1
|
Asadollahi K, Rajput S, Jameson GNL, Scott DJ, Gooley PR. Encounter Complexes Between the N-terminal of Neurotensin with the Extracellular Loop 2 of the Neurotensin Receptor 1 Steer Neurotensin to the Orthosteric Binding Pocket. J Mol Biol 2023; 435:168244. [PMID: 37625583 DOI: 10.1016/j.jmb.2023.168244] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 08/08/2023] [Accepted: 08/17/2023] [Indexed: 08/27/2023]
Abstract
Neurotensin (NT) is a linear disordered peptide that activates two different class A GPCRs, neurotensin receptor 1 (NTS1) and NTS2. Resolved structures of the complex of the C-terminal fragment of NT, NT8-13, with NTS1 shows the peptide takes a well-defined structure in the bound state. However, the mechanisms underlying NT recognition of NTS1, and the conformational transition of NT upon binding NTS1 is an open question that if answered may aid discovery of highly selective drugs and reveal potential secondary binding sites on the surface of the receptor. Herein we investigated the interactions guiding NT to the orthosteric binding pocket of NTS1 by combining NMR experiments with kinetic analysis of the binding pathway using stopped-flow fluorescence and mutagenesis on both NT and NTS1. We show the presence of transient structures in the middle part of NT that kinetically regulate the binding of NT to NTS1. Moreover, our results indicate that the binding pathway of NT onto NTS1 is mediated via electrostatic interactions between the N-terminal region of NT with the extracellular loop 2 of NTS1. These interactions induce backbone conformational changes in neurotensin similar to the bound-state neurotensin, suggesting that the N-terminal region of NT and these interactions should be considered for development of selective drugs against NTS1.
Collapse
Affiliation(s)
- Kazem Asadollahi
- Department of Biochemistry and Pharmacology, University of Melbourne, Parkville, VIC 3010, Australia; Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC 3010, Australia; The Florey, University of Melbourne, Parkville, VIC 3010, Australia. https://twitter.com/@KazemAsadollahi
| | - Sunnia Rajput
- Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC 3010, Australia
| | - Guy N L Jameson
- Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC 3010, Australia; School of Chemistry, University of Melbourne, Parkville, VIC 3010, Australia
| | - Daniel J Scott
- Department of Biochemistry and Pharmacology, University of Melbourne, Parkville, VIC 3010, Australia; The Florey, University of Melbourne, Parkville, VIC 3010, Australia
| | - Paul R Gooley
- Department of Biochemistry and Pharmacology, University of Melbourne, Parkville, VIC 3010, Australia; Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC 3010, Australia.
| |
Collapse
|
2
|
Asadollahi K, Scott DJ, Gooley PR. NMR applications to GPCR recognition by peptide ligands. Curr Opin Pharmacol 2023; 70:102366. [PMID: 37003111 DOI: 10.1016/j.coph.2023.102366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 01/30/2023] [Accepted: 02/11/2023] [Indexed: 04/03/2023]
Abstract
Peptides form the largest group of ligands that modulate the activity of more than 120 different GPCRs. Among which linear disordered peptide ligands usually undergo significant conformational changes upon binding that is essential for receptor recognition and activation. Conformational selection and induced fit are the extreme mechanisms of coupled folding and binding that can be distinguished by analysis of binding pathways by methods that include NMR. However, the large size of GPCRs in membrane-mimetic environments limits NMR applications. In this review, we highlight advances in the field that can be adopted to address coupled folding and binding of peptide ligands to their cognate receptors.
Collapse
Affiliation(s)
- Kazem Asadollahi
- Department of Biochemistry and Pharmacology, University of Melbourne, Parkville, Victoria, 3010, Australia; Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria, 3010, Australia; The Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, 3010, Australia
| | - Daniel J Scott
- Department of Biochemistry and Pharmacology, University of Melbourne, Parkville, Victoria, 3010, Australia; The Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, 3010, Australia
| | - Paul R Gooley
- Department of Biochemistry and Pharmacology, University of Melbourne, Parkville, Victoria, 3010, Australia; Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria, 3010, Australia.
