1
|
Tjokro NO, Marks CB, Wu A, Chen C. Dormancy-like Phenotype of Aggregatibacter actinomycetemcomitans: Survival during Famine. Pathogens 2024; 13:418. [PMID: 38787270 PMCID: PMC11124257 DOI: 10.3390/pathogens13050418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 05/06/2024] [Accepted: 05/09/2024] [Indexed: 05/25/2024] Open
Abstract
Microbes frequently experience nutrient deprivations in the natural environment and may enter dormancy. Aggregatibacter actinomycetemcomitans is known to establish long-term infections in humans. This study examined the dormancy-like phenotype of an A. actinomycetemcomitans strain D7S-1 and its isogenic smooth-colony mutant D7SS. A tissue culture medium RPMI-1640 was nutrient-deficient (ND) and unable to support A. actinomycetemcomitans growth. RPMI-1640 amended with bases was nutrient-limited (NL) and supported limited growth of A. actinomycetemcomitans less than the nutrient-enriched (NE) laboratory medium did. Strain D7S-1, after an initial 2-log reduction in viability, maintained viability from day 4 to day 15 in the NL medium. Strain D7SS, after 1-log reduction in viability, maintained viability from day 3 to day 5. In contrast, bacteria in the NE medium were either non-recoverable (D7S-1; >6-log reduction) or continued to lose viability (D7SS; 3-log reduction) on day 5 and beyond. Scanning and transmission electron microscopy showed that A. actinomycetemcomitans in the NL medium formed robust biofilms similar to those in the NE medium but with evidence of stress. A. actinomycetemcomitans in the ND medium revealed scant biofilms and extensive cellular damage. We concluded that A. actinomycetemcomitans grown in the NL medium exhibited a dormancy-like phenotype characterized by minimum growth, prolonged viability, and distinct cellular morphology.
Collapse
Affiliation(s)
- Natalia O. Tjokro
- Department of Endodontics and Periodontics, Herman Ostrow School of Dentistry, University of Southern California, 925 W. 34th Street, Los Angeles, CA 90089, USA; (N.O.T.); (A.W.)
| | - Carolyn B. Marks
- Core Center of Excellence in Nano Imaging, University of Southern California, 1002 Childs Way, Los Angeles, CA 90089, USA;
| | - Ashley Wu
- Department of Endodontics and Periodontics, Herman Ostrow School of Dentistry, University of Southern California, 925 W. 34th Street, Los Angeles, CA 90089, USA; (N.O.T.); (A.W.)
| | - Casey Chen
- Department of Endodontics and Periodontics, Herman Ostrow School of Dentistry, University of Southern California, 925 W. 34th Street, Los Angeles, CA 90089, USA; (N.O.T.); (A.W.)
| |
Collapse
|
2
|
Huang X, Xie M, Lu X, Mei F, Song W, Liu Y, Chen L. The Roles of Periodontal Bacteria in Atherosclerosis. Int J Mol Sci 2023; 24:12861. [PMID: 37629042 PMCID: PMC10454115 DOI: 10.3390/ijms241612861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 08/05/2023] [Accepted: 08/10/2023] [Indexed: 08/27/2023] Open
Abstract
Atherosclerosis (AS) is an inflammatory vascular disease that constitutes a major underlying cause of cardiovascular diseases (CVD) and stroke. Infection is a contributing risk factor for AS. Epidemiological evidence has implicated individuals afflicted by periodontitis displaying an increased susceptibility to AS and CVD. This review concisely outlines several prevalent periodontal pathogens identified within atherosclerotic plaques, including Porphyromonas gingivalis, Aggregatibacter actinomycetemcomitans, and Fusobacterium nucleatum. We review the existing epidemiological evidence elucidating the association between these pathogens and AS-related diseases, and the diverse mechanisms for which these pathogens may engage in AS, such as endothelial barrier disruption, immune system activation, facilitation of monocyte adhesion and aggregation, and promotion of foam cell formation, all of which contribute to the progression and destabilization of atherosclerotic plaques. Notably, the intricate interplay among bacteria underscores the complex impact of periodontitis on AS. In conclusion, advancing our understanding of the relationship between periodontal pathogens and AS will undoubtedly offer invaluable insights and potential therapeutic avenues for the prevention and management of AS.
Collapse
Affiliation(s)
- Xiaofei Huang
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (X.H.); (M.X.); (X.L.); (F.M.); (W.S.)
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan 430022, China
| | - Mengru Xie
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (X.H.); (M.X.); (X.L.); (F.M.); (W.S.)
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan 430022, China
| | - Xiaofeng Lu
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (X.H.); (M.X.); (X.L.); (F.M.); (W.S.)
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan 430022, China
| | - Feng Mei
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (X.H.); (M.X.); (X.L.); (F.M.); (W.S.)
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan 430022, China
| | - Wencheng Song
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (X.H.); (M.X.); (X.L.); (F.M.); (W.S.)
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan 430022, China
| | - Yang Liu
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (X.H.); (M.X.); (X.L.); (F.M.); (W.S.)
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan 430022, China
| | - Lili Chen
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (X.H.); (M.X.); (X.L.); (F.M.); (W.S.)
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan 430022, China
| |
Collapse
|
3
|
Connections between Exoproteome Heterogeneity and Virulence in the Oral Pathogen Aggregatibacter actinomycetemcomitans. mSystems 2022; 7:e0025422. [PMID: 35695491 PMCID: PMC9239275 DOI: 10.1128/msystems.00254-22] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Aggregatibacter actinomycetemcomitans is a Gram-negative bacterial pathogen associated with severe periodontitis and nonoral diseases. Clinical isolates of A. actinomycetemcomitans display a rough (R) colony phenotype with strong adherent properties. Upon prolonged culturing, nonadherent strains with a smooth (S) colony phenotype emerge. To date, most virulence studies on A. actinomycetemcomitans have been performed with S strains of A. actinomycetemcomitans, whereas the virulence of clinical R isolates has received relatively little attention. Since the extracellular proteome is the main bacterial reservoir of virulence factors, the present study was aimed at a comparative analysis of this subproteome fraction for a collection of R isolates and derivative S strains, in order to link particular proteins to the virulence of A. actinomycetemcomitans with serotype b. To assess the bacterial virulence, we applied different infection models based on larvae of the greater wax moth Galleria mellonella, a human salivary gland-derived epithelial cell line, and freshly isolated neutrophils from healthy human volunteers. A total number of 351 extracellular A. actinomycetemcomitans proteins was identified by mass spectrometry, with the S strains consistently showing more extracellular proteins than their parental R isolates. A total of 50 known extracellular virulence factors was identified, of which 15 were expressed by all investigated bacteria. Importantly, the comparison of differences in exoproteome composition and virulence highlights critical roles of 10 extracellular proteins in the different infection models. Together, our findings provide novel clues for understanding the virulence of A. actinomycetemcomitans and for development of potential preventive or therapeutic avenues to neutralize this important oral pathogen. IMPORTANCE Periodontitis is one of the most common inflammatory diseases worldwide, causing high morbidity and decreasing the quality of life of millions of people. The bacterial pathogen Aggregatibacter actinomycetemcomitans is strongly associated with aggressive forms of periodontitis. Moreover, it has been implicated in serious nonoral infections, including endocarditis and brain abscesses. Therefore, it is important to investigate how A. actinomycetemcomitans can cause disease. In the present study, we applied a mass spectrometry approach to make an inventory of the virulence factors secreted by different clinical A. actinomycetemcomitans isolates and derivative strains that emerged upon culturing. We subsequently correlated the secreted virulence factors to the pathogenicity of the investigated bacteria in different infection models. The results show that a limited number of extracellular virulence factors of A. actinomycetemcomitans have central roles in pathogenesis, indicating that they could be druggable targets to prevent or treat oral disease.
Collapse
|
4
|
Jensen AB, Isidor F, Lund M, Væth M, Johansson A, Lauritsen NN, Haubek D. Prevalence of Aggregatibacter actinomycetemcomitans and Periodontal Findings among 14 to 15-Year Old Danish Adolescents: A Descriptive Cross-Sectional Study. Pathogens 2020; 9:pathogens9121054. [PMID: 33339288 PMCID: PMC7765784 DOI: 10.3390/pathogens9121054] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 12/08/2020] [Accepted: 12/11/2020] [Indexed: 12/15/2022] Open
Abstract
Aggregatibacter actinomycetemcomitans (Aa) is a keystone pathogen associated with periodontitis in adolescents. The knowledge on the prevalence of Aa and periodontitis among adolescents in Northern Europe is sparse. A total of 525 14- to 15-year-old adolescents from the municipality of Aarhus, Denmark, underwent a full-mouth clinical examination. Plaque score (PS), bleeding on probing (BOP), probing pocket depth (PPD), and clinical attachment loss (CAL) were recorded. Subgingival plaque samples (SPS) and stimulated saliva samples (SSS) were collected and analyzed for the presence of JP2 and non-JP2 genotypes of Aa using real-time PCR. A total of 70 (13.3%) individuals were positive for Aa, with 17 found in SPS, 19 in SSS, and 35 in both. The highly leukotoxic JP2 genotype of Aa was not detected. The individuals positive for Aa in both SPS and SSS had poorer periodontal outcomes (PPD and CAL) than individuals without Aa and individuals carrying Aa in either SPS or SSS only. In conclusion, 13% of 14- to 15-year-old Danish adolescents were positive for Aa, and the presence of Aa in both SPS and SSS was associated with poorer periodontal outcomes.
Collapse
Affiliation(s)
- Anne Birkeholm Jensen
- Section for Pediatric Dentistry, Department of Dentistry and Oral Health, Health, Aarhus University, 8000 Aarhus, Denmark;
- The Municipality of Aarhus, 8000 Aarhus, Denmark
| | - Flemming Isidor
- Section for Prosthetic Dentistry, Department of Dentistry and Oral Health, Health, Aarhus University, 8000 Aarhus, Denmark
| | - Marianne Lund
- Department of Clinical Microbiology, Aarhus University Hospital, Skejby, 8210 Aarhus, Denmark;
| | - Michael Væth
- Department of Public Health, Aarhus University, 8000 Aarhus, Denmark;
| | - Anders Johansson
- Divison of Molecular Periodontology, Department of Odontology, Faculty of Medicine and Odontology, Umea University, 901 87 Umea, Sweden;
| | | | - Dorte Haubek
- Section for Pediatric Dentistry, Department of Dentistry and Oral Health, Health, Aarhus University, 8000 Aarhus, Denmark;
- Correspondence: ; Tel.: +45-21-685-848
| |
Collapse
|
5
|
Aggregatibacter actinomycetemcomitans serotypes and JP2 outcomes related to clinical status over 6 years under periodontal maintenance therapy. Arch Oral Biol 2020; 116:104747. [PMID: 32422332 DOI: 10.1016/j.archoralbio.2020.104747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 04/28/2020] [Accepted: 04/29/2020] [Indexed: 11/24/2022]
Abstract
OBJECTIVE This 6-year study evaluatedAggregatibacter actinomycetemcomitans outcomes and their relationship to clinical status. DESIGN From the eligible individuals (23-70 years of age), 31 regular compliers (between-visit interval < 6 months) were randomly selected and matched for age/sex with 31 irregular compliers (between-visit interval > 6 months). Periodontal clinical examination and subgingival samples were obtained 5 times: T1 (baseline), T2 (after active periodontal therapy), T3 (2 years), T4 (4 years), and T5 (6 years). Total bacteria load, A. actinomycetemcomitans, and red complex species Porphyromonas gingivalis, Tannerella forsythia, Treponema denticola levels were determined by qPCR while PCR was used to determine the occurrence of the a-b-c-d-e-f-g serotypes and the JP2 clone of A. actinomycetemcomitans. Data between groups was compared over time. RESULTS At baseline PCR revealed A. actinomycetemcomitans prevalence of 9.7 % and JP2 prevalence of 6.7 %. A. actinomycetemcomitans qPCR levels were higher among individuals < 35 years of age and increased at T2 in irregular compliers. At in irregular compliers at the three follow-up visits. Serotypes a, d, and f showed greater values in at least one follow-up visit in regular compliers. A. actinomycetemcomitans showed negative correlation with probing depth (PD) while serotype b showed negative correlations with PD, PI, clinical attachment level and red complex. CONCLUSIONS Longitudinally, compliance during PMT contributed to lower A. actinomycetemcomitans levels with some degree of correlation with clinical status. However, this study failed to report any positive effect on the occurrence of the most virulent representatives, i.e. serotype b and the JP2 clone.
