1
|
Pawar AR, Ramamurthy J, Girija ASS. Evaluation of Antimicrobial Susceptibility and Resistance Patterns of Treponema denticola Isolated From Periodontal Disease: An In Vitro Study. Cureus 2024; 16:e61497. [PMID: 38952590 PMCID: PMC11216353 DOI: 10.7759/cureus.61497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 05/31/2024] [Indexed: 07/03/2024] Open
Abstract
Background Periodontal disease poses a significant oral health challenge, involving inflammatory conditions impacting tooth-supporting structures. Treponema denticola, a "red complex" organism, plays a crucial role in periodontal pathogenesis, forming biofilms in subgingival environments and contributing to dysbiosis. Antimicrobial therapy is pivotal in managing periodontal disease, requiring a nuanced understanding of susceptibility patterns exhibited by key pathogens like T. denticola. Aims and objectives This study aims to investigate the antimicrobial susceptibility and resistance profiles of Treponema denticola, a prominent bacterium in periodontal disease, by examining its responses to various antimicrobial agents commonly used in periodontal therapy. Methodology Plaque samples were meticulously collected from individuals diagnosed with periodontal disease to ensure a diverse representation of the oral microbiome. All the samples were cultured, and red complex bacteria were isolated under anaerobic culture. Treponema denticola isolates were cultured from these samples under anaerobic conditions, and molecular techniques were employed for species identification. A comprehensive panel of antimicrobial agents was selected to assess the response of Treponema denticola. In vitro antimicrobial susceptibility testing (AST) was conducted using the antimicrobial gradient method, employing a hybrid approach combining elements of disk-diffusion and dilution methods. Results Treponema denticola had exhibited resistance to metronidazole, a commonly used antibiotic effective against anaerobic bacteria, emphasizing limitations in its applicability. However, the bacterium displayed sensitivity to tetracycline, imipenem, cefoperazone, chloramphenicol, clindamycin, and moxifloxacin, offering diverse therapeutic options. The antimicrobial gradient strip test provided detailed minimum inhibitory concentration (MIC) values, contributing to a nuanced understanding of susceptibility and resistance patterns. Conclusion This study significantly advances our understanding of Treponema denticola's antimicrobial susceptibility and resistance profiles in the context of periodontal disease. The findings underscore the importance of tailored treatment strategies and contribute to broader efforts in antimicrobial stewardship, aligning with global initiatives to combat antibiotic resistance. This research lays the foundation for more effective and personalized approaches to periodontal care, emphasizing the intricate microbial dynamics associated with periodontal health and disease.
Collapse
Affiliation(s)
- Amit R Pawar
- Department of Periodontics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, IND
| | - Jaiganesh Ramamurthy
- Department of Periodontics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, IND
| | - A S Smiline Girija
- Department of Microbiology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, IND
| |
Collapse
|
2
|
Nguyen TTH, Myrold DD, Mueller RS. Distributions of Extracellular Peptidases Across Prokaryotic Genomes Reflect Phylogeny and Habitat. Front Microbiol 2019; 10:413. [PMID: 30891022 PMCID: PMC6411800 DOI: 10.3389/fmicb.2019.00413] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 02/18/2019] [Indexed: 11/19/2022] Open
Abstract
Proteinaceous compounds are abundant forms of organic nitrogen in soil and aquatic ecosystems, and the rate of protein depolymerization, which is accomplished by a diverse range of microbial secreted peptidases, often limits nitrogen turnover in the environment. To determine if the distribution of secreted peptidases reflects the ecological and evolutionary histories of different taxa, we analyzed their distribution across prokaryotic lineages. Peptidase gene sequences of 147 archaeal and 2,191 bacterial genomes from the MEROPS database were screened for secretion signals, resulting in 55,072 secreted peptidases belonging to 148 peptidase families. These data, along with their corresponding 16S rRNA sequences, were used in our analysis. Overall, Bacteria had a much wider collection of secreted peptidases, higher average numbers of secreted peptidases per genome, and more unique peptidase families than Archaea. We found that the distribution of secreted peptidases corresponded to phylogenetic relationships among Bacteria and Archaea and often segregated according to microbial lifestyles, suggesting that the secreted peptidase complements of microbial taxa are optimized for the environmental microhabitats they occupy. Our analyses provide the groundwork for examining the specific functional role of families of secreted peptidases in relationship to the organisms and the corresponding environments in which they function.
