statistical analyses employed Kaplan-Meier survival analyses with log-rank tests, and Cox proportional hazards using binned HLA data to minimize type I error. Significant associations were observed between young age at cancer diagnosis and HLA-DPB1*04:02 (mean age: 37 y (25-50); hazard ratio (HR) = 3.37; corrected p-value (q) = 0.043) as well as HLA-DPB1 binned alleles (including HLA-DPB1*09:01, HLA-DPB1*10:01, HLA-DPB1*106:01, HLA-DPB1*18:01, HLA-DPB1*20:01, HLA-DPB1*26:01, HLA-DPB1*28:01, HLA-DPB1*296:01, and HLA-DPB1*55:01) (mean age: 37 y (17-63); HR = 2.30, q = 0.045). The involvement of HLA-DPB1 alleles in the age at cancer diagnosis may highlight the potential role of HLA class II in the immune response against cancer development in LSVH. When validated in a larger cohort, these high-risk HLA-DPB1 alleles could be factored into cancer risk prediction models for personalized cancer screening in LSVH.
Collapse
Affiliation(s)
- Lutricia Ndou
- UCT/MRC Genomic and Precision Medicine Research Unit, Division of Human Genetics, Department of Pathology, Institute of Infectious Disease and Molecular Medicine, The University of Cape Town, Affiliated Hospitals, Cape Town 7704, South Africa
| | - Ramadhani Chambuso
- UCT/MRC Genomic and Precision Medicine Research Unit, Division of Human Genetics, Department of Pathology, Institute of Infectious Disease and Molecular Medicine, The University of Cape Town, Affiliated Hospitals, Cape Town 7704, South Africa
| | - Ziyaad Valley-Omar
- Medical Virology, National Health Laboratory Service, Groote Schuur Hospital, The University of Cape Town, Cape Town 7925, South Africa
| | - George Rebello
- UCT/MRC Genomic and Precision Medicine Research Unit, Division of Human Genetics, Department of Pathology, Institute of Infectious Disease and Molecular Medicine, The University of Cape Town, Affiliated Hospitals, Cape Town 7704, South Africa
| | - Ursula Algar
- The Colorectal Unit of the Department of Surgery, Groote Schuur Hospital, The University of Cape Town, Cape Town 7925, South Africa
| | - Paul Goldberg
- The Colorectal Unit of the Department of Surgery, Groote Schuur Hospital, The University of Cape Town, Cape Town 7925, South Africa
| | - Adam Boutall
- The Colorectal Unit of the Department of Surgery, Groote Schuur Hospital, The University of Cape Town, Cape Town 7925, South Africa
| | - Raj Ramesar
- UCT/MRC Genomic and Precision Medicine Research Unit, Division of Human Genetics, Department of Pathology, Institute of Infectious Disease and Molecular Medicine, The University of Cape Town, Affiliated Hospitals, Cape Town 7704, South Africa
| |
Collapse
|
2
|
Machraoui S, Errafii K, Oujamaa I, Belghali MY, Hakmaoui A, Lamjadli S, Eddehbi FE, Brahim I, Haida Y, Admou B. Frequency of the Main Human Leukocyte Antigen A, B, DR, and DQ Loci Known to Be Associated with the Clearance or Persistence of Hepatitis C Virus Infection in a Healthy Population from the Southern Region of Morocco: A Preliminary Study. Diseases 2024; 12:106. [PMID: 38785761 PMCID: PMC11120154 DOI: 10.3390/diseases12050106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 02/28/2024] [Accepted: 03/05/2024] [Indexed: 05/25/2024] Open
Abstract
Hepatitis C Virus (HCV) infection represents a significant global health challenge, with its natural course largely influenced by the host's immune response. Human Leukocyte Antigen (HLA) molecules, particularly HLA class I and II, play a crucial role in the adaptive immune response against HCV. The polymorphism of HLA molecules contributes to the variability in immune response, affecting the outcomes of HCV infection. This study aims to investigate the frequency of HLA A, B, DR, and DQ alleles known to be associated with HCV clearance or persistence in a healthy Moroccan population. Conducted at the University Hospital Center Mohammed VI, Marrakech, this study spanned from 2015 to 2022 and included 703 healthy Moroccan individuals. HLA class I and II typing was performed using complement-dependent cytotoxicity and polymerase chain reaction-based methodologies. The results revealed the distinct patterns of HLA-A, B, DRB1, and DQB1 alleles in the Moroccan population. Notably, alleles linked to favorable HCV outcomes, such as HLA-DQB1*0301, DQB1*0501, and DRB1*1101, were more prevalent. Conversely, alleles associated with increased HCV susceptibility and persistence, such as HLA-DQB1*02 and DRB1*03, were also prominent. Gender-specific variations in allele frequencies were observed, providing insights into genetic influences on HCV infection outcomes. The findings align with global trends in HLA allele associations with HCV infection outcomes. The study emphasizes the role of host genetics in HCV infection, highlighting the need for further research in the Moroccan community, including HCV-infected individuals. The prevalence of certain HLA alleles, both protective and susceptibility-linked, underscores the potential for a national HLA data bank in Morocco.
Collapse
Affiliation(s)
- Safa Machraoui
- Laboratory of Immunology and HLA, Center of Clinical Research, Mohammed VI University Hospital, Marrakech 40080, Morocco; (I.O.); (A.H.); (S.L.); (F.E.E.); (I.B.); (Y.H.); (B.A.)
- Biosciences Research Laboratory, Faculty of Medicine and Pharmacy, Cadi Ayyad University, Marrakech 40080, Morocco
- African Genome Center, Mohammed VI Polytechnic University (UM6P), Ben Guerir 43151, Morocco;
| | - Khaoula Errafii
- African Genome Center, Mohammed VI Polytechnic University (UM6P), Ben Guerir 43151, Morocco;
| | - Ider Oujamaa
- Laboratory of Immunology and HLA, Center of Clinical Research, Mohammed VI University Hospital, Marrakech 40080, Morocco; (I.O.); (A.H.); (S.L.); (F.E.E.); (I.B.); (Y.H.); (B.A.)
| | - Moulay Yassine Belghali
- Department of Biology, Faculty of Sciences Dhar El Mahraz, Sidi Mohammed Ben Abdellah University, Fez 30003, Morocco;
| | - Abdelmalek Hakmaoui
- Laboratory of Immunology and HLA, Center of Clinical Research, Mohammed VI University Hospital, Marrakech 40080, Morocco; (I.O.); (A.H.); (S.L.); (F.E.E.); (I.B.); (Y.H.); (B.A.)
| | - Saad Lamjadli
- Laboratory of Immunology and HLA, Center of Clinical Research, Mohammed VI University Hospital, Marrakech 40080, Morocco; (I.O.); (A.H.); (S.L.); (F.E.E.); (I.B.); (Y.H.); (B.A.)
| | - Fatima Ezzohra Eddehbi
- Laboratory of Immunology and HLA, Center of Clinical Research, Mohammed VI University Hospital, Marrakech 40080, Morocco; (I.O.); (A.H.); (S.L.); (F.E.E.); (I.B.); (Y.H.); (B.A.)
| | - Ikram Brahim
- Laboratory of Immunology and HLA, Center of Clinical Research, Mohammed VI University Hospital, Marrakech 40080, Morocco; (I.O.); (A.H.); (S.L.); (F.E.E.); (I.B.); (Y.H.); (B.A.)
| | - Yasmine Haida
- Laboratory of Immunology and HLA, Center of Clinical Research, Mohammed VI University Hospital, Marrakech 40080, Morocco; (I.O.); (A.H.); (S.L.); (F.E.E.); (I.B.); (Y.H.); (B.A.)
| | - Brahim Admou
- Laboratory of Immunology and HLA, Center of Clinical Research, Mohammed VI University Hospital, Marrakech 40080, Morocco; (I.O.); (A.H.); (S.L.); (F.E.E.); (I.B.); (Y.H.); (B.A.)
- Biosciences Research Laboratory, Faculty of Medicine and Pharmacy, Cadi Ayyad University, Marrakech 40080, Morocco
| |
Collapse
|
3
|
Ludvigsson J, Edna M, Ramaiya K. Type 1 diabetes in low and middle-income countries - Tanzania a streak of hope. Front Endocrinol (Lausanne) 2023; 14:1043370. [PMID: 37033222 PMCID: PMC10080134 DOI: 10.3389/fendo.2023.1043370] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 03/06/2023] [Indexed: 04/11/2023] Open
Abstract
INTRODUCTION In several of the Low and Middle Income countries , many patients with Type 1 diabetes (T1D) are most probably not diagnosed at all which may contribute to their low incidence. As an example of a country with low income and poor resources, we have chosen to study T1D in children/young people in Tanzania. METHODS Analyses of casebooks and statistics at several Tanzanian hospitals treating young patients with insulin dependent diabetes, usually Type 1 diabetes, and collection of information from different organisations such a Tanzanian Diabetes Association, Life for a Child, Changing Diabetes in Children and World Diabetes Foundation. RESULTS The incidence in several areas is low. However, a lot of data are often missing at studied clinics and therefore the incidence might be higher, and with increased awareness in recent years the number of patients has increased many-folds. Most patients present with typical symptoms and signs of T1D, and a high proportion with plausible ketoacidosis , although this proportion has decreased from about 90% to about 40% in recent decades. Many patients have poor blood glucose control, and complications often develop already after short diabetes duration. In recent years resources have increased, awareness has increased and diabetes clinics started where staff has got training. CONCLUSIONS There are problems with diabetes care in Tanzania but several facts give hope for the future.
