1
|
Kobayashi K, Katakura Y, Ito Y, Kato M, Goto Y, Nakajima H. BoLA-DRB3 alleles influence proviral load and peripheral blood lymphocyte distribution in bovine leukaemia virus-infected cattle. Vet Rec 2024; 195:e4909. [PMID: 39660663 DOI: 10.1002/vetr.4909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 09/18/2024] [Accepted: 10/18/2024] [Indexed: 12/12/2024]
Abstract
BACKGROUND Bovine leukaemia virus (BLV)-infected Holstein cattle carrying certain bovine leukocyte antigen (BoLA)-DRB3 alleles were previously shown to be resistant to BLV provirus multiplication, while those carrying other alleles were susceptible. This study aimed to determine whether the BoLA-DRB3 alleles carried by BLV-infected cattle could predict proviral load (PVL) and peripheral blood lymphocyte (PBL) count distribution (PVL/PBL distribution). METHODS Blood samples from Holstein cattle on four dairy farms were tested for the presence of BLV antibodies using a commercial ELISA. The PVL and PBL levels of the BLV-infected cattle were also measured, and genotyping was performed to identify the BoLA-DRB3 alleles they carried, impact of the various BoLA-DRB3 alleles on the PVL/PBL distribution was then investigated. RESULTS Of the 316 cattle tested, 114 were positive for BLV. BLV-infected cattle carrying BoLA-DRB3 alleles DRB3*009:02, DRB3*002:01 and DRB3*014:01:01 were classified as resistant (n = 43), those carrying DRB3*012:01 and DRB3*015:01 alleles were classified as susceptible (n = 42) and the remaining cattle were classified as nonsusceptible/nonresistant (n = 29). Multiple regression analysis revealed that PVL was positively correlated (p = 2.1 × 10-23) with PBL count and age was negatively correlated (p = 1.9 × 10-6) with PBL count. Cattle with DRB3*014:01:01 tended to have a lower PBL count (p = 0.031). LIMITATION The effects of the BoLA-DRB3 alleles DRB3*002:01, DRB3*009:02, DRB3*012:01 and DRB3*015:01 on PVL/PBL distribution were unclear due to the small numbers of BLV-infected animals carrying these alleles. CONCLUSION The BLV transmission risk in cattle can be estimated by examining their BoLA-DRB3 alleles.
Collapse
Affiliation(s)
| | - Yuki Katakura
- Nagano Prefecture Matsumoto Livestock Hygiene Service Center, Matsumoto, Japan
| | - Yui Ito
- Nagano Prefecture Matsumoto Livestock Hygiene Service Center, Matsumoto, Japan
| | - Masaki Kato
- Nagano Prefecture Matsumoto Livestock Hygiene Service Center, Matsumoto, Japan
| | - Yoshiaki Goto
- Nagano Prefecture Ina Livestock Hygiene Service Center, Ina, Japan
| | - Hiromi Nakajima
- Nagano Prefecture Saku Livestock Hygiene Service Center, Saku, Japan
| |
Collapse
|
2
|
Hamada R, Giovambattista G, Metwally S, Borjigin L, Polat Yamanaka M, Matsuura R, Ali AO, Mahmoud HYAH, Mohamed AEA, Kyaw Moe K, Takeshima SN, Wada S, Aida Y. First characterization of major histocompatibility complex class II DRB3 diversity in cattle breeds raised in Egypt. Gene 2024; 918:148491. [PMID: 38649062 DOI: 10.1016/j.gene.2024.148491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 03/12/2024] [Accepted: 04/19/2024] [Indexed: 04/25/2024]
Abstract
Genes encoding bovine leukocyte antigen (BoLA) enable the immune system to identify pathogens. Therefore, these genes have been used as genetic markers for infectious and autoimmune diseases as well as for immunological traits in cattle. Although BoLA polymorphisms have been reported in various cattle breeds worldwide, they have not been studied in cattle populations in Egypt. In this study, we characterized BoLA-DRB3 in two local Egyptian populations and one foreign population using polymerase chain reaction-sequence-based typing (PCR-SBT) method. Fifty-four previously reported BoLA-DRB3 alleles and eight new alleles (BoLA-DRB3*005:08, *015:07, *016:03, *017:04, *020:02:02, *021:03, *164:01, and *165:01) were identified. Alignment analysis of the eight new alleles revealed 90.7-98.9 %, and 83.1-97.8 % nucleotide and amino acid identities, respectively, with the BoLA-DRB3 cDNA clone NR-1. Interestingly, BoLA-DRB3 in Egyptian cattle showed a high degree of allelic diversity in native (na = 28, hE > 0.95), mixed (na = 61, hE > 0.96), and Holstein (na = 18, hE > 0.88) populations. BoLA-DRB3*002:01 (14.3 %), BoLA-DRB3*001:01 (8.5 %), and BoLA-DRB3*015:01 (20.2 %) were the most frequent alleles in native, mixed, and Holstein populations, respectively, indicating that the genetic profiles differed in each population. Based on the allele frequencies of BoLA-DRB3, genetic variation among Egyptian, Asian, African, and American breeds was examined using Nei's distances and principal component analysis. The results suggested that native and mixed cattle populations were most closely associated with African breeds in terms of their gene pool, whereas Holstein cattle were more distinct from the other breeds and were closely related to Holstein cattle populations from other countries.
Collapse
Affiliation(s)
- Rania Hamada
- Viral Infectious Diseases Unit, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan; Department of Pathology and Clinical Pathology, Faculty of Veterinary Medicine, Damanhour University, Damanhour City, El Beheira 22511, Egypt
| | - Guillermo Giovambattista
- Facultad de Ciencias Veterinarias UNLP, IGEVET - Instituto de Genética Veterinaria (UNLP-CONICET LA PLATA), La Plata, Argentina; Laboratory of Global Infectious Diseases Control Science, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Samy Metwally
- Viral Infectious Diseases Unit, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan; Division of Infectious Diseases, Department of Animal Medicine, Faculty of Veterinary Medicine, Damanhour University, Damanhour City, El Beheira 22511, Egypt
| | - Liushiqi Borjigin
- Viral Infectious Diseases Unit, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Meripet Polat Yamanaka
- Viral Infectious Diseases Unit, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan; Laboratory of Global Infectious Diseases Control Science, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Ryosuke Matsuura
- Viral Infectious Diseases Unit, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan; Laboratory of Global Infectious Diseases Control Science, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Alsagher O Ali
- Department of Animal Medicine, Faculty of Veterinary Medicine, South Valley University, Qena City, Qena 83523, Egypt
| | - Hassan Y A H Mahmoud
- Department of Animal Medicine, Faculty of Veterinary Medicine, South Valley University, Qena City, Qena 83523, Egypt
| | - Adel E A Mohamed
- Department of Animal Medicine, Faculty of Veterinary Medicine, South Valley University, Qena City, Qena 83523, Egypt
| | - Kyaw Kyaw Moe
- Viral Infectious Diseases Unit, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan; Department of Pathology and Microbiology, University of Veterinary Science, Yezin, Nay Pyi Taw, Myanmar
| | - Shin-Nosuke Takeshima
- Department of Food and Nutrition, Faculty of Human Life, Jumonji University, 2-1-28 Sugasawa, Niiza, Saitama, Japan
| | - Satoshi Wada
- Photonics Control Technology Team, RIKEN Center for Advanced Photonics, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Yoko Aida
- Viral Infectious Diseases Unit, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan; Laboratory of Global Infectious Diseases Control Science, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan.
| |
Collapse
|
3
|
Hamada R, Metwally S, Matsuura R, Borjigin L, Lo CW, Ali AO, Mohamed AEA, Wada S, Aida Y. BoLA-DRB3 Polymorphism Associated with Bovine Leukemia Virus Infection and Proviral Load in Holstein Cattle in Egypt. Pathogens 2023; 12:1451. [PMID: 38133334 PMCID: PMC10746042 DOI: 10.3390/pathogens12121451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 12/12/2023] [Accepted: 12/12/2023] [Indexed: 12/23/2023] Open
Abstract
Bovine leukemia virus (BLV) is the etiological agent of enzootic bovine leukosis, the most prevalent neoplastic disease of cattle worldwide. The immune response to BLV and disease susceptibility and resistance in cattle are strongly correlated with the bovine leukocyte antigen (BoLA)-DRB3 allelic polymorphism. BLV infection continues to spread in Egypt, in part because the relationships between BLV infection, proviral load in Egypt, and BoLA-DRB3 polymorphism are unknown. Here, we identified 18 previously reported alleles in 121 Holstein cows using a polymerase chain reaction sequence-based typing method. Furthermore, BoLA-DRB3 gene polymorphisms in these animals were investigated for their influence on viral infection. BoLA-DRB3*015:01 and BoLA-DRB3*010:01 were identified as susceptible and resistant alleles, respectively, for BLV infection in the tested Holsteins. In addition, BoLA-DRB3*012:01 was associated with low PVL in previous reports but high PVL in Holstein cattle in Egypt. This study is the first to demonstrate that the BoLA-DRB3 polymorphism confers resistance and susceptibility to PVL and infections of BLV in Holstein cattle in Egypt. Our results can be useful for the disease control and eradication of BLV through genetic selection.
Collapse
Affiliation(s)
- Rania Hamada
- Viral Infectious Diseases Unit, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan; (R.H.); (S.M.); (R.M.); (L.B.); (C.-W.L.)
- Department of Pathology and Clinical Pathology, Faculty of Veterinary Medicine, Damanhour University, Damanhour City 22511, Egypt
| | - Samy Metwally
- Viral Infectious Diseases Unit, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan; (R.H.); (S.M.); (R.M.); (L.B.); (C.-W.L.)
- Division of Infectious Diseases, Department of Animal Medicine, Faculty of Veterinary Medicine, Damanhour University, Damanhour City 22511, Egypt
| | - Ryosuke Matsuura
- Viral Infectious Diseases Unit, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan; (R.H.); (S.M.); (R.M.); (L.B.); (C.-W.L.)
- Laboratory of Global Infectious Diseases Control Science, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Liushiqi Borjigin
- Viral Infectious Diseases Unit, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan; (R.H.); (S.M.); (R.M.); (L.B.); (C.-W.L.)
| | - Chieh-Wen Lo
- Viral Infectious Diseases Unit, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan; (R.H.); (S.M.); (R.M.); (L.B.); (C.-W.L.)
- Laboratory of Global Infectious Diseases Control Science, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Alsagher O. Ali
- Department of Animal Medicine, Faculty of Veterinary Medicine, South Valley University, Qena City 83523, Egypt; (A.O.A.); (A.E.A.M.)
| | - Adel E. A. Mohamed
- Department of Animal Medicine, Faculty of Veterinary Medicine, South Valley University, Qena City 83523, Egypt; (A.O.A.); (A.E.A.M.)
| | - Satoshi Wada
- Photonics Control Technology Team, RIKEN Center for Advanced Photonics, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan;
| | - Yoko Aida
- Viral Infectious Diseases Unit, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan; (R.H.); (S.M.); (R.M.); (L.B.); (C.-W.L.)
- Laboratory of Global Infectious Diseases Control Science, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| |
Collapse
|
4
|
Borjigin L, Watanuki S, Hamada R, Bai L, Hirose T, Sato H, Yoneyama S, Yasui A, Yasuda S, Yamanaka R, Mimura M, Baba M, Inokuma M, Fujita K, Shinozaki Y, Tanaka N, Takeshima SN, Aida Y. Effectiveness of integrated bovine leukemia virus eradication strategies utilizing cattle carrying resistant and susceptible major histocompatibility complex class II DRB3 alleles. J Dairy Sci 2023; 106:9393-9409. [PMID: 37641252 DOI: 10.3168/jds.2023-23524] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 06/26/2023] [Indexed: 08/31/2023]
Abstract
Bovine leukemia virus (BLV) has spread worldwide and causes serious problems in the cattle industry owing to the lack of effective treatments and vaccines. Bovine leukemia virus is transmitted via horizontal and vertical infection, and cattle with high BLV proviral load (PVL), which is a useful index for estimating disease progression and transmission risk, are considered major infectious sources within herds. The PVL strongly correlates with highly polymorphic bovine lymphocyte antigen (BoLA)-DRB3 alleles. The BoLA-DRB3*015:01 and *012:01 alleles are known susceptibility-associated markers related to high PVL, and cattle with susceptible alleles may be at a high risk of BLV transmission via direct contact with healthy cows. In contrast, the BoLA-DRB3*009:02 and *014:01:01 alleles comprise resistant markers associated with the development of low PVL, and cattle with resistant alleles may be low-risk spreaders for BLV transmission and disrupt the BLV transmission chain. However, whether polymorphisms in BoLA-DRB3 are useful for BLV eradication in farms remains unknown. Here, we conducted a validation trial of the integrated BLV eradication strategy to prevent new infection by resistant cattle and actively eliminate susceptible cattle in addition to conventional BLV eradication strategies to maximally reduce the BLV prevalence and PVL using a total of 342 cattle at 4 stall-barn farms in Japan from 2017 to 2019. First, we placed the resistant milking cattle between the BLV-positive and BLV-negative milking cattle in a stall barn for 3 yr. Interestingly, the resistant cattle proved to be an effective biological barrier to successfully block the new BLV infections in the stall-barn system among all 4 farms. Concomitantly, we actively eliminated cattle with high PVL, especially susceptible cattle. Indeed, 39 of the 60 susceptible cattle (65%), 76 of the 140 neutral cattle (54%), and 20 of the 41 resistant cattle (48.8%) were culled on 4 farms for 3 years. Consequently, BLV prevalence and mean PVL decreased in all 4 farms. In particular, one farm achieved BLV-free status in May 2020. By decreasing the number of BLV-positive animals, the revenue-enhancing effect was estimated to be ¥5,839,262 ($39,292.39) for the 4 farms over 3 yr. Our results suggest that an integrated BLV eradication program utilization of resistant cattle as a biological barrier and the preferential elimination of susceptible cattle are useful for BLV infection control.