| |
Collapse
|
3
|
Apostol CR, Bernard K, Tanguturi P, Molnar G, Bartlett MJ, Szabò L, Liu C, Ortiz JB, Saber M, Giordano KR, Green TRF, Melvin J, Morrison HW, Madhavan L, Rowe RK, Streicher JM, Heien ML, Falk T, Polt R. Design and Synthesis of Brain Penetrant Glycopeptide Analogues of PACAP With Neuroprotective Potential for Traumatic Brain Injury and Parkinsonism. FRONTIERS IN DRUG DISCOVERY 2022; 1. [PMID: 35237767 PMCID: PMC8887546 DOI: 10.3389/fddsv.2021.818003] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
There is an unmet clinical need for curative therapies to treat neurodegenerative disorders. Most mainstay treatments currently on the market only alleviate specific symptoms and do not reverse disease progression. The Pituitary adenylate cyclase-activating polypeptide (PACAP), an endogenous neuropeptide hormone, has been extensively studied as a potential regenerative therapeutic. PACAP is widely distributed in the central nervous system (CNS) and exerts its neuroprotective and neurotrophic effects via the related Class B GPCRs PAC1, VPAC1, and VPAC2, at which the hormone shows roughly equal activity. Vasoactive intestinal peptide (VIP) also activates these receptors, and this close analogue of PACAP has also shown to promote neuronal survival in various animal models of acute and progressive neurodegenerative diseases. However, PACAP's poor pharmacokinetic profile (non-linear PK/PD), and more importantly its limited blood-brain barrier (BBB) permeability has hampered development of this peptide as a therapeutic. We have demonstrated that glycosylation of PACAP and related peptides promotes penetration of the BBB and improves PK properties while retaining efficacy and potency in the low nanomolar range at its target receptors. Furthermore, judicious structure-activity relationship (SAR) studies revealed key motifs that can be modulated to afford compounds with diverse selectivity profiles. Most importantly, we have demonstrated that select PACAP glycopeptide analogues (2LS80Mel and 2LS98Lac) exert potent neuroprotective effects and anti-inflammatory activity in animal models of traumatic brain injury and in a mild-toxin lesion model of Parkinson's disease, highlighting glycosylation as a viable strategy for converting endogenous peptides into robust and efficacious drug candidates.
Collapse
Affiliation(s)
- Christopher R Apostol
- Department of Chemistry and Biochemistry, BIO5, The University of Arizona, Tucson, AZ, United States
| | - Kelsey Bernard
- Graduate Interdisciplinary Program in Physiological Sciences, The University of Arizona, Tucson, AZ, United States
| | | | - Gabriella Molnar
- Department of Pharmacology, College of Medicine, The University of Arizona, Tucson, AZ, United States
| | - Mitchell J Bartlett
- Department of Neurology, College of Medicine, The University of Arizona, Tucson, AZ, United States
| | - Lajos Szabò
- Department of Chemistry and Biochemistry, BIO5, The University of Arizona, Tucson, AZ, United States
| | - Chenxi Liu
- Department of Chemistry and Biochemistry, BIO5, The University of Arizona, Tucson, AZ, United States
| | - J Bryce Ortiz
- Barrow Neurological Institute at Phoenix Children's Hospital, The University of Arizona College of Medicine-Phoenix, Phoenix, AZ, United States.,Department of Child Health, The University of Arizona College of Medicine-Phoenix, Phoenix, AZ, United States.,Phoenix Veteran Affairs Health Care System, Phoenix, AZ, United States
| | - Maha Saber
- Barrow Neurological Institute at Phoenix Children's Hospital, The University of Arizona College of Medicine-Phoenix, Phoenix, AZ, United States.,Department of Child Health, The University of Arizona College of Medicine-Phoenix, Phoenix, AZ, United States
| | - Katherine R Giordano
- Barrow Neurological Institute at Phoenix Children's Hospital, The University of Arizona College of Medicine-Phoenix, Phoenix, AZ, United States.,Department of Child Health, The University of Arizona College of Medicine-Phoenix, Phoenix, AZ, United States.,Phoenix Veteran Affairs Health Care System, Phoenix, AZ, United States
| | - Tabitha R F Green
- Department of Child Health, The University of Arizona College of Medicine-Phoenix, Phoenix, AZ, United States
| | - James Melvin
- Department of Child Health, The University of Arizona College of Medicine-Phoenix, Phoenix, AZ, United States.,Department of Biological Sciences, University of Bath, Bath, United Kingdom
| | - Helena W Morrison
- College of Nursing, University of Arizona, Tucson, AZ, United States
| | - Lalitha Madhavan
- Graduate Interdisciplinary Program in Physiological Sciences, The University of Arizona, Tucson, AZ, United States.,Department of Neurology, College of Medicine, The University of Arizona, Tucson, AZ, United States
| | - Rachel K Rowe
