1
|
Yamileva K, Parrotta S, Multia E. In vitro evaluation of anti-inflammatory, anti-plaque efficacy, and biocompatibility of Norway spruce (Picea abies) resin extract for oral care applications. Fitoterapia 2025; 182:106410. [PMID: 39922393 DOI: 10.1016/j.fitote.2025.106410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 01/08/2025] [Accepted: 02/01/2025] [Indexed: 02/10/2025]
Abstract
The periodontal disease is globally highly prevalent, and calls for novel, effective, and preferably bio-based raw materials. Accumulation of dental plaque causes gingivitis, which is reversible by treatments that control the bacterial biofilm. If left untreated, the gingivitis can lead to gingival inflammation and potentially progress to periodontitis. In this study, a natural antimicrobial and anti-inflammatory Norway spruce (Picea abies) resin extract was evaluated as a potential option in supportive periodontal care. Lipopolysaccharide-induced macrophage-like cells were used to study the anti-inflammatory properties in vitro. The spruce resin extract at 20 % concentration had the highest anti-inflammatory effect, comparable to a corticosteroid's effect on pro-inflammatory cytokines interleukin-1 beta (IL-1β), tumor necrosis factor-alpha (TNF-α), and matrix metalloproteinase-3 (MMP-3). Consequently, the 20 % spruce resin extract was selected for toothpaste formulation. Its anti-plaque efficacy was evaluated by total aerobic colony counts and the proportions of streptococci grown on the surfaces of the treated glass rods using pooled human saliva. It was found that the toothpaste effectively reduced dental plaque biofilm, matching the anti-plaque efficacy of Corsodyl mouthwash, containing chlorhexidine digluconate. The toothpaste was also found to be non-damaging in biocompatibility studies on three-dimensional (3D) tissue models of human oral and gingival epithelium. These findings provide scientific validation of spruce resin's effectiveness in oral care, elucidating probable reasons why people have historically chewed resins for oral care purposes.
Collapse
Affiliation(s)
- Kamilla Yamileva
- Faculty of Pharmacy, University of Helsinki, Viikinkaari 5E, 00790 Helsinki, Finland; Repolar Pharmaceuticals Ltd., Nihtisillantie 3, 02630 Espoo, Finland
| | - Simone Parrotta
- Repolar Pharmaceuticals Ltd., Nihtisillantie 3, 02630 Espoo, Finland
| | - Evgen Multia
- Repolar Pharmaceuticals Ltd., Nihtisillantie 3, 02630 Espoo, Finland.
| |
Collapse
|
2
|
Moellmann HL, Kommer K, Karnatz N, Pfeffer K, Henrich B, Rana M. Molecular Genetic Analysis of Perioperative Colonization by Infection-Related Microorganisms in Patients Receiving Intraoral Microvascular Grafts. J Clin Med 2024; 13:4103. [PMID: 39064142 PMCID: PMC11278416 DOI: 10.3390/jcm13144103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 06/24/2024] [Accepted: 07/07/2024] [Indexed: 07/28/2024] Open
Abstract
Background/Objectives: In oral and maxillofacial surgery, the reconstruction of defects often involves the transfer of skin tissue into the oral cavity utilizing microvascular grafts. This study investigates postoperative changes in microbial colonization following intraoral microvascular transplantation, as well as potential influencing factors. Methods: In 37 patients undergoing intraoral reconstructions, pre- and postoperative swabs were taken from the donor and recipient regions to quantify the seven selected marker bacteria using TaqMan PCRs. Patient-specific factors and clinical data were also recorded. Results: The infection-associated Acinetobacter baumannii tended to decrease postoperatively, while the infectious pathogens Pseudomonas aeruginosa, Enterococcus faecalis and the family of Enterobacteriaceae showed a postoperative increase without being directly associated with a clinical infection. Streptococcus mitis showed a significant postoperative decrease on buccal mucosa and increase on the graft surface (oral dysbiosis) and was significantly reduced or displaced by other bacteria (e.g., Mycoplasma salivarium, positive selection) when treated with ampicillin/sulbactam. Conclusions: The cutaneous microbiome of the graft adapts to the local intraoral environment. Postoperative shifts in oral bacterial colonization and an increase in infection-relevant bacteria were observed. These perioperative changes in colonization are also influenced by the administration of ampicillin/sulbactam. Consequently, single doses of antibiotics appear to be more beneficial compared to longer-term preventive use.
Collapse
Affiliation(s)
- Henriette Louise Moellmann
- Department of Cranio-and-Maxillo Facial Surgery, University Hospital Düsseldorf, Moorenstraße 5, 40225 Düsseldorf, Germany; (N.K.); (M.R.)
| | - Katharina Kommer
- Institute of Medical Microbiology and Hospital Hygiene, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany; (K.K.); (K.P.); (B.H.)
| | - Nadia Karnatz
- Department of Cranio-and-Maxillo Facial Surgery, University Hospital Düsseldorf, Moorenstraße 5, 40225 Düsseldorf, Germany; (N.K.); (M.R.)
| | - Klaus Pfeffer
- Institute of Medical Microbiology and Hospital Hygiene, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany; (K.K.); (K.P.); (B.H.)
| | - Birgit Henrich
- Institute of Medical Microbiology and Hospital Hygiene, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany; (K.K.); (K.P.); (B.H.)
| | - Majeed Rana
- Department of Cranio-and-Maxillo Facial Surgery, University Hospital Düsseldorf, Moorenstraße 5, 40225 Düsseldorf, Germany; (N.K.); (M.R.)
| |
Collapse
|
3
|
O’Dwyer DN, Kim JS, Ma SF, Ranjan P, Das P, Lipinski JH, Metcalf JD, Falkowski NR, Yow E, Anstrom K, Dickson RP, Huang Y, Gilbert JA, Martinez FJ, Noth I. Commensal Oral Microbiota, Disease Severity, and Mortality in Fibrotic Lung Disease. Am J Respir Crit Care Med 2024; 209:1101-1110. [PMID: 38051927 PMCID: PMC11092942 DOI: 10.1164/rccm.202308-1357oc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 12/05/2023] [Indexed: 12/07/2023] Open
Abstract
Rationale: Oral microbiota associate with diseases of the mouth and serve as a source of lung microbiota. However, the role of oral microbiota in lung disease is unknown. Objectives: To determine associations between oral microbiota and disease severity and death in idiopathic pulmonary fibrosis (IPF). Methods: We analyzed 16S rRNA gene and shotgun metagenomic sequencing data of buccal swabs from 511 patients with IPF in the multicenter CleanUP-IPF (Study of Clinical Efficacy of Antimicrobial Therapy Strategy Using Pragmatic Design in IPF) trial. Buccal swabs were collected from usual care and antimicrobial cohorts. Microbiome data were correlated with measures of disease severity using principal component analysis and linear regression models. Associations between the buccal microbiome and mortality were determined using Cox additive models, Kaplan-Meier analysis, and Cox proportional hazards models. Measurements and Main Results: Greater buccal microbial diversity associated with lower FVC at baseline (mean difference, -3.60; 95% confidence interval [CI], -5.92 to -1.29% predicted FVC per 1-unit increment). The buccal proportion of Streptococcus correlated positively with FVC (mean difference, 0.80; 95% CI, 0.16 to 1.43% predicted per 10% increase) (n = 490). Greater microbial diversity was associated with an increased risk of death (hazard ratio, 1.73; 95% CI, 1.03-2.90), whereas a greater proportion of Streptococcus was associated with a reduced risk of death (HR, 0.85; 95% CI, 0.73 to 0.99). The Streptococcus genus was mainly composed of Streptococcus mitis species. Conclusions: Increasing buccal microbial diversity predicts disease severity and death in IPF. The oral commensal S. mitis spp associates with preserved lung function and improved survival.