Collapse
Affiliation(s)
- Johnny Ludvigsson
- Crown Princess Victoria Children's Hospital and Division of Pediatrics, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
- *Correspondence: Johnny Ludvigsson,
| | - Majaliwa Edna
- Department of Pediatrics and Child Health, Muhimbili National Hospital, Dar es Salaam, Tanzania
| | - Kaushik Ramaiya
- Hindu Mandal Hospital, Dar es Salaam, Tanzania
- Tanzanian Diabetes Association, Dar es Salaam, Tanzania
| |
Collapse
|
4
|
Taher I, Almaeen A, Ghazy A, Abu-Farha M, Mohamed Channanath A, Elsa John S, Hebbar P, Arefanian H, Abubaker J, Al-Mulla F, Alphonse Thanaraj T. Relevance Between COVID-19 and Host Genetics of Immune Response. Saudi J Biol Sci 2021; 28:6645-6652. [PMID: 34305429 PMCID: PMC8285220 DOI: 10.1016/j.sjbs.2021.07.037] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 07/08/2021] [Accepted: 07/11/2021] [Indexed: 12/09/2022] Open
Abstract
The outbreak of coronavirus disease 2019 (COVID-19) was caused by the newly emerged corona virus (2019-nCoV alias SARS-CoV-2) that resembles the severe acute respiratory syndrome virus (SARS-CoV). SARS-CoV-2, which was first identified in Wuhan (China) has spread globally, resulting in a high mortality worldwide reaching ~4 million deaths to date. As of first week of July 2021, ~181 million cases of COVID-19 have been reported. SARS-CoV-2 infection is mediated by the binding of virus spike protein to Angiotensin Converting Enzyme 2 (ACE2). ACE2 is expressed on many human tissues; however, the major entry point is probably pneumocytes, which are responsible for synthesis of alveolar surfactant in lungs. Viral infection of pneumocytes impairs immune responses and leads to, apart from severe hypoxia resulting from gas exchange, diseases with serious complications. During viral infection, gene products (e.g. ACE2) that mediate viral entry, antigen presentation, and cellular immunity are of crucial importance. Human leukocyte antigens (HLA) I and II present antigens to the CD8+ and CD4+ T lymphocytes, which are crucial for immune defence against pathogens including viruses. HLA gene variants affect the recognition and presentation of viral antigenic peptides to T-cells, and cytokine secretion. Additionally, endoplasmic reticulum aminopeptidases (ERAP) trim antigenic precursor peptides to fit into the binding groove of MHC class I molecules. Polymorphisms in ERAP genes leading to aberrations in ERAP’s can alter antigen presentation by HLA class I molecules resulting in aberrant T-cell responses, which may affect susceptibility to infection and/or activation of immune response. Polymorphisms from these genes are associated, in global genetic association studies, with various phenotype traits/disorders many of which are related to the pathogenesis and progression of COVID-19; polymorphisms from various genes are annotated in genotype-tissue expression data as regulating the expression of ACE2, HLA’s and ERAP’s. We review such polymorphisms and illustrate variations in their allele frequencies in global populations. These reported findings highlight the roles of genetic modulators (e.g. genotype changes in ACE2, HLA’s and ERAP’s leading to aberrations in the expressed gene products or genotype changes at other genes regulating the expression levels of these genes) in the pathogenesis of viral infection.
Collapse
Affiliation(s)
- Ibrahim Taher
- Department of Pathology, College of Medicine, Jouf University, Sakaka, Saudi Arabia
| | - Abdulrahman Almaeen
- Department of Pathology, College of Medicine, Jouf University, Sakaka, Saudi Arabia
| | - Amany Ghazy
- Department of Pathology, College of Medicine, Jouf University, Sakaka, Saudi Arabia.,Departments of Microbiology & Medical Immunology, Faculty of Medicine, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - Mohamed Abu-Farha
- Department of Biochemistry and Molecular Biology, Dasman Diabetes Institute, Dasman 15462, Kuwait
| | | | - Sumi Elsa John
- Department of Genetics and Bioinformatics, Dasman Diabetes Institute, Dasman 15462, Kuwait
| | - Prashantha Hebbar
- Department of Genetics and Bioinformatics, Dasman Diabetes Institute, Dasman 15462, Kuwait
| | - Hossein Arefanian
- Department of Immunology and Microbiology, Dasman Diabetes Institute, Dasman 15462, Kuwait
| | - Jehad Abubaker
- Department of Biochemistry and Molecular Biology, Dasman Diabetes Institute, Dasman 15462, Kuwait
| | - Fahd Al-Mulla
- Department of Genetics and Bioinformatics, Dasman Diabetes Institute, Dasman 15462, Kuwait
| | | |
Collapse
|
5
|
Bhola S, Cave EM, Bhana S, Crowther NJ, Padoa CJ. Zinc transporter 8 (ZnT8) autoantibody prevalence in black South African participants with type 1 diabetes. BMC Endocr Disord 2021; 21:151. [PMID: 34271898 PMCID: PMC8285837 DOI: 10.1186/s12902-021-00812-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 06/22/2021] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Autoantibodies to β-cell specific antigens are markers of type 1 diabetes. The most recently identified autoantibodies are targeted to the zinc transporter 8 (ZnT8) protein located in the membrane of β-cell insulin secretory granules. The prevalence of ZnT8 autoantibodies in newly diagnosed participants with type 1 diabetes has been found to range from 33 to 80 %. Due to the lack of data on the immunological aetiology of type 1 diabetes in African populations, this study aimed to determine the prevalence of ZnT8 autoantibodies in black South Africans with type 1 diabetes and whether ZnT8 autoantibody positivity was associated with age at diagnosis and disease duration. METHODS Participants with type 1 diabetes and controls were recruited from the greater Johannesburg area, South Africa. Positivity for ZnT8, GAD65 and IA2 autoantibodies was determined by ELISA. RESULTS Participants with type 1 diabetes (n = 183) and controls (n = 49) were matched for age (29.1 ± 9.53 vs. 27.3 ± 7.29, respectively; p = 0.248). The mean age at diagnosis for participants with type 1 diabetes was 20.8 ± 8.46 years. The prevalence of ZnT8 autoantibody positivity was 17.5 % (32 of 183) in participants with type 1 diabetes with a median disease duration of 7.00 [2.00; 11.0] years. ZnT8 autoantibody prevalence in newly diagnosed participants (< 1 year duration) was 27.3 % (6 of 22). Logistic regression analysis found an association between ZnT8 autoantibody positivity and shorter disease duration (OR: 0.9 (0.81-1.00); p = 0.042). In addition, ZnT8 autoantibody positivity was significantly associated with an increased chance of being GAD65 (OR: 3.37 (1.10-10.3)) and IA2 (OR: 8.63 (2.82-26.4)) autoantibody positive. Multiple regression analysis found no association between ZnT8 autoantibody positivity and age at diagnosis. However, the presence of ≥ 2 autoantibodies was associated with a younger age at diagnosis of type 1 diabetes when compared to participants with ≤ 1 autoantibody (B = -5.270; p = 0.002). CONCLUSIONS The presence of ZnT8 autoantibodies was not related to a younger age at diagnosis in black South African patients with type 1 diabetes. However, the greater the numbers of autoantibodies present in an individual the earlier the age at diagnosis. ZnT8 autoantibodies decline with disease duration in the black South African population.
Collapse
Affiliation(s)
- Sureka Bhola
- Department of Chemical Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa.
- National Health Laboratory Service, Johannesburg, South Africa.
| | - Eleanor M Cave
- Department of Chemical Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Sindeep Bhana
- Department of Medicine, Chris Hani Baragwanath Hospital, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Nigel J Crowther
- Department of Chemical Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- National Health Laboratory Service, Johannesburg, South Africa
| | - Carolyn J Padoa
- Department of Chemical Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- National Health Laboratory Service, Johannesburg, South Africa
| |
Collapse
|
6
|
Seedat F, James I, Loubser S, Waja Z, Mallal SA, Hoffmann C, Tiemessen CT, Chaisson RE, Martinson NA. Human leukocyte antigen associations with protection against tuberculosis infection and disease in human immunodeficiency virus-1 infected individuals, despite household tuberculosis exposure and immune suppression. Tuberculosis (Edinb) 2021; 126:102023. [PMID: 33249336 DOI: 10.1016/j.tube.2020.102023] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 11/04/2020] [Accepted: 11/15/2020] [Indexed: 12/18/2022]
Abstract
BACKGROUND To determine the association of human leukocyte antigen (HLA) alleles as correlates of risk for and protection against tuberculin skin test (TST) positivity and active TB disease amongst HIV-infected adults. METHODS Genomic DNA was extracted from 754 HIV-infected adults whole-blood. HLA-A, -B, -C and -DRB1 loci were genotyped by next generation sequencing methods. HLA alleles were analysed by the presence/absence of TST immune conversion and active TB disease and further stratified by exposure to a household TB contact, CD4+ T-cell count and, for active TB disease, TST-positivity. RESULTS HLA-A*29:11 and - B*45:01/07 were associated with TST-positivity, while HLA-A*24:02, -A*29:02 and -B*15:16 with TST-negativity. In participants with a household TB contact, HLA-A*66:01, -A*68:02 and -B*49:01 were associated with TST-negativity. For TB disease, HLA-B*41:01, -C*06:02, -DRB1*04:01 and -DRB1*15:01 were associated with susceptibility, while HLA-B*07:02 and -DRB1*11:01 were protective, even for CD4+ T-cell count <350 cells/mm3. For initial TST-positivity and subsequent TB disease, HLA-A*01:01 and -DRB1*11:01 conveyed protection including for those with CD4+ T-cell count <350 cells/mm3. CONCLUSION Several HLA alleles are noted as correlates of TB infection, risk and natural protection in HIV-infected individuals. HLA associations may enable risk stratification of those with HIV infection. Protective alleles may assist in future TB vaccine development.