Collapse
Affiliation(s)
- Trang T. H. Nguyen
- Department of Crop and Soil Science, Oregon State University, Corvallis, OR, United States
| | - David D. Myrold
- Department of Crop and Soil Science, Oregon State University, Corvallis, OR, United States
| | - Ryan S. Mueller
- Department of Microbiology, Oregon State University, Corvallis, OR, United States
| |
Collapse
|
3
|
Fteita D, Musrati AA, Könönen E, Ma X, Gürsoy M, Peurla M, Söderling E, Sintim HO, Gürsoy UK. Dipeptidyl peptidase IV and quorum sensing signaling in biofilm-related virulence of Prevotella aurantiaca. Anaerobe 2017; 48:152-159. [PMID: 28821458 DOI: 10.1016/j.anaerobe.2017.08.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2017] [Revised: 06/27/2017] [Accepted: 08/14/2017] [Indexed: 12/28/2022]
Abstract
Biofilm formation and dipeptidyl peptidase IV (DPPIV) enzyme activity contribute to the virulence of oral bacteria, and these virulence factors are partly regulated by quorum sensing signaling system. We recently demonstrated that estradiol regulates growth properties and DPPIV activity of Prevotella intermedia, Prevotella nigrescens, and Prevotella pallens. Here, we examined the DPPIV dependency of biofilm formation of Prevotella aurantiaca. Three strains (two clinical strains AHN 37505 and 37552 and the type strain CCUG 57723) were incubated in three estradiol concentrations (30, 90, and 120 nmol/L). Regulation of DPPIV activity, biofilm and fimbria formation, and coaggregation of bacterial strains were analyzed after incubation with four concentrations (10 nM, 100 nM, 1 μM, 10 μM) of dihydroxy-2,3-pentaedione (DPD), the universal precursor of autoinducer -2 (AI-2), and analogs (ethyl-DPD, butyl-DPD, and isobutyl-DPD) for 24 h. Estradiol enhanced the planktonic growth, coaggregation, and biofilm formation of P. aurantiaca strains. The whole cell extract of AHN 37505 had the highest DPPIV activity, followed by CCUG 57723 and AHN 37552. Inhibition of DPPIV activity with di-isopropylfluorophosphate suppressed the effect of estradiol on biofilm formation. At 100 nM and 10 μM concentrations of DPD, butyl DPD, and isobutyl DPD, biofilm formation of P. aurantiaca was significantly inhibited. Fimbriae formation was enhanced up to concentrations of 100 nM and 1 μM followed by a significant inhibition at higher concentrations of DPD and all analogs. A slight but significant inhibitory effect of DPD and analogs on DPPIV activity was observed. Our results indicate that DPPIV plays a key role in the estradiol-regulated biofilm formation of P. aurantiaca. Quorum sensing autoinducer DPD and C1-alkyl analogs could inhibit biofilm-related virulence of P. aurantiaca.
Collapse
Affiliation(s)
- Dareen Fteita
- Department of Periodontology, Institute of Dentistry, University of Turku, FI-20520, Turku, Finland.
| | - Ahmed Ali Musrati
- Department of Periodontology, Institute of Dentistry, University of Turku, FI-20520, Turku, Finland.
| | - Eija Könönen
- Department of Periodontology, Institute of Dentistry, University of Turku, FI-20520, Turku, Finland; Welfare Division, Oral Health Care, City of Turku, Turku, Finland.
| | - Xiaochu Ma
- Department of Chemistry and Purdue Institute for Drug Discovery and Purdue Institute of Inflammation, Immunology and Infectious Disease, Purdue University, West Lafayette, IN, USA.
| | - Mervi Gürsoy
- Department of Periodontology, Institute of Dentistry, University of Turku, FI-20520, Turku, Finland.