Collapse
Affiliation(s)
- David N. O’Dwyer
- Department of Medicine, University of Michigan Medical School, Ann Arbor, Michigan
| | - John S. Kim
- Department of Medicine, University of Virginia School of Medicine, Charlottesville, Virginia
| | - Shwu-Fan Ma
- Department of Medicine, University of Virginia School of Medicine, Charlottesville, Virginia
| | - Piyush Ranjan
- Department of Medicine, University of Michigan Medical School, Ann Arbor, Michigan
| | - Promi Das
- Department of Pediatrics, University of California San Diego, San Diego, California
| | - Jay H. Lipinski
- Department of Medicine, University of Michigan Medical School, Ann Arbor, Michigan
| | - Joseph D. Metcalf
- Department of Medicine, University of Michigan Medical School, Ann Arbor, Michigan
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, Michigan
| | - Nicole R. Falkowski
- Department of Medicine, University of Michigan Medical School, Ann Arbor, Michigan
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, Michigan
| | - Eric Yow
- Department of Biostatistics, Duke University, Durham, North Carolina
| | - Kevin Anstrom
- Department of Biostatistics, University of North Carolina–Chapel Hill Gillings School of Global Public Health, Chapel Hill, North Carolina
| | - Robert P. Dickson
- Department of Medicine, University of Michigan Medical School, Ann Arbor, Michigan
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, Michigan
- Weil Institute for Critical Care Research and Innovation, Ann Arbor, Michigan; and
| | - Yong Huang
- Department of Medicine, University of Virginia School of Medicine, Charlottesville, Virginia
| | - Jack A. Gilbert
- Department of Pediatrics, University of California San Diego, San Diego, California
| | | | - Imre Noth
- Department of Medicine, University of Virginia School of Medicine, Charlottesville, Virginia
| |
Collapse
|
4
|
Ciurea A, Stanomir A, Șurlin P, Micu IC, Pamfil C, Leucuța DC, Rednic S, Rasperini G, Soancă A, Țigu AB, Roman A, Picoș A, Delean AG. Insights into the Relationship between Periodontitis and Systemic Sclerosis Based on the New Periodontitis Classification (2018): A Cross-Sectional Study. Diagnostics (Basel) 2024; 14:540. [PMID: 38473012 DOI: 10.3390/diagnostics14050540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 02/16/2024] [Accepted: 03/01/2024] [Indexed: 03/14/2024] Open
Abstract
(1) Background: This study aimed to assess the periodontitis burden in systemic sclerosis patients and the possible association between them, and the degree to which some potential risk factors and two potential diagnostic biomarkers may account for this association. (2) Methods: This cross-sectional study included a test group (systemic sclerosis patients) and a control group (non-systemic sclerosis patients). Both groups benefited from medical, periodontal examination and saliva sampling to determine the salivary flow rate and two inflammatory biomarkers (calprotectin, psoriasin). A systemic sclerosis severity scale was established. (3) Results: In the studied groups, comparable periodontitis rates of 88.68% and 85.85%, respectively, were identified. There were no significant differences in the severity of periodontitis among different systemic sclerosis severity, or in the positivity for anti-centromere and anti-SCL70 antibodies. Musculoskeletal lesions were significantly more common in stage III/IV periodontitis (n = 33, 86.84%) than in those in stage I/II (n = 1, 100%, and n = 3, 37.5%, respectively) (p = 0.007). Comparable levels of the inflammatory mediators were displayed by the two groups. There were no significant differences in calprotectin and psoriasin levels between diffuse and limited forms of systemic sclerosis. (4) Conclusions: Within the limitations of the current study, no associations between systemic sclerosis and periodontitis, or between their risk factors, could be proven.
Collapse
Affiliation(s)
- Andreea Ciurea
- Department of Periodontology, Faculty of Dental Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
- Emergency County Clinical Hospital Cluj, 400006 Cluj-Napoca, Romania
| | - Alina Stanomir
- Department of Periodontology, Faculty of Dental Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| | - Petra Șurlin
- Department of Periodontology, Faculty of Dental Medicine, University of Medicine and Pharmacy Craiova, 200349 Craiova, Romania
| | - Iulia Cristina Micu
- Department of Periodontology, Faculty of Dental Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| | - Cristina Pamfil
- Emergency County Clinical Hospital Cluj, 400006 Cluj-Napoca, Romania
- Department of Rheumatology, Faculty of Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 400006 Cluj-Napoca, Romania
| | - Daniel Corneliu Leucuța
- Department of Medical Informatics and Biostatistics, Faculty of Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 400347 Cluj-Napoca, Romania
| | - Simona Rednic
- Emergency County Clinical Hospital Cluj, 400006 Cluj-Napoca, Romania
- Department of Rheumatology, Faculty of Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 400006 Cluj-Napoca, Romania
| | - Giulio Rasperini
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, Foundation IRCCS Ca' Granda Policlinic, 20122 Milan, Italy
| | - Andrada Soancă
- Department of Periodontology, Faculty of Dental Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
- Emergency County Clinical Hospital Cluj, 400006 Cluj-Napoca, Romania
| | - Adrian Bogdan Țigu
- Research Centre for Advanced Medicine (MEDFUTURE), Iuliu Hatieganu University of Medicine and Pharmacy, 400347 Cluj-Napoca, Romania
| | - Alexandra Roman
- Department of Periodontology, Faculty of Dental Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
- Emergency County Clinical Hospital Cluj, 400006 Cluj-Napoca, Romania
| | - Andrei Picoș
- Department of Prevention in Dental Medicine, Faculty of Dental Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 400083 Cluj-Napoca, Romania
| | - Ada Gabriela Delean
- Department of Odontology and Endodontics, Faculty of Dental Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 400001 Cluj-Napoca, Romania
| |
Collapse
|
5
|
Bloch S, Hager-Mair FF, Andrukhov O, Schäffer C. Oral streptococci: modulators of health and disease. Front Cell Infect Microbiol 2024; 14:1357631. [PMID: 38456080 PMCID: PMC10917908 DOI: 10.3389/fcimb.2024.1357631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 02/05/2024] [Indexed: 03/09/2024] Open
Abstract
Streptococci are primary colonizers of the oral cavity where they are ubiquitously present and an integral part of the commensal oral biofilm microflora. The role oral streptococci play in the interaction with the host is ambivalent. On the one hand, they function as gatekeepers of homeostasis and are a prerequisite for the maintenance of oral health - they shape the oral microbiota, modulate the immune system to enable bacterial survival, and antagonize pathogenic species. On the other hand, also recognized pathogens, such as oral Streptococcus mutans and Streptococcus sobrinus, which trigger the onset of dental caries belong to the genus Streptococcus. In the context of periodontitis, oral streptococci as excellent initial biofilm formers have an accessory function, enabling late biofilm colonizers to inhabit gingival pockets and cause disease. The pathogenic potential of oral streptococci fully unfolds when their dissemination into the bloodstream occurs; streptococcal infection can cause extra-oral diseases, such as infective endocarditis and hemorrhagic stroke. In this review, the taxonomic diversity of oral streptococci, their role and prevalence in the oral cavity and their contribution to oral health and disease will be discussed, focusing on the virulence factors these species employ for interactions at the host interface.