- Barrow Neurological Institute at Phoenix Children's Hospital, The University of Arizona College of Medicine-Phoenix, Phoenix, AZ, United States.,Department of Child Health, The University of Arizona College of Medicine-Phoenix, Phoenix, AZ, United States.,Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, United States
| | - John M Streicher
- Department of Pharmacology, College of Medicine, The University of Arizona, Tucson, AZ, United States
| | - Michael L Heien
- Department of Chemistry and Biochemistry, BIO5, The University of Arizona, Tucson, AZ, United States
| | - Torsten Falk
- Graduate Interdisciplinary Program in Physiological Sciences, The University of Arizona, Tucson, AZ, United States.,Department of Pharmacology, College of Medicine, The University of Arizona, Tucson, AZ, United States.,Department of Neurology, College of Medicine, The University of Arizona, Tucson, AZ, United States
| | - Robin Polt
- Department of Chemistry and Biochemistry, BIO5, The University of Arizona, Tucson, AZ, United States
| |
Collapse
|
4
|
Pituitary Adenylate Cyclase-Activating Polypeptide (PACAP) in Physiological and Pathological Processes within the Gastrointestinal Tract: A Review. Int J Mol Sci 2021; 22:ijms22168682. [PMID: 34445388 PMCID: PMC8395522 DOI: 10.3390/ijms22168682] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 08/08/2021] [Accepted: 08/09/2021] [Indexed: 02/07/2023] Open
Abstract
Pituitary adenylate cyclase-activating polypeptide (PACAP) is a neuropeptide widely distributed in the central nervous system (CNS) and many peripheral organs, such as the digestive tract, endocrine, reproductive and respiratory systems, where it plays different regulatory functions and exerts a cytoprotective effect. The multifarious physiological effects of PACAP are mediated through binding to different G protein-coupled receptors, including PAC1 (PAC1-R), VPAC1 (VPAC1-R) and VPAC2 (VPAC2-R) receptors. In the gastrointestinal (GI) tract, PACAP plays an important regulatory function. PACAP stimulates the secretion of digestive juices and hormone release, regulates smooth muscle contraction, local blood flow, cell migration and proliferation. Additionally, there are many reports confirming the involvement of PACAP in pathological processes within the GI tract, including inflammatory states, neuronal injury, diabetes, intoxication and neoplastic processes. The purpose of this review is to summarize the distribution and pleiotropic action of PACAP in the control of GI tract function and its cytoprotective effect in the course of GI tract disorders.
Collapse
|
5
|
Poujol de Molliens M, Létourneau M, Devost D, Hébert TE, Fournier A, Chatenet D. New insights about the peculiar role of the 28–38 C-terminal segment and some selected residues in PACAP for signaling and neuroprotection. Biochem Pharmacol 2018; 154:193-202. [DOI: 10.1016/j.bcp.2018.04.024] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Accepted: 04/24/2018] [Indexed: 12/20/2022]
|
6
|
Development of PACAP38 analogue with improved stability: physicochemical and in vitro/in vivo pharmacological characterization. J Mol Neurosci 2010; 43:85-93. [PMID: 20585898 DOI: 10.1007/s12031-010-9415-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2010] [Accepted: 06/15/2010] [Indexed: 10/19/2022]
Abstract
Pituitary adenylate cyclase activating polypeptide 38 (PACAP38), one of the major peptide transmitters, has emerged as a promising drug candidate for the treatment of type 2 diabetes. In the present study, on the basis of previous structure-activity relationships, a new PACAP38 derivative, [R(15, 20, 21), L(17)]-PACAP38, was chemically synthesized with the aim of enhancing the therapeutic potential of PACAP38. The solution structure of the new derivative was almost identical to that of PACAP38 as evaluated by circular dichroic spectroscopy, and both PACAP38 and the new derivative stimulated adenylate cyclase in rat insulinoma RIN-m5F cells with EC(50) values of 4.6 and 5.5 nM, respectively. Stability studies revealed the gradual degradation of PACAPs in rat serum, although there appeared to be a 42% reduction in degradation kinetics for [R(15, 20, 21), L(17)]-PACAP38 compared with that of PACAP38. The novel derivative also exhibited more potent protective effects against streptozotocin (STZ)-induced apoptotic death of RIN-m5F cells, possibly due to the enhanced stability. The n0-STZ model, in which neonatal rats were injected with STZ at birth, developed a typical diabetic condition; however, chronic administration of [R(15, 20, 21), L(17)]-PACAP38 resulted in protection of pancreatic islets, followed by the improvement of glycemic control. Thus, the chemical modification of PACAP38 led to the development of a new promising derivative with enhanced stability and biological activity, and early administration of [R(15, 20, 21), L(17)]-PACAP38 might be of help for preventing the development of diabetes in type 2 diabetic model rats.