Collapse
Affiliation(s)
- Faheem Seedat
- Department of Internal Medicine, Klerksdorp Tshepong Hospital Complex, Benji Oliphant Road, North West Province Department of Health, University of the Witwatersrand, South Africa.
| | - Ian James
- Institute for Immunology and Infectious Diseases, 90 South Street, Murdoch University, Western Australia, Australia
| | - Shayne Loubser
- Centre for HIV and STIs, National Institute for Communicable Diseases, National Health Laboratory Services, 1 Modderfontein Road and Faculty of Health Sciences, University of the Witwatersrand, 1 Jan Smuts Avenue, Johannesburg, South Africa
| | - Ziyaad Waja
- Perinatal HIV Research Unit (PHRU), MRC Soweto Matlosana Collaborating Centre for HIV/AIDS and TB, Chris Hani Road, Chris Hani Baragwanath Academic Hospital, University of the Witwatersrand, South Africa
| | - Simon A Mallal
- Department of Pathology, Microbiology and Immunology, 2201, West End Avenue, Vanderbilt University, Nashville, TN, USA
| | - Christopher Hoffmann
- Johns Hopkins University Centre for TB Research, Charles Street, John Hopkins University, Baltimore, MD, USA
| | - Caroline T Tiemessen
- Centre for HIV and STIs, National Institute for Communicable Diseases, National Health Laboratory Services, 1 Modderfontein Road and Faculty of Health Sciences, University of the Witwatersrand, 1 Jan Smuts Avenue, Johannesburg, South Africa
| | - Richard E Chaisson
- Johns Hopkins University Centre for TB Research, Charles Street, John Hopkins University, Baltimore, MD, USA
| | - Neil A Martinson
- Perinatal HIV Research Unit (PHRU), MRC Soweto Matlosana Collaborating Centre for HIV/AIDS and TB, Chris Hani Road, Chris Hani Baragwanath Academic Hospital, University of the Witwatersrand, South Africa
| |
Collapse
|
7
|
Uren C, Hoal EG, Möller M. Mycobacterium tuberculosis complex and human coadaptation: a two-way street complicating host susceptibility to TB. Hum Mol Genet 2020; 30:R146-R153. [PMID: 33258469 DOI: 10.1093/hmg/ddaa254] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 11/09/2020] [Accepted: 11/26/2020] [Indexed: 11/14/2022] Open
Abstract
For centuries, the Mycobacterium tuberculosis complex (MTBC) has infected numerous populations, both human and non-human, causing symptomatic tuberculosis (TB) in some hosts. Research investigating the MTBC and how it has evolved with its host over time is sparse and has not resulted in many significant findings. There are even fewer studies investigating adaptation of the human host susceptibility to TB and these have largely focused on genome-wide association and candidate gene association studies. However, results emanating from these association studies are rarely replicated and appear to be population specific. It is, therefore, necessary to relook at the approach taken to investigate the relationship between the MTBC and the human host. Understanding that the evolution of the pathogen is coupled to the evolution of the host might be the missing link needed to effectively investigate their relationship. We hypothesize that this knowledge will bolster future efforts in combating the disease.
Collapse
Affiliation(s)
- Caitlin Uren
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, 8000 Cape Town, South Africa.,Centre for Bioinformatics and Computational Biology, Stellenbosch University, 7602 Stellenbosch, South Africa
| | - Eileen G Hoal
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, 8000 Cape Town, South Africa
| | - Marlo Möller
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, 8000 Cape Town, South Africa.,Centre for Bioinformatics and Computational Biology, Stellenbosch University, 7602 Stellenbosch, South Africa
| |
Collapse
|
8
|
Pradana KA, Widjaya MA, Wahjudi M. Indonesians Human Leukocyte Antigen (HLA) Distributions and Correlations with Global Diseases. Immunol Invest 2019; 49:333-363. [PMID: 31648579 DOI: 10.1080/08820139.2019.1673771] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
In Human, Major Histocompatibility Complex known as Human Leukocyte Antigen (HLA). The HLA grouped into three subclasses regions: the class I region, the class II region, and the class III region. There are thousands of polymorphic HLAs, many of them are proven to have correlations with diseases. Indonesia consists of diverse ethnicity people and populations. It carries a unique genetic diversity between one and another geographical positions. This paper aims to extract Indonesians HLA allele data, mapping the data, and correlating them with global diseases. From the study, it is found that global diseases, like Crohn's disease, rheumatoid arthritis, Graves' disease, gelatin allergy, T1D, HIV, systemic lupus erythematosus, juvenile chronic arthritis, and Mycobacterial disease (tuberculosis and leprosy) suspected associated with the Indonesian HLA profiles.
Collapse
Affiliation(s)
- Krisnawan Andy Pradana
- Faculty of Biotechnology, University of Surabaya, Surabaya City, Indonesia.,Department of Anatomy and Histology Faculty of Medicine, Airlangga University, Tambaksari, Surabaya City, Indonesia
| | | | - Mariana Wahjudi
- Faculty of Biotechnology, University of Surabaya, Surabaya City, Indonesia
| |
Collapse
|
9
|
El-Bendary M, Neamatallah M, Elalfy H, Besheer T, Kamel E, Mousa H, Eladl AH, El-Setouhy M, El-Gilany AH, El-Waseef A, Esmat G. HLA Class II-DRB1 Alleles with Hepatitis C Virus Infection Outcome in Egypt: A Multicentre Family-based Study. Ann Hepatol 2019; 18:68-77. [PMID: 31113612 DOI: 10.5604/01.3001.0012.7864] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Accepted: 12/11/2017] [Indexed: 02/04/2023]
Abstract
INTRODUCTION AND AIM Hepatitis C virus (HCV) infection is a global medical problem. HLA -DRB1 alleles have an important role in immune response against HCV. The aim of this study is to clarify the contribution of HLA -DRB1 alleles in HCV susceptibility in a multicentre family-based study. MATERIAL AND METHODS A total of 162 Egyptian families were recruited in this study with a total of 951 individuals (255 with chronic hepatitis C (CHC), 588 persons in the control group(-ve household contact to HCV) and 108 persons who spontaneously cleared the virus (SVC). All subjects were genotyped for HLA -DRB1 alleles by SSP-PCR and sequence based typing (SBT) methods. RESULTS The carriage of alleles 3:01:01 and 13:01:01 were highly significant in CHC when compared to that of control and SVC groups [OR of 3 family = 5.1289, PC (Bonferroni correction ) = 0.0002 and 5.9847, PC = 0.0001 and OR of 13 family = 4.6860, PC = 0.0002 and OR = 6.5987, PC = 0.0001 respectively]. While DRB1*040501, DRB1*040101, DRB1*7:01:01 and DRB1*110101 alleles were more frequent in SVC group than CHC patients (OR = 0.4052, PC = 0.03, OR: OR = 0.0916,PC = 0.0006, OR = 0.1833,PC = 0.0006 and OR = 0.4061, PC = 0.0001 respectively). CONCLUSIONS It was concluded that among the Egyptian families, HLA-DRB1*030101, and DRB1*130101 alleles associated with the risk of progression to CHC infection, while DRB1*040101, DRB1*040501, DRB1*7:01:01and DRB1*110101 act as protective alleles against HCV infection.
Collapse
Affiliation(s)
- Mahmoud El-Bendary
- Tropical Medicine & Hepatology, Mansoura Faculty Of Medicine, Mansoura University, Mansoura,Dakahlyia, Egypt.
| | - Mustafa Neamatallah
- Medical Biochemistry, Mansoura Faculty of Medicine, Mansoura University, Mansoura, Dakahlyia, Egypt
| | - Hatem Elalfy
- Tropical Medicine & Hepatology, Mansoura Faculty Of Medicine, Mansoura University, Mansoura,Dakahlyia, Egypt
| | - Tarek Besheer
- Tropical Medicine & Hepatology, Mansoura Faculty Of Medicine, Mansoura University, Mansoura,Dakahlyia, Egypt
| | - Emily Kamel
- Public Health & Preventive Medicine, Mansoura Faculty of Medicine, Mansoura University, Mansoura, Dakahlyia, Egypt
| | - Hend Mousa
- Biochemistry, Mansoura Faculty of Science, Mansoura University, Mansoura, Dakahlyia, Egypt
| | - Abdel-Hamid Eladl
- Internal Medicine Department, Alazhar Faculty of Medicine-Assiut University, Assiut, Egypt
| | - Maged El-Setouhy
- Department of Community and Occupational Medicine, Ain Shams Faculty of Medicine. Ain Shams University, Cairo, Egypt
| | - Abdel-Hady El-Gilany
- Public Health & Preventive Medicine, Mansoura Faculty of Medicine, Mansoura University, Mansoura, Dakahlyia, Egypt
| | - Ahmed El-Waseef
- Biochemistry, Mansoura Faculty of Science, Mansoura University, Mansoura, Dakahlyia, Egypt
| | - Gamal Esmat
- Tropical Medicine & Hepatology, Cairo Faculty of Medicine
| |
Collapse
|
10
|
Liao C, Yang J, Wang J, Du X, Wang R, Zhang S, He W, Wen Q, Ma L. [Association between HLA-A and HLA-DRB1 allele polymorphisms and susceptibility to tuberculosis in southern Chinese population]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2018; 38:95-100. [PMID: 33177020 DOI: 10.3969/j.issn.1673-4254.2018.01.15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
OBJECTIVE To study the relationship between HLA allele frequencies in peripheral blood mononuclear cells (PBMCs) and the susceptibility to tuberculosis in southern Chinese population. METHODS The polymorphisms of HLA-A and HLA-DRB1 loci in the PBMCs were analyzed in 294 patients with active tuberculosis using polymerase chain reaction-sequence based typing (PCT-SBT). The allele frequencies in the patients were compared with the data from 644 control southern Chinese subjects obtained from the online database Allele Frequencies in Worldwide Population. RESULTS The frequencies of HLA-A* 0101 and HLA-DRB1*1454 alleles in the patient cohort with pulmonary tuberculosis were significantly higher than those in the control group (2.4% vs 0.6%, χ2=10.788, P=0.001, Pc=0.016; 7.5% vs 0%, χ2=69.850, P < 0.0001); the frequencies of HLA-DRB1*1202 and HLA-DRB1*1401 alleles were significantly lower in this patient cohort than in the control group (10.4% vs 16.1%, χ2=9.845, P=0.002, Pc=0.044; 0% vs 3.1%, χ2=18.520, P < 0.001). CONCLUSIONS The frequencies of HLA-A and HLA-DRB1 alleles are correlated with the susceptibility to active tuberculosis in this southern Chinese population. HLA-A*0101, HLA-DRB1*1454 and the other 3 alleles are likely susceptible genes to tuberculosis, while HLA-DRB1*1202, HLA-DRB1*1401 and the other 4 alleles can be protective genes in this population.