Collapse
Affiliation(s)
- Susanne Bloch
- Competence Center for Periodontal Research, University Clinic of Dentistry, Medical University of Vienna, Vienna, Austria
- Department of Chemistry, Institute of Biochemistry, NanoGlycobiology Research Group, Universität für Bodenkultur Wien, Vienna, Austria
| | - Fiona F. Hager-Mair
- Department of Chemistry, Institute of Biochemistry, NanoGlycobiology Research Group, Universität für Bodenkultur Wien, Vienna, Austria
| | - Oleh Andrukhov
- Competence Center for Periodontal Research, University Clinic of Dentistry, Medical University of Vienna, Vienna, Austria
| | - Christina Schäffer
- Department of Chemistry, Institute of Biochemistry, NanoGlycobiology Research Group, Universität für Bodenkultur Wien, Vienna, Austria
| |
Collapse
|
6
|
Abstract
Oral commensal streptococci are primary colonizers of the oral cavity. These streptococci produce many adhesins, metabolites, and antimicrobials that modulate microbial succession and diversity within the oral cavity. Often, oral commensal streptococci antagonize cariogenic and periodontal pathogens such as Streptococcus mutans and Porphyromonas gingivalis, respectively. Mechanisms of antagonism are varied and range from the generation of hydrogen peroxide, competitive metabolite scavenging, the generation of reactive nitrogen intermediates, and bacteriocin production. Furthermore, several oral commensal streptococci have been shown to alter the host immune response at steady state and in response to oral pathogens. Collectively, these features highlight the remarkable ability of oral commensal streptococci to regulate the structure and function of the oral microbiome. In this review, we discuss mechanisms used by oral commensal streptococci to interact with diverse oral pathogens, both physically and through the production of antimicrobials. Finally, we conclude by exploring the critical roles of oral commensal streptococci in modulating the host immune response and maintaining health and homeostasis.
Collapse
Affiliation(s)
- Joshua J. Baty
- Department of Microbiology, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Sara N. Stoner
- Department of Microbiology, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Jessica A. Scoffield
- Department of Microbiology, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| |
Collapse
|
7
|
Catala-Valentin A, Bernard JN, Caldwell M, Maxson J, Moore SD, Andl CD. E-Cigarette Aerosol Exposure Favors the Growth and Colonization of Oral Streptococcus mutans Compared to Commensal Streptococci. Microbiol Spectr 2022; 10:e0242121. [PMID: 35377225 PMCID: PMC9045065 DOI: 10.1128/spectrum.02421-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 03/02/2022] [Indexed: 11/20/2022] Open
Abstract
E-cigarettes (e-cigs) have drastically increased in popularity during the last decade, especially among teenagers. While recent studies have started to explore the effect of e-cigs in the oral cavity, little is known about their effects on the oral microbiota and how they could affect oral health and potentially lead to disease, including periodontitis and head and neck cancers. To explore the impact of e-cigs on oral bacteria, we selected members of the genus Streptococcus, which are abundant in the oral cavity. We exposed the commensals Streptococcus sanguinis and Streptococcus gordonii and the opportunistic pathogen Streptococcus mutans, best known for causing dental caries, to e-liquids and e-cig aerosols with and without nicotine and with and without menthol flavoring and measured changes in growth patterns and biofilm formation. Our results demonstrate that e-cig aerosols hindered the growth of S. sanguinis and S. gordonii, while they did not affect the growth of S. mutans. We also show that e-cig aerosols significantly increased biofilm formation by S. mutans but did not affect the biofilm formation of the two commensals. We found that S. mutans exhibits higher hydrophobicity and coaggregation abilities along with higher attachment to OKF6 cells than S. sanguinis and S. gordonii. Therefore, our data suggest that e-cig aerosols have the potential to dysregulate oral bacterial homeostasis by suppressing the growth of commensals while enhancing the biofilm formation of the opportunistic pathogen S. mutans. This study highlights the importance of understanding the consequences of e-cig aerosol exposure on selected commensals and pathogenic species. Future studies modeling more complex communities will provide more insight into how e-cig aerosols and vaping affect the oral microbiota. IMPORTANCE Our study shows that e-cigarette aerosol exposure of selected bacteria known to be residents of the oral cavity hinders the growth of two streptococcal commensals while enhancing biofilm formation, hydrophobicity, and attachment for the pathogen S. mutans. These results indicate that e-cigarette vaping could open a niche for opportunistic bacteria such as S. mutans to colonize the oral cavity and affect oral health.
Collapse
Affiliation(s)
- Alma Catala-Valentin
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, Florida, USA
| | - Joshua N. Bernard
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, Florida, USA
| | - Matthew Caldwell
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, Florida, USA
| | - Jessica Maxson
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, Florida, USA
| | - Sean D. Moore
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, Florida, USA
| | - Claudia D. Andl
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, Florida, USA
| |
Collapse
|
8
|
Ding PH, Yang MX, Wang NN, Jin LJ, Dong Y, Cai X, Chen LL. Porphyromonas gingivalis-Induced NLRP3 Inflammasome Activation and Its Downstream Interleukin-1β Release Depend on Caspase-4. Front Microbiol 2020; 11:1881. [PMID: 32903638 PMCID: PMC7438778 DOI: 10.3389/fmicb.2020.01881] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Accepted: 07/16/2020] [Indexed: 12/17/2022] Open
Abstract
Background: Oral commensals contribute to microbe-host symbiosis in periodontal homeostasis, and Porphyromonas gingivalis (P. gingivalis) as the keystone pathogen critically accounts for the shift of symbiosis to dysbiosis and periodontal destruction. Nucleotide-binding oligomerization domain (NOD)-like receptor (NLR) family pyrin domain containing 3 (NLRP3) inflammasome-mediated interleukin-1β (IL-1β) is significantly involved in periodontal diseases, and notably P. gingivalis enables to modulate the induction and expression of NLRP3. Whereas, the exact mechanism by which NLRP3 inflammasome is regulated in response to commensal and pathogenic bacteria remains unclear. Methods: To examine the expression of IL-1β and NLRPs inflammasome in tissues with severe chronic periodontitis, and further investigate how Caspase-4-dependent non-canonical NLRP3 inflammasome pathways functioned during the interactions of Streptococcus mitis (S. mitis) and P. gingivalis with human THP-1 cells. Results: IL-1β and NLRP3, NLRP6, NLRP12, and absent in melanoma 2 (AIM2) inflammasomes are highly expressed in gingival tissues with severe chronic periodontitis. In human THP-1 cells, P. gingivalis activates the synthesis and secretion of IL-1β to higher levels than S. mitis. Importantly, NLRP3-, Caspase-1-, and Caspase-4-siRNA knockdown THP-1 cells treated with P. gingivalis exhibited a lower expression level of IL-1β as compared to the control cells. In addition, silencing of either CASP4 or CASP1 can lead to a concurrent or reciprocal decrease in the expression of the other. Of note, the IL-1β induction is not affected in the S. mitis-treated THP-1 cells with the silence of NLRP3, Caspase-1, and Caspase-4 genes. Conclusion: NLRP3/Caspase-4 and NLRP3/Caspase-1 dependent IL-1β production may crucially contribute to the dysregulated immuno-inflammatory response in periodontal pathogenesis.