Collapse
|
7
|
Vaudry D, Falluel-Morel A, Bourgault S, Basille M, Burel D, Wurtz O, Fournier A, Chow BKC, Hashimoto H, Galas L, Vaudry H. Pituitary adenylate cyclase-activating polypeptide and its receptors: 20 years after the discovery. Pharmacol Rev 2009; 61:283-357. [PMID: 19805477 DOI: 10.1124/pr.109.001370] [Citation(s) in RCA: 848] [Impact Index Per Article: 53.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2025] Open
Abstract
Pituitary adenylate cyclase-activating polypeptide (PACAP) is a 38-amino acid C-terminally alpha-amidated peptide that was first isolated 20 years ago from an ovine hypothalamic extract on the basis of its ability to stimulate cAMP formation in anterior pituitary cells (Miyata et al., 1989. PACAP belongs to the vasoactive intestinal polypeptide (VIP)-secretin-growth hormone-releasing hormone-glucagon superfamily. The sequence of PACAP has been remarkably well conserved during evolution from protochordates to mammals, suggesting that PACAP is involved in the regulation of important biological functions. PACAP is widely distributed in the brain and peripheral organs, notably in the endocrine pancreas, gonads, respiratory and urogenital tracts. Characterization of the PACAP precursor has revealed the existence of a PACAP-related peptide, the activity of which remains unknown. Two types of PACAP binding sites have been characterized: type I binding sites exhibit a high affinity for PACAP and a much lower affinity for VIP, whereas type II binding sites have similar affinity for PACAP and VIP. Molecular cloning of PACAP receptors has shown the existence of three distinct receptor subtypes: the PACAP-specific PAC1-R, which is coupled to several transduction systems, and the PACAP/VIP-indifferent VPAC1-R and VPAC2-R, which are primarily coupled to adenylyl cyclase. PAC1-Rs are particularly abundant in the brain, the pituitary and the adrenal gland, whereas VPAC receptors are expressed mainly in lung, liver, and testis. The development of transgenic animal models and specific PACAP receptor ligands has strongly contributed to deciphering the various actions of PACAP. Consistent with the wide distribution of PACAP and its receptors, the peptide has now been shown to exert a large array of pharmacological effects and biological functions. The present report reviews the current knowledge concerning the pleiotropic actions of PACAP and discusses its possible use for future therapeutic applications.
Collapse
Affiliation(s)
- David Vaudry
- Institut National de la Santé et de la Recherche Médicale U413, European Institute for Peptide Research (Institut Fédératif de Recherches Multidisciplinaires sur les Peptides 23), Mont-Saint-Aignan, France.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Corcho FJ, Mokoena P, Bisetty K, Perez JJ. Molecular dynamics (MD) simulations of VIP and PACAP27. Biopolymers 2009; 91:391-400. [DOI: 10.1002/bip.21147] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
9
|
Bourgault S, Vaudry D, Guilhaudis L, Raoult E, Couvineau A, Laburthe M, Ségalas-Milazzo I, Vaudry H, Fournier A. Biological and structural analysis of truncated analogs of PACAP27. J Mol Neurosci 2008; 36:260-9. [PMID: 18473187 DOI: 10.1007/s12031-008-9081-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2008] [Accepted: 03/28/2008] [Indexed: 02/08/2023]
Abstract
The affinity toward the PAC1 receptor, the biological activity, and the alpha-helical content of several truncated PACAP27 analogs were measured. We first evaluated the pharmacological and structural parameters of C-terminal shortened PACAP fragments, from PACAP(1-23) to PACAP(1-19). All carboxy-truncated derivatives demonstrated circular dichroism spectra typical of a helical conformation. On the other hand, progressive shortening of the C-terminal domain gradually decreases the potency of PACAP to bind and to activate the PAC1 receptor. This decrease in biological activity was mainly attributed to the removal of residues that seem to interact directly with the receptor rather than to a destabilization of the C-terminal helical conformation. We also investigated the pharmacological and conformational characteristics of several hybrid PACAP27 derivatives containing an aliphatic molecular spacer connecting the N-terminal domain to the C-terminal region. However, this strategy revealed that none of these discontinuous analogs showed any significant affinity toward the PAC1 receptor, even if some of them exhibited circular dichroism spectra corresponding to an alpha-helical structure. This study suggests that several domains of PACAP27 are involved in the interaction with the PAC1 receptor and that the presence of the helical conformation is not a sufficient feature for receptor activation.