Collapse
Affiliation(s)
- Chunxin Liao
- Department of Internal Medicine, Guangzhou Chest Hospital, Guangzhou 510095, China
| | - Jiahui Yang
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou 510515, China
| | - Jinli Wang
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou 510515, China
| | - Xialin Du
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou 510515, China
| | - Ruining Wang
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou 510515, China
| | - Shimeng Zhang
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou 510515, China
| | - Wenting He
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou 510515, China
| | - Qian Wen
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou 510515, China
| | - Li Ma
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
11
|
The relationship between human leukocyte antigen-DP/DQ gene polymorphisms and the outcomes of HCV infection in a Chinese population. Virol J 2017; 14:235. [PMID: 29212520 PMCID: PMC5719872 DOI: 10.1186/s12985-017-0901-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Accepted: 11/20/2017] [Indexed: 12/14/2022] Open
Abstract
Background Recently, human leukocyte antigen (HLA) class-II gene polymorphisms have been reported to be related to Hepatitis C virus (HCV) infection and chronicity. The objective of this study was to explore the relationship of HLA-DP rs9277535 and HLA-DQ rs7453920 with the outcomes of HCV infection. Methods The rs9277535 and rs7453920 were genotyped in 370 subjects with chronic HCV infection, 194 subjects with spontaneous HCV clearance, and 973 subjects with non-HCV infection from the Chinese population using the ABI TaqMan allelic discrimination assay. Results Logistic regression analyses showed that the minor allele A of rs7453920 significantly increased the susceptibility of HCV infection in dominant model (adjusted OR = 1.33, 95% CI: 1.04–1.71, P = 0.026) and additive models (adjusted OR = 1.30, 95% CI: 1.06–1.60, P = 0.012). Rs9277535 A allele significantly increased the risk of chronic HCV infection in dominant model (adjusted OR = 1.52, 95% CI: 1.01–2.28, P = 0.046). Haplotype AA showed a higher risk of HCV infection than the most frequent haplotype GG (adjusted OR = 1.37, 95% CI: 1.05–1.78, P = 0.018). Conclusion The HLA-DQ rs7453920 and -DP rs9277535 mutations were significantly associated with HCV infection susceptibility and chronicity, respectively. Electronic supplementary material The online version of this article (10.1186/s12985-017-0901-7) contains supplementary material, which is available to authorized users.
Collapse
|
12
|
Uren C, Möller M, van Helden PD, Henn BM, Hoal EG. Population structure and infectious disease risk in southern Africa. Mol Genet Genomics 2017; 292:499-509. [PMID: 28229227 DOI: 10.1007/s00438-017-1296-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Accepted: 02/01/2017] [Indexed: 02/06/2023]
Abstract
The KhoeSan populations are the earliest known indigenous inhabitants of southern Africa. The relatively recent expansion of Bantu-speaking agropastoralists, as well as European colonial settlement along the south-west coast, dramatically changed patterns of genetic diversity in a region which had been largely isolated for thousands of years. Owing to this unique history, population structure in southern Africa reflects both the underlying KhoeSan genetic diversity as well as differential recent admixture. This population structure has a wide range of biomedical and sociocultural implications; such as changes in disease risk profiles. Here, we consolidate information from various population genetic studies that characterize admixture patterns in southern Africa with an aim to better understand differences in adverse disease phenotypes observed among groups. Our review confirms that ancestry has a direct impact on an individual's immune response to infectious diseases. In addition, we emphasize the importance of collaborative research, especially for populations in southern Africa that have a high incidence of potentially fatal infectious diseases such as HIV and tuberculosis.
Collapse
Affiliation(s)
- Caitlin Uren
- SA MRC Centre for TB Research, DST/NRF Centre of Excellence for Biomedical Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medical and Health Sciences, Stellenbosch University, Tygerberg, Parow, 7500, South Africa
| | - Marlo Möller
- SA MRC Centre for TB Research, DST/NRF Centre of Excellence for Biomedical Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medical and Health Sciences, Stellenbosch University, Tygerberg, Parow, 7500, South Africa
| | - Paul D van Helden
- SA MRC Centre for TB Research, DST/NRF Centre of Excellence for Biomedical Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medical and Health Sciences, Stellenbosch University, Tygerberg, Parow, 7500, South Africa
| | - Brenna M Henn
- Department of Ecology and Evolution, Stony Brook University, Stony Brook, NY, 11794, USA
| | - Eileen G Hoal
- SA MRC Centre for TB Research, DST/NRF Centre of Excellence for Biomedical Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medical and Health Sciences, Stellenbosch University, Tygerberg, Parow, 7500, South Africa.
| |
Collapse
|
13
|
El-Bendary M, Neamatallah M, Esmat G, Kamel E, Elalfy H, Besheer T, Eldeib D, Eladl AH, El-Setouhy M, El-Gilany AH, El-Waseef A. Associations of human leucocyte antigen class II-DQB1 alleles with hepatitis C virus infection in Egyptian population: a multicentre family-based study. J Viral Hepat 2016; 23:961-970. [PMID: 27599887 DOI: 10.1111/jvh.12573] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Accepted: 06/07/2016] [Indexed: 12/14/2022]
Abstract
Hepatitis C infection is a global pandemic. HLA-DQB1 alleles are believed to have an effective role in immune response against HCV including susceptibility to or protection from this infection. The aim of this study was to investigate the contribution of HLA-DQB1 alleles in the outcome of HCV genotype-4 infection through a family-based association study. Egyptian families with HCV (324) were recruited for this study (324 index positive for RNA-HCV, 225 positive relatives representing chronic hepatitis C cases and 582 family members negative for HCV-RNA [control], 63 of whom spontaneously cleared the virus. All subjects were genotyped for HLA-DQB1 alleles by sequence-specific primers (SSP-PCR) and sequence-based typing (SBT) methods. The frequency of DQB1*02:01:01 carriage was significantly higher in infected patients when compared to controls and those who spontaneously cleared virus (OR=5.47, P<.0001 and OR= 6.5234, P<.0001, respectively), and the carriage of the DQB1*03:01:01:01 allele was significantly higher in those who cleared and controls when compared to the infected patients (OR=0.2889, P<.0001 and OR=0.3016, P<.0001, respectively). On the other hand, the frequency of DQB1*06:01:01 and QB1*05:01:01:01 alleles was not associated with infection (comparison of infected and cleared patients showed OR of 2.1598 [P<.01]), but it becomes nonsignificant after adjustments with the Bonferroni formula (PC >0.05) and OR= 1.3523, P>.05, respectively. This study shows that clearance of HCV is associated with DQB1*03:01:01:01 allele and chronicity of HCV infection associated with the risk allele: DQB1*02:01:01.
Collapse
Affiliation(s)
- M El-Bendary
- Tropical Medicine & Hepatology, Mansoura Faculty of Medicine, Mansoura, Egypt
| | - M Neamatallah
- Medical Biochemistry, Mansoura Faculty of Medicine, Mansoura, Egypt
| | - G Esmat
- Tropical Medicine & Hepatology, Cairo Faculty of Medicine, Cairo, Egypt
| | - E Kamel
- Public Health & Preventive Medicine Department, Mansoura Faculty of Medicine, Mansoura, Egypt
| | - H Elalfy
- Tropical Medicine & Hepatology, Mansoura Faculty of Medicine, Mansoura, Egypt
| | - T Besheer
- Tropical Medicine & Hepatology, Mansoura Faculty of Medicine, Mansoura, Egypt
| | - D Eldeib
- Biochemistry, Faculty of Science, Mansoura University, Mansoura, Egypt
| | - A-H Eladl
- Internal Medicine Department, Alazhar Faculty of Medicine- Assiut University, Assiut, Egypt
| | - M El-Setouhy
- Department of Community, Environmental and Occupational Medicine, Ain Shams Faculty of Medicine, Cairo, Egypt
| | - A-H El-Gilany
- Public Health & Preventive Medicine Department, Mansoura Faculty of Medicine, Mansoura, Egypt
| | - A El-Waseef
- Biochemistry, Faculty of Science, Mansoura University, Mansoura, Egypt
| |
Collapse
|
14
|
Pharmacogenomic implications of the evolutionary history of infectious diseases in Africa. THE PHARMACOGENOMICS JOURNAL 2016; 17:112-120. [PMID: 27779243 PMCID: PMC5380847 DOI: 10.1038/tpj.2016.78] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Revised: 07/06/2016] [Accepted: 07/19/2016] [Indexed: 12/20/2022]
Abstract
As the common birthplace of all human populations, modern humans have lived longer on the African continent than in any other geographical region of the world. This long history, along with the evolutionary need to adapt to environmental challenges such as exposure to infectious agents, has led to greater genetic variation in Africans. The vast genetic variation in Africans also extends to genes involved in the absorption, distribution, metabolism and excretion of pharmaceuticals. Ongoing cataloging of these clinically relevant variants reveals huge allele-frequency differences within and between African populations. Here, we examine Africa's large burden of infectious disease, discuss key examples of known genetic variation modulating disease risk, and provide examples of clinically relevant variants critical for establishing dosing guidelines. We propose that a more systematic characterization of the genetic diversity of African ancestry populations is required if the current benefits of precision medicine are to be extended to these populations.