Collapse
Affiliation(s)
- Pei-Hui Ding
- Department of Periodontology, Stomatology Hospital of Zhejiang University School of Medicine, Hangzhou, China.,Key Laboratory of Oral Biomedical Research of Zhejiang Province, Zhejiang University School of Stomatology, Hangzhou, China
| | - Meng-Xin Yang
- Key Laboratory of Oral Biomedical Research of Zhejiang Province, Zhejiang University School of Stomatology, Hangzhou, China.,Department of Periodontology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Na-Na Wang
- Department of Periodontology, Fuyang People's Hospital, Fuyang, China
| | - Li-Jian Jin
- Division of Periodontology and Implant Dentistry, Faculty of Dentistry, The University of Hong Kong, Hong Kong, China
| | - Yan Dong
- Key Laboratory of Oral Biomedical Research of Zhejiang Province, Zhejiang University School of Stomatology, Hangzhou, China.,Department of Prosthodontics, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Xia Cai
- Department of Periodontology, Stomatology Hospital of Zhejiang University School of Medicine, Hangzhou, China.,Key Laboratory of Oral Biomedical Research of Zhejiang Province, Zhejiang University School of Stomatology, Hangzhou, China
| | - Li-Li Chen
- Key Laboratory of Oral Biomedical Research of Zhejiang Province, Zhejiang University School of Stomatology, Hangzhou, China.,Department of Periodontology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
9
|
Cao Y, Naseri M, He Y, Xu C, Walsh LJ, Ziora ZM. Non-antibiotic antimicrobial agents to combat biofilm-forming bacteria. J Glob Antimicrob Resist 2019; 21:445-451. [PMID: 31830536 DOI: 10.1016/j.jgar.2019.11.012] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 11/13/2019] [Accepted: 11/15/2019] [Indexed: 12/13/2022] Open
Abstract
Biofilms can be produced by multiple species or by a single strain of bacteria. The biofilm state enhances the resistance of the resident microorganisms to antimicrobial agents by producing extracellular polymeric substances. Typically, antibiotics are used to stop the growth of bacteria, but emerging resistance has limited their effectiveness. Bacteria in biofilms are less susceptible to antibiotics compared with their free-floating state, as biofilms impair antibiotic penetration. To obviate this challenge, non-antibiotic antimicrobial agents are needed. This review describes two classes of these agents, namely antimicrobial nanoparticles and antimicrobial peptides. Applications of these antimicrobials in the food industry and medical applications are discussed, and the directions for future research are highlighted.
Collapse
Affiliation(s)
- Yuxue Cao
- School of Chemistry and Molecular Biosciences, The University of Queensland, QLD 4072, Australia; School of Dentistry, The University of Queensland, QLD 4006, Australia
| | - Mahdi Naseri
- Bioresource Processing Research Institute of Australia (BioPRIA), Department of Chemical Engineering, Monash University, VIC 3800, Australia
| | - Yan He
- School of Dentistry, The University of Queensland, QLD 4006, Australia; Department of Oral and Maxillofacial Surgery, Massachusetts General Hospital and Harvard School of Dental Medicine, Boston, MA 02114, USA.
| | - Chun Xu
- School of Dentistry, The University of Queensland, QLD 4006, Australia
| | - Laurence J Walsh
- School of Dentistry, The University of Queensland, QLD 4006, Australia
| | - Zyta M Ziora
- Institute for Molecular Bioscience, The University of Queensland, QLD 4072, Australia.
| |
Collapse
|
10
|
Dommisch H, Skora P, Hirschfeld J, Olk G, Hildebrandt L, Jepsen S. The guardians of the periodontium—sequential and differential expression of antimicrobial peptides during gingival inflammation. Results from in vivo and in vitro studies. J Clin Periodontol 2019; 46:276-285. [DOI: 10.1111/jcpe.13084] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 01/22/2019] [Accepted: 02/10/2019] [Indexed: 12/13/2022]
Affiliation(s)
- Henrik Dommisch
- Department of Periodontology and Synoptic DentistryCharité – Universitätsmedizin Berlin Berlin Germany
- Department of Oral Health SciencesUniversity of Washington Seattle Washington
| | - Philipp Skora
- Department of Periodontology, Operative and Preventive DentistryUniversity Hospital Bonn Bonn Germany
| | - Josefine Hirschfeld
- Department of Periodontology, Operative and Preventive DentistryUniversity Hospital Bonn Bonn Germany
- College of Medical and Dental SciencesPeriodontal Research GroupUniversity of Birmingham Birmingham UK
| | - Gabriela Olk
- Department of Periodontology, Operative and Preventive DentistryUniversity Hospital Bonn Bonn Germany
| | - Laura Hildebrandt
- Department of Periodontology, Operative and Preventive DentistryUniversity Hospital Bonn Bonn Germany
| | - Søren Jepsen
- Department of Periodontology, Operative and Preventive DentistryUniversity Hospital Bonn Bonn Germany
| |
Collapse
|
11
|
Ippolitov EV, Nikolaeva EN, Tsarev VN. [Oral biofilm: inductors of congenital immunity signal pathways]. STOMATOLOGIIA 2017; 96:58-62. [PMID: 28858283 DOI: 10.17116/stomat201796458-62] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- E V Ippolitov
- Moscow State Medical and Dental University named after A.I. Evdokimov, Moscow, Russia
| | - E N Nikolaeva
- Moscow State Medical and Dental University named after A.I. Evdokimov, Moscow, Russia
| | - V N Tsarev
- Moscow State Medical and Dental University named after A.I. Evdokimov, Moscow, Russia
| |
Collapse
|
12
|
Gallorini M, di Giacomo V, Di Valerio V, Rapino M, Bosco D, Travan A, Di Giulio M, Di Pietro R, Paoletti S, Cataldi A, Sancilio S. Cell-protection mechanism through autophagy in HGFs/S. mitis co-culture treated with Chitlac-nAg. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2016; 27:186. [PMID: 27787811 DOI: 10.1007/s10856-016-5803-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Accepted: 10/14/2016] [Indexed: 02/08/2023]
Abstract
Silver-based products have been proven to be effective in retarding and preventing bacterial growth since ancient times. In the field of restorative dentistry, the use of silver ions/nanoparticles has been explored to counteract bacterial infections, as silver can destroy bacterial cell walls by reacting with membrane proteins. However, it is also cytotoxic towards eukaryotic cells, which are capable of internalizing nanoparticles. In this work, we investigated the biological effects of Chitlac-nAg, a colloidal system based on a modified chitosan (Chitlac), administered for 24-48 h to a co-culture of primary human gingival fibroblasts and Streptococcus mitis in the presence of saliva, developed to mimic the microenvironment of the oral cavity. We sought to determine its efficiency to combat oral hygiene-related diseases without affecting eukaryotic cells. Cytotoxicity, reactive oxygen species production, apoptosis induction, nanoparticles uptake, and lysosome and autophagosome metabolism were evaluated. In vitro results show that Chitlac-nAg does not exert cytotoxic effects on human gingival fibroblasts, which seem to survive through a homoeostasis mechanism involving autophagy. That suggests that the novel biomaterial Chitlac-nAg could be a promising tool in the field of dentistry.