| | - Markus Peurla
- Institute of Biomedicine, University of Turku, FI-20520, Turku, Finland.
| | - Eva Söderling
- Department of Periodontology, Institute of Dentistry, University of Turku, FI-20520, Turku, Finland.
| | - Herman O Sintim
- Department of Chemistry and Purdue Institute for Drug Discovery and Purdue Institute of Inflammation, Immunology and Infectious Disease, Purdue University, West Lafayette, IN, USA.
| | - Ulvi Kahraman Gürsoy
- Department of Periodontology, Institute of Dentistry, University of Turku, FI-20520, Turku, Finland.
| |
Collapse
|
4
|
Does estradiol have an impact on the dipeptidyl peptidase IV enzyme activity of the Prevotella intermedia group bacteria? Anaerobe 2015; 36:14-8. [DOI: 10.1016/j.anaerobe.2015.09.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Revised: 09/11/2015] [Accepted: 09/14/2015] [Indexed: 11/18/2022]
|
5
|
|
6
|
Huttner EA, Machado DC, de Oliveira RB, Antunes AGF, Hebling E. Effects of human aging on periodontal tissues. SPECIAL CARE IN DENTISTRY 2009; 29:149-55. [PMID: 19573041 DOI: 10.1111/j.1754-4505.2009.00082.x] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Loss of teeth is frequently associated with periodontal disease in older adults. The aim of this review was to present the effects of aging on the periodontal tissues. Aging alone does not lead to critical loss of periodontal attachment in healthy elderly persons. The effects of aging on periodontal tissues are based on molecular changes in the periodontal cells, which intensify bone loss in elderly patients with periodontitis. These effects may be associated with (1) alterations in differentiation and proliferation of osteoblasts and osteoclasts; (2) an increase in periodontal cell response to the oral microbiota and mechanical stress leading to the secretion of cytokines involved in osseous resorption; and (3) systemic endocrine alterations in the elderly people.
Collapse
Affiliation(s)
- Eder Abreu Huttner
- Laboratory of Biomedical Gerontology, Biomedical Research Institute, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, Brazil
| | | | | | | | | |
Collapse
|
7
|
Potempa M, Potempa J, Kantyka T, Nguyen KA, Wawrzonek K, Manandhar SP, Popadiak K, Riesbeck K, Eick S, Blom AM. Interpain A, a cysteine proteinase from Prevotella intermedia, inhibits complement by degrading complement factor C3. PLoS Pathog 2009; 5:e1000316. [PMID: 19247445 PMCID: PMC2642729 DOI: 10.1371/journal.ppat.1000316] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2008] [Accepted: 01/28/2009] [Indexed: 12/19/2022] Open
Abstract
Periodontitis is an inflammatory disease of the supporting structures of the teeth caused by, among other pathogens, Prevotella intermedia. Many strains of P. intermedia are resistant to killing by the human complement system, which is present at up to 70% of serum concentration in gingival crevicular fluid. Incubation of human serum with recombinant cysteine protease of P. intermedia (interpain A) resulted in a drastic decrease in bactericidal activity of the serum. Furthermore, a clinical strain 59 expressing interpain A was more serum-resistant than another clinical strain 57, which did not express interpain A, as determined by Western blotting. Moreover, in the presence of the cysteine protease inhibitor E64, the killing of strain 59 by human serum was enhanced. Importantly, we found that the majority of P. intermedia strains isolated from chronic and aggressive periodontitis carry and express the interpain A gene. The protective effect of interpain A against serum bactericidal activity was found to be attributable to its ability to inhibit all three complement pathways through the efficient degradation of the alpha-chain of C3 -- the major complement factor common to all three pathways. P. intermedia has been known to co-aggregate with P. gingivalis, which produce gingipains to efficiently degrade complement factors. Here, interpain A was found to have a synergistic effect with gingipains on complement degradation. In addition, interpain A was able to activate the C1 complex in serum, causing deposition of C1q on inert and bacterial surfaces, which may be important at initial stages of infection when local inflammatory reaction may be beneficial for a pathogen. Taken together, the newly characterized interpain A proteinase appears to be an important virulence factor of P. intermedia.