Collapse
|
6
|
Rojas L, Melgar-Rodríguez S, Díaz-Zúñiga J, Alvarez C, Monasterio G, Rojas C, Cafferata EA, Hernández M, Cortéz C, Carvajal P, Vernal R. Inhibitory effect of serotype a of Aggregatibacter actinomycetemcomitans on the increased destructive potential of serotype b. Oral Dis 2019; 26:409-418. [PMID: 31738464 DOI: 10.1111/odi.13237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 10/03/2019] [Accepted: 11/10/2019] [Indexed: 11/29/2022]
Abstract
OBJECTIVE The serotype b of Aggregatibacter actinomycetemcomitans (A. actinomycetemcomitans) induces higher cytokine production in dendritic cells (DCs) compared with the other serotypes. However, this increased immunostimulatory potential was modified when DCs were co-infected with the other A. actinomycetemcomitans serotypes. This study aimed to analyze whether the production of interferon gamma (IFN-γ), C-reactive protein (CRP), matrix metalloproteinase (MMP)-2, and MMP-9, as well as the activity of osteoclasts, also varies when DCs are co-infected with the A. actinomycetemcomitans serotypes. MATERIALS AND METHODS Human DCs were stimulated with the A. actinomycetemcomitans serotypes using the following stimulatory conditions: serotype a/b/c/a+b/a+c/b+c/a+b+c. The IFN-γ, CRP, and MMP-2 levels were quantified by ELISA. The active form of MMP-9 was quantified using fluorescent functional assays. The MMP-2 gelatinolytic activity was identified by zymogram. The osteoclast activity was determined by quantifying the TRAP expression and resorption-pit formation using cytochemistry and osteoassays. RESULTS Higher levels of IFN-γ, CRP, MMP-2, MMP-9, and osteoclast activity were detected when DCs were stimulated with the serotype b of A. actinomycetemcomitans compared with the others. This increased immunostimulatory potential attributed to serotype b diminished when DCs were co-infected with the serotype a. CONCLUSIONS This study provides new insights into the virulence of A. actinomycetemcomitans and reveals important differences in the immunostimulatory and pro-destructive potential among its serotypes.
Collapse
Affiliation(s)
- Leticia Rojas
- Periodontal Biology Laboratory, Faculty of Dentistry, Universidad de Chile, Santiago, Chile
| | | | - Jaime Díaz-Zúñiga
- Periodontal Biology Laboratory, Faculty of Dentistry, Universidad de Chile, Santiago, Chile
| | - Carla Alvarez
- Periodontal Biology Laboratory, Faculty of Dentistry, Universidad de Chile, Santiago, Chile
| | - Gustavo Monasterio
- Periodontal Biology Laboratory, Faculty of Dentistry, Universidad de Chile, Santiago, Chile
| | - Carolina Rojas
- Periodontal Biology Laboratory, Faculty of Dentistry, Universidad de Chile, Santiago, Chile
| | - Emilio A Cafferata
- Periodontal Biology Laboratory, Faculty of Dentistry, Universidad de Chile, Santiago, Chile.,Department of Periodontology, School of Dentistry, Universidad Científica del Sur, Lima, Peru
| | - Marcela Hernández
- Periodontal Biology Laboratory, Faculty of Dentistry, Universidad de Chile, Santiago, Chile.,Dentistry Unit, Faculty of Health Sciences, Universidad Autónoma de Chile, Santiago, Chile
| | - Cristian Cortéz
- Center for Genomics and Bioinformatics, Faculty of Sciences, Universidad Mayor, Santiago, Chile
| | - Paola Carvajal
- Department of Conservative Dentistry, Faculty of Dentistry, Universidad de Chile, Santiago, Chile
| | - Rolando Vernal
- Periodontal Biology Laboratory, Faculty of Dentistry, Universidad de Chile, Santiago, Chile.,Dentistry Unit, Faculty of Health Sciences, Universidad Autónoma de Chile, Santiago, Chile
| |
Collapse
|
7
|
Nørskov-Lauritsen N, Claesson R, Jensen AB, Åberg CH, Haubek D. Aggregatibacter Actinomycetemcomitans: Clinical Significance of a Pathobiont Subjected to Ample Changes in Classification and Nomenclature. Pathogens 2019; 8:E243. [PMID: 31752205 PMCID: PMC6963667 DOI: 10.3390/pathogens8040243] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 11/10/2019] [Accepted: 11/13/2019] [Indexed: 12/13/2022] Open
Abstract
Aggregatibacter actinomycetemcomitans is a Gram-negative bacterium that is part of the oral microbiota. The aggregative nature of this pathogen or pathobiont is crucial to its involvement in human disease. It has been cultured from non-oral infections for more than a century, while its portrayal as an aetiological agent in periodontitis has emerged more recently. A. actinomycetemcomitans is one species among a plethora of microorganisms that constitute the oral microbiota. Although A. actinomycetemcomitans encodes several putative toxins, the complex interplay with other partners of the oral microbiota and the suppression of host response may be central for inflammation and infection in the oral cavity. The aim of this review is to provide a comprehensive update on the clinical significance, classification, and characterisation of A. actinomycetemcomitans, which has exclusive or predominant host specificity for humans.
Collapse
Affiliation(s)
| | - Rolf Claesson
- Department of Odontology, Division of Oral Microbiology, Umeå University, S-901 87 Umeå, Sweden;
| | - Anne Birkeholm Jensen
- Department of Dentistry and Oral Health, Aarhus University, DK-8000 Aarhus C, Denmark;
| | - Carola Höglund Åberg
- Department of Odontology, Division of Molecular Periodontology, Umeå University, S-901 87 Umeå, Sweden
| | - Dorte Haubek
- Department of Dentistry and Oral Health, Aarhus University, DK-8000 Aarhus C, Denmark;
| |
Collapse
|
8
|
Pietiäinen M, Liljestrand JM, Kopra E, Pussinen PJ. Mediators between oral dysbiosis and cardiovascular diseases. Eur J Oral Sci 2019; 126 Suppl 1:26-36. [PMID: 30178551 DOI: 10.1111/eos.12423] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/22/2018] [Indexed: 12/11/2022]
Abstract
Clinical periodontitis is associated with an increased risk for cardiovascular diseases (CVDs) through systemic inflammation as the etiopathogenic link. Whether the oral microbiota, especially its quality, quantity, serology, and virulence factors, plays a role in atherogenesis is not clarified. Patients with periodontitis are exposed to bacteria and their products, which have access to the circulation directly through inflamed oral tissues and indirectly (via saliva) through the gastrointestinal tract, resulting in systemic inflammatory and immunologic responses. Periodontitis is associated with persistent endotoxemia, which has been identified as a notable cardiometabolic risk factor. The serology of bacterial biomarkers for oral dysbiosis is associated with an increased risk for subclinical atherosclerosis, prevalent and future coronary artery disease, and incident and recurrent stroke. In addition to species-specific antibodies, the immunologic response includes persistent, cross-reactive, proatherogenic antibodies against host-derived antigens. Periodontitis may affect lipoprotein metabolism at all levels, and all lipoprotein classes are affected. Periodontitis or its bacterial signatures may be involved not only in increased storage of proatherogenic lipids but also in attenuation of the anti-atherogenic processes, thereby putatively increasing the net risk of atherosclerosis. In this review we summarize possible molecular mediators between the dysbiotic oral microbiota and atherosclerotic processes.
Collapse
Affiliation(s)
- Milla Pietiäinen
- Oral and Maxillofacial Diseases, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - John M Liljestrand
- Oral and Maxillofacial Diseases, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Elisa Kopra
- Oral and Maxillofacial Diseases, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Pirkko J Pussinen
- Oral and Maxillofacial Diseases, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| |
Collapse
|
9
|
Ahlstrand T, Kovesjoki L, Maula T, Oscarsson J, Ihalin R. Aggregatibacter actinomycetemcomitans LPS binds human interleukin-8. J Oral Microbiol 2018; 11:1549931. [PMID: 34917288 PMCID: PMC8670607 DOI: 10.1080/20002297.2018.1549931] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Various gram-negative species sequester host cytokines using outer membrane proteins or surface modulation by sulfated polysaccharides. An outer membrane lipoprotein (BilRI) of the periodontal pathogen Aggregatibacter actinomycetemcomitans binds several cytokines, including interleukin (IL)-8. Because IL-8 is positively charged at physiological pH, we aimed to determine whether IL-8 interacts with negatively charged lipopolysaccharide (LPS). Binding was investigated using electrophoretic mobility shift assays and microwell-based time-resolved fluorometric immunoassay. LPS from each tested strain of A. actinomycetemcomitans (N = 13), Pseudomonas aeruginosa (N = 1) and Escherichia coli (N = 1) bound IL-8. The Kd value of the A. actinomycetemcomitans LPS-IL-8 interaction varied between 1.2–17 μM irrespective of the serotype and the amount of phosphorus in LPS and was significantly lower than that of the BilRI-IL-8 interaction. Moreover, IL-8 interacted with whole A. actinomycetemcomitans cells and outer membrane vesicles. Hence, LPS might be involved in binding of IL-8 to the outer membrane of A. actinomycetemcomitans. This raises an interesting question regarding whether other gram-negative periodontal pathogens use LPS for IL-8 sequestering in vivo.
Collapse
Affiliation(s)
- Tuuli Ahlstrand
- Department of Biochemistry, University of Turku, Turku, Finland
| | - Laura Kovesjoki
- Department of Biochemistry, University of Turku, Turku, Finland
| | - Terhi Maula
- Department of Biochemistry, University of Turku, Turku, Finland
| | - Jan Oscarsson
- Oral Microbiology, Department of Odontology, Umeå University, Umeå, Sweden
| | - Riikka Ihalin
- Department of Biochemistry, University of Turku, Turku, Finland
| |
Collapse
|
10
|
Serotype a of Aggregatibacter actinomycetemcomitans down-regulates the increased serotype b-induced cytokine and chemokine production in dendritic cells. Arch Oral Biol 2018; 93:155-162. [DOI: 10.1016/j.archoralbio.2018.06.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2017] [Revised: 06/04/2018] [Accepted: 06/09/2018] [Indexed: 12/15/2022]
|
11
|
Ihalin R, Zhong D, Karched M, Chen C, Asikainen S. Phosphorylcholine is located in Aggregatibacter actinomycetemcomitans fimbrial protein Flp 1. Med Microbiol Immunol 2018; 207:329-338. [PMID: 30056510 PMCID: PMC6182317 DOI: 10.1007/s00430-018-0554-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 07/21/2018] [Indexed: 11/20/2022]
Abstract
Phosphorylcholine (ChoP) is covalently incorporated into bacterial surface structures, contributing to host mimicry and promoting adhesion to surfaces. Our aims were to determine the frequency of ChoP display among Aggregatibacter actinomycetemcomitans strains, to clarify which surface structures bear ChoP, and whether ChoP-positivity relates to serum killing. The tested oral (N = 67) and blood isolates (N = 27) represented 6 serotypes. Mab TEPC-15 was used for immunoblotting of cell lysates and fractions and for immunofluorescence microscopy of cell surface-bound ChoP. The lysates were denatured with urea for hidden ChoP or treated with proteinase K to test whether it binds to a protein. Three ChoP-positive and two ChoP-negative strains were subjected to serum killing in the presence/absence of CRP and using Ig-depleted serum as complement source. Cell lysates and the first soluble cellular fraction revealed a < 10 kDa band in immunoblots. Among 94 strains, 27 were ChoP positive. No difference was found in the prevalence of ChoP-positive oral (21/67) and blood (6/27) strains. Immunofluorescence microscopy corresponded to the immunoblot results. Proteinase K abolished ChoP reactivity, whereas urea did not change the negative result. The TEPC-15-reactive protein was undetectable in Δflp1 mutant strain. The survival rate of serotype-b strains in serum was 100% irrespective of ChoP, but that of serotype-a was higher in ChoP-positive (85%) than ChoP-negative (71%) strains. The results suggest that a third of rough-colony strains harbor ChoP and that ChoP is attached to fimbrial subunit protein Flp1. It further seems that ChoP-positivity does not enhance but may reduce A. actinomycetemcomitans susceptibility to serum killing.