Collapse
|
15
|
Wamala D, Buteme HK, Kirimunda S, Kallenius G, Joloba M. Association between human leukocyte antigen class II and pulmonary tuberculosis due to mycobacterium tuberculosis in Uganda. BMC Infect Dis 2016; 16:23. [PMID: 26803588 PMCID: PMC4724396 DOI: 10.1186/s12879-016-1346-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Accepted: 01/12/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Mycobacterium tuberculosis (Mtb) is reported to infect about a third of the world's population but only 10% are thought to develop active tuberculosis (TB) disease. Host immunity regulated by human leukocyte antigens (HLA) is an important determinant of the outcome of the disease. Here we investigate HLA class II gene polymorphisms in susceptibility to TB, and whether particular HLA class II alleles were associated with TB in Uganda. METHODS HIV negative patients with pulmonary TB (n = 43) and genetically related healthy household controls (n = 42) were typed for their HLA II class alleles using polymerase chain reaction sequence specific primer amplification. RESULTS The HLA-DQB1*03:03 allele was significantly less frequent in patients compared to healthy controls (10% in controls versus 0% in patients, p = 0.003). After correction for multiple comparisons the difference remained significant (p = 0.018). CONCLUSIONS Our results suggest that the HLA-DQB1*03:03 allele may be associated with resistance to TB.
Collapse
Affiliation(s)
- Dan Wamala
- Department of Pathology, Mulago Hospital and Makerere University, Kampala, Uganda. .,Department of Clinical Science and Education, Södersjukhuset, Karolinska Institutet, Stockholm, Sweden.
| | - Helen Koyokoyo Buteme
- Department of Clinical Science and Education, Södersjukhuset, Karolinska Institutet, Stockholm, Sweden.,Department of Medical Microbiology, School of Biomedical Sciences, College of Health Sciences, Makerere University, Kampala, Uganda
| | - Samuel Kirimunda
- Department of Medical Microbiology, School of Biomedical Sciences, College of Health Sciences, Makerere University, Kampala, Uganda
| | - Gunilla Kallenius
- Department of Clinical Science and Education, Södersjukhuset, Karolinska Institutet, Stockholm, Sweden
| | - Moses Joloba
- Department of Medical Microbiology, School of Biomedical Sciences, College of Health Sciences, Makerere University, Kampala, Uganda
| |
Collapse
|
16
|
Saad MN, Mabrouk MS, Eldeib AM, Shaker OG. Identification of rheumatoid arthritis biomarkers based on single nucleotide polymorphisms and haplotype blocks: A systematic review and meta-analysis. J Adv Res 2015; 7:1-16. [PMID: 26843965 PMCID: PMC4703421 DOI: 10.1016/j.jare.2015.01.008] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2014] [Revised: 01/13/2015] [Accepted: 01/20/2015] [Indexed: 12/30/2022] Open
Abstract
Genetics of autoimmune diseases represent a growing domain with surpassing biomarker results with rapid progress. The exact cause of Rheumatoid Arthritis (RA) is unknown, but it is thought to have both a genetic and an environmental bases. Genetic biomarkers are capable of changing the supervision of RA by allowing not only the detection of susceptible individuals, but also early diagnosis, evaluation of disease severity, selection of therapy, and monitoring of response to therapy. This review is concerned with not only the genetic biomarkers of RA but also the methods of identifying them. Many of the identified genetic biomarkers of RA were identified in populations of European and Asian ancestries. The study of additional human populations may yield novel results. Most of the researchers in the field of identifying RA biomarkers use single nucleotide polymorphism (SNP) approaches to express the significance of their results. Although, haplotype block methods are expected to play a complementary role in the future of that field.
Collapse
Affiliation(s)
- Mohamed N Saad
- Biomedical Engineering Department, Faculty of Engineering, Misr University for Science and Technology, 6th of October City, Egypt
| | - Mai S Mabrouk
- Biomedical Engineering Department, Faculty of Engineering, Misr University for Science and Technology, 6th of October City, Egypt
| | - Ayman M Eldeib
- Systems and Biomedical Engineering Department, Faculty of Engineering, Cairo University, Giza, Egypt
| | - Olfat G Shaker
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Cairo University, Cairo, Egypt
| |
Collapse
|
17
|
Beaton A, Sable C, Brown J, Hoffman J, Mungoma M, Mondo C, Cereb N, Brown C, Summar M, Freers J, Ferreira MB, Yacoub M, Mocumbi AO. Genetic susceptibility to endomyocardial fibrosis. Glob Cardiol Sci Pract 2014; 2014:473-81. [PMID: 25780800 PMCID: PMC4355520 DOI: 10.5339/gcsp.2014.60] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Accepted: 12/11/2014] [Indexed: 02/01/2023] Open
Abstract
Background: Endomyocardial fibrosis (EMF) is the most common form of restrictive cardiomyopathy worldwide. It has been linked to poverty and various environmental factors, but—for unknown reasons—only some people who live in similar conditions develop the disease. EMF cases cluster within both families and ethnic groups, suggesting a role for a genetic factor in host susceptibility. The human leukocyte antigen (HLA) system is associated with predisposition to various diseases. This two-center study was designed to investigate variation in the HLA system between EMF patients and unaffected controls. We provide the first genetic investigation of patients with EMF, as well as a comprehensive review of the literature. Methods: HLA class I (HLA-A, -B, -C) and class II (DRB1, DQB1) types were determined in 71 patients with severe EMF and 137 controls from Uganda and Mozambique. Chi Square analysis was used to identify any significant difference in frequency of class I and class II HLA types between cases and controls. Results: Compared to ethnically matched controls, HLA-B*58 occurred more frequently in Mozambique patients with EMF and HLA-A*02:02 occurred more frequently in Ugandan patients with EMF. Conclusions: Ample subjective evidence in the historical literature suggests the importance of a genetically susceptible host in EMF development. In this first formal genetic study, we found HLA alleles associated with cases of EMF in two populations from sub-Saharan Africa, with EMF patients being more likely than controls to have the HLA-B*58 allele in Mozambique (p-0.03) and the HLA-A*02:02 in Uganda (p = 0.005). Further investigations are needed to more fully understand the role of genetics in EMF development.
Collapse
Affiliation(s)
| | - Craig Sable
- Children's National Medical Center, Washington, DC
| | | | - Joshua Hoffman
- Center for Human Genetics Research, Vanderbilt University Medical Center, Nashville, TN
| | | | | | | | - Colin Brown
- NHS Blood and Transplant, Colindale, England
| | | | | | | | | | | |
Collapse
|
18
|
Ross IL, Babu S, Armstrong T, Zhang L, Schatz D, Pugliese A, Eisenbarth G, Baker II P. HLA similarities indicate shared genetic risk in 21-hydroxylase autoantibody positive South African and United States Addison's disease. ACTA ACUST UNITED AC 2014; 84:361-9. [DOI: 10.1111/tan.12407] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Revised: 06/02/2014] [Accepted: 06/12/2014] [Indexed: 10/25/2022]
Affiliation(s)
- I. L. Ross
- University of Cape Town; Cape Town South Africa
| | - S. Babu
- Barbara Davis Center for Childhood Diabetes; University of Colorado; Aurora CL, USA
| | - T. Armstrong
- Barbara Davis Center for Childhood Diabetes; University of Colorado; Aurora CL, USA
| | - L. Zhang
- Barbara Davis Center for Childhood Diabetes; University of Colorado; Aurora CL, USA
| | - D. Schatz
- Diabetes Center; University of Florida College of Medicine; Gainesville FL, USA
| | - A. Pugliese
- Diabetes Research Institute; University of Miami; Miami FL, USA
| | - G. Eisenbarth
- Barbara Davis Center for Childhood Diabetes; University of Colorado; Aurora CL, USA
| | - P. Baker II
- Barbara Davis Center for Childhood Diabetes; University of Colorado; Aurora CL, USA
| |
Collapse
|
19
|
Salie M, van der Merwe L, Möller M, Daya M, van der Spuy GD, van Helden PD, Martin MP, Gao XJ, Warren RM, Carrington M, Hoal EG. Associations between human leukocyte antigen class I variants and the Mycobacterium tuberculosis subtypes causing disease. J Infect Dis 2014; 209:216-23. [PMID: 23945374 PMCID: PMC3873786 DOI: 10.1093/infdis/jit443] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2013] [Accepted: 07/17/2013] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND The development of active tuberculosis disease has been shown to be multifactorial. Interactions between host and bacterial genotype may influence disease outcome, with some studies indicating the adaptation of M. tuberculosis strains to specific human populations. Here we investigate the role of the human leukocyte antigen (HLA) class I genes in this biological process. METHODS Three hundred patients with tuberculosis from South Africa were typed for their HLA class I alleles by direct sequencing. Mycobacterium tuberculosis genotype classification was done by IS6110 restriction fragment length polymorphism genotyping and spoligotyping. RESULTS We showed that Beijing strain occurred more frequently in individuals with multiple disease episodes (P < .001) with the HLA-B27 allele lowering the odds of having an additional episode (odds ratio, 0.21; P = .006). Associations were also identified for specific HLA types and disease caused by the Beijing, LAM, LCC, and Quebec strains. HLA types were also associated with disease caused by strains from the Euro-American or East Asian lineages, and the frequencies of these alleles in their sympatric human populations identified potential coevolutionary events between host and pathogen. CONCLUSIONS This is the first report of the association of human HLA types and M. tuberculosis strain genotype, highlighting that both host and pathogen genetics need to be taken into consideration when studying tuberculosis disease development.