Collapse
Affiliation(s)
- Liushiqi Borjigin
- Viral Infectious Diseases Unit, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan; Faculty of Veterinary Medicine, Okayama University of Science, Imabari, Ehime 794-8555, Japan
| | - Sonoko Watanuki
- Viral Infectious Diseases Unit, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan; Laboratory of Global Infectious Diseases Control Science, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Rania Hamada
- Viral Infectious Diseases Unit, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Lanlan Bai
- Viral Infectious Diseases Unit, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Tomoya Hirose
- Viral Infectious Diseases Unit, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Hirotaka Sato
- Viral Infectious Diseases Unit, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Shuji Yoneyama
- Kenou Livestock Hygiene Service Center, Utsunomiya, Tochigi 321-0905, Japan
| | - Anna Yasui
- Kumagaya Livestock Hygiene Service Center, Kumagaya, Saitama 360-0813, Japan
| | - Sohei Yasuda
- Kumagaya Livestock Hygiene Service Center, Kumagaya, Saitama 360-0813, Japan
| | - Risa Yamanaka
- Kumagaya Livestock Hygiene Service Center, Kumagaya, Saitama 360-0813, Japan
| | - Munehito Mimura
- Kumagaya Livestock Hygiene Service Center, Kumagaya, Saitama 360-0813, Japan
| | - Miho Baba
- Kumagaya Livestock Hygiene Service Center, Kumagaya, Saitama 360-0813, Japan
| | | | - Keisuke Fujita
- Chuo Livestock Hygiene Service Center, Chiba 262-0011, Japan
| | - Yasuo Shinozaki
- Nanbu Livestock Hygiene Service Center, Kamogawa, Chiba 296-0033, Japan
| | - Naoko Tanaka
- Nanbu Livestock Hygiene Service Center, Kamogawa, Chiba 296-0033, Japan
| | - Shin-Nosuke Takeshima
- Viral Infectious Diseases Unit, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan; Department of Food and Nutrition, Jumonji University, Niiza, Saitama 352-8510, Japan
| | - Yoko Aida
- Viral Infectious Diseases Unit, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan; Laboratory of Global Infectious Diseases Control Science, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan..
| |
Collapse
|
5
|
Casa MDS, Giovambattista G, Fonteque GV, Miguel EL, Vogel CIG, Miletti LC, Takeshima SN, Fonteque JH. Identification of Anaplasma marginale, Babesia bovis and Babesia bigemina resistance alleles in Crioulo Lageano cattle using PCR-SBT and BoLA-DRB3 gene sequencing. Front Vet Sci 2023; 10:1256928. [PMID: 37781282 PMCID: PMC10540679 DOI: 10.3389/fvets.2023.1256928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 09/01/2023] [Indexed: 10/03/2023] Open
Abstract
Introduction The BoLA-DRB3 gene in cattle is associated with tolerance to several infectious diseases, such as neosporosis, dermatophilosis, leukosis, and mastitis. Methods This study used PCR-SBT and BoLA-DRB3 gene sequencing to determine the association between the presence or absence of Anaplasma marginale, Babesia bovis, and Babesia bigemina infections in 208 Crioulo Lageano cattle and alleles present in the population. The chi-square test and odds ratio analysis were employed to establish the association. Results Of the BoLA-DRB3 gene alleles present in the population, two alleles were significantly associated with resistance to A. marginale infections: BoLA-DRB3001:01 (p < 0.001; OR = 0.224), which had a frequency of 7.93%, and BoLA-DRB3024:06 (p = 0.007; OR < 0.00001), which had a frequency of 0.72%. Regarding B. bovis infection, the BoLA-DRB3*011:01 allele (p = 0.002; OR = 0.271) had a frequency of 6% in the population and was associated with resistance to the infection. None of the alleles was associated with resistance to infection by B. bigemina. Discussion The Crioulo Lageano breed has alleles that may confer resistance against infection by A. marginale and B. bovis.
Collapse
Affiliation(s)
- Mariana da Silva Casa
- Graduate Program in Animal Science (PPGCA), State University of Santa Catarina (UDESC), Lages, Brazil
| | - Guillermo Giovambattista
- Facultad de Ciencias Veterinarias UNLP, IGEVET–Institute of Veterinary Genetics, La Plata, Argentina
| | - Graziela Vieira Fonteque
- Graduate Program in Animal Science (PPGCA), State University of Santa Catarina (UDESC), Lages, Brazil
| | - Ellen Lara Miguel
- Scientific Initiation Program, State University of Santa Catarina (UDESC), Lages, Brazil
| | - Carla Ivane Ganz Vogel
- Department of Animal Production and Food, State University of Santa Catarina (UDESC), Lages, Brazil
| | - Luiz Claudio Miletti
- Department of Animal Production and Food, State University of Santa Catarina (UDESC), Lages, Brazil
| | - Shin-Nosuke Takeshima
- Department of Food and Nutrition, Faculty of Human Life, Jumonji University, Niiza, Saitama, Japan
| | | |
Collapse
|
6
|
Nakatsuchi A, Bao A, Watanuki S, Matsuura R, Borjigin L, Bai L, Kuroda M, Matsumoto Y, Kohara J, Aida Y. Anti-BLV antibodies in whey correlate with bovine leukemia virus disease progression and BoLA-DRB3 polymorphism. Front Vet Sci 2022; 9:1038101. [PMID: 36504869 PMCID: PMC9732667 DOI: 10.3389/fvets.2022.1038101] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 11/10/2022] [Indexed: 11/26/2022] Open
Abstract
Introduction Bovine leukemia virus (BLV) belongs to the family Retroviridae and is a causative agent for enzootic bovine leucosis, the most common neoplastic disease affecting cattle worldwide. BLV proviral load (PVL) is associated with disease progression and transmission risk but requires blood collection and quantitative PCR testing. Anti-BLV antibodies in whey have been used as a diagnostic tool for BLV infection; however, quantitative utilization has not been fully investigated. Furthermore, bovine leukocyte antigen (BoLA)-DRB3 is a polymorphic gene associated with BLV infectivity and PVL, but its effect on anti-BLV antibody levels in whey from BLV infected dams is unknown. Therefore, we aimed to investigate whether it is possible to correctly predict PVL in the blood and milk based on the amount of anti-BLV antibodies in milk, and whether the BoLA-DRB3 alleles associate with the amount of anti-BLV antibodies in milk. Methods We examined whey from 442 dams from 11 different dairy farms located in 6 prefectures in Japan, including susceptible dams carrying at least one BoLA-DRB3* 012:01 or * 015:01 allele related with high PVL, resistant dams carrying at least one BoLA-DRB3 * 002:01, * 009:02, or * 014:01:01 allele related with low PVL, and neutral dams carrying other alleles. Results First, our results provided compelling evidence that anti-BLV antibody levels in whey were positively correlated with the anti-BLV antibody levels in serum and with BLV PVL in blood and milk, indicating the possibility of estimating BLV PVL in blood and milk by measuring anti-BLV antibody levels in whey. Thus, our results showed that antibody titers in milk might be effective for estimating BLV transmission risk and disease progression in the field. Second, we demonstrated that anti-BLV antibody levels in whey from BLV resistant dams were significantly lower than those from susceptible and neutral dams. Discussion This is the first report suggesting that the BoLA-DRB3 polymorphism affects anti-BLV antibody levels in whey from BLV-infected dams. Taken together, our results suggested that anti-BLV antibody levels in whey, measured by enzyme-linked immunosorbent assay, may be a useful marker to diagnose the risk of BLV infection and estimate PVL in blood and milk.
Collapse
Affiliation(s)
- Ayumi Nakatsuchi
- Institute of Animal Health, JA Zen-Noh (National Federation of Agricultural Cooperative Associations), Sakura, Japan,Laboratory of Global Infectious Diseases Control Science, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan,Laboratory of Global Animal Resource Science, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Aronggaowa Bao
- Laboratory of Global Infectious Diseases Control Science, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Sonoko Watanuki
- Laboratory of Global Infectious Diseases Control Science, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Ryosuke Matsuura
- Laboratory of Global Infectious Diseases Control Science, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | | | - Lanlan Bai
- Viral Infectious Diseases Unit, RIKEN, Wako, Japan
| | - Maho Kuroda
- Institute of Animal Health, JA Zen-Noh (National Federation of Agricultural Cooperative Associations), Sakura, Japan
| | - Yasunobu Matsumoto
- Laboratory of Global Infectious Diseases Control Science, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan,Laboratory of Global Animal Resource Science, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Junko Kohara
- Agriculture Research Department, Animal Research Center, Hokkaido Research Organization, Shintoku, Japan,Junko Kohara
| | - Yoko Aida
- Laboratory of Global Infectious Diseases Control Science, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan,Laboratory of Global Animal Resource Science, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan,Viral Infectious Diseases Unit, RIKEN, Wako, Japan,*Correspondence: Yoko Aida
| |
Collapse
|
7
|
BoLA-DRB3 Polymorphism Controls Proviral Load and Infectivity of Bovine Leukemia Virus (BLV) in Milk. Pathogens 2022; 11:pathogens11020210. [PMID: 35215153 PMCID: PMC8879029 DOI: 10.3390/pathogens11020210] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 01/31/2022] [Accepted: 02/03/2022] [Indexed: 11/16/2022] Open
Abstract
Bovine leukemia virus (BLV), which causes enzootic bovine leukosis, is transmitted to calves through the milk of BLV-infected dams. Bovine leukocyte antigen (BoLA)-DRB3 is a polymorphic gene associated with BLV infectivity and proviral load (PVL). However, the effect of BoLA-DRB3 polymorphism on the infectivity and PVL of milk from BLV-infected dams remains unknown. This study examined milk from 259 BLV-infected dams, including susceptible dams carrying at least one BoLA-DRB3*012:01 or *015:01 allele with high PVL, resistant dams carrying at least one BoLA-DRB3*002:01, *009:02, or *014:01:01 allele with low PVL, and neutral dams carrying other alleles. The detection rate of BLV provirus and PVL were significantly higher in milk from susceptible dams than in that from resistant dams. This result was confirmed in a three-year follow-up study in which milk from susceptible dams showed a higher BLV provirus detection rate over a longer period than that from resistant dams. The visualization of infectivity of milk cells using a luminescence syncytium induction assay showed that the infectious risk of milk from BLV-infected dams was markedly high for susceptible dams compared to resistant ones. This is the first report confirming that BoLA-DRB3 polymorphism affects the PVL and infectivity of milk from BLV-infected dams.
Collapse
|
8
|
Nicole VM, Eugenia CM, Viviana LV, Mario P, Elizabeth WS. Diversity of the BoLA-DRB3 gene in cattle breeds from tropical and subtropical regions of Argentina. Trop Anim Health Prod 2021; 54:23. [PMID: 34950978 DOI: 10.1007/s11250-021-03031-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 12/16/2021] [Indexed: 10/19/2022]
Abstract
Bovine leukocyte antigens (BoLA) have been widely studied because of their primary function in the recognition of pathogens by the immune system. To date, however, the characterization of the BoLA-DRB3 gene in Latin American Zebu and mixed zebuine breeds is scarce. By a sequence-based typing method, here we sequenced exon 2 of BoLA class II DRB3 gene in 264 animals from the five most commonly used breeds in northern Argentina (Creole, Brahman, Braford, Brangus, and Nellore).The Bos taurus, Bos indicus, and mixed breeds analyzed here contained 61 previously reported alleles. Genetic diversity was high at both allelic and nucleotide sequence levels, particularly in the mixed breeds Braford and Brangus. In contrast to previous reports on DRB3 diversity, no evidence of balancing selection was found in our data. Differentiation among breeds was highly significant, as shown by FST (FST = 0.052, P < 0.001) and cluster analyses. In accordance with historical origin of the breeds, UPGMA trees and metric multidimensional scaling (MDS) analyses showed that Creole is distantly related to the other zebuine breeds. Among them, Brahman, Braford, and Brangus exhibited the closest affiliations. Despite the overall differentiation of the breeds, analysis of the peptide binding regions at the aminoacid level revealed that the key aminoacids involved in peptide recognition are greatly conserved suggesting little influence of domestication and breeding in functional MHC variability. In sum, this is the first report of BoLA-DRB3 diversity in pure and mixed Bos indicus cattle breeds from Argentina. Knowledge of BoLA-DRB3 variability in breeds adapted to tropical and subtropical environments contributes not only to the characterization of MHC diversity but also to the design of peptide-based vaccines.