Collapse
Affiliation(s)
- Riikka Ihalin
- Oral Microbiology, Institute of Dentistry, Umeå University, Umeå, Sweden.,Department of Biochemistry, University of Turku, Turku, Finland
| | - Deyu Zhong
- Oral Microbiology, Institute of Dentistry, Umeå University, Umeå, Sweden.,Department of Periodontics, Stomatological Hospital, Southern Medical University, Guangzhou, People's Republic of China
| | - Maribasappa Karched
- Oral Microbiology, Institute of Dentistry, Umeå University, Umeå, Sweden.,Department of Bioclinical Sciences, Faculty of Dentistry, Kuwait University, Kuwait City, Kuwait
| | - Casey Chen
- Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, CA, USA
| | - Sirkka Asikainen
- Oral Microbiology, Institute of Dentistry, Umeå University, Umeå, Sweden.
| |
Collapse
|
12
|
Pietiäinen M, Kopra KAE, Vuorenkoski J, Salminen A, Paju S, Mäntylä P, Buhlin K, Liljestrand JM, Nieminen MS, Sinisalo J, Hyvärinen K, Pussinen PJ. Aggregatibacter actinomycetemcomitansserotypes associate with periodontal and coronary artery disease status. J Clin Periodontol 2018; 45:413-421. [DOI: 10.1111/jcpe.12873] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/24/2018] [Indexed: 12/16/2022]
Affiliation(s)
- Milla Pietiäinen
- Oral and Maxillofacial Diseases; University of Helsinki and Helsinki University Hospital; Helsinki Finland
| | - K. A. Elisa Kopra
- Oral and Maxillofacial Diseases; University of Helsinki and Helsinki University Hospital; Helsinki Finland
| | - Juha Vuorenkoski
- Oral and Maxillofacial Diseases; University of Helsinki and Helsinki University Hospital; Helsinki Finland
| | - Aino Salminen
- Oral and Maxillofacial Diseases; University of Helsinki and Helsinki University Hospital; Helsinki Finland
- Department of Dental Medicine Huddinge; Division of Periodontology; Karolinska Institutet; Huddinge Sweden
| | - Susanna Paju
- Oral and Maxillofacial Diseases; University of Helsinki and Helsinki University Hospital; Helsinki Finland
| | - Päivi Mäntylä
- Oral and Maxillofacial Diseases; University of Helsinki and Helsinki University Hospital; Helsinki Finland
- Institute of Dentistry; University of Eastern Finland; Kuopio Finland
- Oral and Maxillofacial Diseases; Kuopio University Hospital; Kuopio Finland
| | - Kåre Buhlin
- Oral and Maxillofacial Diseases; University of Helsinki and Helsinki University Hospital; Helsinki Finland
- Department of Dental Medicine Huddinge; Division of Periodontology; Karolinska Institutet; Huddinge Sweden
| | - John M. Liljestrand
- Oral and Maxillofacial Diseases; University of Helsinki and Helsinki University Hospital; Helsinki Finland
| | - Markku S. Nieminen
- Department of Cardiology, Heart and Lung Center; Helsinki University Hospital; Helsinki Finland
| | - Juha Sinisalo
- Department of Cardiology, Heart and Lung Center; Helsinki University Hospital; Helsinki Finland
| | - Kati Hyvärinen
- Oral and Maxillofacial Diseases; University of Helsinki and Helsinki University Hospital; Helsinki Finland
| | - Pirkko J. Pussinen
- Oral and Maxillofacial Diseases; University of Helsinki and Helsinki University Hospital; Helsinki Finland
| |
Collapse
|
13
|
Setty S, Wadikar T, Suprith SS, Bhat K, Thakur S. Profiling of Aggregatibacter actinomycetemcomitans Serotypes B and C and the genotypes in periodontal health and disease. Indian J Med Microbiol 2018; 35:543-550. [PMID: 29405147 DOI: 10.4103/ijmm.ijmm_17_115] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
BACKGROUND A. actinomycetemcomitans is prevalent in periodontitis but is found in some periodontally healthy individuals as well. Certain serotypes of the organism have shown to determine severity of the disease. The distribution of serotype and genotype is affected by geographic and ethnic variation. Therefore, the present study was aimed to detect serotypes b & c of A. actinomycetemcomitans and the genotypes and find its correlation with periodontal status. MATERIALS AND METHODS A total of 75 subjects (25 aggressive periodontitis, 25 chronic periodontitis and 25 periodontally healthy) in age range of 14-55 yrs were included. Subgingival plaque samples were collected and checked for the presence of A. actinomycetemcomitans. Following isolation of the organism, detection of the serotype b or c was done by multiplex PCR. Genotyping of A. actinomycetemcomitans was done by arbitrarily primed PCR(polymerase chain reaction). RESULTS Out of 75 plaque samples, 35(46.66%) tested positive for A. actinomycetemcomitans. Serotype c was detected in 19/35 (54.28%), whereas serotype b alone was not detected in any of the samples. Two samples were positive for both the serotypes (b and c) (5.71%) and 14 (40%) were untypeable. 14 different arbitrarily primed PCR genotypes were obtained among 35 A. actinomycetemcomitans isolates. CONCLUSION Serotype c was predominant in periodontally diseased as well as periodontally healthy individuals. An association could be present between genotype - serotype and genotype - periodontal status.
Collapse
Affiliation(s)
- Swati Setty
- Department of Periodontology and Oral Implantology, SDM College of Dental Sciences and Hospital, Dharwad, India
| | - Tanvee Wadikar
- Department of Periodontology and Oral Implantology, SDM College of Dental Sciences and Hospital, Dharwad, India
| | - S S Suprith
- Department of Periodontology and Oral Implantology, SDM College of Dental Sciences and Hospital, Dharwad, India
| | - Kishore Bhat
- Department of Microbiology, Maratha Mandal's Nathajirao G. Halgekar Institute of Dental Sciences and Research Centre, Belgaum, Karnataka, India
| | - Srinath Thakur
- Department of Periodontology and Oral Implantology, SDM College of Dental Sciences and Hospital, Dharwad, India
| |
Collapse
|
14
|
Suprith SS, Setty S, Bhat K, Thakur S. Serotypes of Aggregatibacter actinomycetemcomitans in relation to periodontal status and assessment of leukotoxin in periodontal disease: A clinico-microbiological study. J Indian Soc Periodontol 2018; 22:201-208. [PMID: 29962698 PMCID: PMC6009160 DOI: 10.4103/jisp.jisp_36_18] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Context: Aggregatibacter actinomycetemcomitans (A.a) serotypes may add some important information of the pathogenetic background of periodontal infections. A.a leukotoxin is an important virulence factor in the pathogenesis of periodontal disease and its rate of progression. When compared to minimally leukotoxic strains, variants of A.a highly leukotoxic strains produce 10–20 times more leukotoxin. Aims: The aim of the present study was to detect serotypes a, b, c, d, and e of A.a its leukotoxin and find its correlation with periodontal status. Settings and Design: Microbiological analysis and cross-sectional study. Materials and Methods: A total of 80 subjects (40 chronic periodontitis and 40 aggressive periodontitis) in the age range of 14–55 years were selected. Subgingival plaque samples were collected and checked for the presence of A.a. Following isolation of the organism, detection of the serotypes and leukotoxin assessment was done. Statistical Analysis Used: The proportions of A.a were calculated using descriptive statistics in terms of percentage. Chi-square test was used to find association between serotype, leukotoxin, and periodontal disease in individual group. Results: Out of 80 plaque samples, 45% tested positive for A.a. serotype b was detected in 33.33%, whereas serotype e in 8.33% samples and serotype c in 2.77% samples. Serotypes a and d were not detected in any of the samples. A combination of serotypes was seen in 47.22% of the sites. Of these 76.47% showed a combination of 2 serotypes, while 23.52%showed a combination of 3 serotypes. 8.33% showed untypable serotype. All samples had low-toxic variants of A.a. Conclusions: Serotype b and serotype e were predominant in chronic periodontitis, and serotype b was predominant in aggressive periodontitis. An association could be present between serotype and periodontal disease.
Collapse
Affiliation(s)
| | - Swati Setty
- Department of Periodontics, SDM College of Dental Sciences and Hospital, Dharwad, Karnataka, India
| | - Kishore Bhat
- Department of Microbiology, Maratha Mandals Nathajirao G. Halgekar Institute of Dental Sciences and Research Centre, Belagavi, Karnataka, India
| | - Srinath Thakur
- Department of Periodontics, SDM College of Dental Sciences and Hospital, Dharwad, Karnataka, India
| |
Collapse
|
15
|
Ahlstrand T, Tuominen H, Beklen A, Torittu A, Oscarsson J, Sormunen R, Pöllänen MT, Permi P, Ihalin R. A novel intrinsically disordered outer membrane lipoprotein of Aggregatibacter actinomycetemcomitans binds various cytokines and plays a role in biofilm response to interleukin-1β and interleukin-8. Virulence 2016; 8:115-134. [PMID: 27459270 PMCID: PMC5383217 DOI: 10.1080/21505594.2016.1216294] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Intrinsically disordered proteins (IDPs) do not have a well-defined and stable 3-dimensional fold. Some IDPs can function as either transient or permanent binders of other proteins and may interact with an array of ligands by adopting different conformations. A novel outer membrane lipoprotein, bacterial interleukin receptor I (BilRI) of the opportunistic oral pathogen Aggregatibacter actinomycetemcomitans binds a key gatekeeper proinflammatory cytokine interleukin (IL)-1β. Because the amino acid sequence of the novel lipoprotein resembles that of fibrinogen binder A of Haemophilus ducreyi, BilRI could have the potential to bind other proteins, such as host matrix proteins. However, from the tested host matrix proteins, BilRI interacted with neither collagen nor fibrinogen. Instead, the recombinant non-lipidated BilRI, which was intrinsically disordered, bound various pro/anti-inflammatory cytokines, such as IL-8, tumor necrosis factor (TNF)-α, interferon (IFN)-γ and IL-10. Moreover, BilRI played a role in the in vitro sensing of IL-1β and IL-8 because low concentrations of cytokines did not decrease the amount of extracellular DNA in the matrix of bilRI− mutant biofilm as they did in the matrix of wild-type biofilm when the biofilms were exposed to recombinant cytokines for 22 hours. BilRI played a role in the internalization of IL-1β in the gingival model system but did not affect either IL-8 or IL-6 uptake. However, bilRI deletion did not entirely prevent IL-1β internalization, and the binding of cytokines to BilRI was relatively weak. Thus, BilRI might sequester cytokines on the surface of A. actinomycetemcomitans to facilitate the internalization process in low local cytokine concentrations.