Collapse
Affiliation(s)
- Muneeb Salie
- MRC Centre for Molecular and Cellular Biology and the DST/NRF Centre of Excellence for Biomedical TB Research, Division of Molecular Biology and Human Genetics, Stellenbosch University, Tygerberg
| | - Lize van der Merwe
- MRC Centre for Molecular and Cellular Biology and the DST/NRF Centre of Excellence for Biomedical TB Research, Division of Molecular Biology and Human Genetics, Stellenbosch University, Tygerberg
- MRC Biostatistics Unit, Medical Research Council, Tygerberg
- Department of Statistics, University of Western Cape, Bellville,South Africa
| | - Marlo Möller
- MRC Centre for Molecular and Cellular Biology and the DST/NRF Centre of Excellence for Biomedical TB Research, Division of Molecular Biology and Human Genetics, Stellenbosch University, Tygerberg
| | - Michelle Daya
- MRC Centre for Molecular and Cellular Biology and the DST/NRF Centre of Excellence for Biomedical TB Research, Division of Molecular Biology and Human Genetics, Stellenbosch University, Tygerberg
| | - Gian D. van der Spuy
- MRC Centre for Molecular and Cellular Biology and the DST/NRF Centre of Excellence for Biomedical TB Research, Division of Molecular Biology and Human Genetics, Stellenbosch University, Tygerberg
| | - Paul D. van Helden
- MRC Centre for Molecular and Cellular Biology and the DST/NRF Centre of Excellence for Biomedical TB Research, Division of Molecular Biology and Human Genetics, Stellenbosch University, Tygerberg
| | - Maureen P. Martin
- Cancer and Inflammation Program, Laboratory of Experimental Immunology, SAIC-Frederick, Inc, Frederick National Laboratory for Cancer Research, Frederick, Maryland
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, and Harvard University, Cambridge
| | - Xiao-jiang Gao
- Cancer and Inflammation Program, Laboratory of Experimental Immunology, SAIC-Frederick, Inc, Frederick National Laboratory for Cancer Research, Frederick, Maryland
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, and Harvard University, Cambridge
| | - Robin M. Warren
- MRC Centre for Molecular and Cellular Biology and the DST/NRF Centre of Excellence for Biomedical TB Research, Division of Molecular Biology and Human Genetics, Stellenbosch University, Tygerberg
| | - Mary Carrington
- Cancer and Inflammation Program, Laboratory of Experimental Immunology, SAIC-Frederick, Inc, Frederick National Laboratory for Cancer Research, Frederick, Maryland
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, and Harvard University, Cambridge
| | - Eileen G. Hoal
- MRC Centre for Molecular and Cellular Biology and the DST/NRF Centre of Excellence for Biomedical TB Research, Division of Molecular Biology and Human Genetics, Stellenbosch University, Tygerberg
| |
Collapse
|
20
|
Howson JMM, Roy MS, Zeitels L, Stevens H, Todd JA. HLA class II gene associations in African American type 1 diabetes reveal a protective HLA-DRB1*03 haplotype. Diabet Med 2013; 30:710-6. [PMID: 23398374 PMCID: PMC3709123 DOI: 10.1111/dme.12148] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Accepted: 02/05/2013] [Indexed: 12/13/2022]
Abstract
AIMS Owing to strong linkage disequilibrium between markers, pinpointing disease associations within genetic regions is difficult in European ancestral populations, most notably the very strong association of the HLA-DRB1*03-DQA1*05:01-DQB1*02:01 haplotype with Type 1 diabetes risk, which is assumed to be because of a combination of HLA-DRB1 and HLA-DQB1. In contrast, populations of African ancestry have greater haplotype diversity, offering the possibility of narrowing down regions and strengthening support for a particular gene in a region being causal. We aimed to study the human leukocyte antigen (HLA) region in African American Type 1 diabetes. METHODS Two hundred and twenty-seven African American patients with Type 1 diabetes and 471 African American control subjects were tested for association at the HLA class II genes, HLA-DRB1, HLA-DQA1, HLA-DQB1 and 5147 single nucleotide polymorphisms across the major histocompatibility complex region using logistic regression models. Population admixture was accounted for with principal components analysis. RESULTS Single nucleotide polymorphism marker associations were explained by the HLA associations, with the major peak over the class II loci. The HLA association overall was extremely strong, as expected for Type 1 diabetes, even in African Americans in whom diabetes diagnosis is heterogeneous. In addition, there were unique features: the HLA-DRB1*03 haplotype was split into HLA-DRB1*03:01, which confers greatest susceptibility in these samples (odds ratio 3.17, 95% CI 1.72-5.83) and HLA-DRB1*03:02, an allele rarely observed in Europeans, which confers the greatest protection in these African American samples (odds ratio 0.22, 95% CI 0.09-0.55). CONCLUSIONS The unique diversity of the African HLA region we have uncovered supports a specific and major role for HLA-DRB1 in HLA-DRB1*03 haplotype-associated Type 1 diabetes risk.
Collapse
Affiliation(s)
- J M M Howson
- JDRF/Wellcome Trust Diabetes and Inflammation Laboratory, NIHR Biomedical Research Centre, Department of Medical Genetics, Cambridge Institute for Medical Research, University of Cambridge, Cambridge, UK.
| | | | | | | | | |
Collapse
|
21
|
Human leukocyte antigen class II alleles (DQB1 and DRB1) as predictors for response to interferon therapy in HCV genotype 4. Mediators Inflamm 2013; 2013:392746. [PMID: 23576852 PMCID: PMC3612450 DOI: 10.1155/2013/392746] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2012] [Revised: 01/07/2013] [Accepted: 01/20/2013] [Indexed: 02/06/2023] Open
Abstract
Human leukocyte antigens class II play an important role in immune response against HCV. We investigated whether HLA class II alleles influence susceptibility to HCV infection and response to interferon therapy. HLA-DRB1 and -DQB1 loci were genotyped using PCR-SSO Luminex technology. According to our regimen, 41 (66%) of patients achieved sustained virological response to combined treatment of IFN and ribavirin. Frequencies of DQB1∗0313 allele and DRB1∗04-DRB1∗11, DQB1∗0204-DQB1∗0313, DQB1∗0309-DQB1∗0313, and DQB1∗0313-DQB1∗0319 haplotypes were significantly more frequent in nonresponders than in responders. In contrast, DQB1∗02, DQB1∗06, DRB1∗13, and DRB1∗15 alleles were significantly more frequent in responders than in nonresponders. Similarly, DRB1∗1301, DRB1∗1361, and DRB1∗1369 alleles and DRB1∗1301-DRB1∗1328, DRB1∗1301-DRB1∗1361, DRB1∗1301-DRB1∗1369, DRB1∗1328-DRB1∗1361, and DRB1∗1328-DRB1∗1369 haplotypes were significantly found only in responders. Some alleles and linkages showed significantly different distributions between patient and healthy groups. These alleles may be used as predictors for response to treatment or to susceptibility to HCV infection in the Egyptian population.
Collapse
|
22
|
Larsen MH, Thørner LW, Zinyama R, Amstrup J, Kallestrup P, Gerstoft J, Gomo E, Erikstrup C, Ullum H. CCL3L gene copy number and survival in an HIV-1 infected Zimbabwean population. INFECTION GENETICS AND EVOLUTION 2012; 12:1087-93. [PMID: 22484760 DOI: 10.1016/j.meegid.2012.03.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2011] [Revised: 02/27/2012] [Accepted: 03/14/2012] [Indexed: 11/24/2022]
Abstract
The C-C motif chemokine ligand 3-like (CCL3L) protein is a potent chemoattractant which by binding to C-C chemokine receptor type 5 (CCR5) inhibits human immunodeficiency virus (HIV) entry. Copy number variation (CNV) of the CCL3L has been shown to be associated with HIV susceptibility and progression to AIDS, but these results have been inconsistent. We examined a Zimbabwean study population for an association of CCL3L CNV with HIV status, progression (CD4 T-cells and viral load), and survival. Another aim was to investigate the possible effects of CCL3L CNV on CCL3 protein concentration. A treatment-naïve cohort, which included 153 HIV infected and 159 HIV uninfected individuals, was followed for up to 4.3 years. The CNV of the CCL3L was determined by duplex real-time polymerase chain reaction. We found no association between four CCL3L CNV strata and HIV status (P=0.7), CD4 T-cell count (P=0.9), viral load (P=0.9), or CCL3 protein levels (P=1.0). Survival among the HIV infected individuals did not differ according to CCL3L copy number. In this cohort, CCL3L CNV did not affect HIV status, pathogenesis, or survival.