Collapse
Affiliation(s)
- Michal Potempa
- Lund University, Department of Laboratory Medicine, Section of Medical Protein Chemistry, University Hospital Malmö, Malmö, Sweden
- Jagiellonian University, Department of Microbiology, Krakow, Poland
| | - Jan Potempa
- Jagiellonian University, Department of Microbiology, Krakow, Poland
- University of Georgia, Department of Biochemistry and Molecular Biology, Athens, Georgia, United States of America
| | - Tomasz Kantyka
- Jagiellonian University, Department of Microbiology, Krakow, Poland
| | - Ky-Anh Nguyen
- Westmead Millennium Institute, Institute of Dental Research, Sydney, Australia
| | | | - Surya P. Manandhar
- Westmead Millennium Institute, Institute of Dental Research, Sydney, Australia
| | - Katarzyna Popadiak
- Lund University, Department of Laboratory Medicine, Section of Medical Protein Chemistry, University Hospital Malmö, Malmö, Sweden
- Jagiellonian University, Department of Microbiology, Krakow, Poland
| | - Kristian Riesbeck
- Lund University, Department of Laboratory Medicine, Section of Medical Microbiology, University Hospital Malmö, Malmö, Sweden
| | - Sigrun Eick
- Department of Medical Microbiology, University Hospital of Jena, Jena, Germany
| | - Anna M. Blom
- Lund University, Department of Laboratory Medicine, Section of Medical Protein Chemistry, University Hospital Malmö, Malmö, Sweden
- * E-mail:
| |
Collapse
|
8
|
Jie Bao G, Kari K, Tervahartiala T, Sorsa T, Meurman JH. Proteolytic Activities of Oral Bacteria on ProMMP-9 and the Effect of Synthetic Proteinase Inhibitors. Open Dent J 2008; 2:96-102. [PMID: 19088890 PMCID: PMC2581524 DOI: 10.2174/1874210600802010096] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2008] [Revised: 06/05/2008] [Accepted: 06/05/2008] [Indexed: 12/14/2022] Open
Abstract
Tissue reactions to bacteria lead to proinflammatory reactions involving matrix metalloproteinases (MMPs). Synthetic protease inhibitors may offer new possibilities to regulate bacterial proteases. We investigated proteolytic activities of certain periodontal bacteria, their effects on the latent proMMP-9, and the effects of synthetic MMP inhibitors and a serine protease inhibitor Pefabloc. The strains studied were Porphyromonas gingivalis, Prevotella intermedia, Peptostreptoccus micros, Prevotella nigrescens, Fusobacterium nucleatum, and 5 Aggregatibacter actinomycetemcomitans serotypes. Their gelatinolytic activities and the effects of certain synthetic MMP inhibitors and Pefabloc were analyzed by zymography. Bacterial effects on proMMP-9 conversion were investigated by Western immunoblot. All investigated periodontal bacteria produced gelatinolytic cell-bound and extracellular proteinases which could fragment latent proMMP-9, suggesting co-operative processing cascades in oral tissue remodeling. A. actinomycetemcomitans produced the weakest gelatinolytic activity. Synthetic proteinase inhibitors exhibited slight but clear reductive effects on the bacterial proteolytic activities. We conclude that targeted anti-proteolytic treatment modalities against bacterial-host proteolytic cascades can be developed.