Collapse
Affiliation(s)
- Tuuli Ahlstrand
- a Department of Biochemistry , University of Turku , Turku , Finland
| | - Heidi Tuominen
- a Department of Biochemistry , University of Turku , Turku , Finland
| | - Arzu Beklen
- a Department of Biochemistry , University of Turku , Turku , Finland
| | - Annamari Torittu
- a Department of Biochemistry , University of Turku , Turku , Finland
| | - Jan Oscarsson
- b Oral Microbiology , Department of Odontology, Umeå University , Umeå , Sweden
| | - Raija Sormunen
- c Biocenter Oulu and Department of Pathology , University of Oulu , Oulu Finland
| | | | - Perttu Permi
- e Program in Structural Biology and Biophysics, Institute of Biotechnology, University of Helsinki , Helsinki , Finland.,f Department of Biological and Environmental Sciences , Nanoscience Center, University of Jyväskylä , Jyväskylä , Finland.,g Department of Chemistry , Nanoscience Center, University of Jyväskylä , Jyväskylä , Finland
| | - Riikka Ihalin
- a Department of Biochemistry , University of Turku , Turku , Finland
| |
Collapse
|
16
|
Doğan B, Chen J, Çiftlikli SY, Huang J, Kadir T, Alnıak AK, Chen C. Occurrence and serotype distribution of Aggregatibacter actinomycetemcomitans in subjects without periodontitis in Turkey. Arch Oral Biol 2015; 61:125-9. [PMID: 26556547 DOI: 10.1016/j.archoralbio.2015.10.023] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2015] [Revised: 09/25/2015] [Accepted: 10/25/2015] [Indexed: 11/30/2022]
Abstract
OBJECTIVE To determine the occurrence and serotype distribution of Aggregatibacter actinomycetemcomitans in subjects without periodontitis. DESIGN Systemically healthy dental students without periodontitis (n=94), who had not used antibiotics within the last 3 months or received any form of periodontal therapy within the last 6 months, were included in the study. Pooled subgingival microbiological samples were collected from 4 first molars and 4 central incisors in each subject using sterile paper points. All samples were tested for the presence and the serotype of A. actinomycetemcomitans through PCR analysis of the 16S rRNA genes and the serotype-specific gene clusters in the DNA extracted from the samples. RESULTS Of the 94 samples that were tested, 43 (46%) were positive for A. actinomycetemcomitans. No statistically significant differences in clinical parameters were found between subgingival sites with or without detectable A. actinomycetemcomitans (t-test, P>0.01). Among the 43 A. actinomycetemcomitans-positive samples, the serotype was identified in 21 samples. Fifteen were positive for A. actinomycetemcomitans serotype a, 1 for serotype b, 1 for serotype c, and 4 for serotype f, while serotypes d and e were not detected. CONCLUSION A. actinomycetemcomitans serotype a is the most commonly found serotype among Turkish dental students without periodontitis.
Collapse
Affiliation(s)
- Başak Doğan
- Department of Periodontology, Faculty of Dentistry, Marmara University, Istanbul, Turkey
| | - Jason Chen
- Division of Periodontology, Diagnostic Sciences and Dental Hygiene, Ostrow School of Dentistry, University of Southern California, USA
| | - Sinem Yıldız Çiftlikli
- Department of Periodontology, Faculty of Dentistry, Marmara University, Istanbul, Turkey
| | - Jonathan Huang
- Division of Periodontology, Diagnostic Sciences and Dental Hygiene, Ostrow School of Dentistry, University of Southern California, USA
| | - Tanju Kadir
- Department of Microbiology, Faculty of Dentistry, Marmara University, Istanbul, Turkey
| | - Anıl Kınacı Alnıak
- Department of Periodontology, Faculty of Dentistry, Marmara University, Istanbul, Turkey
| | - Casey Chen
- Division of Periodontology, Diagnostic Sciences and Dental Hygiene, Ostrow School of Dentistry, University of Southern California, USA.
| |
Collapse
|
17
|
Kieselbach T, Zijnge V, Granström E, Oscarsson J. Proteomics of Aggregatibacter actinomycetemcomitans Outer Membrane Vesicles. PLoS One 2015; 10:e0138591. [PMID: 26381655 PMCID: PMC4575117 DOI: 10.1371/journal.pone.0138591] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2015] [Accepted: 09/01/2015] [Indexed: 11/18/2022] Open
Abstract
Aggregatibacter actinomycetemcomitans is an oral and systemic pathogen associated with aggressive forms of periodontitis and with endocarditis. Outer membrane vesicles (OMVs) released by this species have been demonstrated to deliver effector proteins such as cytolethal distending toxin (CDT) and leukotoxin (LtxA) into human host cells and to act as triggers of innate immunity upon carriage of NOD1- and NOD2-active pathogen-associated molecular patterns (PAMPs). To improve our understanding of the pathogenicity-associated functions that A. actinomycetemcomitans exports via OMVs, we studied the proteome of density gradient-purified OMVs from a rough-colony type clinical isolate, strain 173 (serotype e) using liquid chromatography-tandem mass spectrometry (LC-MS/MS). This analysis yielded the identification of 151 proteins, which were found in at least three out of four independent experiments. Data are available via ProteomeXchange with identifier PXD002509. Through this study, we not only confirmed the vesicle-associated release of LtxA, and the presence of proteins, which are known to act as immunoreactive antigens in the human host, but we also identified numerous additional putative virulence-related proteins in the A. actinomycetemcomitans OMV proteome. The known and putative functions of these proteins include immune evasion, drug targeting, and iron/nutrient acquisition. In summary, our findings are consistent with an OMV-associated proteome that exhibits several offensive and defensive functions, and they provide a comprehensive basis to further disclose roles of A. actinomycetemcomitans OMVs in periodontal and systemic disease.
Collapse
Affiliation(s)
| | - Vincent Zijnge
- Center for Dentistry and Oral Hygiene, University Medical Center Groningen, Groningen, The Netherlands
| | | | - Jan Oscarsson
- Oral Microbiology, Department of Odontology, Umeå University, Umeå, Sweden
- * E-mail:
| |
Collapse
|
18
|
Pahumunto N, Ruangsri P, Wongsuwanlert M, Piwat S, Dahlen G, Teanpaisan R. Aggregatibacter actinomycetemcomitans serotypes and DGGE subtypes in Thai adults with chronic periodontitis. Arch Oral Biol 2015; 60:1789-96. [PMID: 26475998 DOI: 10.1016/j.archoralbio.2015.09.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Revised: 09/02/2015] [Accepted: 09/03/2015] [Indexed: 10/23/2022]
Abstract
OBJECTIVE To investigate the distribution of Aggregatibacter actinomycetemcomitans serotypes and DGGE subtypes among isolates from Thai chronic periodontitis patients. DESIGN Forty-four adult Thai periodontitis patients were assessed by a full mouth recording for CAL, PPD, and BOP. Seventy-nine strains of A. actinomycetemcomitans were isolated from deep pockets on selective TSBV agar and 17 strains were isolated from shallow pockets. The strains were serotyped using PCR and subtyped using DGGE. RESULTS The prevalence of A. actinomycetemcomitans was 84.1%. Non-serotypeable A. actinomycetemcomitans strains occurred equally frequent as serotypeable (54.5%); serotype a 18.2%, serotype c 15.9%, serotype e 9.1%, and serotype f 11.4%. Serotype b and d were not detected. A JP2 like strain but serotyped as c was isolated from two patients, and another two strains showed an 886bp insertion on the ltx promoter of their A. actinomycetemcomitans isolates. DGGE typing disclosed 16 different subtypes among the non-serotypeable strains. Two of them (NS1 and NS2) were more common (12.7 and 10.1%) among the strains than the other 14 subtypes (˂5.1%). Most patients showed only one subtype (32.4%) but 29.7% had 2 and 3 different subtypes while 8.1% revealed 4 subtypes in one and the same deep pocket. CONCLUSION This study showed a greater subtype diversity of A. actinomycetemcomitans predominated by non-serotypeable strains than previously reported in an adult Thai population. It was also revealed for the first time that isolates with a 530bp deletion or 886bp insertion of the ltx promoter were serotyped as serotype c.
Collapse
Affiliation(s)
- Nuntiya Pahumunto
- Common Oral Diseases and Epidemiology Research Center and the Department of Stomatology, Faculty of Dentistry, Prince of Songkla University, Hat Yai 90112, Thailand
| | - Praphansri Ruangsri
- Department of Conservative Dentistry, Faculty of Dentistry, Prince of Songkla University, Hat Yai 90112, Thailand
| | - Mutita Wongsuwanlert
- Department of Conservative Dentistry, Faculty of Dentistry, Prince of Songkla University, Hat Yai 90112, Thailand
| | - Supatcharin Piwat
- Common Oral Diseases and Epidemiology Research Center and the Department of Preventive Dentistry, Faculty of Dentistry, Prince of Songkla University, Hat Yai, Thailand
| | - Gunnar Dahlen
- Department of Oral Microbiology and Immunology, Institute of Odontology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Rawee Teanpaisan
- Common Oral Diseases and Epidemiology Research Center and the Department of Stomatology, Faculty of Dentistry, Prince of Songkla University, Hat Yai 90112, Thailand.
| |
Collapse
|
19
|
Haubek D, Johansson A. Pathogenicity of the highly leukotoxic JP2 clone of Aggregatibacter actinomycetemcomitans and its geographic dissemination and role in aggressive periodontitis. J Oral Microbiol 2014; 6:23980. [PMID: 25206940 PMCID: PMC4139931 DOI: 10.3402/jom.v6.23980] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Revised: 07/03/2014] [Accepted: 07/07/2014] [Indexed: 02/01/2023] Open
Abstract
For decades, Aggregatibacter actinomycetemcomitans has been associated with aggressive forms of periodontitis in adolescents. In the middle of the 1990s, a specific JP2 clone of A. actinomycetemcomitans, belonging to the cluster of serotype b strains of A. actinomycetemcomitans and having a number of other characteristics, was found to be strongly associated with aggressive forms of periodontitis, particularly in North Africa. Although several longitudinal studies still point to the bacterial species, A. actinomycetemcomitans as a risk factor of aggressive periodontitis, it is now also widely accepted that the highly leukotoxic JP2 clone of A. actinomycetemcomitans is implicated in rapidly progressing forms of aggressive periodontitis. The JP2 clone strains are highly prevalent in human populations living in Northern and Western parts of Africa. These strains are also prevalent in geographically widespread populations that have originated from the Northwest Africa. Only sporadic signs of a dissemination of the JP2 clone strains to non-African populations have been found despite Africans living geographically widespread for hundreds of years. It remains an unanswered question if a particular host tropism exists as a possible explanation for the frequent colonization of the Northwest African population with the JP2 clone. Two exotoxins of A. actinomycetemcomitans are known, leukotoxin (LtxA) and cytolethal distending toxin (Cdt). LtxA is able to kill human immune cells, and Cdt can block cell cycle progression in eukaryotic cells and thus induce cell cycle arrest. Whereas the leukotoxin production is enhanced in JP2 clone strains thus increasing the virulence potential of A. actinomycetemcomitans, it has not been possible so far to demonstrate such a role for Cdt. Lines of evidence have led to the understanding of the highly leukotoxic JP2 clone of A. actinomycetemcomitans as an aetiological factor of aggressive periodontitis. Patients, who are colonized with the JP2 clone, are likely to share this clone with several family members because the clone is transmitted through close contacts. This is a challenge to the clinicians. The patients need intense monitoring of their periodontal status as the risk for developing severely progressing periodontal lesions are relatively high. Furthermore, timely periodontal treatment, in some cases including periodontal surgery supplemented by the use of antibiotics, is warranted. Preferably, periodontal attachment loss should be prevented by early detection of the JP2 clone of A. actinomycetemcomitans by microbial diagnostic testing and/or by preventive means.