Collapse
|
23
|
Kobayashi K, Yuliwulandari R, Yanai H, Naka I, Lien LT, Hang NTL, Hijikata M, Keicho N, Tokunaga K. Association of TLR polymorphisms with development of tuberculosis in Indonesian females. ACTA ACUST UNITED AC 2011; 79:190-7. [PMID: 22211722 DOI: 10.1111/j.1399-0039.2011.01821.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Tuberculosis (TB) is caused by Mycobacterium tuberculosis and is a major cause of morbidity and mortality worldwide. Many candidate genes have been investigated for a possible association with TB. Toll-like receptors (TLRs) are known to play important roles in human innate immune systems. Polymorphisms in and functions of TLRs have been investigated to identify associations with specific infectious diseases, including TB. Here, we examined whether single-nucleotide polymorphisms (SNPs) in TLRs and genes in TLR signaling were associated with TB susceptibility in Indonesian and Vietnamese populations. A statistically significant association was observed between TB susceptibility in a classified Indonesian female group and rs352139, an SNP located in the intron of TLR9, using the genotype (P = 2.76E-04) and recessive (AA vs AG+GG, P = 2.48E-04, odds ratio = 1.827, 95% confidence interval = 1.321-2.526) models. Meta-analysis of the Indonesian and Vietnamese populations showed that rs352139 was significantly associated with TB in the recessive model. This finding indicated that a TLR9 polymorphism might have an important role in the susceptibility to M. tuberculosis in Asian populations.
Collapse
Affiliation(s)
- K Kobayashi
- Department of Human Genetics, Graduate School of Medicine, University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Kobayashi K, Yuliwulandari R, Yanai H, Lien LT, Hang NTL, Hijikata M, Keicho N, Tokunaga K. Association of CD209 polymorphisms with tuberculosis in an Indonesian population. Hum Immunol 2011; 72:741-5. [DOI: 10.1016/j.humimm.2011.04.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2011] [Revised: 04/09/2011] [Accepted: 04/18/2011] [Indexed: 10/18/2022]
|
25
|
Human leukocyte antigen-A, -B, and -DRB1 allele and haplotype frequencies in the Mozambican population: a blood donor-based population study. Hum Immunol 2010; 71:1027-32. [PMID: 20600444 DOI: 10.1016/j.humimm.2010.06.017] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2010] [Revised: 06/15/2010] [Accepted: 06/22/2010] [Indexed: 11/23/2022]
Abstract
Human leukocyte antigen (HLA) has been used for several decades as genetic markers for analyzing diversity of gene pool origin, platelet transfusion, tissue transplantation, disease susceptibility or resistance, and forensic and anthropological studies. In the present study, the allele and haplotype frequencies of HLA-A, -B, and -DRB1 were studied in 250 unrelated Mozambican individuals (black African from south of Mozambique Basin) by using a low-medium resolution polymerase chain reaction-Luminex typing method. A total of 18 A, 25 B, and 13 DRB1 alleles were identified. The most frequent HLA-A, -B, and -DRB1 alleles were HLA-A*30 (23.9%), HLA-B*15 (15.6%), and HLA-DRB1*13 (19.8%), respectively. The most frequent two-locus haplotypes were HLA-A*30-B*42 (7.4%) and HLA-B*42-DRB1*03 (5.4%), and three-locus haplotypes were HLA-A*30-B*42-DRB1*03 (4.9%), and HLA-A*02-B*58-DRB1*11 (4.1%). Allele distribution and haplotype analysis demonstrated that Mozambican population shares HLA patterns with sub-Saharan populations.
Collapse
|
26
|
Shey MS, Randhawa AK, Bowmaker M, Smith E, Scriba TJ, de Kock M, Mahomed H, Hussey G, Hawn TR, Hanekom WA. Single nucleotide polymorphisms in toll-like receptor 6 are associated with altered lipopeptide- and mycobacteria-induced interleukin-6 secretion. Genes Immun 2010; 11:561-72. [PMID: 20445564 PMCID: PMC3518443 DOI: 10.1038/gene.2010.14] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Toll-like receptors (TLRs) are critical mediators of the immune response to pathogens. The influence of human TLR6 polymorphisms on susceptibility to infection is only partially understood. Most microbes contain lipopeptides recognized by TLR2/1 or TLR2/6 heterodimers. Our aim was to determine whether single nucleotide polymorphisms (SNPs) in TLR6 are associated with altered immune responses to lipopeptides and whole mycobacteria. We sequenced the TLR6 coding region in 100 healthy South African adults to assess genetic variation and determined associations between polymorphisms and lipopeptide- and mycobacteria-induced IL-6 production in whole blood. We found 2 polymorphisms, C745T and G1083C that were associated with altered IL-6 secretion. G1083C was associated with altered IL-6 levels in response to lipopeptides, Mycobacterium tuberculosis lysate (Mtb, P = 0.018) and BCG (P = 0.039). The 745T allele was also associated with lower NF-κB signaling in response to di-acylated lipopeptide, PAM2 (P = 0.019) or Mtb (P = 0.026) in a HEK293 cell line reconstitution assay, compared with the 745C allele. We conclude that TLR6 polymorphisms may be associated with altered lipopeptide-induced cytokine responses and recognition of Mtb. These studies provide new insight into the role of TLR6 variation and the innate immune response to human infection.
Collapse
Affiliation(s)
- M S Shey
- South African Tuberculosis Vaccine Initiative, University of Cape Town, South Africa
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Glass AJ, Venter M. Improved detection of JC virus in AIDS patients with progressive multifocal leukoencephalopathy by T-antigen specific fluorescence resonance energy transfer hybridization probe real-time PCR: Evidence of diverse JC virus genotypes associated with progressive multifocal leukoencephalopathy in Southern Africa. J Med Virol 2009; 81:1929-37. [DOI: 10.1002/jmv.21618] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
28
|
Möller M, de Wit E, Hoal EG. Past, present and future directions in human genetic susceptibility to tuberculosis. ACTA ACUST UNITED AC 2009; 58:3-26. [PMID: 19780822 DOI: 10.1111/j.1574-695x.2009.00600.x] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The historical impression that tuberculosis was an inherited disorder has come full circle and substantial evidence now exists of the human genetic contribution to susceptibility to tuberculosis. This evidence has come from several whole-genome linkage scans, and numerous case-control association studies where the candidate genes were derived from the genome screens, animal models and hypotheses pertaining to the disease pathways. Although many of the associated genes have not been validated in all studies, the list of those that have been is growing, and includes NRAMP1, IFNG, NOS2A, MBL, VDR and some TLR. Certain of these genes have consistently been associated with tuberculosis in diverse populations. The future investigation of susceptibility to tuberculosis is almost certain to include genome-wide association studies, admixture mapping and the search for rare variants and epigenetic mechanisms. The genetic identification of more vulnerable individuals is expected to inform personalized treatment and perhaps vaccination strategies.
Collapse
Affiliation(s)
- Marlo Möller
- Molecular Biology and Human Genetics, MRC Centre for Molecular and Cellular Biology and the DST/NRF Centre for Biomedical TB Research, Faculty of Health Sciences, Stellenbosch University, Tygerberg, South Africa
| | | | | |
Collapse
|
29
|
Immunogenicity of novel DosR regulon-encoded candidate antigens of Mycobacterium tuberculosis in three high-burden populations in Africa. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2009; 16:1203-12. [PMID: 19553548 DOI: 10.1128/cvi.00111-09] [Citation(s) in RCA: 128] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Increasing knowledge about DosR regulon-encoded proteins has led us to produce novel Mycobacterium tuberculosis antigens for immunogenicity testing in human populations in three countries in Africa to which tuberculosis (TB) is endemic. A total of 131 tuberculin skin test-positive and/or ESAT-6/CFP10-positive, human immunodeficiency virus-negative adult household contacts of active pulmonary TB cases from South Africa (n = 56), The Gambia (n = 26), and Uganda (n = 49) were tested for gamma interferon responses to 7 classical and 51 DosR regulon-encoded M. tuberculosis recombinant protein antigens. ESAT-6/CFP10 fusion protein evoked responses in >75% of study participants in all three countries. Of the DosR regulon-encoded antigens tested, Rv1733c was the most commonly recognized by participants from both South Africa and Uganda and the third most commonly recognized antigen in The Gambia. The four most frequently recognized DosR regulon-encoded antigens in Uganda (Rv1733c, Rv0081, Rv1735c, and Rv1737c) included the three most immunogenic antigens in South Africa. In contrast, Rv3131 induced the highest percentage of responders in Gambian contacts (38%), compared to only 3.4% of Ugandan contacts and no South African contacts. Appreciable percentages of TB contacts with a high likelihood of latent M. tuberculosis infection responded to several novel DosR regulon-encoded M. tuberculosis proteins. In addition to significant similarities in antigen recognition profiles between the three African population groups, there were also disparities, which may stem from genetic differences between both pathogen and host populations. Our findings have implications for the selection of potential TB vaccine candidates and for determining biosignatures of latent M. tuberculosis infection, active TB disease, and protective immunity.
Collapse
|
30
|
Möller M, Nebel A, Valentonyte R, van Helden PD, Schreiber S, Hoal EG. Investigation of chromosome 17 candidate genes in susceptibility to TB in a South African population. Tuberculosis (Edinb) 2009; 89:189-94. [PMID: 19147409 DOI: 10.1016/j.tube.2008.10.001] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2008] [Accepted: 10/31/2008] [Indexed: 10/21/2022]
Abstract
Chromosome 17 is known to contain TB susceptibility genes. Polymorphisms in two of these genes, namely NOS2A and CCL2, have been associated with TB in various populations. To investigate a possible association of gene variants with TB in the South African Coloured population we genotyped SNPs from NOS2A and CCL2 in over 800 TB cases and controls. We found a significant association between TB and two haplotypes, containing the functional rs9282799 and rs8078340 SNPs, in the NOS2A promoter. The T allele of rs8078340, found in the haplotype over-represented in cases (p=0.015, p(c)=0.038, OR=1.4, 95% CI [1.1-1.8]), was previously shown to decrease the quantity of DNA-protein complex bound as well as the duration of binding and may decrease nitric oxide (NO) production. The C allele of rs8078340 was present in the haplotype more frequent in controls (p=0.011, p(c)=0.029, OR=1.4, 95% CI [1.1-1.8]). In the single-point analysis of NOS2A, rs2779249 (previously associated with TB in Brazilians) and the functional rs8078340 were nominally associated with disease. No association was found between any of the other SNPs or haplotypes studied and TB. This study presents evidence that haplotypes in the NOS2A promoter influence susceptibility to TB and confirms the importance of NO production in the disease.