Collapse
Affiliation(s)
- Steve Bourgault
- INRS - Institut Armand-Frappier, Institut National de la Recherche Scientifique, 531 boul. des Prairies, Laval, QC, Canada, H7V 1B7
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Sze KH, Zhou H, Yang Y, He M, Jiang Y, Wong AOL. Pituitary adenylate cyclase-activating polypeptide (PACAP) as a growth hormone (GH)-releasing factor in grass carp: II. Solution structure of a brain-specific PACAP by nuclear magnetic resonance spectroscopy and functional studies on GH release and gene expression. Endocrinology 2007; 148:5042-59. [PMID: 17615143 DOI: 10.1210/en.2007-0576] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Pituitary adenylate cyclase-activating polypeptide (PACAP) has been proposed to be the ancestral GHRH. Recently, using grass carp as a model for modern-day bony fish, we demonstrated that PACAP nerve fibers are present in close proximity to carp somatotrophs, and mammalian PACAPs can induce GH secretion in carp pituitary cells. To further examine the role of PACAP as a GH-releasing factor in fish, the structural identity of grass carp PACAP was established by molecular cloning. The newly cloned PACAP was found to be a single-copy gene and expressed in the brain but not other tissues. The mature peptides of PACAP, namely PACAP(27) and PACAP(38), were synthesized. As revealed by nuclear magnetic resonance spectroscopies, carp PACAP(38) is composed of a flexible N terminal from His(1) to Ile(5), an extended central helix from Phe(6) to Val(26), and a short helical tail in the C terminal from Arg(29) to Arg(34). The C-terminal helix is located after a hinge region at Leu(27) to Gly(28) and is absent in the solution structures of PACAP(27). The two forms of PACAPs were effective in elevating GH release and GH transcript expression in grass carp pituitary cells. These stimulatory effects occurred with parallel rises in cAMP and Ca(2+) entry via voltage-sensitive Ca(2+) channels in carp somatotrophs. The present study represents the first report for solution structures of nonmammalian PACAPs and provides evidence that a brain-specific isoform of PACAP in fish can stimulate GH synthesis and release at the pituitary level, presumably by activating the appropriate postreceptor signaling mechanisms.
Collapse
Affiliation(s)
- Kong Hung Sze
- Department of Zoology, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, P.R. China
| | | | | | | | | | | |
Collapse
|
11
|
Tyndall JDA, Pfeiffer B, Abbenante G, Fairlie DP. Over One Hundred Peptide-Activated G Protein-Coupled Receptors Recognize Ligands with Turn Structure. Chem Rev 2005; 105:793-826. [PMID: 15755077 DOI: 10.1021/cr040689g] [Citation(s) in RCA: 176] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Joel D A Tyndall
- Center for Drug Design and Development, Institute for Molecular Bioscience, University of Queensland, Brisbane, Qld 4072, Australia
| | | | | | | |
Collapse
|
12
|
Abstract
A 29-amino acid polypeptide hormone, glucagon has been one of the most prolific models in the study of hormone action. The key biologic function of glucagon is to counterbalance the actions of insulin and maintain a normal level of serum glucose. Diabetes mellitus can thus be considered a bihormonal disorder with an excess of glucagon contributing to the hyperglycemic state. The effects of glucagon are mediated by the glucagon receptor, which is itself a prototypical member of a distinct category called family B receptors within the G protein-coupled superfamily of seven-helical transmembrane receptors (GPCRs). At the structural level, the peptide ligands of family B receptors are highly homologous, in particular in the N-terminal region of the molecules. The mechanism by which highly homologous peptide ligands selectively recognize their receptors involves distinct molecular interactions that are gradually being elucidated. This review focuses on structural determinants of the glucagon receptor that are important for its activity with respect to interaction with its ligand and G proteins. Information about the glucagon receptor is presented within the context of what is known about other members of the family B GPCRs.