Collapse
Affiliation(s)
- Guang Jie Bao
- Stomatology School of North-West University for Nationalities, China
| | | | | | | | | |
Collapse
|
9
|
Wang PL, Azuma Y, Shinohara M, Ohura K. Effect ofActinobacillus actinomycetemcomitansprotease on the proliferation of gingival epithelial cells. Oral Dis 2008. [DOI: 10.1034/j.1601-0825.2001.70406.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
10
|
Gilmore BF, Carson L, McShane LL, Quinn D, Coulter WA, Walker B. Synthesis, kinetic evaluation, and utilization of a biotinylated dipeptide proline diphenyl phosphonate for the disclosure of dipeptidyl peptidase IV-like serine proteases. Biochem Biophys Res Commun 2006; 347:373-9. [PMID: 16824486 DOI: 10.1016/j.bbrc.2006.06.113] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2006] [Accepted: 06/21/2006] [Indexed: 11/25/2022]
Abstract
In this study, we report on the synthesis, kinetic characterisation, and application of a novel biotinylated and active site-directed inactivator of dipeptidyl peptidase IV (DPP-IV). Thus, the dipeptide-derived proline diphenyl phosphonate NH(2)-Glu(biotinyl-PEG)-Pro(P)(OPh)(2) has been prepared by a combination of classical solution- and solid-phase methodologies and has been shown to be an irreversible inhibitor of porcine DPP-IV, exhibiting an over all second-order rate constant (k(i)/K(i)) for inhibition of 1.57 x 10(3) M(-1) min(-1). This value compares favourably with previously reported rates of inactivation of DPP-IV by dipeptides containing a P(1) proline diphenyl phosphonate grouping [B. Boduszek, J. Oleksyszyn, C.M. Kam, J. Selzler, R.E. Smith, J.C. Powers, Dipeptide phophonates as inhibitors of dipeptidyl peptidase IV, J. Med. Chem. 37 (1994) 3969-3976; B.F. Gilmore, J.F. Lynas, C.J. Scott, C. McGoohan, L. Martin, B. Walker, Dipeptide proline diphenyl phosphonates are potent, irreversible inhibitors of seprase (FAPalpha), Biochem, Biophys. Res. Commun. 346 (2006) 436-446.], thus demonstrating that the incorporation of the side-chain modified (N-biotinyl-3-(2-(2-(3-aminopropyloxy)-ethoxy)-ethoxy)-propyl) glutamic acid residue at the P(2) position is compatible with inhibitor efficacy. The utilisation of this probe for the detection of both purified dipeptidyl peptidase IV and the disclosure of a dipeptidyl peptidase IV-like activity from a clinical isolate of Porphyromonas gingivalis, using established electrophoretic and Western blotting techniques previously developed by our group, is also demonstrated.
Collapse
Affiliation(s)
- Brendan F Gilmore
- School of Pharmacy, Queens University Belfast, Medical Biology Centre, UK.
| | | | | | | | | | | |
Collapse
|
11
|
Abstract
Noma is an opportunistic infection promoted by extreme poverty. It evolves rapidly from a gingival inflammation to grotesque orofacial gangrene. It occurs worldwide, but is most common in sub-Saharan Africa. The peak incidence of acute noma is at ages 1-4 years, coinciding with the period of linear growth retardation in deprived children. Noma is a scourge in communities with poor environmental sanitation. It results from complex interactions between malnutrition, infections, and compromised immunity. Diseases that commonly precede noma include measles, malaria, severe diarrhoea, and necrotising ulcerative gingivitis. The acute stage responds readily to antibiotic treatment. The sequelae after healing include variable functional and aesthetic impairments, which require reconstructive surgery. Noma can be prevented through promotion of national awareness of the disease, poverty reduction, improved nutrition, promotion of exclusive breastfeeding in the first 3-6 months of life, optimum prenatal care, and timely immunisations against the common childhood diseases.
Collapse
Affiliation(s)
- Cyril O Enwonwu
- Department of Biomedical Sciences, School of Dentistry, University of Maryland, Baltimore, MD 21201, USA.