Collapse
Affiliation(s)
- Marialucia Gallorini
- Department of Pharmacy, "G. d'Annunzio" University, Chieti-Pescara, Italy
- Department of Operative Dentistry and Periodontology, University Hospital Regensburg, University of Regensburg, Regensburg, Germany
| | - Viviana di Giacomo
- Department of Pharmacy, "G. d'Annunzio" University, Chieti-Pescara, Italy.
| | - Valentina Di Valerio
- Department of Medicine and Ageing Sciences, "G. d'Annunzio" University, Chieti-Pescara, Italy
| | - Monica Rapino
- Genetic Molecular Institute of CNR, Unit of Chieti, "G. d'Annunzio" University, Chieti-Pescara, Italy
| | - Domenico Bosco
- Genetic Molecular Institute of CNR, Unit of Chieti, "G. d'Annunzio" University, Chieti-Pescara, Italy
| | - Andrea Travan
- Department of Life Sciences, University of Trieste, Trieste, Italy
| | - Mara Di Giulio
- Department of Pharmacy, "G. d'Annunzio" University, Chieti-Pescara, Italy
| | - Roberta Di Pietro
- Department of Medicine and Ageing Sciences, "G. d'Annunzio" University, Chieti-Pescara, Italy
| | - Sergio Paoletti
- Department of Life Sciences, University of Trieste, Trieste, Italy
| | - Amelia Cataldi
- Department of Pharmacy, "G. d'Annunzio" University, Chieti-Pescara, Italy
| | - Silvia Sancilio
- Department of Pharmacy, "G. d'Annunzio" University, Chieti-Pescara, Italy
| |
Collapse
|
13
|
Wang L, Melo MAS, Weir MD, Xie X, Reynolds MA, Xu HHK. Novel bioactive nanocomposite for Class-V restorations to inhibit periodontitis-related pathogens. Dent Mater 2016; 32:e351-e361. [PMID: 27671471 DOI: 10.1016/j.dental.2016.09.023] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2015] [Revised: 06/24/2016] [Accepted: 09/03/2016] [Indexed: 12/31/2022]
Abstract
OBJECTIVES The occurrence of tooth root caries is increasing as the world population ages and tooth retention in seniors increases. Class V restorations with subgingival margins are difficult to clean and often lead to periodontitis. The objectives of this study were to develop a Class V composite containing dimethylaminohexadecyl methacrylate (DMAHDM) and nanoparticles of amorphous calcium phosphate (NACP), and investigate mechanical properties and the inhibition of six species of periodontitis-related biofilms for the first time. METHODS Ethoxylated bisphenol A dimethacrylate (EBPADMA) and pyromellitic glycerol dimethacrylate (PMGDM) were mixed at 1:1 mass ratio to form the resin matrix. DMAHDM, NACP, and glass particles were incorporated at 3%, 20% and 50% by mass, respectively. Six species were tested: Porphyromonas gingivalis, Prevotella intermedia, Prevotella nigrescens, Aggregatibacter actinomycetemcomitans, Fusobacterium nucleatum and Enterococcus faecalis. Colony-forming units (CFU), live/dead assay, biomass via crystal violet staining, and polysaccharide production by biofilms were determined on composites. RESULT Adding 3% DMAHDM to composite did not affect the flexure strength and elastic modulus (p>0.1). For all six species of periodontal pathogens, the DMAHDM composite had biofilm CFU nearly three orders of magnitude less than that without DMAHDM. The killing efficacy of DMAHDM composite against the six species was: E. faecalis<F. nucleatum<P. nigrescens=P. intermedia<A. actinomycetemcomitans<P. gingivalis. Biofilm biomass and polysaccharide were also greatly reduced via DMAHDM (p<0.05). SIGNIFICANCE The novel nanocomposite containing DMAHDM and NACP showed strong inhibiting effect against all six species of periodontitis-related pathogens. This composite is promising for Class V restorations to restore root caries and combat periodontitis.
Collapse
Affiliation(s)
- Lin Wang
- VIP Integrated Department, Stomatological Hospital of Jilin University, Changchun, China; Department of Endodontics, Periodontics and Prosthodontics, University of Maryland School of Dentistry, Baltimore, MD 21201, USA
| | - Mary A S Melo
- Department of Endodontics, Periodontics and Prosthodontics, University of Maryland School of Dentistry, Baltimore, MD 21201, USA
| | - Michael D Weir
- Department of Endodontics, Periodontics and Prosthodontics, University of Maryland School of Dentistry, Baltimore, MD 21201, USA
| | - Xianju Xie
- Department of Endodontics, Periodontics and Prosthodontics, University of Maryland School of Dentistry, Baltimore, MD 21201, USA; Department of Orthodontics, School of Stomatology, Capital Medical University, Beijing, China
| | - Mark A Reynolds
- Department of Endodontics, Periodontics and Prosthodontics, University of Maryland School of Dentistry, Baltimore, MD 21201, USA
| | - Hockin H K Xu
- Department of Endodontics, Periodontics and Prosthodontics, University of Maryland School of Dentistry, Baltimore, MD 21201, USA; Center for Stem Cell Biology & Regenerative Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA; Department of Mechanical Engineering, University of Maryland Baltimore County, Baltimore County, MD 21250, USA.
| |
Collapse
|
14
|
Cataldi A, Gallorini M, Di Giulio M, Guarnieri S, Mariggiò MA, Traini T, Di Pietro R, Cellini L, Marsich E, Sancilio S. Adhesion of human gingival fibroblasts/Streptococcus mitis co-culture on the nanocomposite system Chitlac-nAg. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2016; 27:88. [PMID: 26970770 PMCID: PMC4789204 DOI: 10.1007/s10856-016-5701-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Accepted: 02/29/2016] [Indexed: 02/05/2023]
Abstract
Composite materials are increasingly used as dental restoration. In the field of biomaterials, infections remain the main reason of dental devices failure. Silver, in the form of nanoparticles (AgNPs), ions and salt, well known for its antimicrobial properties, is used in several medical applications in order to avoid bacterial infection. To reduce both bacterial adhesion to dental devices and cytotoxicity against eukaryotic cells, we coated BisGMA/TEGDMA methacrylic thermosets with a new material, Chitlac-nAg, formed by stabilized AgNPs with a polyelectrolyte solution containing Chitlac. Here we analyzed the proliferative and adhesive ability of human gingival fibroblasts (HGFs) on BisGMA/TEGDMA thermosets uncoated and coated with AgNPs in a coculture model system with Streptococcus mitis. After 48 h, HGFs well adhered onto both surfaces, while S. mitis cytotoxic response was higher in the presence of AgNPs coated thermosets. After 24 h thermosets coated with Chitlac as well as those coated with Chitlac-nAg exerted a minimal cytotoxic effect on HGFs, while after 48 h LDH release raised up to 20 %. Moreover the presence of S. mitis reduced this release mainly when HGFs adhered to Chitlac-nAg coated thermosets. The reduced secretion of collagen type I was significant in the presence of both surfaces with the co-culture system even more when saliva is added. Integrin β1 localized closely to cell membranes onto Chitlac-nAg thermosets and PKCα translocated into nuclei. These data confirm that Chitlac-nAg have a promising utilization in the field of restorative dentistry exerting their antimicrobial activity due to AgNPs without cytotoxicity for eukaryotic cells.
Collapse
Affiliation(s)
- Amelia Cataldi
- Department of Pharmacy, G. d'Annunzio University, Chieti-Pescara, Via dei Vestini 31, 66100, Chieti Scalo, CH, Italy
| | - Marialucia Gallorini
- Department of Pharmacy, G. d'Annunzio University, Chieti-Pescara, Via dei Vestini 31, 66100, Chieti Scalo, CH, Italy.