Collapse
Affiliation(s)
- Cecilia G Unson
- The Rockefeller University, 1230 York Avenue, Box 294, New York, NY 10021, USA.
| |
Collapse
|
13
|
Yung SL, Dela Cruz F, Hamren S, Zhu J, Tsutsumi M, Bloom JW, Caudle M, Roczniak S, Todd T, Lemoine L, MacDougall M, Shanafelt AB, Pan CQ. Generation of highly selective VPAC2 receptor agonists by high throughput mutagenesis of vasoactive intestinal peptide and pituitary adenylate cyclase-activating peptide. J Biol Chem 2003; 278:10273-81. [PMID: 12525492 DOI: 10.1074/jbc.m211945200] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Pituitary adenylate cyclase-activating peptide (PACAP) has a specific receptor PAC1 and shares two receptors VPAC1 and VPAC2 with vasoactive intestinal peptide (VIP). VPAC2 activation enhances glucose-induced insulin release while VPAC1 activation elevates glucose output. To generate a large pool of VPAC2 selective agonists for the treatment of type 2 diabetes, structure-activity relationship studies were performed on PACAP, VIP, and a VPAC2 selective VIP analog. Chemical modifications on this analog that prevent recombinant expression were sequentially removed to show that a recombinant peptide would retain VPAC2 selectivity. An efficient recombinant expression system was then developed to produce and screen hundreds of mutant peptides. The 11 mutations found on the VIP analog were systematically replaced with VIP or PACAP sequences. Three of these mutations, V19A, L27K, and N28K, were sufficient to provide most of the VPAC2 selectivity. C-terminal extension with the KRY sequence from PACAP38 led to potent VPAC2 agonists with improved selectivity (100-1000-fold). Saturation mutagenesis at positions 19, 27, 29, and 30 of VIP and charge-scanning mutagenesis of PACAP27 generated additional VPAC2 selective agonists. We have generated the first set of recombinant VPAC2 selective agonists described, which exhibit activity profiles that suggest therapeutic utility in the treatment of diabetes.
Collapse
Affiliation(s)
- Stephanie L Yung
- Department of Molecular Technologies and Analytics and Formulation, Biotechnology, Bayer Corp., Berkeley, California 94701, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
González-Muñiz R, Martín-Martínez M, Granata C, de Oliveira E, Santiveri CM, González C, Frechilla D, Herranz R, García-López MT, Del Río J, Angeles Jiménez M, Andreu D. Conformationally restricted PACAP27 analogues incorporating type II/II' IBTM beta-turn mimetics. Synthesis, NMR structure determination, and binding affinity. Bioorg Med Chem 2001; 9:3173-83. [PMID: 11711293 DOI: 10.1016/s0968-0896(01)00190-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
To probe the importance of a proposed beta-turn within residues S9-R12 of PACAP for recognition by VIP/PACAP receptors, compounds 1 and 2, two conformationally restricted analogues of PACAP27 incorporating respectively (S)- or (R)-IBTM as type II or II' beta-turn dipeptide mimetic at the Y10-S11 position, were synthesized. According to 1H NMR conformational analyses in aqueous solution and 30% TFE, both PACAP27 and the [S-IBTM(10,11)]PACAP27 analogue 1 adopt similar ordered structures. PACAP27 shows an N-terminal disordered region (residues H1-F6) and an alpha-helical conformation within segment T7-L27. For residues S9-R12, our data seem more compatible with a segment of the alpha-helix than with the beta-turn previously proposed for this fragment. In compound 1 the alpha-helix, also spanning T7-L27 residues, appears slightly distorted at the N-terminus relative to the native peptide. Although this distortion could lead to the marked decrease in binding affinity of this compound at the VIP/PACAP receptors, the lack of the Y10 side chain in analogues 1 and 2 could also significantly affect the binding of these compounds.
Collapse
Affiliation(s)
- R González-Muñiz
- Instituto de Química Médica (CSIC), Juan de la Cierva 3, 28006 Madrid, Spain.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Daniel PB, Kieffer TJ, Leech CA, Habener JF. Novel alternatively spliced exon in the extracellular ligand-binding domain of the pituitary adenylate cyclase-activating polypeptide (PACAP) type 1 receptor (PAC1R) selectively increases ligand affinity and alters signal transduction coupling during spermatogenesis. J Biol Chem 2001; 276:12938-44. [PMID: 11278585 DOI: 10.1074/jbc.m009941200] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The expression of the paracrine signaling hormone pituitary adenylate cyclase-activating polypeptide (PACAP) is regulated in a cyclical fashion during the 12-day spermatogenic cycle of the adult rat testis. The precise functions of PACAP in the development of germ cells are uncertain, but cycle- and stage-specific expression may augment cAMP-regulated gene expression in germ cells and associated Sertoli cells. Here we report the existence of a heretofore unrecognized exon in the extracellular domain of the PACAP type 1 receptor (PAC1R) that is alternatively spliced during the spermatogenic cycle in the rat testis. This splice variant encodes a full-length receptor with the insertion of an additional 72 base pairs encoding 24 amino acids (exon 3a) between coding exons 3 and 4. The PAC1R(3a) mRNA is preferentially detected in seminiferous tubules and is expressed at the highest levels in round spermatids and Sertoli cells. Analyses of ligand binding and signaling functions in stably transfected HEK293 cells expressing the two receptor isoforms reveals a 6-fold increase in the affinity of the PAC1R(3a) to bind PACAP-38, and alterations in its coupling to both cAMP and inositol phosphate signaling pathways relative to the wild type PAC1R. These findings suggest that the extracellular region between coding exons 3 and 6 of PAC1R may play an important role in the regulation of the relative ligand affinities and the relative coupling to G(s) (cAMP) and G(q) (inositol phosphates) signal transduction pathways during spermatogenesis.