| | | | | |
Collapse
|
12
|
O'Brien-Simpson NM, Veith PD, Dashper SG, Reynolds EC. Antigens of bacteria associated with periodontitis. Periodontol 2000 2004; 35:101-34. [PMID: 15107060 DOI: 10.1111/j.0906-6713.2004.003559.x] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Neil M O'Brien-Simpson
- Centre for Oral Health Science, School of Dental Science, The University of Melbourne, Victoria, Australia
| | | | | | | |
Collapse
|
13
|
Silva TA, Noronha FSM, de Macêdo Farias L, Carvalho MAR. In vitro activation of the hemolysin in Prevotella nigrescens ATCC 33563 and Prevotella intermedia ATCC 25611. Res Microbiol 2004; 155:31-8. [PMID: 14759706 DOI: 10.1016/j.resmic.2003.09.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2003] [Accepted: 09/12/2003] [Indexed: 11/16/2022]
Abstract
Hemolytic activity was evaluated in the putative periodontopathogens Prevotella intermedia and Prevotella nigrescens. Whole cells of both species present weak hemolytic activity evidenced only by solid media assays after 48 h of bacterial growth or after 5 h of interaction with erythrocytes at 37 degrees C in liquid assays. In this work we show that the use of crude extract allowed the detection of a higher hemolytic activity for P. intermedia, but surprisingly not for P. nigrescens. Incubation at 37 degrees C for 9 h, or treatment with trypsin or proteinase K, increased or exposed the hemolytic activity of P. intermedia and P. nigrescens crude extract, respectively. The activation process was inhibited by TLCK and PMSF but not by EDTA, E-64 or pepstatin A, indicating the serino-protease nature of the factor involved in activation of P. intermedia and P. nigrescens hemolysins. Both the buffer and the pH employed for cell fractionation influenced the activation of hemolysin, and the best results were obtained with Universal buffer at pH 8.0. The activated hemolysins acted optimally at pH 6.5 at 37 degrees C and the maximum hemolytic activity was detected at the early log phase of growth. The results of this study show for the first time a strong hemolytic activity for P. nigrescens and evidence of proteolytic activation of hemolysins produced by periodontopathogens.
Collapse
Affiliation(s)
- Tarcília Aparecida Silva
- Laboratório de Microbiologia Oral e Anaeróbios, Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627 Pampulha, CEP 31 270-901, Belo Horizonte, MG, Brazil
| | | | | | | |
Collapse
|
14
|
Suzuki J, Okada M, Wang Y, Nii N, Miura K, Kozai K. Localized aggressive periodontitis in primary dentition: a case report. J Periodontol 2003; 74:1060-6. [PMID: 12931770 DOI: 10.1902/jop.2003.74.7.1060] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
BACKGROUND A 5-year-old Japanese boy presented with persistent gingival inflammation and severe mobility of the right lower primary incisors. Due to severe alveolar bone loss and a deep periodontal pocket (5 mm), the incisors were extracted at the second visit. METHODS Clinical, radiographic, histological, and microbiological examinations were carried out. Then, the polymerase chain reaction (PCR) technique was employed to detect specific periodontal pathogens. The chemotactic activity of polymorphonuclear neutrophils was also measured. RESULTS Tannerella, Capnocytophaga, Fusobacterium, and Eikenella sp. were recovered from the subgingival microflora around the right lower incisors, while A. actinomycetemcomitans, Tannerella forsythensis (formerly Bacteroides forsythus), Prevotella nigrescens, Campylobacter rectus, and Capnocytophaga gingivalis were detected using the PCR method. Further chemotaxis assay revealed that neutrophil function was depressed compared with that of healthy controls. CONCLUSIONS Although inflammation remained around the right primary second molars, the bone loss was controlled by periodic professional mechanical teeth cleaning (PMTC), subgingival irrigation, and local antibiotic application. The probing depths of all teeth, including permanent incisors and molars, were within 2.5 mm.
Collapse
Affiliation(s)
- Junji Suzuki
- Department of Pediatric Dentistry, Hiroshima University Graduate School of Biomedical Sciences, Hiroshima, Japan.