Collapse
Affiliation(s)
- Dorte Haubek
- Section for Pediatric Dentistry, Department of Dentistry, Health, Aarhus University, Aarhus, Denmark
| | - Anders Johansson
- Department of Molecular Periodontology, Umea University, Umea, Sweden
| |
Collapse
|
20
|
Mínguez M, Pousa X, Herrera D, Blasi A, Sánchez MC, León R, Sanz M. Characterization and serotype distribution of Aggregatibacter actinomycetemcomitans isolated from a population of periodontitis patients in Spain. Arch Oral Biol 2014; 59:1359-67. [PMID: 25201701 DOI: 10.1016/j.archoralbio.2014.07.021] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Revised: 07/08/2014] [Accepted: 07/27/2014] [Indexed: 02/02/2023]
Abstract
OBJECTIVE There is no study characterizing the variability of Aggregatibacter actinomycetemcomitans isolates in periodontitis patients in Spain. It is therefore the aim of this investigation to study the serotype distribution of A. actinomycetemcomitans strains isolated from periodontitis patients in Spain. The polymorphism of the genes that codifies the leukotoxin and the operon of the cytolethal-distending toxin (cdt) will also be investigated. DESIGN From a total of 701 patients samples, 40 A. actinomycetemcomitans-positive periodontitis patients were included in the study (mean age 45.3, 62.5% females) and their clinical periodontal status was assessed. On average, 1-3 isolates from each patient were sub-cultured and characterized by PCR. RESULTS Using culture the prevalence of A. actinomycetemcomitans was 5.7%. The most frequent serotype was "b", being 30 patients infected by a unique serotype, while 7 patients showed co-colonization, mostly with serotypes "a" and "b". From the 79 pure isolates obtained, 24 were from serotype "a", 30 from serotype "b", 12 from serotype "c" and 4 from serotype "d". Further characterization of these samples showed that none of these 79 isolates demonstrated the 530-bp deletion in the leukotoxin's promoter region that characterizes the JP2 strain. Conversely 65.8% of the isolates were cdt+. CONCLUSIONS The most common serotypes were "a" and "b", being serotype "b" the most prevalent in mono-colonization, while serotypes "e" and "f" were not detected. In the majority of samples, operon that codifies the cdt (65.8%) and the genes responsible for the codification of leukotoxin (100%) were found. None of the isolates were JP2 strains.
Collapse
Affiliation(s)
- María Mínguez
- Section of Periodontology, Faculty of Odontology, University Complutense, Madrid, Spain
| | - Xiana Pousa
- Section of Periodontology, Faculty of Odontology, University Complutense, Madrid, Spain
| | - David Herrera
- Section of Periodontology, Faculty of Odontology, University Complutense, Madrid, Spain; ETEP (Etiology and Therapy of Periodontal Diseases) Research Group, University Complutense, Madrid, Spain.
| | - Andrea Blasi
- Laboratory of Research, Faculty of Odontology, University Complutense, Madrid, Spain
| | - Mari Carmen Sánchez
- Laboratory of Research, Faculty of Odontology, University Complutense, Madrid, Spain
| | - Rubén León
- Laboratory of Research, Faculty of Odontology, University Complutense, Madrid, Spain
| | - Mariano Sanz
- Section of Periodontology, Faculty of Odontology, University Complutense, Madrid, Spain; ETEP (Etiology and Therapy of Periodontal Diseases) Research Group, University Complutense, Madrid, Spain
| |
Collapse
|
21
|
Aggregatibacter actinomycetemcomitans outer membrane vesicles are internalized in human host cells and trigger NOD1- and NOD2-dependent NF-κB activation. Infect Immun 2014; 82:4034-46. [PMID: 25024364 DOI: 10.1128/iai.01980-14] [Citation(s) in RCA: 96] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Aggregatibacter actinomycetemcomitans is an oral and systemic pathogen associated with aggressive forms of periodontitis and with endocarditis. We recently demonstrated that outer membrane vesicles (OMVs) disseminated by A. actinomycetemcomitans could deliver multiple proteins, including biologically active cytolethal distending toxin (CDT), into the cytosol of HeLa cells and human gingival fibroblasts (HGF). In the present work, we have used immunoelectron and confocal microscopy analysis and fluorescently labeled vesicles to further investigate mechanisms for A. actinomycetemcomitans OMV-mediated delivery of bacterial antigens to these host cells. Our results supported that OMVs were internalized into the perinuclear region of HeLa cells and HGF. Colocalization analysis revealed that internalized OMVs colocalized with the endoplasmic reticulum and carried antigens, detected using an antibody specific to whole A. actinomycetemcomitans serotype a cells. Consistent with OMV internalization mediating intracellular antigen exposure, the vesicles acted as strong inducers of cytoplasmic peptidoglycan sensor NOD1- and NOD2-dependent NF-κB activation in human embryonic kidney cells. Moreover, NOD1 was the main sensor of OMV-delivered peptidoglycan in myeloid THP1 cells, contributing to the overall inflammatory responses induced by the vesicles. This work reveals a role of A. actinomycetemcomitans OMVs as a trigger of innate immunity via carriage of NOD1- and NOD2-active pathogen-associated molecular patterns (PAMPs).
Collapse
|
22
|
Brígido JA, da Silveira VRS, Rego RO, Nogueira NAP. Serotypes of Aggregatibacter actinomycetemcomitans in relation to periodontal status and geographic origin of individuals-a review of the literature. Med Oral Patol Oral Cir Bucal 2014; 19:e184-91. [PMID: 24316700 PMCID: PMC4015043 DOI: 10.4317/medoral.19304] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2013] [Accepted: 09/06/2013] [Indexed: 02/02/2023] Open
Abstract
Objectives: Several studies have focused on the relationship among serotype distribution, ethnical status and geographic populations, and periodontal conditions. Studies that have investigated the prevalence and the distribution of A. actinomycetemcomitans serotypes and the relation between the different serotypes of the bacterium and periodontal status were reviewed.
Material and Methods: A systematic literature search for publications regarding the distribution of A. actinomycetemcomitans serotypes in subgingival samples of periodontitis patients and periodontally healthy subjects by employing polymerase chain reaction (PCR) was conducted.
Results: From the 85 studies identified in the first analysis, only 12 met all inclusion and exclusion criteria. Clinical isolates from diverse geographic populations with different periodontal conditions were evaluated. Serotypes a, b and c were largely found, and serotype c was the most prevalent. They were isolated from various periodontal conditions, including aggressive periodontitis.
Conclusions: The available literature suggests that serotypes a, b, and c are globally dominant, serotypes d and e are rare, and the prevalence of the most recently identified serotype fis still unknown. It is widely accepted that distribution patterns of A. actinomycetemcomitans vary among subjects of different ethnicity and geographic regions. The correlation of different serotypes with various periodontal conditions remains unclear.
Key words:Aggregatibacter actinomycetemcomitans, serotypes, periodontal disease, prevalence.
Collapse
Affiliation(s)
- J-A Brígido
- Rua Monsenhor Furtado s/n, Bairro Rodolfo Teófilo, Fortaleza, Ceará, CEP 60430-170, Brazil,
| | | | | | | |
Collapse
|
23
|
Tsuzukibashi O, Saito M, Kobayashi T, Umezawa K, Nagahama F, Hiroi T, Hirasawa M, Takada K. A gene cluster for the synthesis of serotype g-specific polysaccharide antigen in Aggregatibacter actinomycetemcomitans. Arch Microbiol 2014; 196:261-5. [PMID: 24562973 DOI: 10.1007/s00203-014-0965-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2014] [Accepted: 02/10/2014] [Indexed: 11/29/2022]
Abstract
Aggregatibacter actinomycetemcomitans is an important pathogen related to aggressively progressive periodontal breakdown in adolescents and adults. The species can be divided into six serotypes (a-f) according to their surface carbohydrate antigens. Recently, a new serotype g of A. actinomycetemcomitans was proposed. The aim of the present study was to sequence the gene cluster associated with the biosynthesis of the serotype g-specific polysaccharide antigen and develop serotype-specific primers for PCR assay to identify serotype g strains of A. actinomycetemcomitans. The serotype-specific polysaccharide (SSPS) gene cluster of the NUM-Aa 4039 strain contained 21 genes in 21,842-bp nucleotides. The similarity of the SSPS gene cluster sequence was 96.7 % compared with that of the serotype e strain. Seventeen serotype g genes showed more than 90 % homology both in nucleotide and amino acids to the serotype e strain. Three additional genes with 1,579 bp in NUM-Aa 4039 were inserted into the corresponding ORF13 of the serotype e strain. The serotype g-specific primers were designed from the insertion region of NUM-Aa 4039. Serotypes of the a-f strains were not amplified by serotype-specific g primers; only NUM-Aa 4039 showed an amplicon band. The NUM-Aa 4039 strain was three genes in the SSPS gene cluster different from those of serotype e strain. The specific primers derived from these different regions are useful for identification and distribution of serotype g strain among A. actinomycetemcomitans from clinical samples.
Collapse
Affiliation(s)
- Osamu Tsuzukibashi
- Department of Oral Microbiology, Nihon University School of Dentistry at Matsudo, 2-870-1 Sakaecho-Nishi, Matsudo, Chiba, 271-8587, Japan
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Sun R, Kittichotirat W, Wang J, Jan M, Chen W, Asikainen S, Bumgarner R, Chen C. Genomic Stability of Aggregatibacter actinomycetemcomitans during Persistent Oral Infection in Human. PLoS One 2013; 8:e66472. [PMID: 23824402 PMCID: PMC3688926 DOI: 10.1371/journal.pone.0066472] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2013] [Accepted: 05/07/2013] [Indexed: 01/22/2023] Open
Abstract
The genome of periodontal pathogen Aggregatibacter actinomycetemcomitans exhibits substantial variations in gene content among unrelated strains primarily due to the presence or absence of genomic islands. This study examined the genomic stability of A. actinomycetemcomitans during its persistent infection in the same host. Four pairs of A. actinomycetemcomitans strains, each pair isolated from an individual over time (0–10 years), were examined for their gains/losses of genes by whole genome sequencing, comparative genomic hybridization by microarray and PCR analysis. Possible effects due to genomic changes were further assessed by comparative transcriptome analysis using microarrays. The results showed that each pair of strains was clonally identical based on phylogenetic analysis of 150 core genes. A novel 24.1-Kb plasmid found in strain S23A was apparently lost in the sibling strain I23C. A 353-bp inversion affecting two essential genes of the serotype-specific gene cluster was found in the serotype antigen-nonexpressing strain I23C, while the same gene cluster was intact in the serotype-expressing sibling strain S23A. A 2,293-bp deletion affecting a gene encoding oxaloacetate decarboxylase and its neighbor region was found in strain SCC2302 but not in the sibling strain AAS4a. However, no evidence of gains or losses of genomic islands was found in the paired strains. Transcriptome profiles showed little or no difference in the paired strains. In conclusion, the genome of A. actinomycetemcomitans appears to be relatively stable during short-term infection. Several types of genomic changes were observed in the paired strains of A. actinomycetemcomitans recovered from the same subjects, including a mutation in serotype-specific gene cluster that may allow the bacteria to evade host immune response.