Collapse
Affiliation(s)
- Valenzano Magali Nicole
- Instituto de Agrobiotecnología Y Biología Molecular (IABIMO) (INTA-CONICET), de los Reseros Y Nicolás Repetto S/N, Hurlingham (B1686), Buenos Aires, Argentina
| | - Caffaro Maria Eugenia
- Instituto Nacional de Tecnología Agropecuaria CICVyA-CNIA, Instituto de Genética "Ewald A. Favret", de Los Reseros Y Nicolás Repetto S/N, Hurlingham (B1686), Buenos Aires, Argentina
| | - Lia Veronica Viviana
- Instituto de Agrobiotecnología Y Biología Molecular (IABIMO) (INTA-CONICET), de los Reseros Y Nicolás Repetto S/N, Hurlingham (B1686), Buenos Aires, Argentina
| | - Poli Mario
- Instituto Nacional de Tecnología Agropecuaria CICVyA-CNIA, Instituto de Genética "Ewald A. Favret", de Los Reseros Y Nicolás Repetto S/N, Hurlingham (B1686), Buenos Aires, Argentina
| | - Wilkowsky Silvina Elizabeth
- Instituto de Agrobiotecnología Y Biología Molecular (IABIMO) (INTA-CONICET), de los Reseros Y Nicolás Repetto S/N, Hurlingham (B1686), Buenos Aires, Argentina.
| |
Collapse
|
9
|
Notsu K, El Daous H, Mitoma S, Norimine J, Sekiguchi S. A pooled testing system to rapidly identify cattle carrying the elite controller BoLA-DRB3*009:02 haplotype against bovine leukemia virus infection. HLA 2021; 99:12-24. [PMID: 34837483 PMCID: PMC9543338 DOI: 10.1111/tan.14502] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 11/16/2021] [Accepted: 11/24/2021] [Indexed: 11/30/2022]
Abstract
As genetically resistant individuals, the “elite controllers” (ECs) of human immunodeficiency virus infection have been focused on as the keys to developing further functional treatments in medicine. In the livestock production field, identifying the ECs of bovine leukemia virus (BLV) infection in cattle is desired to stop BLV transmission chains on farms. Cattle carrying the bovine leukocyte antigen (BoLA)‐DRB3*009:02 allele (DRB3*009:02) have a strong possibility of being BLV ECs. Most of cattle carrying this allele maintain undetectable BLV proviral loads and do not shed virus even when infected. BLV ECs can act as transmission barriers when placed between uninfected and infected cattle in a barn. To identify cattle carrying DRB3*009:02 in large populations more easily, we developed a pooled testing system. It employs a highly sensitive, specific real‐time PCR assay and TaqMan MGB probes (DRB3*009:02‐TaqMan assay). Using this system, we determined the percentage of DRB3*009:02‐carrying cattle on Kyushu Island, Japan. Our pooled testing system detected cattle carrying the DRB3*009:02 allele from a DNA pool containing one DRB3*009:02‐positive animal and 29 cattle with other alleles. Its capacity is sufficient for herd‐level screening for DRB3*009:02‐carrying cattle. The DRB3*009:02‐TaqMan assay showed high‐discriminative sensitivity and specificity toward DRB3*009:02, making it suitable for identifying DRB3*009:02‐carrying cattle in post‐screening tests on individuals. We determined that the percentage of DRB3*009:02‐carrying cattle in Kyushu Island was 10.56%. With its ease of use and reliable detection, this new method strengthens the laboratory typing for DRB3*009:02‐carrying cattle. Thus, our findings support the use of BLV ECs in the field.
Collapse
Affiliation(s)
- Kosuke Notsu
- Graduate School of Medicine and Veterinary Medicine, University of Miyazaki, Miyazaki, Japan
| | - Hala El Daous
- Graduate School of Medicine and Veterinary Medicine, University of Miyazaki, Miyazaki, Japan.,Faculty of Veterinary Medicine, Benha University, Toukh, Egypt
| | - Shuya Mitoma
- Graduate School of Medicine and Veterinary Medicine, University of Miyazaki, Miyazaki, Japan
| | - Junzo Norimine
- Department of Veterinary Science, Faculty of Agriculture, University of Miyazaki, Miyazaki, Japan.,Center for Animal Disease Control, University of Miyazaki, Miyazaki, Japan
| | - Satoshi Sekiguchi
- Department of Veterinary Science, Faculty of Agriculture, University of Miyazaki, Miyazaki, Japan.,Center for Animal Disease Control, University of Miyazaki, Miyazaki, Japan
| |
Collapse
|
10
|
Bai L, Borjigin L, Sato H, Takeshima SN, Asaji S, Ishizaki H, Kawashima K, Obuchi Y, Sunaga S, Ando A, Inoko H, Wada S, Aida Y. Kinetic Study of BLV Infectivity in BLV Susceptible and Resistant Cattle in Japan from 2017 to 2019. Pathogens 2021; 10:pathogens10101281. [PMID: 34684230 PMCID: PMC8537920 DOI: 10.3390/pathogens10101281] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 10/01/2021] [Accepted: 10/02/2021] [Indexed: 11/30/2022] Open
Abstract
Bovine leukemia virus (BLV) is the causative agent of enzootic bovine leukosis. Polymorphism in bovine lymphocyte antigen (BoLA)-DRB3 alleles is related to susceptibility to BLV proviral load (PVL), which is a useful index for estimating disease progression and transmission risk. However, whether differential BoLA-DRB3 affects BLV infectivity remains unknown. In a three-year follow-up investigation using a luminescence syncytium induction assay for evaluating BLV infectivity, we visualized and evaluated the kinetics of BLV infectivity in cattle with susceptible, resistant and neutral BoLA-DRB3 alleles which were selected from 179 cattle. Susceptible cattle showed stronger BLV infectivity than both resistant and neutral cattle. The order of intensity of BLV infectivity was as follows: susceptible cattle > neutral cattle > resistant cattle. BLV infectivity showed strong positive correlation with PVL at each testing point. BLV-infected susceptible cattle were found to be at higher risk of horizontal transmission, as they had strong infectivity and high PVL, whereas BLV-infected resistant cattle were low risk of BLV transmission owing to weak BLV infection and low PVL. Thus, this is the first study to demonstrate that the BoLA-DRB3 polymorphism is associated with BLV infection.
Collapse
Affiliation(s)
- Lanlan Bai
- Photonics Control Technology Team, RIKEN Center for Advanced Photonics, 2-1 Hirosawa, Wako 351-0198, Saitama, Japan; (L.B.); (S.-N.T.); (S.W.)
- Viral Infectious Diseases Unit, RIKEN, 2-1 Hirosawa, Wako 351-0198, Saitama, Japan; (L.B.); (H.S.)
| | - Liushiqi Borjigin
- Viral Infectious Diseases Unit, RIKEN, 2-1 Hirosawa, Wako 351-0198, Saitama, Japan; (L.B.); (H.S.)
| | - Hirotaka Sato
- Viral Infectious Diseases Unit, RIKEN, 2-1 Hirosawa, Wako 351-0198, Saitama, Japan; (L.B.); (H.S.)
| | - Shin-Nosuke Takeshima
- Photonics Control Technology Team, RIKEN Center for Advanced Photonics, 2-1 Hirosawa, Wako 351-0198, Saitama, Japan; (L.B.); (S.-N.T.); (S.W.)
- Viral Infectious Diseases Unit, RIKEN, 2-1 Hirosawa, Wako 351-0198, Saitama, Japan; (L.B.); (H.S.)
- Department of Food and Nutrition, Jumonji University, 2-1-28 Sugasawa, Niiza 352-8510, Saitama, Japan
| | - Sakurako Asaji
- GenoDive Pharma Inc., 4-14-1 Naka-cho, Atsugi 243-0018, Kanagawa, Japan; (S.A.); (A.A.); (H.I.)
| | - Hiroshi Ishizaki
- Grazing Animal Unit, Division of Grassland Farming, Institute of Livestock and Grassland Science, NARO, 768 Senbonmatsu, Nasushiobara 329-2793, Tochigi, Japan;
| | - Keiji Kawashima
- Tobu and General Agricultural Office Livestock Hygiene Division, Ota 373-0805, Gunma, Japan;
| | - Yuko Obuchi
- Department of Agriculture Dairy and Livestock Division, Maebashi 371-8570, Gunma, Japan; (Y.O.); (S.S.)
| | - Shinji Sunaga
- Department of Agriculture Dairy and Livestock Division, Maebashi 371-8570, Gunma, Japan; (Y.O.); (S.S.)
| | - Asako Ando
- GenoDive Pharma Inc., 4-14-1 Naka-cho, Atsugi 243-0018, Kanagawa, Japan; (S.A.); (A.A.); (H.I.)
- Department of Molecular Life Science, Division of Basic Medical Science and Molecular Medicine, Tokai University School of Medicine, 143 Shimokasuya, Isehara 259-1119, Kanagasa, Japan
| | - Hidehito Inoko
- GenoDive Pharma Inc., 4-14-1 Naka-cho, Atsugi 243-0018, Kanagawa, Japan; (S.A.); (A.A.); (H.I.)
| | - Satoshi Wada
- Photonics Control Technology Team, RIKEN Center for Advanced Photonics, 2-1 Hirosawa, Wako 351-0198, Saitama, Japan; (L.B.); (S.-N.T.); (S.W.)
| | - Yoko Aida
- Viral Infectious Diseases Unit, RIKEN, 2-1 Hirosawa, Wako 351-0198, Saitama, Japan; (L.B.); (H.S.)
- Department of Food and Nutrition, Jumonji University, 2-1-28 Sugasawa, Niiza 352-8510, Saitama, Japan
- Laboratory of Global Infectious Diseases Control Science, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
- Correspondence: ; Tel.: +81-3-5841-5383
| |
Collapse
|
11
|
BoLA-DRB3 gene haplotypes show divergence in native Sudanese cattle from taurine and indicine breeds. Sci Rep 2021; 11:17202. [PMID: 34433838 PMCID: PMC8387388 DOI: 10.1038/s41598-021-96330-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 08/02/2021] [Indexed: 11/08/2022] Open
Abstract
Autochthonous Sudanese cattle breeds, namely Baggara for beef and Butana and Kenana for dairy, are characterized by their adaptive characteristics and high performance in hot and dry agro-ecosystems. They are thus used largely by nomadic and semi-nomadic pastoralists. We analyzed the diversity and genetic structure of the BoLA-DRB3 gene, a genetic locus linked to the immune response, for the indigenous cattle of Sudan and in the context of the global cattle repository. Blood samples (n = 225) were taken from three indigenous breeds (Baggara; n = 113, Butana; n = 60 and Kenana; n = 52) distributed across six regions of Sudan. Nucleotide sequences were genotyped using the sequence-based typing method. We describe 53 alleles, including seven novel alleles. Principal component analysis (PCA) of the protein pockets implicated in the antigen-binding function of the MHC complex revealed that pockets 4 and 9 (respectively) differentiate Kenana-Baggara and Kenana-Butana breeds from other breeds. Venn analysis of Sudanese, Southeast Asian, European and American cattle breeds with 115 alleles showed 14 were unique to Sudanese breeds. Gene frequency distributions of Baggara cattle showed an even distribution suggesting balancing selection, while the selection index (ω) revealed the presence of diversifying selection in several amino acid sites along the BoLA-DRB3 exon 2 of these native breeds. The results of several PCA were in agreement with clustering patterns observed on the neighbor joining (NJ) trees. These results provide insight into their high survival rate for different tropical diseases and their reproductive capacity in Sudan's harsh environment.