Collapse
Affiliation(s)
- P B Daniel
- Laboratory of Molecular Endocrinology, Massachusetts General Hospital, Howard Hughes Medical Institute, Harvard Medical School, Boston, Massachusetts 02114, USA
| | | | | | | |
Collapse
|
16
|
Wray V, Nokihara K, Naruse S. Solution structure comparison of the VIP/PACAP family of peptides by NMR spectroscopy. Ann N Y Acad Sci 1998; 865:37-44. [PMID: 9927994 DOI: 10.1111/j.1749-6632.1998.tb11160.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The current status of structural studies of the VIP/PACAP family of peptides in solution by NMR spectroscopy is briefly reviewed. The structural elucidation methodology is described with examples from recent work and finally general structural conclusions are drawn from data from the now extensive literature.
Collapse
Affiliation(s)
- V Wray
- Gesellschaft für Biotechnologische Forschung, Braunschweig, Germany.
| | | | | |
Collapse
|
17
|
Wulff B, Møller Knudsen S, Adelhorst K, Fahrenkrug J. The C-terminal part of VIP is important for receptor binding and activation, as evidenced by chimeric constructs of VIP/secretin. FEBS Lett 1997; 413:405-8. [PMID: 9303545 DOI: 10.1016/s0014-5793(97)00942-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The structural requirements of vasoactive intestinal polypeptide (VIP) for receptor binding and cAMP production were studied in a cell line stable transfected with the cDNA for rat VIP receptor 1 (rVIPR 1). Using a number of chimeric constructs of VIP and the homologue peptide secretin, it was found that the N-terminal half of VIP (1-11) can be exchanged with the corresponding sequences in secretin with only modest influence on binding and activation, whereas the opposite chimeras with N-terminal VIP and C-terminal secretin were unable to bind to the VIP receptor. The data suggest that the C-terminal region of VIP is important for receptor binding and activation.
Collapse
Affiliation(s)
- B Wulff
- Department of Molecular Pharmacology, Novo-Nordisk Park, Måløv, Denmark
| | | | | | | |
Collapse
|
18
|
Gourlet P, Vandermeers A, Vandermeers-Piret MC, Rathé J, De Neef P, Robberecht P. C-terminally shortened pituitary adenylate cyclase-activating peptides (PACAP) discriminate PACAP I, PACAP II-VIP1 and PACAP II-VIP2 recombinant receptors. REGULATORY PEPTIDES 1996; 62:125-30. [PMID: 8795075 DOI: 10.1016/0167-0115(96)00010-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Pituitary adenylate cyclase-activating polypeptide (PACAP) analogues were tested for their ability to occupy the recombinant selective PACAP receptors (PACAP type I receptors) and the non-selective PACAP-vasoactive intestinal polypeptide (VIP) receptors (PACAP type II, VIP1 and PACAP type II, VIP2 receptors), stably transfected and expressed in Chinese hamster ovary cells. Their capacity to stimulate the adenylate cyclase activity was also measured. The synthetic analogues tested were peptides shortened at the carboxyl terminus by the removal of 1-4 amino acids (PACAP-26 to PACAP-23). All the peptides discriminated the 3 receptor subtypes and had the highest affinity for the VIP1 receptors, and the lowest affinity for the VIP2 receptors; PACAP-25 having the highest ability to discriminate the VIP1 and VIP2 receptors. All the peptides tested were full agonists on the PACAP I and VIP1 receptors; PACAP-25 and -26 were partial agonists on VIP2 receptors and may be appropriate tools to establish the receptor subtype involved in a given cellular response.