| | - Mara Di Giulio
- Department of Pharmacy, G. d'Annunzio University, Chieti-Pescara, Via dei Vestini 31, 66100, Chieti Scalo, CH, Italy
| | - Simone Guarnieri
- Center for Aging Science (Ce.S.I.), G. d'Annunzio University Foundation, Chieti, Italy
- Department of Neuroscience, Imaging and Clinical Sciences, G. d'Annunzio University, Chieti-Pescara, Chieti, Italy
| | - Maria Addolorata Mariggiò
- Center for Aging Science (Ce.S.I.), G. d'Annunzio University Foundation, Chieti, Italy
- Department of Neuroscience, Imaging and Clinical Sciences, G. d'Annunzio University, Chieti-Pescara, Chieti, Italy
| | - Tonino Traini
- Department of Medical, Oral and Biotechnological Sciences, G. d'Annunzio University, Chieti-Pescara, Chieti, Italy
| | - Roberta Di Pietro
- Department of Medicine and Ageing Sciences, G. d'Annunzio University, Chieti-Pescara, Chieti, Italy
| | - Luigina Cellini
- Department of Pharmacy, G. d'Annunzio University, Chieti-Pescara, Via dei Vestini 31, 66100, Chieti Scalo, CH, Italy
| | - Eleonora Marsich
- Department of Medical, Surgical and Health Sciences, University of Trieste, Trieste, Italy
| | - Silvia Sancilio
- Department of Pharmacy, G. d'Annunzio University, Chieti-Pescara, Via dei Vestini 31, 66100, Chieti Scalo, CH, Italy
| |
Collapse
|
15
|
Dommisch H, Staufenbiel I, Schulze K, Stiesch M, Winkel A, Fimmers R, Dommisch J, Jepsen S, Miosge N, Adam K, Eberhard J. Expression of antimicrobial peptides and interleukin-8 during early stages of inflammation: An experimental gingivitis study. J Periodontal Res 2015; 50:836-45. [DOI: 10.1111/jre.12271] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/02/2015] [Indexed: 11/28/2022]
Affiliation(s)
- H. Dommisch
- Department of Periodontology and Synoptic Dentistry; Charité - University Medicine Berlin; Berlin Germany
- Department of Oral Health Sciences; Health Science Center; University of Washington; Seattle WA USA
- Department of Periodontology, Operative and Preventive Dentistry; University Hospital Bonn; Bonn Germany
| | - I. Staufenbiel
- Department of Conservative Dentistry, Periodontology and Preventive Dentistry; Hannover Medical School; Hannover Germany
| | - K. Schulze
- Clinic for Dental Prosthetics and Biomedical Materials Science; Hannover Medical School; Hannover Germany
| | - M. Stiesch
- Clinic for Dental Prosthetics and Biomedical Materials Science; Hannover Medical School; Hannover Germany
| | - A. Winkel
- Clinic for Dental Prosthetics and Biomedical Materials Science; Hannover Medical School; Hannover Germany
| | - R. Fimmers
- Institute of Medical Biometry; Informatics and Epidemiology; University of Bonn; Bonn Germany
| | - J. Dommisch
- Department of Periodontology, Operative and Preventive Dentistry; University Hospital Bonn; Bonn Germany
| | - S. Jepsen
- Department of Periodontology, Operative and Preventive Dentistry; University Hospital Bonn; Bonn Germany
| | - N. Miosge
- Research Group for Oral Biology and Tissue Regeneration; Department of Prosthetic Dentistry; University Hospital Göttingen; Göttingen Germany
| | - K. Adam
- Clinic for Dental Prosthetics and Biomedical Materials Science; Hannover Medical School; Hannover Germany
| | - J. Eberhard
- Clinic for Dental Prosthetics and Biomedical Materials Science; Hannover Medical School; Hannover Germany
| |
Collapse
|
16
|
Lima SMDF, de Pádua GM, Sousa MGDC, Freire MDS, Franco OL, Rezende TMB. Antimicrobial peptide-based treatment for endodontic infections--biotechnological innovation in endodontics. Biotechnol Adv 2014; 33:203-213. [PMID: 25447423 DOI: 10.1016/j.biotechadv.2014.10.013] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2014] [Revised: 10/07/2014] [Accepted: 10/31/2014] [Indexed: 01/30/2023]
Abstract
The presence/persistence of microorganisms in the pulp and periapical area corresponds to the maintenance of an exacerbated immune response that leads to the start of periradicular bone resorption and its perpetuation. In endodontic treatment, the available intracanal medications do not have all the desirable properties in the context of endodontic infection and apical periodontitis; they need to include not only strong antimicrobial performance but also an immunomodulatory and reparative activity, without host damage. In addition, there are various levels of resistance to root canal medications. Thus, antimicrobial agents that effectively eliminate resistant species in root canals could potentially improve endodontic treatment. In the emergence of new therapies, an increasing number of studies on antimicrobial peptides (AMPs) have been seen over the past few years. AMPs are defense biomolecules produced in response to infection, and they have a wide spectrum of action against many oral microorganisms. There are some studies that correlate peptides and oral infections, including oral peptides, neuropeptides, and bacterial, fish, bovine and synthetic peptides. So far, there are around 120 published studies correlating endodontic microbiota with AMPs but, according to our knowledge, there are no registered patents in the American patent database. There are a considerable number of AMPs that exhibit excellent antimicrobial activity against endodontic microbiota at a small inhibitory concentration and modulate an exacerbated immune response, down-regulating bone resorption. All these reasons indicate the antimicrobial peptide-based endodontic treatment as an emerging and promising option.
Collapse
Affiliation(s)
- Stella Maris de Freitas Lima
- Centro de Análises Proteômicas e Bioquímicas, Pós-graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, SGAN 916N, Av. W5, Campus II, Modulo C, Brasília, DF, Brazil; Curso de Odontologia, Universidade Católica de Brasília, Campus I, QS 07 Lote 01 room S213 EPCT, Águas Claras, Taguatinga, DF, Brazil
| | - Gabriela Martins de Pádua
- Curso de Odontologia, Universidade Católica de Brasília, Campus I, QS 07 Lote 01 room S213 EPCT, Águas Claras, Taguatinga, DF, Brazil
| | - Maurício Gonçalves da Costa Sousa
- Centro de Análises Proteômicas e Bioquímicas, Pós-graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, SGAN 916N, Av. W5, Campus II, Modulo C, Brasília, DF, Brazil; Curso de Odontologia, Universidade Católica de Brasília, Campus I, QS 07 Lote 01 room S213 EPCT, Águas Claras, Taguatinga, DF, Brazil
| | - Mirna de Souza Freire
- Centro de Análises Proteômicas e Bioquímicas, Pós-graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, SGAN 916N, Av. W5, Campus II, Modulo C, Brasília, DF, Brazil; Programa de Doutorado da Rede Centro-Oeste, Brasília, DF, Brazil
| | - Octávio Luiz Franco
- Centro de Análises Proteômicas e Bioquímicas, Pós-graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, SGAN 916N, Av. W5, Campus II, Modulo C, Brasília, DF, Brazil; Programa de Doutorado da Rede Centro-Oeste, Brasília, DF, Brazil; S-Inova, Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande, MS, Brazil
| | - Taia Maria Berto Rezende
- Centro de Análises Proteômicas e Bioquímicas, Pós-graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, SGAN 916N, Av. W5, Campus II, Modulo C, Brasília, DF, Brazil; Curso de Odontologia, Universidade Católica de Brasília, Campus I, QS 07 Lote 01 room S213 EPCT, Águas Claras, Taguatinga, DF, Brazil; Programa de Pós-Graduação em Ciências da Saúde, Universidade de Brasília, Faculdade de Ciências da Saúde (FS), Campus Universitário Darcy Ribeiro, Brasília, DF, Brazil.