Collapse
|
12
|
Vasoya D, Oliveira PS, Muriel LA, Tzelos T, Vrettou C, Morrison WI, de Miranda Santos IKF, Connelley T. High throughput analysis of MHC-I and MHC-DR diversity of Brazilian cattle populations. HLA 2021; 98:93-113. [PMID: 34102036 DOI: 10.1111/tan.14339] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/13/2021] [Accepted: 06/02/2021] [Indexed: 01/16/2023]
Abstract
The major histocompatibility complex (MHC) contains many genes that play key roles in initiating and regulating immune responses. This includes the polymorphic MHCI and MHCII genes that present epitopes to CD8+ and CD4+ T-cells, respectively. Consequently, the characterisation of the repertoire of MHC genes is an important component of improving our understanding of the genetic variation that determines the outcomes of immune responses. In cattle, MHC (BoLA) research has predominantly focused on Holstein-Friesian animals (as the most economically important breed globally), although the development of high-throughput approaches has allowed the BoLA-DRB3 repertoire to be studied in a greater variety of breeds. In a previous study we reported on the development of a MiSeq-based method to enable high-throughput and high-resolution analysis of bovine MHCI repertoires. Herein, we report on the expansion of this methodology to incorporate analysis of the BoLA-DRB3 and its application to analyse MHC diversity in a large cohort of cattle from Brazil (>500 animals), including representatives from the three major Bos indicus breeds present in Brazil - Guzerat, Gir and Nelore. This large-scale description of paired MHCI-DRB3 repertoires in Bos indicus cattle has identified a small number of novel DRB3 alleles, a large number of novel MHCI alleles and haplotypes, and provided novel insights into MHCI-MHCII association - further expanding our knowledge of bovine MHC diversity.
Collapse
Affiliation(s)
- Deepali Vasoya
- Centre for Tropical Livestock Genetics and Health (CTLGH), The Roslin Institute, University of Edinburgh, Edinburgh, UK
| | - Priscila Silva Oliveira
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, Ribeirão Preto, São Paulo, Brazil
| | - Laura Agundez Muriel
- Translational Synthetic Biology Department, Mammalian genome editing and gene therapy, Parque de Investigación Biomédica, Carrer del Dr, Barcelona, Spain
| | - Thomas Tzelos
- Centre for Tropical Livestock Genetics and Health (CTLGH), The Roslin Institute, University of Edinburgh, Edinburgh, UK
| | - Christina Vrettou
- Centre for Tropical Livestock Genetics and Health (CTLGH), The Roslin Institute, University of Edinburgh, Edinburgh, UK
| | - W Ivan Morrison
- Centre for Tropical Livestock Genetics and Health (CTLGH), The Roslin Institute, University of Edinburgh, Edinburgh, UK
| | | | - Timothy Connelley
- Centre for Tropical Livestock Genetics and Health (CTLGH), The Roslin Institute, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
13
|
Borjigin L, Lo CW, Bai L, Hamada R, Sato H, Yoneyama S, Yasui A, Yasuda S, Yamanaka R, Mimura M, Inokuma M, Shinozaki Y, Tanaka N, Takeshima SN, Aida Y. Risk Assessment of Bovine Major Histocompatibility Complex Class II DRB3 Alleles for Perinatal Transmission of Bovine Leukemia Virus. Pathogens 2021; 10:pathogens10050502. [PMID: 33922152 PMCID: PMC8143451 DOI: 10.3390/pathogens10050502] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 04/15/2021] [Accepted: 04/20/2021] [Indexed: 12/31/2022] Open
Abstract
Perinatal transmission plays a critical role in the spread of bovine leukemia virus (BLV) infection in cattle herds. In the Holstein breed, we previously identified BLV resistant and susceptible bovine leukocyte antigen (BoLA)-DRB3 alleles, including BoLA-DRB3*009:02 and *014:01:01 with a low BLV proviral load (PVL), and *015:01 and *012:01 with a high PVL. Here, we evaluated the perinatal BLV transmission risk in dams with different BoLA-DRB3 alleles. BoLA-DRB3 alleles of 120 dam-calf pairs from five dairy farms in Japan were identified; their PVL was quantified using the BLV-Coordination of Common Motifs (CoCoMo)-qPCR-2 assay. Ninety-six dams were BLV-positive, and 29 gave birth to BLV-infected calves. Perinatal transmission frequency was 19% in dams with resistant alleles suppressed to a low PVL level, and 38% and 25% in dams with susceptible and neutral alleles that maintained high PVL levels, respectively. Notably, all calves with resistant alleles were BLV free, whereas 30% of calves with susceptible genes were infected. Thus, vertical transmission risk was extremely lower for dams and calves with resistant alleles compared to those with susceptible alleles. Our results can inform the development of effective BLV eradication programs under field conditions by providing necessary data to allow for optimal selection of dams for breeding.
Collapse
Affiliation(s)
- Liushiqi Borjigin
- Viral Infectious Diseases Unit, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan; (L.B.); (L.B.); (H.S.)
- Baton Zone Program, Nakamura Laboratory, RIKEN Cluster for Science, Technology and Innovation Hub, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Chieh-Wen Lo
- Photonics Control Technology Team, RIKEN Center for Advanced Photonics, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan; (C.-W.L.); (R.H.)
- Laboratory of Global Infectious Diseases Control Science, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Lanlan Bai
- Viral Infectious Diseases Unit, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan; (L.B.); (L.B.); (H.S.)
- Photonics Control Technology Team, RIKEN Center for Advanced Photonics, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan; (C.-W.L.); (R.H.)
| | - Rania Hamada
- Photonics Control Technology Team, RIKEN Center for Advanced Photonics, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan; (C.-W.L.); (R.H.)
- Department of Animal Medicine, Faculty of Veterinary Medicine, South Valley University, Qena 83523, Egypt
| | - Hirotaka Sato
- Viral Infectious Diseases Unit, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan; (L.B.); (L.B.); (H.S.)
- Baton Zone Program, Nakamura Laboratory, RIKEN Cluster for Science, Technology and Innovation Hub, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Shuji Yoneyama
- Kenou Livestock Hygiene Service Center, Utsunomiya, Tochigi 321-0905, Japan;
| | - Anna Yasui
- Kumagaya Livestock Hygiene Service Center, Kumagaya, Saitama 360-0813, Japan; (A.Y.); (S.Y.); (R.Y.); (M.M.)
| | - Sohei Yasuda
- Kumagaya Livestock Hygiene Service Center, Kumagaya, Saitama 360-0813, Japan; (A.Y.); (S.Y.); (R.Y.); (M.M.)
| | - Risa Yamanaka
- Kumagaya Livestock Hygiene Service Center, Kumagaya, Saitama 360-0813, Japan; (A.Y.); (S.Y.); (R.Y.); (M.M.)
| | - Munehito Mimura
- Kumagaya Livestock Hygiene Service Center, Kumagaya, Saitama 360-0813, Japan; (A.Y.); (S.Y.); (R.Y.); (M.M.)
| | | | - Yasuo Shinozaki
- Nanbu Livestock Hygiene Service Center, Kamogawa, Chiba 296-0033, Japan; (Y.S.); (N.T.)
| | - Naoko Tanaka
- Nanbu Livestock Hygiene Service Center, Kamogawa, Chiba 296-0033, Japan; (Y.S.); (N.T.)
| | - Shin-Nosuke Takeshima
- Department of Food and Nutrition, Jumonji University, Niiza, Saitama 352-8510, Japan;
| | - Yoko Aida
- Viral Infectious Diseases Unit, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan; (L.B.); (L.B.); (H.S.)
- Baton Zone Program, Nakamura Laboratory, RIKEN Cluster for Science, Technology and Innovation Hub, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
- Laboratory of Global Infectious Diseases Control Science, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
- Correspondence:
| |
Collapse
|
14
|
Lo CW, Takeshima SN, Okada K, Saitou E, Fujita T, Matsumoto Y, Wada S, Inoko H, Aida Y. Association of Bovine Leukemia Virus-Induced Lymphoma with BoLA-DRB3 Polymorphisms at DNA, Amino Acid, and Binding Pocket Property Levels. Pathogens 2021; 10:pathogens10040437. [PMID: 33917549 PMCID: PMC8067502 DOI: 10.3390/pathogens10040437] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 04/02/2021] [Accepted: 04/02/2021] [Indexed: 01/01/2023] Open
Abstract
Bovine leukemia virus (BLV) causes enzootic bovine leucosis, a malignant B-cell lymphoma in cattle. The DNA sequence polymorphisms of bovine leukocyte antigen (BoLA)-DRB3 have exhibited a correlation with BLV-induced lymphoma in Holstein cows. However, the association may vary between different cattle breeds. Furthermore, little is known about the relationship between BLV-induced lymphoma and DRB3 at the amino acid and structural diversity levels. Here, we comprehensively analyzed the correlation between BLV-induced lymphoma and DRB3 at DNA, amino acid, and binding pocket property levels, using 106 BLV-infected asymptomatic and 227 BLV-induced lymphoma Japanese black cattle samples. DRB3*011:01 was identified as a resistance allele, whereas DRB3*005:02 and DRB3*016:01 were susceptibility alleles. Amino acid association studies showed that positions 9, 11, 13, 26, 30, 47, 57, 70, 71, 74, 78, and 86 were associated with lymphoma susceptibility. Structure and electrostatic charge modeling further indicated that binding pocket 9 of resistance DRB3 was positively charged. In contrast, alleles susceptible to lymphoma were neutrally charged. Altogether, this is the first association study of BoLA-DRB3 polymorphisms with BLV-induced lymphoma in Japanese black cattle. In addition, our results further contribute to understanding the mechanisms regarding how BoLA-DRB3 polymorphisms mediate susceptibility to BLV-induced lymphoma.
Collapse
Affiliation(s)
- Chieh-Wen Lo
- Laboratory of Global Animal Resource Science, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan; (C.-W.L.); (Y.M.)
- Laboratory of Global Infectious Diseases Control Science, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Shin-nosuke Takeshima
- Viral Infectious Diseases Unit, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan;
- Department of Food and Nutrition, Jumonji University, Niiza, Saitama 352-8510, Japan
| | - Kosuke Okada
- Iwate University, 7-360 Mukai-shinden Ukai, Takizawa, Iwate 020-0667, Japan;
| | - Etsuko Saitou
- Hyogo Prefectural Awaji Meat Inspection Center, 49-18 Shitoorinagata, Minamiawaji, Hyogo 656-0152, Japan;
| | - Tatsuo Fujita
- Livestock Research Institute of Oita Prefectural Agriculture, Forestry and Fisheries, Research Center, Kuju, Taketa, Oita 878-0201, Japan;
| | - Yasunobu Matsumoto
- Laboratory of Global Animal Resource Science, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan; (C.-W.L.); (Y.M.)
- Laboratory of Global Infectious Diseases Control Science, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Satoshi Wada
- Photonics Control Technology Team, RIKEN Center for Advanced Photonics, Wako 351-0198, Japan;
| | - Hidetoshi Inoko
- Genome Analysis Division, GenoDive Pharma Inc., 4-14-1 Nakamachi, Atsugi-shi, Kanagawa 243-0018, Japan;
| | - Yoko Aida
- Laboratory of Global Animal Resource Science, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan; (C.-W.L.); (Y.M.)
- Laboratory of Global Infectious Diseases Control Science, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
- Viral Infectious Diseases Unit, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan;
- Benno Laboratory, Baton Zone Program, RIKEN Cluster for Science, Technology and Innovation Hub, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
- Correspondence:
| |
Collapse
|
15
|
Giovambattista G, Takeshima SN, Moe KK, Pereira Rico JA, Polat M, Loza Vega A, Arce Cabrera ON, Aida Y. BoLA-DRB3 genetic diversity in Highland Creole cattle from Bolivia. HLA 2020; 96:688-696. [PMID: 33094557 DOI: 10.1111/tan.14120] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 10/14/2020] [Accepted: 10/16/2020] [Indexed: 01/24/2023]
Abstract
The genetic diversity of the BoLA-DRB3 gene has been reported in different cattle breeds owing to its central role in the immune response. However, it is still unknown in hundreds of cattle breeds, especially native populations. Here, we studied BoLA-DRB3 genetic diversity in Highland Creole cattle (CrAl) from Western Bolivia, raised at altitudes between 3800 and 4200 m. DNAs from 48 CrAl cattle were genotyped for BoLA-DRB3 exon 2 alleles using polymerase chain reaction-sequence-based typing (PCR-SBT). The results were compared with 1341 previously reported data from Tropical Creole cattle and other breeds raised in the region. Twenty-three BoLA-DRB3 alleles were identified in CrAl, including the BoLA-DRB3*029:02 variant previously detected in other Creole cattle. Observed and expected heterozygosity were 0.87 and 0.93, respectively. Nucleotide diversity and the number of pairwise difference values were 0.078 and 19.46, respectively. The average number of nonsynonymous and synonymous substitutions were 0.037 and 0.097 for the entire BoLA-DRB3 exon 2, and 0.129 and 0.388 for the antigen-binding site, respectively. Venn analysis and the review of the IPD-MHC database and the literature showed that 2 of 64 alleles were only detected in CrAl, including BoLA-DRB3*029:01 previously reported in African cattle and *048:01 detected in Philippine cattle. Two additional alleles, BoLA-DRB3*007:02 and *029:02, were only present in CrAl and Lowland Creole cattle. Principal Component Analysis (PCA) showed that Bolivian Creole cattle breeds were closely located but they were distant from the Colombian Hartón del Valle Creole. FST analysis showed a low degree of genetic differentiation between Highland and Lowland Bolivian Creole cattle (FST = 0.015). The present results contribute to increasing our knowledge of BoLA-DRB3 genetic diversity in cattle breeds.