| | | | | | | | | | | |
Collapse
|
15
|
Eley BM, Cox SW. Proteolytic and hydrolytic enzymes from putative periodontal pathogens: characterization, molecular genetics, effects on host defenses and tissues and detection in gingival crevice fluid. Periodontol 2000 2003; 31:105-24. [PMID: 12656998 DOI: 10.1034/j.1600-0757.2003.03107.x] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
16
|
Enwonwu CO, Falkler WA, Idigbe EO. Oro-facial gangrene (noma/cancrum oris): pathogenetic mechanisms. CRITICAL REVIEWS IN ORAL BIOLOGY AND MEDICINE : AN OFFICIAL PUBLICATION OF THE AMERICAN ASSOCIATION OF ORAL BIOLOGISTS 2002; 11:159-71. [PMID: 12002813 DOI: 10.1177/10454411000110020201] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Cancrum oris (Noma) is a devastating infectious disease which destroys the soft and hard tissues of the oral and para-oral structures. The dehumanizing oro-facial gangrenous lesion affects predominantly children ages 2 to 16 years, particularly in sub-Saharan Africa, where the estimated frequency in some communities varies from 1 to 7 cases per 1000 population. The risk factors are poverty, malnutrition, poor oral hygiene, residential proximity to livestock in unsanitary environments, and infectious diseases, particularly measles and those due to the herpesviridae. Infections and malnutrition impair the immune system, and this is the common denominator for the occurrence of noma. Acute necrotizing gingivitis (ANG) and oral herpetic ulcers are considered the antecedent lesions, and ongoing studies suggest that the rapid progression of these precursor lesions to noma requires infection by a consortium of micro-organisms, with Fusobacterium necrophorum (Fn) and Prevotella intermedia (Pi) as the suspected key players. Additional to production of a growth-stimulating factor for Pi, Fn displays a classic endotoxin, a dermonecrotic toxin, a cytoplasmic toxin, and a hemolysin. Without appropriate treatment, the mortality rate from noma is 70-90%. Survivors suffer the two-fold afflictions of oro-facial mutilation and functional impairment, which require a time-consuming, financially prohibitive surgical reconstruction.
Collapse
Affiliation(s)
- C O Enwonwu
- Department of OCBS, School of Dentistry, University of Maryland, Baltimore 21201-1586, USA.
| | | | | |
Collapse
|
17
|
Sela MN. Role of Treponema denticola in periodontal diseases. CRITICAL REVIEWS IN ORAL BIOLOGY AND MEDICINE : AN OFFICIAL PUBLICATION OF THE AMERICAN ASSOCIATION OF ORAL BIOLOGISTS 2002; 12:399-413. [PMID: 12002822 DOI: 10.1177/10454411010120050301] [Citation(s) in RCA: 132] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Among periodontal anaerobic pathogens, the oral spirochetes, and especially Treponema denticola, have been associated with periodontal diseases such as early-onset periodontitis, necrotizing ulcerative gingivitis, and acute pericoronitis. Basic research as well as clinical evidence suggest that the prevalence of T denticola, together with other proteolytic gram-negative bacteria in high numbers in periodontal pockets, may play an important role in the progression of periodontal disease. The accumulation of these bacteria and their products in the pocket may render the surface lining periodontal cells highly susceptible to lysis and damage. T. denticola has been shown to adhere to fibroblasts and epithelial cells, as well as to extracellular matrix components present in periodontal tissues, and to produce several deleterious factors that may contribute to the virulence of the bacteria. These bacterial components include outer-sheath-associated peptidases, chymotrypsin-like and trypsin-like proteinases, hemolytic and hemagglutinating activities, adhesins that bind to matrix proteins and cells, and an outer-sheath protein with pore-forming properties. The effects of T. denticola whole cells and their products on a variety of host mucosal and immunological cells has been studied extensively (Fig. 1). The clinical data regarding the presence of T. denticola in periodontal health and disease, together with the basic research results involving the role of T. denticola factors and products in relation to periodontal diseases, are reviewed and discussed in this article.
Collapse
Affiliation(s)
- M N Sela
- Deportment of Oral Biology, Faculty of Dental Medicine, Hebrew University, Jerusalem, Israel.
| |
Collapse
|
18
|
Fujimura S, Hirai K, Shibata Y. Dipeptidyl peptidase with strict substrate specificity of an anaerobic periodontopathogen Porphyromonas gingivalis. FEMS Microbiol Lett 2002; 209:127-31. [PMID: 12007665 DOI: 10.1111/j.1574-6968.2002.tb11120.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
A dipeptidyl peptidase which hydrolyzed Xaa-Ala-p-nitroanilide was purified to homogeneity by sequential procedures including ammonium sulfate precipitation, ion-exchange chromatography, hydrophobic interaction chromatography, gel filtration and isoelectric focusing from the cell extract of Porphyromonas gingivalis. The purified enzyme hydrolyzed p-nitroanilide derivatives of Lys-Ala, Ala-Ala, and Val-Ala, but not Xaa-Pro. Enzyme activity was maximum at neutral pHs. Its molecular mass was 64 kDa with an isoelectric point of 5.7. The enzyme belonged to the family of serine peptidases.