| |
Collapse
|
17
|
Anaerobic co-culture of mesenchymal stem cells and anaerobic pathogens - a new in vitro model system. PLoS One 2013; 8:e78226. [PMID: 24223777 PMCID: PMC3817215 DOI: 10.1371/journal.pone.0078226] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Accepted: 09/10/2013] [Indexed: 11/28/2022] Open
Abstract
Background Human mesenchymal stem cells (hMSCs) are multipotent by nature and are originally isolated from bone marrow. In light of a future application of hMSCs in the oral cavity, a body compartment with varying oxygen partial pressures and an omnipresence of different bacterial species i.e. periodontitis pathogens, we performed this study to gain information about the behavior of hMSC in an anaerobic system and the response in interaction with oral bacterial pathogens. Methodology/Principal Findings We established a model system with oral pathogenic bacterial species and eukaryotic cells cultured in anaerobic conditions. The facultative anaerobe bacteria Fusobacterium nucleatum, Porphyromonas gingivalis and Aggregatibacter actinomycetemcomitans were studied. Their effects on hMSCs and primary as well as permanent gingival epithelial cells (Ca9-22, HGPEC) were comparatively analyzed. We show that hMSCs cope with anoxic conditions, since 40% vital cells remain after 72 h of anaerobic culture. The Ca9-22 and HGPEC cells are significantly more sensitive to lack of oxygen. All bacterial species reveal a comparatively low adherence to and internalization into hMSCs (0.2% and 0.01% of the initial inoculum, respectively). In comparison, the Ca9-22 and HGPEC cells present better targets for bacterial adherence and internalization. The production of the pro-inflammatory chemokine IL-8 is higher in both gingival epithelial cell lines compared to hMSCs and Fusobacterium nucleatum induce a time-dependent cytokine secretion in both cell lines. Porphyromonas gingivalis is less effective in stimulating secretion of IL-8 in the co-cultivation experiments. Conclusions/significance HMSCs are suitable for use in anoxic regions of the oral cavity. The interaction with local pathogenic bacteria does not result in massive pro-inflammatory cytokine responses. The test system established in this study allowed further investigation of parameters prior to set up of oral hMSC in vivo studies.
Collapse
|
18
|
Cheung MK, Lam WY, Fung WYW, Law PTW, Au CH, Nong W, Kam KM, Kwan HS, Tsui SKW. Sputum microbiota in tuberculosis as revealed by 16S rRNA pyrosequencing. PLoS One 2013; 8:e54574. [PMID: 23365674 PMCID: PMC3554703 DOI: 10.1371/journal.pone.0054574] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2012] [Accepted: 12/12/2012] [Indexed: 01/31/2023] Open
Abstract
Background Tuberculosis (TB) remains a global threat in the 21st century. Traditional studies of the disease are focused on the single pathogen Mycobacterium tuberculosis. Recent studies have revealed associations of some diseases with an imbalance in the microbial community. Characterization of the TB microbiota could allow a better understanding of the disease. Methodology/Principal Findings Here, the sputum microbiota in TB infection was examined by using 16S rRNA pyrosequencing. A total of 829,873 high-quality sequencing reads were generated from 22 TB and 14 control sputum samples. Firmicutes, Proteobacteria, Bacteroidetes, Actinobacteria, and Fusobacteria were the five major bacterial phyla recovered, which together composed over 98% of the microbial community. Proteobacteria and Bacteroidetes were more represented in the TB samples and Firmicutes was more predominant in the controls. Sixteen major bacterial genera were recovered. Streptococcus, Neisseria and Prevotella were the most predominant genera, which were dominated by several operational taxonomic units grouped at a 97% similarity level. Actinomyces, Fusobacterium, Leptotrichia, Prevotella, Streptococcus, and Veillonella were found in all TB samples, possibly representing the core genera in TB sputum microbiota. The less represented genera Mogibacterium, Moryella and Oribacterium were enriched statistically in the TB samples, while a genus belonging to the unclassified Lactobacillales was enriched in the controls. The diversity of microbiota was similar in the TB and control samples. Conclusions/Significance The composition and diversity of sputum microbiota in TB infection was characterized for the first time by using high-throughput pyrosequencing. It lays the framework for examination of potential roles played by the diverse microbiota in TB pathogenesis and progression, and could ultimately facilitate advances in TB treatment.
Collapse
Affiliation(s)
- Man Kit Cheung
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Wai Yip Lam
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Wendy Yin Wan Fung
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Patrick Tik Wan Law
- Core Facilities Genome Sequencing Laboratory, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Chun Hang Au
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Wenyan Nong
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Kai Man Kam
- Tuberculosis Reference Laboratory, Department of Health, Hong Kong SAR, China
| | - Hoi Shan Kwan
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
- * E-mail: (HSK); (SKWT)
| | - Stephen Kwok Wing Tsui
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
- Hong Kong Bioinformatics Centre, The Chinese University of Hong Kong, Hong Kong SAR, China
- * E-mail: (HSK); (SKWT)
| |
Collapse
|
19
|
Peyyala R, Ebersole JL. Multispecies biofilms and host responses: "discriminating the trees from the forest". Cytokine 2012; 61:15-25. [PMID: 23141757 DOI: 10.1016/j.cyto.2012.10.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2012] [Revised: 09/28/2012] [Accepted: 10/04/2012] [Indexed: 02/07/2023]
Abstract
Periodontal diseases reflect a tissue destructive process of the hard and soft tissues of the periodontium that are initiated by the accumulation of multispecies bacterial biofilms in the subgingival sulcus. This accumulation, in both quantity and quality of bacteria, results in a chronic immunoinflammatory response of the host to control this noxious challenge, leading to collateral damage of the tissues. As knowledge of the characteristics of the host-bacterial interactions in the oral cavity has expanded, new knowledge has become available on the complexity of the microbial challenge and the repertoire of host responses to this challenge. Recent results from the Human Microbiome Project continue to extend the array of taxa, genera, and species of bacteria that inhabit the multiple niches in the oral cavity; however, there is rather sparse information regarding variations in how host cells discriminate commensal from pathogenic species, as well as how the host response is affected by the three-dimensional architecture and interbacterial interactions that occur in the oral biofilms. This review provides some insights into these processes by including existing literature on the biology of nonoral bacterial biofilms, and the more recent literature just beginning to document how the oral cavity responds to multispecies biofilms.
Collapse
Affiliation(s)
- R Peyyala
- Center for Oral Health Research, College of Dentistry, University of Kentucky, Lexington, KY 40536, United States
| | | |
Collapse
|
20
|
Lang ML, Zhu L, Kreth J. Keeping the bad bacteria in check: interactions of the host immune system with oral cavity biofilms. ACTA ACUST UNITED AC 2012. [DOI: 10.1111/j.1601-1546.2012.00278.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
21
|
Simanski M, Köten B, Schröder JM, Gläser R, Harder J. Antimicrobial RNases in cutaneous defense. J Innate Immun 2012; 4:241-7. [PMID: 22327069 DOI: 10.1159/000335029] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2011] [Accepted: 11/13/2011] [Indexed: 11/19/2022] Open
Abstract
Antimicrobial proteins (AMP) are small endogenous proteins which are capable of rapidly inactivating microorganisms at low micro- and nanomolar concentrations. Their significance in host defense is reflected by their wide distribution in nature. Several AMP have been isolated from human skin, and there is increasing evidence that AMP may play an important role in cutaneous defense. One important human AMP class comprises several antimicrobial members of the RNase A superfamily. Of these, two members, RNase 7 and RNase 5, have been implicated in cutaneous defense. This review gives an overview about our current knowledge on the potential role of RNase 7 and RNase 5 in protecting human skin from infection.