Collapse
Affiliation(s)
- Guillermo Giovambattista
- IGEVET-Instituto de Genética Veterinaria (UNLP-CONICET LA PLATA), Facultad de Ciencias Veterinarias UNLP, La Plata, Argentina
| | - Shin-Nosuke Takeshima
- Department of Food and Nutrition, Faculty of Human Life, Jumonji University, Saitama, Japan.,Virus Infectious Diseases Unit, RIKEN, Saitama, Japan
| | - Kyaw Kyaw Moe
- Nakamura Laboratory, Baton Zone Program, RIKEN Cluster for Science Technology and Innovation Hub, Saitama, Japan.,Department of Pathology and Microbiology, University of Veterinary Science, Yezin, Myanmar
| | - Juan A Pereira Rico
- Facultad de Ciencias Veterinarias, Universidad Autónoma Gabriel René Moreno, Santa Cruz de la Sierra, Bolivia
| | - Meripet Polat
- Virus Infectious Diseases Unit, RIKEN, Saitama, Japan.,Nakamura Laboratory, Baton Zone Program, RIKEN Cluster for Science Technology and Innovation Hub, Saitama, Japan
| | - Ariel Loza Vega
- Facultad de Ciencias Veterinarias, Universidad Autónoma Gabriel René Moreno, Santa Cruz de la Sierra, Bolivia
| | - Orlando N Arce Cabrera
- Facultad de Ciencias Agrarias y Veterinarias, Universidad Técnica de Oruro, Oruro, Bolivia
| | - Yoko Aida
- Virus Infectious Diseases Unit, RIKEN, Saitama, Japan.,Nakamura Laboratory, Baton Zone Program, RIKEN Cluster for Science Technology and Innovation Hub, Saitama, Japan
| |
Collapse
|
16
|
Giovambattista G, Moe KK, Polat M, Borjigin L, Hein ST, Moe HH, Takeshima SN, Aida Y. Characterization of bovine MHC DRB3 diversity in global cattle breeds, with a focus on cattle in Myanmar. BMC Genet 2020; 21:95. [PMID: 32867670 PMCID: PMC7460757 DOI: 10.1186/s12863-020-00905-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 08/23/2020] [Indexed: 11/16/2022] Open
Abstract
Background Myanmar cattle populations predominantly consist of native cattle breeds (Pyer Sein and Shwe), characterized by their geographical location and coat color, and the Holstein-Friesian crossbreed, which is highly adapted to the harsh tropical climates of this region. Here, we analyzed the diversity and genetic structure of the BoLA-DRB3 gene, a genetic locus that has been linked to the immune response, in Myanmar cattle populations. Methods Blood samples (n = 294) were taken from two native breeds (Pyer Sein, n = 163 and Shwe Ni, n = 69) and a cattle crossbreed (Holstein-Friesian, n = 62) distributed across six regions of Myanmar (Bago, n = 38; Sagaing, n = 77; Mandalay, n = 46; Magway, n = 46; Kayin, n = 43; Yangon, n = 44). In addition, a database that included 2428 BoLA-DRB3 genotypes from European (Angus, Hereford, Holstein, Shorthorn, Overo Negro, Overo Colorado, and Jersey), Zebuine (Nellore, Brahman and Gir), Asian Native from Japan and Philippine and Latin-American Creole breeds was also included. Furthermore, the information from the IPD–MHC database was also used in the present analysis. DNA was genotyped using the sequence-based typing method. DNA electropherograms were analyzed using the Assign 400ATF software. Results We detected 71 distinct alleles, including three new variants for the BoLA-DRB3 gene. Venn analysis showed that 11 of these alleles were only detected in Myanmar native breeds and 26 were only shared with Asian native and/or Zebu groups. The number of alleles ranged from 33 in Holstein-Friesians to 58 in Pyer Seins, and the observed versus unbiased expected heterozygosity were higher than 0.84 in all the three the populations analyzed. The FST analysis showed a low level of genetic differentiation between the two Myanmar native breeds (FST = 0.003), and between these native breeds and the Holstein-Friesians (FST < 0.021). The average FST value for all the Myanmar Holstein-Friesian crossbred and Myanmar native populations was 0.0136 and 0.0121, respectively. Principal component analysis (PCA) and tree analysis showed that Myanmar native populations grouped in a narrow cluster that diverged clearly from the Holstein-Friesian populations. Furthermore, the BoLA-DRB3 allele frequencies suggested that while some Myanmar native populations from Bago, Mandalay and Yangon regions were more closely related to Zebu breeds (Gir and Brahman), populations from Kayin, Magway and Sagaing regions were more related to the Philippines native breeds. On the contrary, PCA showed that the Holstein-Friesian populations demonstrated a high degree of dispersion, which is likely the result of the different degrees of native admixture in these populations. Conclusion This study is the first to report the genetic diversity of the BoLA-DRB3 gene in two native breeds and one exotic cattle crossbreed from Myanmar. The results obtained contribute to our understanding of the genetic diversity and distribution of BoLA-DRB3 gene alleles in Myanmar, and increases our knowledge of the worldwide variability of cattle BoLA-DRB3 genes, an important locus for immune response and protection against pathogens.
Collapse
Affiliation(s)
- Guillermo Giovambattista
- Nakamura Laboratory, Baton Zone Program, RIKEN Cluster for Science, Technology and Innovation Hub, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan. .,IGEVET (UNLP-CONICET LA PLATA), Facultad de Ciencias Veterinarias UNLP, B1900AVW, CC 296, La Plata, Argentina.
| | - Kyaw Kyaw Moe
- Nakamura Laboratory, Baton Zone Program, RIKEN Cluster for Science, Technology and Innovation Hub, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan.,Department of Pathology and Microbiology, University of Veterinary Science, Yezin, Nay Pyi Taw, 05282, Myanmar
| | - Meripet Polat
- Nakamura Laboratory, Baton Zone Program, RIKEN Cluster for Science, Technology and Innovation Hub, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Liushiqi Borjigin
- Nakamura Laboratory, Baton Zone Program, RIKEN Cluster for Science, Technology and Innovation Hub, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Si Thu Hein
- Department of Anatomy, University of Veterinary Science, Yezin, Nay Pyi Taw, 05282, Myanmar
| | - Hla Hla Moe
- Department of Genetics and Animal Breeding, University of Veterinary Science, Yezin, Nay Pyi Taw, 05282, Myanmar
| | - Shin-Nosuke Takeshima
- Department of Food and Nutrition, Faculty of Human Life, Jumonji University, 2-1-28 Sugasawa, Niiza-shi, Saitama, 352-8510, Japan
| | - Yoko Aida
- Nakamura Laboratory, Baton Zone Program, RIKEN Cluster for Science, Technology and Innovation Hub, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan.
| |
Collapse
|
17
|
Lo CW, Borjigin L, Saito S, Fukunaga K, Saitou E, Okazaki K, Mizutani T, Wada S, Takeshima SN, Aida Y. BoLA-DRB3 Polymorphism is Associated with Differential Susceptibility to Bovine Leukemia Virus-Induced Lymphoma and Proviral Load. Viruses 2020; 12:v12030352. [PMID: 32235771 PMCID: PMC7150773 DOI: 10.3390/v12030352] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Revised: 03/11/2020] [Accepted: 03/20/2020] [Indexed: 12/22/2022] Open
Abstract
Bovine leukemia virus (BLV) is the causative agent of enzootic bovine leucosis. However, less than 5% of BLV-infected cattle will develop lymphoma, suggesting that, in addition to viral infection, host genetic polymorphisms might play a role in disease susceptibility. Bovine leukocyte antigen (BoLA)-DRB3 is a highly polymorphic gene associated with BLV proviral load (PVL) susceptibility. Due to the fact that PVL is positively associated with disease progression, it is believed that controlling PVL can prevent lymphoma development. Thus, many studies have focused on the relationship between PVL and BoLA-DRB3. Despite this, there is little information regarding the relationship between lymphoma and BoLA-DRB3. Furthermore, whether or not PVL-associated BoLA-DRB3 is linked to lymphoma-associated BoLA-DRB3 has not been clarified. Here, we investigated whether or not lymphoma-associated BoLA-DRB3 is correlated with PVL-associated BoLA-DRB3. We demonstrate that two BoLA-DRB3 alleles were specifically associated with lymphoma resistance (*010:01 and *011:01), but no lymphoma-specific susceptibility alleles were found; furthermore, two other alleles, *002:01 and *012:01, were associated with PVL resistance and susceptibility, respectively. In contrast, lymphoma and PVL shared two resistance-associated (DRB3*014:01:01 and *009:02) BoLA-DRB3 alleles. Interestingly, we found that PVL associated alleles, but not lymphoma associated alleles, are related with the anti-BLV gp51 antibody production level in cows. Overall, our study is the first to demonstrate that the BoLA-DRB3 polymorphism confers differential susceptibility to BLV-induced lymphoma and PVL.
Collapse
Affiliation(s)
- Chieh-Wen Lo
- Laboratory of Global Animal Resource Science, Graduate School of Agricultural and Life Sciences, the University of Tokyo, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan;
- Viral Infectious Diseases Unit, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan; (L.B.); (S.S.); (S.-n.T.)
- Photonics Control Technology Team, RIKEN Center for Advanced Photonics, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan;
| | - Liushiqi Borjigin
- Viral Infectious Diseases Unit, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan; (L.B.); (S.S.); (S.-n.T.)
- Nakamura Laboratory, Baton Zone Program, RIKEN Cluster for Science, Technology and Innovation Hub, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Susumu Saito
- Viral Infectious Diseases Unit, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan; (L.B.); (S.S.); (S.-n.T.)
- Photonics Control Technology Team, RIKEN Center for Advanced Photonics, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan;
- Research and Education Center for Prevention of Global Infectious Diseases of Animals, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo 183-8509, Japan;
| | - Koya Fukunaga
- Laboratory for Pharmacogenomics, RIKEN Center for Integrative Medical Sciences, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama City, Kanagawa 230-0045, Japan;
| | - Etsuko Saitou
- Hyogo Prefectural Awaji Meat Inspection Center, 49-18 Shitoorinagata, Minamiawaji, Hyogo 656-0152, Japan;
| | - Katsunori Okazaki
- Laboratory of Microbiology and Immunology, Faculty of Pharmaceutical Sciences, Health Sciences University of Hokkaido, 1757 Kanazawa, Ishikari-Tobetsu, Hokkaido 061-0293, Japan;
| | - Tetsuya Mizutani
- Research and Education Center for Prevention of Global Infectious Diseases of Animals, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo 183-8509, Japan;
| | - Satoshi Wada
- Photonics Control Technology Team, RIKEN Center for Advanced Photonics, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan;
| | - Shin-nosuke Takeshima
- Viral Infectious Diseases Unit, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan; (L.B.); (S.S.); (S.-n.T.)
- Photonics Control Technology Team, RIKEN Center for Advanced Photonics, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan;
- Department of Food and Nutrition, Jumonji University, Niiza, Saitama 352-8510, Japan
| | - Yoko Aida
- Laboratory of Global Animal Resource Science, Graduate School of Agricultural and Life Sciences, the University of Tokyo, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan;
- Viral Infectious Diseases Unit, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan; (L.B.); (S.S.); (S.-n.T.)