Collapse
Affiliation(s)
- Ruoxing Sun
- Division of Periodontology, Diagnostic Sciences and Dental Hygiene, Herman Ostrow School of Dentistry of the University of Southern California, Los Angeles, California, United States of America
| | - Weerayuth Kittichotirat
- Department of Microbiology, University of Washington, Seattle, Washington, United States of America
- Systems Biology and Bioinformatics Research Group, Pilot Plant, Development and Training Institute, King Mongkut's University of Technology Thonburi, Bangkhuntien, Bangkok, Thailand
| | - Justin Wang
- Division of Periodontology, Diagnostic Sciences and Dental Hygiene, Herman Ostrow School of Dentistry of the University of Southern California, Los Angeles, California, United States of America
| | - Minnie Jan
- Division of Periodontology, Diagnostic Sciences and Dental Hygiene, Herman Ostrow School of Dentistry of the University of Southern California, Los Angeles, California, United States of America
| | - Weizhen Chen
- Division of Periodontology, Diagnostic Sciences and Dental Hygiene, Herman Ostrow School of Dentistry of the University of Southern California, Los Angeles, California, United States of America
| | | | - Roger Bumgarner
- Department of Microbiology, University of Washington, Seattle, Washington, United States of America
| | - Casey Chen
- Division of Periodontology, Diagnostic Sciences and Dental Hygiene, Herman Ostrow School of Dentistry of the University of Southern California, Los Angeles, California, United States of America
- * E-mail:
| |
Collapse
|
25
|
Höglund Åberg C, Antonoglou G, Haubek D, Kwamin F, Claesson R, Johansson A. Cytolethal distending toxin in isolates of Aggregatibacter actinomycetemcomitans from Ghanaian adolescents and association with serotype and disease progression. PLoS One 2013; 8:e65781. [PMID: 23922633 PMCID: PMC3683020 DOI: 10.1371/journal.pone.0065781] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2013] [Accepted: 04/28/2013] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND AND OBJECTIVES The cytolethal distending toxin (Cdt) is a highly conserved exotoxin that are produced by a number of Gram negative bacteria, including Aggregatibacter actinomycetemcomitans, and affects mammalian cells by inhibiting cell division and causing apoptosis. A complete cdt-operon is present in the majority of A. actinomycetemcomitans, but the proportion of isolates that lack cdt-encoding genes (A, B and C) varies according to the population studied. The objectives of this study were to examine serotype, Cdt-genotype, and Cdt-activity in isolates of A. actinomycetemcomitans collected from an adolescent West African population and to examine the association between the carrier status of A. actinomycetemcomitans and the progression of attachment loss (AL). MATERIALS AND METHODS A total of 249 A. actinomycetemcomitans isolates from 200 Ghanaian adolescents were examined for serotype and cdt-genotype by PCR. The activity of the Cdt-toxin was examined by DNA-staining of exposed cultured cells and documented with flow cytometry. The periodontal status of the participants was examined at baseline and at a two-year follow-up. RESULTS Presence of all three cdt-encoding genes was detected in 79% of the examined A. actinomycetemcomitans isolates. All these isolates showed a substantial Cdt-activity. The two different cdt-genotypes (with and without presence of all three cdt-encoding genes) showed a serotype-dependent distribution pattern. Presence of A. actinomycetemcomitans was significantly associated with progression of AL (OR = 5.126; 95% CI = [2.994-8.779], p<0.001). CONCLUSION A. actinomycetemcomitans isolated from the Ghanaian adolescents showed a distribution of serotype and cdt-genotype in line with results based on other previously studied populations. Presence of A. actinomycetemcomitans was significantly associated with disease progression, in particular the b serotype, whereas the association with disease progression was not particularly related to cdt-genotype, and Cdt-activity.
Collapse
Affiliation(s)
- Carola Höglund Åberg
- Division of Molecular Periodontology, Department of Odontology, Faculty of Medicine, Umeå University, Umeå, Sweden
| | - Georgios Antonoglou
- Division of Molecular Periodontology, Department of Odontology, Faculty of Medicine, Umeå University, Umeå, Sweden
| | - Dorte Haubek
- Section for Pediatric Dentistry, Department of Dentistry, Health, Aarhus University, Aarhus, Denmark
| | | | - Rolf Claesson
- Division of Oral Microbiology, Department of Odontology, Faculty of Medicine, Umeå University, Umeå, Sweden
| | - Anders Johansson
- Division of Molecular Periodontology, Department of Odontology, Faculty of Medicine, Umeå University, Umeå, Sweden
- * E-mail:
| |
Collapse
|
26
|
Kikuchi H, Fujise O, Miura M, Tanaka A, Hisano K, Haraguchi A, Hamachi T, Maeda K. Serotype-dependent expression patterns of stabilized lipopolysaccharide aggregates inAggregatibacter actinomycetemcomitansstrains. Microbiol Immunol 2012; 56:680-91. [DOI: 10.1111/j.1348-0421.2012.00492.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
27
|
Bandhaya P, Saraithong P, Likittanasombat K, Hengprasith B, Torrungruang K. Aggregatibacter actinomycetemcomitans serotypes, the JP2 clone and cytolethal distending toxin genes in a Thai population. J Clin Periodontol 2012; 39:519-25. [PMID: 22471788 DOI: 10.1111/j.1600-051x.2012.01871.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/18/2012] [Indexed: 11/27/2022]
Abstract
AIM To examine the genetic diversity of Aggregatibacter actinomycetemcomitans in Thai adults. MATERIALS AND METHODS Subgingival plaque samples from 453 subjects were analysed for A. actinomycetemcomitans serotypes, the presence of the high leukotoxin-producing JP2 clone and cytolethal distending toxin genes (cdtABC) using the polymerase chain reaction technique. In subjects who were positive for cdtABC, restriction fragment length polymorphism analysis was used to identify a single nucleotide polymorphism (SNP) in the cdtB gene at amino acid position 281. The extent and severity of periodontal disease were compared between subjects harbouring different A. actinomycetemcomitans genotypes. RESULTS Eighty six subjects (19%) were positive for A. actinomycetemcomitans. The JP2 clone was not detected. Serotype c was the most prevalent (57%), followed by serotypes a (33%) and b (7%). Among A. actinomycetemcomitans-positive subjects, 27% were positive for cdtABC. All cdtABC-positive subjects possessed the SNP in the cdtB, which is involved with increased toxin activity. The presence of A. actinomycetemcomitans, but not a specific genotype, was significantly related to increased probing depth and periodontal attachment loss. CONCLUSIONS Our results confirm the previous findings that genotype distribution of A. actinomycetemcomitans varies between ethnic groups. However, no clear relationship between a specific genotype and periodontal conditions was observed.
Collapse
Affiliation(s)
- Panwadee Bandhaya
- Section of Periodontology, Department of Restorative Dentistry and Periodontology, Faculty of Dentistry, Chiang Mai University, Chiang Mai, Thailand
| | | | | | | | | |
Collapse
|
28
|
Genome sequence of Aggregatibacter actinomycetemcomitans RHAA1, isolated from a rhesus macaque, an Old World primate. J Bacteriol 2012; 194:1275-6. [PMID: 22328766 DOI: 10.1128/jb.06710-11] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Aggregatibacter actinomycetemcomitans is implicated in localized aggressive periodontitis. We report the first genome sequence of an A. actinomycetemcomitans strain isolated from an Old World primate.
Collapse
|
29
|
Jentsch H, Cachovan G, Guentsch A, Eickholz P, Pfister W, Eick S. Characterization of Aggregatibacter actinomycetemcomitans strains in periodontitis patients in Germany. Clin Oral Investig 2012; 16:1589-97. [DOI: 10.1007/s00784-012-0672-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2011] [Accepted: 01/02/2012] [Indexed: 11/30/2022]
|
30
|
Perinuclear localization of internalized outer membrane vesicles carrying active cytolethal distending toxin from Aggregatibacter actinomycetemcomitans. Infect Immun 2011; 80:31-42. [PMID: 22025516 DOI: 10.1128/iai.06069-11] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Aggregatibacter actinomycetemcomitans is implicated in aggressive forms of periodontitis. Similarly to several other Gram-negative species, this organism produces and excretes a cytolethal distending toxin (CDT), a genotoxin associated with cell distention, G2 cell cycle arrest, and/or apoptosis in many mammalian cell types. In this study, we have identified A. actinomycetemcomitans outer membrane vesicles (OMVs) as a vehicle for simultaneous delivery of multiple proteins, including CDT, into human cells. The OMV proteins were internalized in both HeLa cells and human gingival fibroblasts (HGF) via a mechanism of OMV fusion with lipid rafts in the plasma membrane. The active toxin unit, CdtB, was localized inside the nucleus of the intoxicated cells, whereas OmpA and proteins detected using an antibody specific to whole A. actinomycetemcomitans serotype a cells had a perinuclear distribution. In accordance with a tight association of CdtB with OMVs, vesicles isolated from A. actinomycetemcomitans strain D7SS (serotype a), in contrast to OMVs from a D7SS cdtABC mutant, induced a cytolethal distending effect on HeLa and HGF cells, indicating that OMV-associated CDT was biologically active. Association of CDT with OMVs was also observed in A. actinomycetemcomitans isolates belonging to serotypes b and c, indicating that OMV-mediated release of CDT may be conserved in A. actinomycetemcomitans. Although the role of A. actinomycetemcomitans OMVs in periodontal disease has not yet been elucidated, our present data suggest that OMVs could deliver biologically active CDT and additional virulence factors into susceptible cells of the periodontium.
Collapse
|
31
|
Isolation of a novel Aggregatibacter actinomycetemcomitans serotype b bacteriophage capable of lysing bacteria within a biofilm. Appl Environ Microbiol 2011; 77:3157-9. [PMID: 21378052 DOI: 10.1128/aem.02115-10] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
A bacteriophage specific for Aggregatibacter actinomycetemcomitans serotype b, able to kill the bacterium within a biofilm, was isolated. Random mutagenesis of this phage rendered a bacteriophage able to kill 99% of the bacteria within a biofilm. This is the first report of a biocontrol experiment against A. actinomycetemcomitans.
Collapse
|
32
|
Bizzarro S, Nicu EA, van der Velden U, Laine ML, Loos BG. Association of serum immunoglobulin G (IgG) levels against two periodontal pathogens and prothrombotic state: a clinical pilot study. Thromb J 2010; 8:16. [PMID: 21050426 PMCID: PMC2989307 DOI: 10.1186/1477-9560-8-16] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2010] [Accepted: 11/04/2010] [Indexed: 11/10/2022] Open
Abstract
OBJECTIVE Periodontitis is associated with cardiovascular diseases (CVD). In our previous studies a prothrombotic state has been observed in periodontitis, which contributes to the risk of CVD. The aim of this study was to investigate whether serum IgG levels against Aggregatibacter actinomycetemcomitans (Aa) and Porphyromonas gingivalis (Pg) in periodontitis were associated with a prothrombotic state. MATERIALS AND METHODS Patients with moderate (n = 38) and severe periodontitis (n = 30) and controls (n = 24) were recruited. We explored correlations between serum anti-Aa and anti-Pg IgG and plasma levels of markers of prothrombotic state (von Willebrand Factor [vWF], prothrombin fragment 1+2 [F1+2], plasminogen activator inhibitor-1 [PAI-1] and D-dimer). Multivariate analyses were performed considering several major potential contributing factors. RESULTS Periodontitis patients showed higher anti-Aa IgG (p = 0.015) than controls but not for Pg (p = 0.320). In periodontitis patients, body mass index and anti-Aa IgG showed a positive correlation with vWF (β = 0.297, p = 0.010 and β = 0.248, p = 0.033 respectively). CONCLUSIONS In periodontitis, infection with Aa together with other well accepted risk factors for CVD, may play a role in increasing the risk for prothrombotic state.
Collapse
Affiliation(s)
- Sergio Bizzarro
- Department of Periodontology, Academic Center for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije University, Amsterdam, The Netherlands.
| | | | | | | | | |
Collapse
|
33
|
van der Reijden WA, Brunner J, Bosch-Tijhof CJ, van Trappen S, Rijnsburger MC, de Graaff MP, van Winkelhoff AJ, Cleenwerck I, de Vos P. Phylogenetic variation of Aggregatibacter actinomycetemcomitans serotype e reveals an aberrant distinct evolutionary stable lineage. INFECTION GENETICS AND EVOLUTION 2010; 10:1124-31. [DOI: 10.1016/j.meegid.2010.07.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2010] [Revised: 07/10/2010] [Accepted: 07/12/2010] [Indexed: 12/18/2022]
|
34
|
HAUBEK DORTE. The highly leukotoxic JP2 clone of Aggregatibacter actinomycetemcomitans: evolutionary aspects, epidemiology and etiological role in aggressive periodontitis. APMIS 2010:1-53. [DOI: 10.1111/j.1600-0463.2010.02665.x] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
35
|
Chen C, Wang T, Chen W. Occurrence of Aggregatibacter actinomycetemcomitans serotypes in subgingival plaque from United States subjects. Mol Oral Microbiol 2010; 25:207-14. [PMID: 20536748 DOI: 10.1111/j.2041-1014.2010.00567.x] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
This study examined the distribution pattern of Aggregatibacter actinomycetemcomitans serotypes in the subgingival plaque of subjects residing in the United States. A. actinomycetemcomitans was identified in 256 subgingival plaque samples from 161 subjects. For 190 of the 256 samples, the total cultivable bacteria and selected periodontal pathogenic species were determined. A. actinomycetemcomitans isolates were confirmed by a16S rDNA-based PCR analysis, genotyped by arbitrarily-primed PCR, and serotyped by PCR analysis of serotype-specific gene clusters. A total of 82 distinct A. actinomycetemcomitans strains were identified. The serotype distribution pattern of the strains was 21 (25.6%) serotype a, 12 (14.6%) b, 41 (50%) c, 6 (7.3%) e, 1 (1.2%) f, and 1 (1.2%) non-typeable. For 14 subjects where multiple colonies of A. actinomycetemcomitans were identified, 11 subjects (78.6%) were each infected by a single serotype, while the remaining three subjects (21.3%) were each infected by two serotypes of A. actinomycetemcomitans. There was an inverse relationship between the level of cultivable A. actinomycetemcomitans and Porphyromonas gingivalis. Within subgingival plaque of study cohort A. actinomycetemcomitans serotype c was the dominant serotype and comprised 50% of all strains, followed by (in order of detection frequency) serotypes a and b. Serotypes d, e, and f strains were either not detected or less frequently found. Serotype distribution patterns of subgingival A. actinomycetemcomitans may vary among subjects of different race orethnicity.