Collapse
Affiliation(s)
- Maren Simanski
- Department of Dermatology, University Hospital Schleswig-Holstein, Kiel Campus, Kiel, Germany
| | | | | | | | | |
Collapse
|
22
|
Di Giulio M, D'Ercole S, Zara S, Cataldi A, Cellini L. Streptococcus mitis/human gingival fibroblasts co-culture: the best natural association in answer to the 2-hydroxyethyl methacrylate release. APMIS 2011; 120:139-46. [PMID: 22229269 PMCID: PMC3443379 DOI: 10.1111/j.1600-0463.2011.02828.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
One of the major components of dental polymerized resin-based restorative materials is 2-hydroxyethyl methacrylate (HEMA) and its release in monomeric form interferes with the oral cavity environment. This study aimed to evaluate HEMA monomeric effects on the co-culture of Streptococcus mitis and human gingival fibroblasts (HGFs). Streptococcus mitis DS12 and S. mitis ATCC 6249 were co-cultivated with HGF in the presence of HEMA (3 mM), for 48 and 72 h; the amount of sessile and planktonic cells, as well as the prokaryotic and eukaryotic cell viability were analyzed in treated and untreated samples. The treatment of S. mitis/HGFs with HEMA did not produce significant effects on the bacterial adhesion and induced an increase in planktonic S. mitis ATCC 6249 population after 48 and 72 h. HEMA increased significantly the planktonic S. mitis ATCC 6249 viability when co-cultured with HGFs, while a cytotoxic effect on HGFs, without bacteria, was recorded. An increase of bacterial aggregation on HGFs was also detected with HEMA. Data obtained in this study suggest that HEMA exhibits a toxic effect mainly on eukaryotic cells and this effect can be modulated by co-cultivation with the S. mitis cells which, in the presence of the monomer, enhance their aggregation rate on HGFs.
Collapse
Affiliation(s)
- Mara Di Giulio
- Department of Drug Sciences, University 'G. d'Annunzio', Chieti-Pescara, Italy
| | | | | | | | | |
Collapse
|
23
|
The role of antimicrobial peptides in preventing multidrug-resistant bacterial infections and biofilm formation. Int J Mol Sci 2011; 12:5971-92. [PMID: 22016639 PMCID: PMC3189763 DOI: 10.3390/ijms12095971] [Citation(s) in RCA: 207] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2011] [Revised: 09/05/2011] [Accepted: 09/06/2011] [Indexed: 01/21/2023] Open
Abstract
Over the last decade, decreasing effectiveness of conventional antimicrobial-drugs has caused serious problems due to the rapid emergence of multidrug-resistant pathogens. Furthermore, biofilms, which are microbial communities that cause serious chronic infections and dental plaque, form environments that enhance antimicrobial resistance. As a result, there is a continuous search to overcome or control such problems, which has resulted in antimicrobial peptides being considered as an alternative to conventional drugs. Antimicrobial peptides are ancient host defense effector molecules in living organisms. These peptides have been identified in diverse organisms and synthetically developed by using peptidomimic techniques. This review was conducted to demonstrate the mode of action by which antimicrobial peptides combat multidrug-resistant bacteria and prevent biofilm formation and to introduce clinical uses of these compounds for chronic disease, medical devices, and oral health. In addition, combinations of antimicrobial peptides and conventional drugs were considered due to their synergetic effects and low cost for therapeutic treatment.
Collapse
|
24
|
Lack of the delta subunit of RNA polymerase increases virulence related traits of Streptococcus mutans. PLoS One 2011; 6:e20075. [PMID: 21625504 PMCID: PMC3098267 DOI: 10.1371/journal.pone.0020075] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2011] [Accepted: 04/25/2011] [Indexed: 01/21/2023] Open
Abstract
The delta subunit of the RNA polymerase, RpoE, maintains the transcriptional specificity in Gram-positive bacteria. Lack of RpoE results in massive changes in the transcriptome of the human dental caries pathogen Streptococcus mutans. In this study, we analyzed traits of the ΔrpoE mutant which are important for biofilm formation and interaction with oral microorganisms and human cells and performed a global phenotypic analysis of its physiological functions. The ΔrpoE mutant showed higher self-aggregation compared to the wild type and coaggregated with other oral bacteria and Candida albicans. It formed a biofilm with a different matrix structure and an altered surface attachment. The amount of the cell surface antigens I/II SpaP and the glucosyltransferase GtfB was reduced. The ΔrpoE mutant displayed significantly stronger adhesion to human extracellular matrix components, especially to fibronectin, than the wild type. Its adhesion to human epithelial cells HEp-2 was reduced, probably due to the highly aggregated cell mass. The analysis of 1248 physiological traits using phenotype microarrays showed that the ΔrpoE mutant metabolized a wider spectrum of carbon sources than the wild type and had acquired resistance to antibiotics and inhibitory compounds with various modes of action. The reduced antigenicity, increased aggregation, adherence to fibronection, broader substrate spectrum and increased resistance to antibiotics of the ΔrpoE mutant reveal the physiological potential of S. mutans and show that some of its virulence related traits are increased.
Collapse
|
25
|
Phattarataratip E, Olson B, Broffitt B, Qian F, Brogden KA, Drake DR, Levy SM, Banas JA. Streptococcus mutans strains recovered from caries-active or caries-free individuals differ in sensitivity to host antimicrobial peptides. Mol Oral Microbiol 2011; 26:187-99. [PMID: 21545696 DOI: 10.1111/j.2041-1014.2011.00607.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Antimicrobial peptides (AMPs) are among the repertoire of host innate immune defenses. In the oral cavity, several AMPs are present in saliva and have antimicrobial activities against oral bacteria, including Streptococcus mutans, a primary etiological agent of dental caries. In this study, we hypothesized that unique S. mutans strains, as determined by DNA fingerprinting from sixty 13-year-old subjects with or without experience of caries, would have different susceptibilities to α-defensins-1-3 (HNP-1-3), β-defensins-2-3 (HBD-2-3) and LL-37. The salivary levels of these peptides in subjects were also measured by enzyme-linked immunosorbent assays. We found that S. mutans strains from children with active caries showed greater resistance to salivary HNP-1-2, HBD-2-3 and LL-37 at varying concentrations than those from caries-free subjects. In addition, combinations of these peptides increased their antimicrobial activity against S. mutans either additively or synergistically. The salivary levels of these peptides were highly variable among subjects with no correlation to host caries experience. However, the levels of a number of these peptides in saliva appeared to be positively correlated within an individual. Our findings suggest that the relative ability of S. mutans to resist host salivary AMPs may be considered a potential virulence factor for this species such that S. mutans strains that are more resistant to these peptides may have an ecological advantage to preferentially colonize within dental plaque and increase the risk of dental caries.
Collapse
Affiliation(s)
- E Phattarataratip
- Dows Institute for Dental Research, College of Dentistry, University of Iowa, Iowa City, IA, USA
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Mitchell J. Streptococcus mitis: walking the line between commensalism and pathogenesis. Mol Oral Microbiol 2011; 26:89-98. [PMID: 21375700 DOI: 10.1111/j.2041-1014.2010.00601.x] [Citation(s) in RCA: 156] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Streptococcus mitis is a viridans streptococcus and a normal commensal of the human oropharynx. However, S. mitis can escape from this niche and cause a variety of infectious complications including infective endocarditis, bacteraemia and septicaemia. It uses a variety of strategies to effectively colonize the human oropharynx. These include expression of adhesins, immunoglobulin A proteases and toxins, and modulation of the host immune system. These various colonization factors allow S. mitis to compete for space and nutrients in the face of its more pathogenic oropharyngeal microbial neighbours. However, it is likely that in vulnerable immune-compromised patients S. mitis will use the same colonization and immune modulation factors as virulence factors promoting its opportunistic pathogenesis. The recent publication of a complete genome sequence for S. mitis strain B6 will allow researchers to thoroughly investigate which genes are involved in S. mitis host colonization and pathogenesis. Moreover, it will help to give insight into where S. mitis fits in the complicated oral microbiome. This review will discuss the current knowledge of S. mitis factors involved in host colonization, their potential role in virulence and what needs to be done to fully understand how a an oral commensal successfully transitions to a virulent pathogen.
Collapse
Affiliation(s)
- J Mitchell
- University College Dublin, Belfield, Dublin, Ireland.
| |
Collapse
|