- Nakamura Laboratory, Baton Zone Program, RIKEN Cluster for Science, Technology and Innovation Hub, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
- Research and Education Center for Prevention of Global Infectious Diseases of Animals, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo 183-8509, Japan;
- Correspondence:
| |
Collapse
|
18
|
Bai L, Takeshima SN, Sato M, Davis WC, Wada S, Kohara J, Aida Y. Mapping of CD4 + T-cell epitopes in bovine leukemia virus from five cattle with differential susceptibilities to bovine leukemia virus disease progression. Virol J 2019; 16:157. [PMID: 31842930 PMCID: PMC6916044 DOI: 10.1186/s12985-019-1259-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 11/22/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Bovine leukemia virus (BLV), which is closely related to human T-cell leukemia virus, is the etiological agent of enzootic bovine leukosis, a disease characterized by a highly prolonged course involving persistent lymphocytosis and B-cell lymphoma. The bovine major histocompatibility complex class II region plays a key role in the subclinical progression of BLV infection. In this study, we aimed to evaluate the roles of CD4+ T-cell epitopes in disease progression in cattle. METHODS We examined five Japanese Black cattle, including three disease-susceptible animals, one disease-resistant animal, and one normal animal, classified according to genotyping of bovine leukocyte antigen (BoLA)-DRB3 and BoLA-DQA1 alleles using polymerase chain reaction sequence-based typing methods. All cattle were inoculated with BLV-infected blood collected from BLV experimentally infected cattle and then subjected to CD4+ T-cell epitope mapping by cell proliferation assays. RESULTS Five Japanese Black cattle were successfully infected with BLV, and CD4+ T-cell epitope mapping was then conducted. Disease-resistant and normal cattle showed low and moderate proviral loads and harbored six or five types of CD4+ T-cell epitopes, respectively. In contrast, the one of three disease-susceptible cattle with the highest proviral load did not harbor CD4+ T-cell epitopes, and two of three other cattle with high proviral loads each had only one epitope. Thus, the CD4+ T-cell epitope repertoire was less frequent in disease-susceptible cattle than in other cattle. CONCLUSION Although only a few cattle were included in this study, our results showed that CD4+ T-cell epitopes may be associated with BoLA-DRB3-DQA1 haplotypes, which conferred differential susceptibilities to BLV proviral loads. These CD4+ T-cell epitopes could be useful for the design of anti-BLV vaccines targeting disease-susceptible Japanese Black cattle. Further studies of CD4+ T-cell epitopes in other breeds and using larger numbers of cattle with differential susceptibilities are required to confirm these findings.
Collapse
Affiliation(s)
- Lanlan Bai
- Viral Infectious Diseases Unit, RIKEN, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan.,Photonics Control Technology Team, RIKEN Center for Advanced Photonics, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Shin-Nosuke Takeshima
- Viral Infectious Diseases Unit, RIKEN, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan. .,Faculty of Human Life, Department of Food and Nutrition, Jumonji University, 2-1-28 Sugasawa, Niiza, Saitama, 352-0017, Japan.
| | - Masaaki Sato
- Viral Infectious Diseases Unit, RIKEN, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - William C Davis
- Monoclonal antibody center, Department of Veterinary Microbiology & Pathology, Washington State University, Pullman, WA, 99164-7040, USA
| | - Satoshi Wada
- Photonics Control Technology Team, RIKEN Center for Advanced Photonics, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Junko Kohara
- Animal Research Center, Hokkaido Research Organization, 5-39-1 Shintoku, Hokkaido, 081-0038, Japan
| | - Yoko Aida
- Viral Infectious Diseases Unit, RIKEN, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan. .,Nakamura Laboratory, Baton Zone Program, RIKEN Cluster for Science, Technology and Innovation Hub, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan.
| |
Collapse
|
19
|
Murakami H, Todaka H, Uchiyama J, Sato R, Sogawa K, Sakaguchi M, Tsukamoto K. A point mutation to the long terminal repeat of bovine leukemia virus related to viral productivity and transmissibility. Virology 2019; 537:45-52. [PMID: 31445323 DOI: 10.1016/j.virol.2019.08.015] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 08/15/2019] [Accepted: 08/16/2019] [Indexed: 12/21/2022]
Abstract
It is important to establish the molecular basis of the high transmissibility of bovine leukemia virus (BLV) to develop new methods of preventing viral transmission. Hence, the aim of this study was to determine whether some strains had transmission advantages. First, we determined the whole BLV genome sequences of all 34 BLV-infected cows from one farm. Phylogenetic analysis divided strains into 26 major and 8 minor strains. The major strains dominantly spread independent of host factor, bovine leucocyte antigen. Further analysis, with molecular clones, associated transmissibility with viral productivity in vitro. In addition, the two groups could be classified by group-specific mutations. The reverse genetic approach demonstrated that a spontaneous mutation at nucleotide 175 of the BLV genome, which is located in the viral promoter region, could alter viral productivity by changing viral transactivation, suggesting that BLV transmissibility is affected by a spontaneous mutation associated with viral productivity.
Collapse
Affiliation(s)
- Hironobu Murakami
- Laboratory of Animal Health Ⅱ, School of Veterinary Medicine, Azabu University, 1-17-71 Fuchinobe, Chuo-ku, Sagamihara, Kanagawa, 252-5201, Japan.
| | - Haruna Todaka
- Laboratory of Animal Health Ⅱ, School of Veterinary Medicine, Azabu University, 1-17-71 Fuchinobe, Chuo-ku, Sagamihara, Kanagawa, 252-5201, Japan
| | - Jumpei Uchiyama
- Laboratory of Veterinary Microbiology Ⅰ, School of Veterinary Medicine, Azabu University, 1-17-71 Fuchinobe, Chuo-ku, Sagamihara, Kanagawa, 252-5201, Japan
| | - Reiichiro Sato
- Laboratory of Clinical Veterinary Medicine for Large Animal, School of Veterinary Medicine, Azabu University, 1-17-71 Fuchinobe, Chuo-ku, Sagamihara, Kanagawa, 252-5201, Japan
| | - Kazuyuki Sogawa
- Laboratory of Biochemistry, School of Life and Environmental Science, Azabu University, 1-17-71 Fuchinobe, Chuo-ku, Sagamihara, Kanagawa, 252-5201, Japan
| | - Masahiro Sakaguchi
- Laboratory of Veterinary Microbiology Ⅰ, School of Veterinary Medicine, Azabu University, 1-17-71 Fuchinobe, Chuo-ku, Sagamihara, Kanagawa, 252-5201, Japan
| | - Kenji Tsukamoto
- Laboratory of Animal Health Ⅱ, School of Veterinary Medicine, Azabu University, 1-17-71 Fuchinobe, Chuo-ku, Sagamihara, Kanagawa, 252-5201, Japan
| |
Collapse
|
20
|
Takeshima SN, Ohno A, Aida Y. Bovine leukemia virus proviral load is more strongly associated with bovine major histocompatibility complex class II DRB3 polymorphism than with DQA1 polymorphism in Holstein cow in Japan. Retrovirology 2019; 16:14. [PMID: 31096993 PMCID: PMC6524304 DOI: 10.1186/s12977-019-0476-z] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 05/08/2019] [Indexed: 01/14/2023] Open
Abstract
Bovine leukemia virus (BLV) causes enzootic bovine leukosis and is closely related to the human T-lymphotropic virus. Bovine major histocompatibility complex (BoLAs) are used extensively as markers of disease and immunological traits in cattle. For BLV diagnosis, proviral load is a major diagnosis index for the determination of disease progression and transmission risk. Therefore, we investigated the frequency of BoLA-DRB3 alleles, BoLA-DQA1 alleles, and haplotypes of BoLA class II isolated from the heads of 910 BLV-infected cows out of 1290 cows assessed from BLV-positive farms, in a nationwide survey from 2011 to 2014 in Japan. Our aim was to identify BoLA class II polymorphisms associated with the BLV proviral load in the Holstein cow. The study examined 569 cows with a high proviral load and 341 cows with a low proviral load. Using the highest odds ratio (OR) as a comparison index, we confirmed that BoLA-DRB3 was the best marker for determining which cow spread the BLV (OR 13.9 for BoLA-DRB3, OR 11.5 for BoLA-DQA1, and OR 6.2 for BoLA class II haplotype). In addition, DRB3*002:01, *009:02, *012:01, *014:01, and *015:01 were determined as BLV provirus associated alleles. BoLA-DRB3*002:01, *009:02, and *014:01 were determined as resistant alleles (OR > 1), and BoLA-DRB3*012:01 and *015:01 were determined as susceptible alleles (OR < 1). In this study, we showed that BoLA-DRB3 was a good marker for determining which cow spread BLV, and we found not only one resistant allele (BoLA-DRB3*009:02), but also two other disease-resistant alleles and two disease-susceptible alleles. This designation of major alleles as markers of susceptibility or resistance can allow the determination of the susceptibility or resistance of most cows to disease. Overall, the results of this study may be useful in eliminating BLV from farms without having to separate cows into several cowsheds.
Collapse
Affiliation(s)
- Shin-Nosuke Takeshima
- Viral Infectious Diseases Unit, RIKEN, Wako, Saitama, 351-0198, Japan.,Photonics Control Technology Team, RIKEN Center for Advanced Photonics, Wako, Saitama, 3510198, Japan.,Department of Food and Nutrition, Jumonji University, Niiza, Saitama, 352-8510, Japan
| | - Ayumu Ohno
- Viral Infectious Diseases Unit, RIKEN, Wako, Saitama, 351-0198, Japan
| | - Yoko Aida
- Viral Infectious Diseases Unit, RIKEN, Wako, Saitama, 351-0198, Japan. .,Nakamura Laboratory, Baton Zone Program, RIKEN Cluster for Science, Technology and Innovation Hub, Wako, Saitama, 351-0198, Japan.
| |
Collapse
|
21
|
Murakami H, Uchiyama J, Suzuki C, Nikaido S, Shibuya K, Sato R, Maeda Y, Tomioka M, Takeshima SN, Kato H, Sakaguchi M, Sentsui H, Aida Y, Tsukamoto K. Variations in the viral genome and biological properties of bovine leukemia virus wild-type strains. Virus Res 2018; 253:103-111. [PMID: 29913249 DOI: 10.1016/j.virusres.2018.06.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2018] [Revised: 06/14/2018] [Accepted: 06/14/2018] [Indexed: 01/23/2023]
Abstract
Bovine leukemia virus (BLV) is the etiological agent of enzootic bovine leukosis (EBL), which causes enormous economic losses in the livestock industry worldwide. To reduce the economic loss caused by BLV infection, it is important to clarify the characters associated with BLV transmissibility and pathogenesis in cattle. In this study, we focused on viral characters and examined spontaneous mutations in the virus and viral properties by analyses of whole genome sequences and BLV molecular clones derived from cows with and without EBL. Genomic analysis indicated that all 28 strains harbored limited genetic variations but no deletion mutations that allowed classification into three groups (A, B, and C), except for one strain. Some nucleotide/amino acid substitutions were specific to a particular group. On the other hand, these genetic variations were not associated with the host bovine leukocyte antigen-DRB3 allele, which is known to be related to BLV pathogenesis. The viral replication activity in vitro was high, moderate, and low in groups A, B, and C, respectively. In addition, the proviral load, which is related to BLV transmissibility and pathogenesis, was high in cows infected with group A strains and low in those infected with group B/C strains. Therefore, these results suggest that limited genetic variations could affect viral properties relating to BLV transmissibility and pathogenesis.
Collapse
Affiliation(s)
- Hironobu Murakami
- Laboratory of Animal Health II, 1-17-71 Fuchinobe, Chuo-ku, Sagamihara, Kanagawa, 252-5201, Japan.