Collapse
Affiliation(s)
- C Chen
- Division of Periodontology, Diagnostic Sciences & Dental Hygiene, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, CA 90089, USA.
| | | | | |
Collapse
|
36
|
Henderson B, Ward JM, Ready D. Aggregatibacter (Actinobacillus) actinomycetemcomitans: a triple A* periodontopathogen? Periodontol 2000 2010; 54:78-105. [DOI: 10.1111/j.1600-0757.2009.00331.x] [Citation(s) in RCA: 145] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
37
|
Cai X, Zong G, Xu Y, Zhang J, Liang X, Wang D. Efficient synthesis of a 6-deoxytalose tetrasaccharide related to the antigenic O-polysaccharide produced by Aggregatibacter actinomycetemcomitans serotype c. Carbohydr Res 2010; 345:1230-4. [DOI: 10.1016/j.carres.2010.04.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2010] [Revised: 03/31/2010] [Accepted: 04/09/2010] [Indexed: 11/25/2022]
|
38
|
Takada K, Saito M, Tsuzukibashi O, Kawashima Y, Ishida S, Hirasawa M. Characterization of a new serotype g isolate of Aggregatibacter actinomycetemcomitans. Mol Oral Microbiol 2010; 25:200-6. [DOI: 10.1111/j.2041-1014.2010.00572.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
39
|
Kim TS, Frank P, Eickholz P, Eick S, Kim CK. Serotypes of Aggregatibacter actinomycetemcomitans in patients with different ethnic backgrounds. J Periodontol 2010; 80:2020-7. [PMID: 19961385 DOI: 10.1902/jop.2009.090241] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
BACKGROUND The identification of Aggregatibacter actinomycetemcomitans (previously Actinobacillus actinomycetemcomitans) serotypes may add some important information to the understanding of the pathogenetic background of severe periodontal infections. This study compared serotypes of A. actinomycetemcomitans in two groups of periodontal patients with different ethnic backgrounds. METHODS A total of 194 patients (96 Germans and 98 Koreans) with aggressive or severe chronic periodontitis participated in the study. Microbiologic analysis of pooled samples from subgingival plaque was performed by using a real-time polymerase chain reaction (PCR) test for A. actinomycetemcomitans. In patients who tested positive for A. actinomycetemcomitans, serotypes (a through f) were determined by nucleic acid-based methods. RESULTS The prevalence of patients who tested positive for A. actinomycetemcomitans with the real-time PCR was comparable in both groups (Germans: 27.0%; Koreans: 22.2%). In German patients, the serotypes detected most frequently were b (33.3%), c (25.0%), and a (20.8%), whereas in Korean patients, the serotype distribution was different, with serotypes c (61.9%) and d (19.0%) accounting for >80% of the complete serotype spectrum. CONCLUSION Even if the percentage of patients who tested positive for A. actinomycetemcomitans was identical in patients with generalized aggressive and severe chronic periodontitis and different ethnic backgrounds, the distribution of A. actinomycetemcomitans serotypes may exhibit marked differences.
Collapse
Affiliation(s)
- Ti-Sun Kim
- Section of Periodontology, Department of Operative Dentistry, University Hospital Heidelberg, Heidelberg, Germany.
| | | | | | | | | |
Collapse
|
40
|
Prevalence and distribution of serotype-specific genotypes of Aggregatibacter actinomycetemcomitans in chronic periodontitis Brazilian subjects. Arch Oral Biol 2010; 55:242-8. [DOI: 10.1016/j.archoralbio.2010.01.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2009] [Revised: 01/05/2010] [Accepted: 01/25/2010] [Indexed: 11/18/2022]
|
41
|
Kanasi E, Doğan B, Karched M, Thay B, Oscarsson J, Asikainen S. Lack of Serotype Antigen in A. actinomycetemcomitans. J Dent Res 2010; 89:292-6. [DOI: 10.1177/0022034509358865] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Aggregatibacter actinomycetemcomitans is divided into 6 serotypes. Occurrence of non-serotypeable strains is known, but background reasons are unclear. We hypothesized that non-serotypeable strains represent new serotypes or have altered expression of serotype-specific polysaccharide antigen (S-PA). We first characterized 311 strains from 189 individuals using both immunoassay- and PCR-based serotyping. Next, using natural human infection and rabbit immunization approaches, we clarified whether the phenotypically non-serotypeable strains expressed S-PA. Immunoassay identified serotypes a–f among 216 strains from 159 individuals. The remaining 95 strains from 30 individuals were phenotypically non-serotypeable. Yet, all these strains were identified by PCR-typing as serotype a-, b-, c-, or f. Non-serotypeability was confirmed by Western immunoblot with respective rabbit antisera. Patient sera remained non-reactive with autologous non-serotypeable strains at the serotype-specific region. Rabbit immunization with a phenotypically non-serotypeable strain induced no antibody production against S-PA. Thus, phenotypically non-serotypeable strains did not include novel serotypes, but lacked S-PA expression.
Collapse
Affiliation(s)
- E. Kanasi
- Section of Oral Microbiology, Institute of Odontology, Umeå University, Umeå SE-90187, Sweden; and
- Marmara University, Faculty of Dentistry, Department of Periodontology, Istanbul, Turkey
| | - B. Doğan
- Section of Oral Microbiology, Institute of Odontology, Umeå University, Umeå SE-90187, Sweden; and
- Marmara University, Faculty of Dentistry, Department of Periodontology, Istanbul, Turkey
| | - M. Karched
- Section of Oral Microbiology, Institute of Odontology, Umeå University, Umeå SE-90187, Sweden; and
- Marmara University, Faculty of Dentistry, Department of Periodontology, Istanbul, Turkey
| | - B. Thay
- Section of Oral Microbiology, Institute of Odontology, Umeå University, Umeå SE-90187, Sweden; and
- Marmara University, Faculty of Dentistry, Department of Periodontology, Istanbul, Turkey
| | - J. Oscarsson
- Section of Oral Microbiology, Institute of Odontology, Umeå University, Umeå SE-90187, Sweden; and
- Marmara University, Faculty of Dentistry, Department of Periodontology, Istanbul, Turkey
| | - S. Asikainen
- Section of Oral Microbiology, Institute of Odontology, Umeå University, Umeå SE-90187, Sweden; and
- Marmara University, Faculty of Dentistry, Department of Periodontology, Istanbul, Turkey
| |
Collapse
|
42
|
Kawamoto D, Ando ES, Longo PL, Nunes ACR, Wikström M, Mayer MPA. Genetic diversity and toxic activity ofAggregatibacter actinomycetemcomitansisolates. ACTA ACUST UNITED AC 2009; 24:493-501. [DOI: 10.1111/j.1399-302x.2009.00547.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
43
|
Haubek D, Ennibi OK, Væth M, Poulsen S, Poulsen K. Stability of the JP2 Clone of Aggregatibacter actinomycetemcomitans. J Dent Res 2009; 88:856-60. [DOI: 10.1177/0022034509342190] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The JP2 clone of Aggregatibacter actinomycetemcomitans is strongly associated with aggressive periodontitis. To obtain information about colonization dynamics of the JP2 clone, we used PCR to examine its presence in 365 Moroccan juveniles from whom periodontal plaque samples were collected at baseline and after one and two years. Periodontal attachment loss was measured at baseline and at the two-year follow-up. At baseline, 43 (12%) carriers of the JP2 clone were found. Nearly half (44 %) of these were persistently colonized with the clone. The relative risk for the development of aggressive periodontitis, adjusted for the concomitant presence of other genotypes of A. actinomycetemcomitans, was highest for individuals continuously infected by the JP2 clone (RR = 13.9; 95% CI, 9.0 to 21.4), indicating a relationship between infectious dose and disease, which further substantiates the evidence for the JP2 clone as a causal factor in aggressive periodontitis.
Collapse
Affiliation(s)
- D. Haubek
- Department of Pediatric Dentistry, School of Dentistry, Vennelyst Boulevard 9, DK-8000 Aarhus C,
- Department of Medical Microbiology and Immunology, Wilhelm Meyers Allé, DK-8000 Aarhus C, and
- Department of Biostatistics, Vennelyst Boulevard 6, DK-8000 Aarhus C, Faculty of Health Sciences, University of Aarhus, Aarhus, Denmark; and
- Department of Periodontology, Dental Faculty, University of Rabat, BP 6212 Les Institutes Rabat, Morocco
| | - O.-K. Ennibi
- Department of Pediatric Dentistry, School of Dentistry, Vennelyst Boulevard 9, DK-8000 Aarhus C,
- Department of Medical Microbiology and Immunology, Wilhelm Meyers Allé, DK-8000 Aarhus C, and
- Department of Biostatistics, Vennelyst Boulevard 6, DK-8000 Aarhus C, Faculty of Health Sciences, University of Aarhus, Aarhus, Denmark; and
- Department of Periodontology, Dental Faculty, University of Rabat, BP 6212 Les Institutes Rabat, Morocco
| | - M. Væth
- Department of Pediatric Dentistry, School of Dentistry, Vennelyst Boulevard 9, DK-8000 Aarhus C,
- Department of Medical Microbiology and Immunology, Wilhelm Meyers Allé, DK-8000 Aarhus C, and
- Department of Biostatistics, Vennelyst Boulevard 6, DK-8000 Aarhus C, Faculty of Health Sciences, University of Aarhus, Aarhus, Denmark; and
- Department of Periodontology, Dental Faculty, University of Rabat, BP 6212 Les Institutes Rabat, Morocco
| | - S. Poulsen
- Department of Pediatric Dentistry, School of Dentistry, Vennelyst Boulevard 9, DK-8000 Aarhus C,
- Department of Medical Microbiology and Immunology, Wilhelm Meyers Allé, DK-8000 Aarhus C, and
- Department of Biostatistics, Vennelyst Boulevard 6, DK-8000 Aarhus C, Faculty of Health Sciences, University of Aarhus, Aarhus, Denmark; and
- Department of Periodontology, Dental Faculty, University of Rabat, BP 6212 Les Institutes Rabat, Morocco
| | - K. Poulsen
- Department of Pediatric Dentistry, School of Dentistry, Vennelyst Boulevard 9, DK-8000 Aarhus C,
- Department of Medical Microbiology and Immunology, Wilhelm Meyers Allé, DK-8000 Aarhus C, and
- Department of Biostatistics, Vennelyst Boulevard 6, DK-8000 Aarhus C, Faculty of Health Sciences, University of Aarhus, Aarhus, Denmark; and
- Department of Periodontology, Dental Faculty, University of Rabat, BP 6212 Les Institutes Rabat, Morocco
| |
Collapse
|
44
|
Aberg CH, Sjödin B, Lakio L, Pussinen PJ, Johansson A, Claesson R. Presence of Aggregatibacter actinomycetemcomitans in young individuals: a 16-year clinical and microbiological follow-up study. J Clin Periodontol 2009; 36:815-22. [PMID: 19678862 DOI: 10.1111/j.1600-051x.2009.01457.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
AIM To look for clinical signs of periodontal disease in young adults who exhibited radiographic bone loss and detectable numbers of Aggregatibacter actinomycetemcomitans in their primary dentition. MATERIAL AND METHODS Periodontal status and radiographic bone loss were examined in each of the subjects 16 years after the baseline observations. Techniques for anaerobic and selective culture, and checkerboard, were used to detect periodontitis-associated bacterial species. The isolated A. actinomycetemcomitans strains were characterized by polymerase chain reaction. RESULTS Signs of localized attachment loss were found in three out of the 13 examined subjects. A. actinomycetemcomitans was recovered from six of these subjects and two of these samples were from sites with deepened probing depths and attachment loss. Among the isolated A. actinomycetemcomitans strains, serotypes a-c and e, but not d or f, were found. None of the isolated strains belonged to the highly leucotoxic JP2 clone, and one strain lacked genes for the cytolethal distending toxin. CONCLUSIONS This study indicates that the presence of A. actinomycetemcomitans and early bone loss in the primary dentition does not necessarily predispose the individual to periodontal attachment loss in the permanent dentition.