Collapse
Affiliation(s)
- Marlo Möller
- Molecular Biology and Human Genetics, MRC Centre for Molecular and Cellular Biology and the DST/NRF Centre of Excellence for Biomedical TB Research, Faculty of Health Sciences, Stellenbosch University, Tygerberg, South Africa
| | | | | | | | | | | |
Collapse
|
31
|
Campbell MC, Tishkoff SA. African genetic diversity: implications for human demographic history, modern human origins, and complex disease mapping. Annu Rev Genomics Hum Genet 2008; 9:403-33. [PMID: 18593304 DOI: 10.1146/annurev.genom.9.081307.164258] [Citation(s) in RCA: 530] [Impact Index Per Article: 33.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Comparative studies of ethnically diverse human populations, particularly in Africa, are important for reconstructing human evolutionary history and for understanding the genetic basis of phenotypic adaptation and complex disease. African populations are characterized by greater levels of genetic diversity, extensive population substructure, and less linkage disequilibrium (LD) among loci compared to non-African populations. Africans also possess a number of genetic adaptations that have evolved in response to diverse climates and diets, as well as exposure to infectious disease. This review summarizes patterns and the evolutionary origins of genetic diversity present in African populations, as well as their implications for the mapping of complex traits, including disease susceptibility.
Collapse
Affiliation(s)
- Michael C Campbell
- Department of Genetics, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19107, USA.
| | | |
Collapse
|
32
|
Hanekom M, van der Spuy GD, Gey van Pittius NC, McEvoy CRE, Ndabambi SL, Victor TC, Hoal EG, van Helden PD, Warren RM. Evidence that the spread of Mycobacterium tuberculosis strains with the Beijing genotype is human population dependent. J Clin Microbiol 2007; 45:2263-6. [PMID: 17475755 PMCID: PMC1933015 DOI: 10.1128/jcm.02354-06] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
This study describes a comparative analysis of the Beijing mycobacterial interspersed repetitive unit types of Mycobacterium tuberculosis isolates from Cape Town, South Africa, and East Asia. The results show a significant association between the frequency of occurrence of strains from defined Beijing sublineages and the human population from whom they were cultured (P < 0.0001).
Collapse
Affiliation(s)
- M Hanekom
- DST/NRF Centre of Excellence for Biomedical Tuberculosis Research/MRC Centre for Molecular and Cellular Biology, Division of Molecular Biology and Human Genetics, Faculty of Health Sciences, Stellenbosch University, South Africa
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Möller M, Nebel A, Kwiatkowski R, van Helden PD, Hoal EG, Schreiber S. Host susceptibility to tuberculosis: CARD15 polymorphisms in a South African population. Mol Cell Probes 2007; 21:148-51. [PMID: 17113749 DOI: 10.1016/j.mcp.2006.10.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2006] [Revised: 10/02/2006] [Accepted: 10/11/2006] [Indexed: 10/24/2022]
Abstract
Tuberculosis (TB) is one of the leading causes of death worldwide. The nucleotide-binding oligomerisation domain 2 protein (NOD2) has recently been recognised as a non-redundant recognition mechanism of Mycobacterium tuberculosis. The caspase recruitment domain-containing protein 15 gene (CARD15), which encodes the NOD2 protein, is a susceptibility gene for Crohn's disease (CD), a granulomatous, chronic inflammatory disorder. CARD15 was therefore investigated as a candidate gene in TB. We genotyped the R702W, G908R and 1007fs variants, previously associated with CD, in TB cases and controls from the admixed South African Coloured population. No statistically significant differences between cases and controls were observed for these variants. We determined that the CD-associated mutations occur at very low frequencies in this population. Our results indicate that CARD15 is not a major susceptibility gene for TB in the South African Coloureds.
Collapse
Affiliation(s)
- Marlo Möller
- Molecular Biology and Human Genetics, MRC Centre for Molecular and Cellular Biology and DST/NRF Centre of Excellence for Biomedical TB Research, Faculty of Health Sciences, PO Box 19063, Stellenbosch University, Tygerberg 7505, South Africa
| | | | | | | | | | | |
Collapse
|
34
|
Möller M, Kwiatkowski R, Nebel A, van Helden PD, Hoal EG, Schreiber S. Allelic variation in BTNL2 and susceptibility to tuberculosis in a South African population. Microbes Infect 2007; 9:522-8. [PMID: 17347014 DOI: 10.1016/j.micinf.2007.01.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2006] [Revised: 01/12/2007] [Accepted: 01/16/2007] [Indexed: 10/23/2022]
Abstract
Tuberculosis and sarcoidosis show phenotypic features of granulomatous disease. The bacterium Mycobacterium tuberculosis can induce the expression of the sarcoidosis susceptibility gene BTNL2 in monocyte-derived macrophages. BTNL2 was therefore investigated as a candidate gene for tuberculosis in a case-control association study in the South African Coloured population. We sequenced the coding regions of BTNL2 to detect known and novel polymorphisms and genotyped 18 SNPs in 432 pulmonary tuberculosis cases and 482 controls. We did not find a significant association between the truncating rs2076530 SNP, previously associated with sarcoidosis, and tuberculosis. No association was found between any of the other SNPs studied and disease and none of the estimated haplotypes showed any association with TB. Comparative analyses with the South African data from this study and published data on German and American populations revealed that, for a segment of BTNL2, the admixed, but not stratified, South African population resembles the African-Americans more than white populations.
Collapse
Affiliation(s)
- Marlo Möller
- Molecular Biology and Human Genetics, MRC Centre for Molecular and Cellular Biology and the DST/NRF Centre of Excellence for Biomedical TB Research, Faculty of Health Sciences, P.O. Box 19063, Stellenbosch University, Tygerberg 7505, South Africa
| | | | | | | | | | | |
Collapse
|
35
|
Babb C, Keet EH, van Helden PD, Hoal EG. SP110 polymorphisms are not associated with pulmonary tuberculosis in a South African population. Hum Genet 2007; 121:521-2. [PMID: 17287948 DOI: 10.1007/s00439-007-0335-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2006] [Accepted: 01/16/2007] [Indexed: 12/29/2022]
Abstract
Susceptibility to tuberculosis (TB) in mice has recently been attributed to the Ipr1 gene. Polymorphisms in the human homologue, SP110, have been investigated in various populations with only one study finding an association with TB susceptibility. We investigated eight SP110 polymorphisms in a South African population, including two novel polymorphisms. No significant association was found with any of the polymorphisms investigated, including two polymorphisms that were previously found to be associated with TB susceptibility in West African populations.
Collapse
Affiliation(s)
- C Babb
- Molecular Biology and Human Genetics, DST/NRF Centre of Excellence for Biomedical Tuberculosis Research, MRC Centre for Molecular and Cellular Biology, Stellenbosch University, Tygerberg, 7505, Cape Town, South Africa
| | | | | | | |
Collapse
|
36
|
Lombard Z, Dalton DL, Venter PA, Williams RC, Bornman L. Association of HLA-DR, -DQ, and vitamin D receptor alleles and haplotypes with tuberculosis in the Venda of South Africa. Hum Immunol 2006; 67:643-54. [PMID: 16916662 DOI: 10.1016/j.humimm.2006.04.008] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2005] [Indexed: 11/16/2022]
Abstract
The vitamin D receptor (VDR) and the human leukocyte antigen (HLA) class II complex affect innate and/or adaptive immunity against Mycobacterium tuberculosis. HLA-DRB1, HLA-DQB1, and VDR gene (VDR) polymorphisms were previously associated with tuberculosis (TB) and are here investigated as candidates for TB susceptibility in the Venda population of South Africa. Genomic DNA from 95 patients with pulmonary tuberculosis (PTB) and 117 ethnically matched, healthy controls were typed for HLA-DRB1, DRB3, DRB4, DRB5, DQB1, and VDR polymorphisms FokI, BsmI, ApaI, and TaqI using polymerase chain reaction-sequence specific primers (PCR-SSP). Allele and haplotype frequencies were calculated by the estimator maximum (EM) algorithm. DRB1*1302 phenotype was significantly associated with TB occurring at a significantly higher allele frequency in cases than controls and found in haplotype with DQB1*0602/3. DQB1*0301-0304 phenotype was significantly associated with TB and found in haplotype with DRB1*1101-1121, showing significant linkage disequilibrium (LD) in both cases and controls. Only DRB1*1101-1121-DQB1*05 was significantly associated with TB based on the sequential Bonferroni p value. VDR SNP phenotypes were not associated with TB, but the haplotype F-b-A-T significantly protected from TB. In conclusion, common African HLA-DRB1 and -DQB1 variants, previously associated with protection from malaria and hepatitis B/C virus persistence, predispose the Venda to TB, whereas the proposedly active VDR haplotype F-b-A-T showed significant protection.
Collapse
Affiliation(s)
- Zane Lombard
- Department of Biochemistry, University of Johannesburg, Auckland Park, South Africa
| | | | | | | | | |
Collapse
|