| | - Jumpei Uchiyama
- Laboratory of Veterinary Microbiology I, 1-17-71 Fuchinobe, Chuo-ku, Sagamihara, Kanagawa, 252-5201, Japan
| | - Chihiro Suzuki
- Laboratory of Animal Health II, 1-17-71 Fuchinobe, Chuo-ku, Sagamihara, Kanagawa, 252-5201, Japan
| | - Sae Nikaido
- Laboratory of Animal Health II, 1-17-71 Fuchinobe, Chuo-ku, Sagamihara, Kanagawa, 252-5201, Japan
| | - Kaho Shibuya
- Laboratory of Animal Health II, 1-17-71 Fuchinobe, Chuo-ku, Sagamihara, Kanagawa, 252-5201, Japan
| | - Reiichiro Sato
- Laboratory of Farm Animal Internal Medicine, School of Veterinary Medicine, Azabu University, 1-17-71 Fuchinobe, Chuo-ku, Sagamihara, Kanagawa, 252-5201, Japan
| | - Yosuke Maeda
- Laboratory of Clinical Veterinary Medicine for Large Animal, School of Veterinary Medicine, Kitasato University, Higashi 23bancho 35-1, Towada, Aomori, 034-8628, Japan
| | - Michiko Tomioka
- Laboratory of Clinical Veterinary Medicine for Large Animal, School of Veterinary Medicine, Kitasato University, Higashi 23bancho 35-1, Towada, Aomori, 034-8628, Japan
| | - Shin-Nosuke Takeshima
- Nano Medical Engineering Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan; Department of Food and Nutrition Faculty of Human Life, Jumonji University, 2-1-28, Sugasawa, Niiza, Saitama, 352-8510, Japan
| | - Hajime Kato
- Southern Nemuro Operation Center, Hokkaido Higashi Agricultural Mutual Aid Association, 119, Betsukai-Midorimachi, Betsukai, Notsuke-gun, Hokkaido 086-0292, Japan
| | - Masahiro Sakaguchi
- Laboratory of Veterinary Microbiology I, 1-17-71 Fuchinobe, Chuo-ku, Sagamihara, Kanagawa, 252-5201, Japan
| | - Hiroshi Sentsui
- Laboratory of Veterinary Epizootiology, School of Veterinary Medicine, Nihon University, Kameino 1866, Fujisawa, Kanagawa 252-0880, Japan
| | - Yoko Aida
- Nano Medical Engineering Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Kenji Tsukamoto
- Laboratory of Animal Health II, 1-17-71 Fuchinobe, Chuo-ku, Sagamihara, Kanagawa, 252-5201, Japan
| |
Collapse
|
22
|
Takeshima SN, Corbi-Botto C, Giovambattista G, Aida Y. Genetic diversity of BoLA-DRB3 in South American Zebu cattle populations. BMC Genet 2018; 19:33. [PMID: 29788904 PMCID: PMC5964877 DOI: 10.1186/s12863-018-0618-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2017] [Accepted: 04/30/2018] [Indexed: 11/17/2022] Open
Abstract
Background Bovine leukocyte antigens (BoLAs) are used extensively as markers of disease and immunological traits in cattle. However, until now, characterization of BoLA gene polymorphisms in Zebu breeds using high resolution typing methods has been poor. Here, we used a polymerase chain reaction sequence-based typing (PCR-SBT) method to sequence exon 2 of the BoLA class II DRB3 gene from 421 cattle (116 Bolivian Nellore, 110 Bolivian Gir, and 195 Peruvian Nellore-Brahman). Data from 1416 Taurine and Zebu samples were also included in the analysis. Results We identified 46 previously reported alleles and no novel variants. Of note, 1/3 of the alleles were detected only in Zebu cattle. Comparison of the degree of genetic variability at the population and sequence levels with genetic distance in the three above mentioned breeds and nine previously reported breeds revealed that Zebu breeds had a gene diversity score higher than 0.86, a nucleotide diversity score higher than 0.06, and a mean number of pairwise differences greater than 16, being similar to those estimated for other cattle breeds. A neutrality test revealed that only Nellore-Brahman cattle showed the even gene frequency distribution expected under a balanced selection scenario. The FST index and the exact G test showed significant differences across all cattle populations (FST = 0.057; p < 0.001). Neighbor-joining trees and principal component analysis identified two major clusters: one comprising mainly European Taurine breeds and a second comprising Zebu breeds. This is consistent with the historical and geographical origin of these breeds. Some of these differences may be explained by variation of amino acid motifs at antigen-binding sites. Conclusions The results presented herein show that the historical divergence between Taurine and Zebu cattle breeds is a result of origin, selection, and adaptation events, which would explain the observed differences in BoLA-DRB3 gene diversity between the two major bovine types. This allelic information will be important for investigating the relationship between the major histocompatibility complex and disease, and contribute to an ongoing effort to catalog bovine MHC allele frequencies according to breed and location. Electronic supplementary material The online version of this article (10.1186/s12863-018-0618-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Shin-Nosuke Takeshima
- Nanomedical Engineering Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan.,Viral Infectious Diseases Unit, RIKEN, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan.,Graduate school of frontier sciences, The University of Tokyo, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan.,Institute of Agriculture, Tokyo University of agriculture and technology, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan.,Department of Food and Nutrition Faculty of Human Life, Jumonji University, 2-1-28 Sugasawa, Niiza, Saitama, 352-8510, Japan
| | - Claudia Corbi-Botto
- IGEVET, CCT LA PLATA CONICET, FCV, UNLP, B1900AVW, CC 296, La Plata, Argentina
| | | | - Yoko Aida
- Nanomedical Engineering Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan. .,Viral Infectious Diseases Unit, RIKEN, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan. .,Graduate school of frontier sciences, The University of Tokyo, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan. .,Institute of Agriculture, Tokyo University of agriculture and technology, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan. .,Department of global agricultural science, The University of Tokyo, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan.
| |
Collapse
|
23
|
Bai L, Otsuki H, Sato H, Kohara J, Isogai E, Takeshima SN, Aida Y. Identification and characterization of common B cell epitope in bovine leukemia virus via high-throughput peptide screening system in infected cattle. Retrovirology 2015; 12:106. [PMID: 26715158 PMCID: PMC4696170 DOI: 10.1186/s12977-015-0233-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Accepted: 12/17/2015] [Indexed: 01/22/2023] Open
Abstract
Background
Bovine leukemia virus (BLV) is the causative agent of enzootic bovine leukosis, the most common neoplastic disease of cattle. BLV is closely related to human T cell leukemia virus. B cell epitopes are important for the use of antibodies as therapeutic agents, the epitope-driven vaccine design, and immunological assays. A common B cell epitope for BLV has not yet been found due to individual differences in disease susceptibility. Results We used a peptide microarray with 156 synthetic 15-mer peptides covering the envelope glycoprotein gp51 and the Gag proteins p15, p24, and p12 to map B cell epitope and one B cell epitope, gp51p16, was recognized by all four cattle experimentally infected with BLV. A newly developed high-throughput peptide ELISA system revealed 590 (91.2 %) of 647 cattle naturally infected with BLV, carrying 25 different bovine leukocyte antigen class II DRB3 (BoLA-DRB3) alleles, responded to a 20-mer gp51p16-C peptide containing a C-terminal cysteine and gp51p16. Alanine mutation and comparison of the sequences at 17 amino acid positions within gp51p16-C revealed that R7, R9, F10, V16, and Y18 were the common binding sites to BLV antibodies, and two of these sites were found to be highly conserved. Transient expression in the cells of five infectious molecular clones of BLV with a single alanine mutation at five common antibody binding sites had no effect syncytia formation of the gp51 protein. In addition, the mutant proteins, R7A and R9A had no effect on the expression of gp51 protein; the gp51 protein expressions of F10A, V16A and Y18A were lower than that of the wild type protein. Conclusions This is the first report to identify a common B cell epitope in BLV by comprehensive screening of BLV-infected cattle with varied genetic backgrounds in BoLA-DRB3. Our results have important implications for disease control and diagnosis.
Collapse
Affiliation(s)
- Lanlan Bai
- Viral Infectious Diseases Unit, RIKEN, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan. .,Laboratory of Animal Microbiology, Department of Microbial Biotechnology, Graduate School of Agricultural Science, Tohoku University, Sendai, Miyagi, 981-8555, Japan.
| | - Hiroyuki Otsuki
- Viral Infectious Diseases Unit, RIKEN, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan. .,Bovine Leukemia Virus Vaccine Laboratory, RIKEN Innovation Center, RIKEN, Wako, Saitama, 351-0198, Japan.
| | - Hirotaka Sato
- Viral Infectious Diseases Unit, RIKEN, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan. .,Bovine Leukemia Virus Vaccine Laboratory, RIKEN Innovation Center, RIKEN, Wako, Saitama, 351-0198, Japan.
| | - Junko Kohara
- Animal Research Center, Hokkaido Research Organization, Shintoku, Hokkaido, 081-0038, Japan.
| | - Emiko Isogai
- Laboratory of Animal Microbiology, Department of Microbial Biotechnology, Graduate School of Agricultural Science, Tohoku University, Sendai, Miyagi, 981-8555, Japan.
| | - Shin-nosuke Takeshima
- Viral Infectious Diseases Unit, RIKEN, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan. .,Bovine Leukemia Virus Vaccine Laboratory, RIKEN Innovation Center, RIKEN, Wako, Saitama, 351-0198, Japan.
| | - Yoko Aida
- Viral Infectious Diseases Unit, RIKEN, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan. .,Bovine Leukemia Virus Vaccine Laboratory, RIKEN Innovation Center, RIKEN, Wako, Saitama, 351-0198, Japan.
| |
Collapse
|
24
|
Takeshima SN, Giovambattista G, Okimoto N, Matsumoto Y, Rogberg-Muñoz A, Acosta TJ, Onuma M, Aida Y. Characterization of bovine MHC class II DRB3 diversity in South American Holstein cattle populations. ACTA ACUST UNITED AC 2015; 86:419-30. [PMID: 26514650 DOI: 10.1111/tan.12692] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Revised: 09/14/2015] [Accepted: 10/06/2015] [Indexed: 12/11/2022]
Abstract
Holstein cattle dominate the global milk production industry because of their outstanding milk production, however, this breed is susceptible to tropical endemic pathogens and suffers from heat stress and thus fewer Holstein populations are raised in tropical areas. The bovine major histocompatibility complex (BoLA)-DRB3 class II gene is used as a marker for disease and immunological traits, and its polymorphism has been studied extensively in Holstein cattle from temperate and cold regions. We studied the genetic diversity of the BoLA-DRB3 gene in South American Holstein populations to determine whether tropical populations have diverged from those bred in temperate and cold regions by selection and/or crossbreeding with local native breeds. We specifically studied Exon 2 of this gene from 855 South American Holstein individuals by a polymerase chain reaction (PCR) sequence-based typing method. We found a high degree of gene diversity at the allelic (Na > 20 and He > 0.87) and molecular (π > 0.080) levels, but a low degree of population structure (FST = 0.009215). A principal components analysis and tree showed that the Bolivian subtropical population had the largest genetic divergence compared with Holsteins bred in temperate or cold regions, and that this population was closely related to Bolivian Creole cattle. Our results suggest that Holstein genetic divergence can be explained by selection and/or gene introgression from local germplasms. This is the first examination of BoLA-DRB3 in Holsteins adapted to tropical environments, and contributes to an ongoing effort to catalog bovine MHC allele frequencies by breed and location.
Collapse
Affiliation(s)
- S-N Takeshima
- Viral Infectious Diseases Unit, RIKEN, Saitama, Japan
| | | | - N Okimoto
- Laboratory for Computational Molecular Design, Computational Biology Research Core, Quantitative Biology Center (QBiC), RIKEN, Hyogo, Japan
| | - Y Matsumoto
- Viral Infectious Diseases Unit, RIKEN, Saitama, Japan
| | - A Rogberg-Muñoz
- IGEVET, CCT LA PLATA CONICET, FCV, UNLP, La Plata, Argentina
| | - T J Acosta
- Field Center of Animal Science and Agriculture, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Japan
| | - M Onuma
- Viral Infectious Diseases Unit, RIKEN, Saitama, Japan
| | - Y Aida
- Viral Infectious Diseases Unit, RIKEN, Saitama, Japan
| |
Collapse
|
25
|
Primary Structural Variation in Anaplasma marginale Msp2 Efficiently Generates Immune Escape Variants. Infect Immun 2015; 83:4178-84. [PMID: 26259814 DOI: 10.1128/iai.00851-15] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Accepted: 08/04/2015] [Indexed: 11/20/2022] Open
Abstract
Antigenic variation allows microbial pathogens to evade immune clearance and establish persistent infection. Anaplasma marginale utilizes gene conversion of a repertoire of silent msp2 alleles into a single active expression site to encode unique Msp2 variants. As the genomic complement of msp2 alleles alone is insufficient to generate the number of variants required for persistence, A. marginale uses segmental gene conversion, in which oligonucleotide segments from multiple alleles are recombined into the expression site to generate a novel msp2 mosaic not represented elsewhere in the genome. Whether these segmental changes are sufficient to evade a broad antibody response is unknown. We addressed this question by identifying Msp2 variants that differed in primary structure within the immunogenic hypervariable region microdomains and tested whether they represented true antigenic variants. The minimal primary structural difference between variants was a single amino acid resulting from a codon insertion, and overall, the amino acid identity among paired microdomains ranged from 18 to 92%. Collectively, 89% of the expressed structural variants were also antigenic variants across all biological replicates, independent of a specific host major histocompatibility complex haplotype. Biological relevance is supported by the following: (i) all structural variants were expressed during infection of a natural host, (ii) the structural variation observed in the microdomains corresponded to the mean length of variants generated by segmental gene conversion, and (iii) antigenic variants were identified using a broad antibody response that developed during infection of a natural host. The findings demonstrate that segmental gene conversion efficiently generates Msp2 antigenic variants.
Collapse
|
26
|
Ducken DR, Brown WC, Alperin DC, Brayton KA, Reif KE, Turse JE, Palmer GH, Noh SM. Subdominant Outer Membrane Antigens in Anaplasma marginale: Conservation, Antigenicity, and Protective Capacity Using Recombinant Protein. PLoS One 2015; 10:e0129309. [PMID: 26079491 PMCID: PMC4469585 DOI: 10.1371/journal.pone.0129309] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2014] [Accepted: 05/08/2015] [Indexed: 12/21/2022] Open
Abstract
Anaplasma marginale is a tick-borne rickettsial pathogen of cattle with a worldwide distribution. Currently a safe and efficacious vaccine is unavailable. Outer membrane protein (OMP) extracts or a defined surface protein complex reproducibly induce protective immunity. However, there are several knowledge gaps limiting progress in vaccine development. First, are these OMPs conserved among the diversity of A. marginale strains circulating in endemic regions? Second, are the most highly conserved outer membrane proteins in the immunogens recognized by immunized and protected animals? Lastly, can this subset of OMPs recognized by antibody from protected vaccinates and conserved among strains recapitulate the protection of outer membrane vaccines? To address the first goal, genes encoding OMPs AM202, AM368, AM854, AM936, AM1041, and AM1096, major subdominant components of the outer membrane, were cloned and sequenced from geographically diverse strains and isolates. AM202, AM936, AM854, and AM1096 share 99.9 to 100% amino acid identity. AM1041 has 97.1 to 100% and AM368 has 98.3 to 99.9% amino acid identity. While all four of the most highly conserved OMPs were recognized by IgG from animals immunized with outer membranes, linked surface protein complexes, or unlinked surface protein complexes and shown to be protected from challenge, the highest titers and consistent recognition among vaccinates were to AM854 and AM936. Consequently, animals were immunized with recombinant AM854 and AM936 and challenged. Recombinant vaccinates and purified outer membrane vaccinates had similar IgG and IgG2 responses to both proteins. However, the recombinant vaccinates developed higher bacteremia after challenge as compared to adjuvant-only controls and outer membrane vaccinates. These results provide the first evidence that vaccination with specific antigens may exacerbate disease. Progressing from the protective capacity of outer membrane formulations to recombinant vaccines requires testing of additional antigens, optimization of the vaccine formulation and a better understanding of the protective immune response.