Collapse
Affiliation(s)
- Carola Höglund Aberg
- Department of Odontology, Division of Periodontology, Faculty of Medicine, Umeå University, Umeå, Sweden
| | | | | | | | | | | |
Collapse
|
45
|
Transcriptional and translational analysis of biofilm determinants of Aggregatibacter actinomycetemcomitans in response to environmental perturbation. Infect Immun 2009; 77:2896-907. [PMID: 19433550 DOI: 10.1128/iai.00126-09] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Fimbriae, lipopolysaccharide (LPS), and extracellular polymeric substance (EPS) all contribute to biofilm formation by the periodontopathogen Aggregatibacter actinomycetemcomitans. To understand how individual biofilm determinants respond to changing environmental conditions, the transcription of genes responsible for fimbria, LPS, and EPS production, as well as the translation of these components, was determined in rough (Rv) and isogenic smooth (Sv) variants of A. actinomycetemcomitans cultured in half-strength and full-strength culture medium under anaerobic or aerobic conditions, and in iron-supplemented and iron-chelated medium. The transcription of tadV (fimbrial assembly), pgaC (extracellular polysaccharide synthesis), and orf8 or rmlB (lipopolysaccharide synthesis) was measured by real-time PCR. The amounts of fimbriae, LPS, and EPS were also estimated from stained sodium dodecyl sulfate-polyacrylamide gels and verified by Western blotting and enzyme-linked immunoadsorbent assay using specific antibodies. Each gene was significantly upregulated in the Rv compared to in the Sv. The transcription of fimbrial, LPS, and EPS genes in the Rv was increased approximately twofold in cells cultured in full-strength medium under anaerobic conditions compared to that in cells cultured under aerobic conditions. Under anaerobic conditions, the transcription of fimbrial and EPS enzymes was elevated in both Rv and Sv cells cultured in half-strength medium, compared to that in full-strength medium. Iron chelation also increased the transcription and translation of all biofilm determinants compared to their expression with iron supplementation, yet the quantity of biofilm was not significantly changed by any environmental perturbation except iron limitation. Thus, anaerobic conditions, nutrient stress, and iron limitation each upregulate known biofilm determinants of A. actinomycetemcomitans to contribute to biofilm formation.
Collapse
|
46
|
Rylev M, Kilian M. Prevalence and distribution of principal periodontal pathogens worldwide. J Clin Periodontol 2009; 35:346-61. [PMID: 18724862 DOI: 10.1111/j.1600-051x.2008.01280.x] [Citation(s) in RCA: 130] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND Detailed genetic analysis of bacteria has demonstrated an unanticipated genetic diversity within species, which often reveals evolutionary lineages that are disproportionately associated with infection. There is evidence that some evolutionary lineages of bacteria have adapted to particular ethnic groups. AIM This review analyzes to what extent observed differences in periodontal disease prevalence among ethnically or geographically distinct populations may be explained by restricted host adaptation of clones of principal periodontal pathogens. RESULTS Carriage rates of several putative periodontal pathogens and particular subsets of these species vary between ethnic groups. Few of these differences can, with the limited information available, be directly related to differences in periodontal disease prevalence. Asian populations are regularly colonized with Actinobacillus actinomycetemcomitans serotype c with questionable pathogenic potential. Conversely, the JP2 clone of A. actinomycetemcomitans has enhanced virulence and causes significantly higher prevalence of aggressive periodontitis in adolescents whose descent can be traced back to the Mediterranean and Western parts of Africa. Some genetically distinct types of Porphyromonas gingivalis are more associated with disease than others, but additional work is required to relate this to clinical differences. CONCLUSIONS Studies that take into account differences linked to the genetics of both patients and potential pathogens are likely to give better insight into the aetiology of periodontal diseases.
Collapse
Affiliation(s)
- Mette Rylev
- Institute of Medical Microbiology and Immunology, University of Aarhus, Aarhus, Denmark.
| | | |
Collapse
|
47
|
Oscarsson J, Karched M, Thay B, Chen C, Asikainen S. Proinflammatory effect in whole blood by free soluble bacterial components released from planktonic and biofilm cells. BMC Microbiol 2008; 8:206. [PMID: 19038023 PMCID: PMC2612679 DOI: 10.1186/1471-2180-8-206] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2008] [Accepted: 11/27/2008] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Aggregatibacter actinomycetemcomitans is an oral bacterium associated with aggressive forms of periodontitis. Increasing evidence points to a link between periodontitis and cardiovascular diseases, however, the underlying mechanisms are poorly understood. This study investigated the pathogenic potential of free-soluble surface material, released from live planktonic and biofilm A. actinomycetemcomitans cells. RESULTS By employing an ex vivo insert model (filter pore size 20 nm) we demonstrated that the A. actinomycetemcomitans strain D7S and its derivatives, in both planktonic and in biofilm life-form, released free-soluble surface material independent of outer membrane vesicles. This material clearly enhanced the production of several proinflammatory cytokines (IL-1 beta, TNF-alpha, IL-6, IL-8, MIP-1 beta) in human whole blood, as evidenced by using a cytokine antibody array and dissociation-enhanced-lanthanide-fluorescent-immunoassay. In agreement with this, quantitative real-time PCR indicated a concomitant increase in transcription of each of these cytokine genes. Experiments in which the LPS activity was blocked with polymyxin B showed that the stimulatory effect was only partly LPS-dependent, suggesting the involvement of additional free-soluble factors. Consistent with this, MALDI-TOF-MS and immunoblotting revealed release of GroEL-like protein in free-soluble form. Conversely, the immunomodulatory toxins, cytolethal distending toxin and leukotoxin, and peptidoglycan-associated lipoprotein, appeared to be less important, as evidenced by studying strain D7S cdt/ltx double, and pal single mutants. In addition to A. actinomycetemcomitans a non-oral species, Escherichia coli strain IHE3034, tested in the same ex vivo model also released free-soluble surface material with proinflammatory activity. CONCLUSION A. actinomycetemcomitans, grown in biofilm and planktonic form, releases free-soluble surface material independent of outer membrane vesicles, which induces proinflammatory responses in human whole blood. Our findings therefore suggest that release of surface components from live bacterial cells could constitute a mechanism for systemic stimulation and be of particular importance in chronic localized infections, such as periodontitis.
Collapse
Affiliation(s)
- Jan Oscarsson
- Oral Microbiology, Department of Odontology, Umeå University, SE-90187 Umeå, Sweden.
| | | | | | | | | |
Collapse
|
48
|
Fujise O, Wang Y, Chen W, Chen C. Adherence of Aggregatibacter actinomycetemcomitans via serotype-specific polysaccharide antigens in lipopolysaccharides. ACTA ACUST UNITED AC 2008; 23:226-33. [PMID: 18402609 DOI: 10.1111/j.1399-302x.2007.00416.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
INTRODUCTION Gram-negative Aggregatibacter actinomycetemcomitans is recognized as an important periodontal pathogen. A striking property of this bacterium is its ability to form a tenacious biofilm adhering to abiotic surfaces. Both fimbrial and non-fimbrial adhesins are believed to be responsible for this ability. In our study, specific markerless mutants in the biosynthesis genes of cell surface polysaccharides were constructed with the Cre-loxP recombination system to identify non-fimbrial adhesin(s). METHODS Non-fimbriated A. actinomycetemcomitans strain ATCC29523 (serotype a) was used to construct a deletion mutant of serotype-a specific polysaccharide antigen (SPA-a) in lipopolysaccharide (LPS). The LPS was purified through a polymyxin B column following phenol extraction, and verified by silver staining following sodium dodecyl sulfate-polyacrylamide gel electrophoresis and by immunoblot analysis using rabbit antisera raised against SPA-a. Strains were grown in broth for 2 days and examined for the adherence of bacterial cells on the glass surface. RESULTS Strain ATCC29523 formed a thin film of bacterial growth on the glass surface. The deletion of SPA-a affected its ability to form this thin film. When this mutant was rescued with the wild-type SPA-a gene cluster, its adherence-positive phenotype was restored. CONCLUSION SPA-a in the LPS molecule appears to promote the adherence of A. actinomycetemcomitans cells to abiotic surfaces.
Collapse
Affiliation(s)
- O Fujise
- Kyushu University Faculty of Dental Science, Fukuoka, Japan.
| | | | | | | |
Collapse
|
49
|
Wang PL, Azuma Y, Shinohara M, Ohura K. Effect ofActinobacillus actinomycetemcomitansprotease on the proliferation of gingival epithelial cells. Oral Dis 2008. [DOI: 10.1034/j.1601-0825.2001.70406.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
50
|
Tsuzukibashi O, Takada K, Saito M, Kimura C, Yoshikawa T, Makimura M, Hirasawa M. A novel selective medium for isolation of Aggregatibacter (Actinobacillus) actinomycetemcomitans. J Periodontal Res 2008; 43:544-8. [PMID: 18624937 DOI: 10.1111/j.1600-0765.2007.01074.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
BACKGROUND AND OBJECTIVE Conventional selective media have been used for the selection of Aggregatibacter (Actinobacillus) actinomycetemcomitans in clinical samples. The proportion of A. actinomycetemcomitans grown on the selective media in vitro may not reflect the true counts in vivo because of the low selectivity. A novel selective medium, designated AASM, was developed for the isolation of A. actinomycetemcomitans. MATERIAL AND METHODS AASM was prepared by adding of 200 microg/mL of vancomycin and 10 U/mL of bacitracin to AAGM, which contains dextrose, sodium bicarbonate, trypticase soy, yeast extract and agar. Clinical efficacy was evaluated by the recovery, on AASM, of A. actinomycetemcomitans from subgingival samples of 44 periodontally healthy subjects and 76 patients with chronic periodontitis. RESULTS All serotypes (a-f) of A. actinomycetemcomitans strains grew well, and the average growth recovery of A. actinomycetemcomitans on AASM medium was 94.4% (80.0-109.7%) of that on AAGM. The exclusive rate of other bacteria was 99.9% in clinical samples cultured on AASM. A. actinomycetemcomitans was not detected in periodontally healthy persons but was detected in 25 (32.9%) patients with chronic periodontitis. The predominant serotype was c, detected in 11 subjects. CONCLUSION The new selective medium, AASM, was highly selective for A. actinomycetemcomitans, eliminated possible false-positive results and was useful for the isolation of A. actinomycetemcomitans from clinical samples.
Collapse
Affiliation(s)
- O Tsuzukibashi
- Department of Laboratory Medicine for Dentistry, Nihon University School of Dentistry at Matsudo, Matsudo, Chiba, Japan
| | | | | | | | | | | | | |
Collapse
|