Collapse
Affiliation(s)
- P Gourlet
- Department of Biochemistry and Nutrition, School of Medicine, Université Libre de Bruxelles, Belgium
| | | | | | | | | | | |
Collapse
|
19
|
Ciccarelli E, Vilardaga JP, De Neef P, Di Paolo E, Waelbroeck M, Bollen A, Robberecht P. Properties of the VIP-PACAP type II receptor stably expressed in CHO cells. REGULATORY PEPTIDES 1994; 54:397-407. [PMID: 7716273 DOI: 10.1016/0167-0115(94)90537-1] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The VIP receptor cloned from rat lung (VIP1 receptor from the group of the PACAP-VIP type II receptors) was inserted into a mammalian expression vector and stably transfected into Chinese hamster ovary cells (CHO). Two clones were selected, expressing respectively a high (850 +/- 50 fmol/mg protein, for clone 3) and a low (100 +/- 30 fmol/mg protein for clone 16) number of receptors. Both clones had the same apparent Kd value of binding for VIP and related peptides. The receptor expressed had the same binding properties as the natural VIP receptor, judged from the relative potency of VIP and PACAP analogues and fragments. The EC50 value of adenylate cyclase activation were 3 to 10 fold lower in clone 3 than in 16. The values observed in clone 16 were closer to the binding Kd values. The differences between the two clones were explained by the existence of spare receptors in clone 3, since: (a) the relative efficacy of some fragments were lower in clone 16 than in clone 3; (b) pretreatment of the cells with VIP reduced the number of receptors in both clones and increased the EC50 value for VIP in clone 3 but decreased peptide efficacy in clone 16 without significant change of the EC50 value.
Collapse
Affiliation(s)
- E Ciccarelli
- Department of Biochemistry and Nutrition, Faculty of Medicine, Université Libre de Bruxelles, Belgium
| | | | | | | | | | | | | |
Collapse
|
20
|
Christophe J. Type I receptors for PACAP (a neuropeptide even more important than VIP?). BIOCHIMICA ET BIOPHYSICA ACTA 1993; 1154:183-99. [PMID: 8218337 DOI: 10.1016/0304-4157(93)90011-c] [Citation(s) in RCA: 147] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Among vertebrates, there is an extreme conservation in amino acid sequence for the neuropeptide PACAP-38 and its C-terminal shortened derivative PACAP-27. The PACAP gene is assigned to chromosome 18 in man and its organization has been characterized. PACAP-38 and its minor derivative PACAP-27 are widely distributed in the central nervous system. PACAP-38 is particularly abundant in hypothalamus. The mapping of the afferentation and efferentation of PACAP systems are progressively delineated, including a search for the colocalization with other neurotransmitters. In several peripheral organs positive neuronal perikarya and fibers are also seen. PACAP acts through two types of receptors: (1) the highly selective type I that displays a 500 to 2000 selectivity for PACAP-38 and PACAP-27 as compared to VIP; (2) type II is the so-called VIP receptor showing similar high affinity for PACAP-38, PACAP-27 and VIP. It is less selective, therefore, than previously thought. This is why this second receptor, qualifying as an unspecific VIP-PACAP receptor, is hardly considered here. Type I receptors can stimulate two enzymes: the adenylate cyclase and phospholipase C (whose activation leads to the inositol phosphate-cytosolic Ca2+ cascade). This dual coupling may have several distal consequences including on gene expression, cell growth and differentiation. Although a relatively comprehensive spectrum of pharmacological activities has already been established we still need to limit the physiological roles of PACAP as neurotransmitter and/or neuromodulator. Concerning the hypothalamo-pituitary axis, PACAP reduces food intake in mice and raises plasma arginine vasopressin in rat, probably through PACAP-ir neurons in paraventricular and supraoptic nuclei projecting to the neurohypophysis. PACAP originating in the hypothalamus may also be transported to the anterior pituitary through portal vessels. Data on the antehypophysis suggest a role on i.a. reproduction and growth. PACAP stimulates adenylate cyclase and increases [Ca2+] in gonadotropes, somatotropes, and folliculo-stellate cells. It elevates the secretion of alpha-MSH from melanotropes, and that of interleukin-6 from pituitary folliculo-stellate cells. PACAP potentiates the effects of LHRH on LH and FSH secretion. More clearly perhaps, PACAP increases the synthesis of LH, GH, PRL and ACTH after 1-2 days. In human pathology, PACAP-27 and PACAP-38 stimulate adenylate cyclase activity in membranes from 'null'-, gonadotropin-, GH-, and ACTH-producing pituitary adenomas but are inactive in prolactinomas.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
Affiliation(s)
- J Christophe
- Department of Biochemistry and Nutrition, Medical School, Université Libre de Bruxelles, Belgium
| |
Collapse
|