Collapse
Affiliation(s)
- Setsuo Fujimura
- Department of Oral Microbiology, Matsumoto Dental University, Shiojiri-Shi, Nagano-Ken 399-0781, Japan.
| | | | | |
Collapse
|
19
|
Banbula A, Mak P, Bugno M, Silberring J, Dubin A, Nelson D, Travis J, Potempa J. Prolyl tripeptidyl peptidase from Porphyromonas gingivalis. A novel enzyme with possible pathological implications for the development of periodontitis. J Biol Chem 1999; 274:9246-52. [PMID: 10092598 DOI: 10.1074/jbc.274.14.9246] [Citation(s) in RCA: 73] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Porphyromonas gingivalis possesses a complex proteolytic system, which is essential for both its growth and evasion of host defense mechanisms. In this report we characterized, both at a protein and genomic level, a novel peptidase of this system with prolyl tripeptidyl peptidase activity. The enzyme was purified to homogeneity, and its enzymatic activity and biochemical properties were investigated. The amino acid sequence at the amino terminus and of internal peptide fragments enabled identification of the gene encoding this enzyme, which we refer to as PtpA for prolyl tripeptidyl peptidase A. The gene encodes an 82-kDa protein, which contains a GWSYGG motif, characteristic for members of the S9 prolyl oligopeptidase family of serine proteases. However, it does not share any structural similarity to other tripeptidyl peptidases, which belong to the subtilisin family. The production of prolyl tripeptidyl peptidase may contribute to the pathogenesis of periodontal tissue destruction through the mutual interaction of this enzyme, host and bacterial collagenases, and dipeptidyl peptidases in the degradation of collagen during the course of infection.
Collapse
Affiliation(s)
- A Banbula
- Institute of Molecular Biology, Jagiellonian University, 31-120 Kraków, Poland
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Abstract
The microbiologic history of noma was reviewed. Studies have associated the disease process with large numbers of fusiform bacilli and spirochetal organisms. In order to study the microbiology of the staging and infection periods of noma 62 Nigerian children, aged 3-14 years, 22 children had acute necrotizing ulcerative gingivitis (ANUG) and were also malnourished, 20 exhibited no acute necrotizing ulcerative gingivitis but were malnourished and 20 were free of acute necrotizing ulcerative gingivitis and in good nutritional state) were evaluated for the presence of viruses and oral microorganisms. The ANUG cases in the malnourished children had a higher incidence of Herpesviridae, the main virus being detected was cytomegalovirus. There were more anaerobic microorganisms recovered, with Prevotella intermedia as the predominant isolate, in the malnourished children as compared to the healthy children. A study of the predominant microflora in active sites of noma lesions was carried out in eight noma patients, 3-15 years of age, in Sokoto State, northwestern Nigeria. Fusobacterium necrophorum was recovered from 87.5% of the noma lesions. Oral microorganisms isolated included Prevotella intermedia, alpha-hemolytic streptococci and Actinomyces spp. which were isolated from 75.0, 50.0 and 37.5% of the patients, respectively. Peptostreptococcus micros, Veillonella parvula, Staphylococcus aureus and Pseudomonas spp. were each recovered from one lesion. All strains were observed to be sensitive to all of the antibiotics tested with the exception of one strain of P. intermedia which showed resistance to penicillin. The pathogenic mechanisms of F. necrophorum as a trigger organism were discussed. The isolation from human noma lesions of F. necrophorum, a pathogen primarily associated with animal diseases, may have important etiologic and animal transmission implications.
Collapse
Affiliation(s)
- W A Falkler
- Department of OCBS, School of Dentistry, University of Maryland, Baltimore 21201, USA
| | | | | |
Collapse
|