Collapse
Affiliation(s)
- Deirdre R. Ducken
- Animal Disease Research Unit, Agricultural Research Service, U. S. Department of Agriculture, Pullman, Washington, United States of America
- Program in Vector-Borne Diseases, Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, Washington, United States of America
| | - Wendy C. Brown
- Program in Vector-Borne Diseases, Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, Washington, United States of America
| | - Debra C. Alperin
- Program in Vector-Borne Diseases, Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, Washington, United States of America
| | - Kelly A. Brayton
- Program in Vector-Borne Diseases, Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, Washington, United States of America
- Paul G. Allen School for Global Animal Health, Washington State University, Pullman, Washington, United States of America
| | - Kathryn E. Reif
- Program in Vector-Borne Diseases, Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, Washington, United States of America
| | - Joshua E. Turse
- Program in Vector-Borne Diseases, Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, Washington, United States of America
| | - Guy H. Palmer
- Paul G. Allen School for Global Animal Health, Washington State University, Pullman, Washington, United States of America
| | - Susan M. Noh
- Animal Disease Research Unit, Agricultural Research Service, U. S. Department of Agriculture, Pullman, Washington, United States of America
- Program in Vector-Borne Diseases, Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, Washington, United States of America
- Paul G. Allen School for Global Animal Health, Washington State University, Pullman, Washington, United States of America
- * E-mail:
| |
Collapse
|
27
|
Takeshima SN, Miyasaka T, Matsumoto Y, Xue G, Diaz VDLB, Rogberg-Muñoz A, Giovambattista G, Ortiz M, Oltra J, Kanemaki M, Onuma M, Aida Y. Assessment of biodiversity in Chilean cattle using the distribution of major histocompatibility complex class II BoLA-DRB3 allele. ACTA ACUST UNITED AC 2014; 85:35-44. [PMID: 25430590 DOI: 10.1111/tan.12481] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Revised: 10/14/2014] [Accepted: 10/28/2014] [Indexed: 11/30/2022]
Abstract
Bovine leukocyte antigens (BoLAs) are used extensively as markers for bovine disease and immunological traits. In this study, we estimated BoLA-DRB3 allele frequencies using 888 cattle from 10 groups, including seven cattle breeds and three crossbreeds: 99 Red Angus, 100 Black Angus, 81 Chilean Wagyu, 49 Hereford, 95 Hereford × Angus, 71 Hereford × Jersey, 20 Hereford × Overo Colorado, 113 Holstein, 136 Overo Colorado, and 124 Overo Negro cattle. Forty-six BoLA-DRB3 alleles were identified, and each group had between 12 and 29 different BoLA-DRB3 alleles. Overo Negro had the highest number of alleles (29); this breed is considered in Chile to be an 'Old type' European Holstein Friesian descendant. By contrast, we detected 21 alleles in Holstein cattle, which are considered to be a 'Present type' Holstein Friesian cattle. Chilean cattle groups and four Japanese breeds were compared by neighbor-joining trees and a principal component analysis (PCA). The phylogenetic tree showed that Red Angus and Black Angus cattle were in the same clade, crossbreeds were closely related to their parent breeds, and Holstein cattle from Chile were closely related to Holstein cattle in Japan. Overall, the tree provided a thorough description of breed history. It also showed that the Overo Negro breed was closely related to the Holstein breed, consistent with historical data indicating that Overo Negro is an 'Old type' Holstein Friesian cattle. This allelic information will be important for investigating the relationship between major histocompatibility complex (MHC) and disease.
Collapse
Affiliation(s)
- S-N Takeshima
- Viral Infectious Diseases Unit, RIKEN, Wako, Saitama, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Development of rheumatoid arthritis specific HLA-DRB1 genotyping microarray. BIOCHIP JOURNAL 2014. [DOI: 10.1007/s13206-014-8305-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
29
|
The great diversity of major histocompatibility complex class II genes in Philippine native cattle. Meta Gene 2014; 2:176-90. [PMID: 25606401 PMCID: PMC4287811 DOI: 10.1016/j.mgene.2013.12.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2013] [Revised: 11/28/2013] [Accepted: 12/04/2013] [Indexed: 11/21/2022] Open
Abstract
Bovine leukocyte antigens (BoLA) are extensively used as markers for bovine disease and immunological traits. However, none of the BoLA genes in Southeast Asian breeds have been characterized by polymerase chain reaction (PCR)-sequence-based typing (SBT). Therefore, we sequenced exon 2 of the BoLA class II DRB3 gene from 1120 individual cows belonging to the Holstein, Sahiwal, Simbrah, Jersey, Brahman, and Philippine native breeds using PCR-SBT. Several cross-breeds were also examined. BoLA-DRB3 PCR-SBT identified 78 previously reported alleles and five novel alleles. The number of BoLA-DRB3 alleles identified in each breed from the Philippines was higher (71 in Philippine native cattle, 58 in Brahman, 46 in Holstein × Sahiwal, and 57 in Philippine native × Brahman) than that identified in breeds from other countries (e.g., 23 alleles in Japanese Black and 35 in Bolivian Yacumeño cattle). A phylogenetic tree based on the DA distance calculated from the BoLA-DRB3 allele frequency showed that Philippine native cattle from different Philippine islands are closely related, and all of them are closely similar to Philippine Brahman cattle but not to native Japanese and Latin American breeds. Furthermore, the BoLA-DRB3 allele frequency in Philippine native cattle from Luzon Island, located in the Northern Philippines was different from that in cattle from Iloilo, Bohol, and Leyte Islands, which are located in the Southern Philippines. Therefore, we conclude that Philippine native cattle can be divided into two populations, North and South areas. Moreover, a neutrality test revealed that Philippine native cattle from Leyte showed significantly greater genetic diversity, which may be maintained by balancing selection. This study shows that Asian breeds have high levels of BoLA-DRB3 polymorphism. This finding, especially the identification of five novel BoLA-DRB3 alleles, will be helpful for future SBT studies of BoLA-DRB3 alleles in East Asian cattle.
Collapse
|
30
|
Goszczynski DE, Ripoli MV, Takeshima SN, Baltian L, Aida Y, Giovambattista G. Haplotype determination of the upstream regulatory region and the second exon of the BoLA-DRB3 gene in Holstein cattle. ACTA ACUST UNITED AC 2014; 83:180-3. [PMID: 24499032 DOI: 10.1111/tan.12293] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Revised: 11/27/2013] [Accepted: 12/17/2013] [Indexed: 11/27/2022]
Abstract
Polymorphisms of the BoLA-DRB3 gene are located primarily in the second exon [antigen binding site (ABS)] and, to a lesser extent, in the upstream regulatory region (URR). It can be hypothesised that exon 2 and the URR are under different types of natural selection. The aim of this work was to determine the URR-exon 2 haplotypes; 34 Holstein samples were genotyped by direct sequencing. A total of 7 URR alleles and 23 exon 2 alleles were detected, and 3 of the URR alleles were novel. Our results may suggest that no relationship exists between the URR and exon 2 of the BoLA-DRB3 gene (linkage disequilibrium P value > 0.05), most likely due to recombination over time. Our results also suggest that both regions of class II genes may be included in the development of new genotyping methods based on next-generation DNA sequencing technologies.
Collapse
Affiliation(s)
- D E Goszczynski
- Instituto de Genética Veterinaria (IGEVET), CCT La Plata - CONICET, Facultad de Ciencias Veterinarias, Universidad Nacional de La Plata, La Plata, Argentina
| | | | | | | | | | | |
Collapse
|
31
|
Giovambattista G, Takeshima SN, Ripoli MV, Matsumoto Y, Franco LAA, Saito H, Onuma M, Aida Y. Characterization of bovine MHC DRB3 diversity in Latin American Creole cattle breeds. Gene 2013; 519:150-8. [DOI: 10.1016/j.gene.2013.01.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2012] [Revised: 12/30/2012] [Accepted: 01/04/2013] [Indexed: 01/23/2023]
|
32
|
Miyasaka T, Takeshima SN, Jimba M, Matsumoto Y, Kobayashi N, Matsuhashi T, Sentsui H, Aida Y. Identification of bovine leukocyte antigen class II haplotypes associated with variations in bovine leukemia virus proviral load in Japanese Black cattle. ACTA ACUST UNITED AC 2012; 81:72-82. [DOI: 10.1111/tan.12041] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2012] [Revised: 09/29/2012] [Accepted: 11/09/2012] [Indexed: 11/30/2022]
Affiliation(s)
| | | | | | - Y. Matsumoto
- Viral Infectious Diseases Unit; RIKEN; Wako; Saitama; Japan
| | - N. Kobayashi
- Gifu Prefectural Livestock Research Institute; Gifu; Japan
| | - T. Matsuhashi
- Gifu Prefectural Livestock Research Institute; Gifu; Japan
| | - H. Sentsui
- School of Veterinary Medicine; Nihon University; Fujisawa; Kanagawa; Japan
| | | |
Collapse
|
33
|
Jimba M, Takeshima SN, Murakami H, Kohara J, Kobayashi N, Matsuhashi T, Ohmori T, Nunoya T, Aida Y. BLV-CoCoMo-qPCR: a useful tool for evaluating bovine leukemia virus infection status. BMC Vet Res 2012; 8:167. [PMID: 22995575 PMCID: PMC3489618 DOI: 10.1186/1746-6148-8-167] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2012] [Accepted: 09/13/2012] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Bovine leukemia virus (BLV) is associated with enzootic bovine leukosis, which is the most common neoplastic disease of cattle. BLV infects cattle worldwide, imposing a severe economic impact on the dairy cattle industry. Recently, we developed a new quantitative real-time polymerase chain reaction (PCR) method using Coordination of Common Motifs (CoCoMo) primers to measure the proviral load of known and novel BLV variants in BLV-infected animals. Indeed, the assay was highly effective in detecting BLV in cattle from a range of international locations. This assay enabled us to demonstrate that proviral load correlates not only with BLV infection capacity as assessed by syncytium formation, but also with BLV disease progression. In this study, we compared the sensitivity of our BLV-CoCoMo-qPCR method for detecting BLV proviruses with the sensitivities of two real-time PCR systems, and also determined the differences of proviral load with serotests. RESULTS BLV-CoCoMo-qPCR was found to be highly sensitive when compared with the real-time PCR-based TaqMan MGB assay developed by Lew et al. and the commercial TaKaRa cycleave PCR system. The BLV copy number determined by BLV-CoCoMo-qPCR was only partially correlated with the positive rate for anti-BLV antibody as determined by the enzyme-linked immunosorbent assay, passive hemagglutination reaction, or agar gel immunodiffusion. This result indicates that, although serotests are widely used for the diagnosis of BLV infection, it is difficult to detect BLV infection with confidence by using serological tests alone. Two cattle were experimentally infected with BLV. The kinetics of the provirus did not precisely correlate with the change in anti-BLV antibody production. Moreover, both reactions were different in cattle that carried different bovine leukocyte antigen (BoLA)-DRB3 genotypes. CONCLUSIONS Our results suggest that the quantitative measurement of proviral load by BLV-CoCoMo-qPCR is useful tool for evaluating the progression of BLV-induced disease. BLV-CoCoMo-qPCR allows us to monitor the spread of BLV infection in different viewpoint compared with classical serotest.
Collapse
Affiliation(s)
- Mayuko Jimba
- Viral Infectious Diseases Unit, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Baltian LR, Ripoli MV, Sanfilippo S, Takeshima SN, Aida Y, Giovambattista G. Association between BoLA-DRB3 and somatic cell count in Holstein cattle from Argentina. Mol Biol Rep 2012; 39:7215-20. [DOI: 10.1007/s11033-012-1526-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2011] [Accepted: 01/24/2012] [Indexed: 11/27/2022]
|