1
|
Nainwal N. Treatment of respiratory viral infections through inhalation therapeutics: Challenges and opportunities. Pulm Pharmacol Ther 2022; 77:102170. [PMID: 36240985 PMCID: PMC9554202 DOI: 10.1016/j.pupt.2022.102170] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 08/25/2022] [Accepted: 10/03/2022] [Indexed: 11/22/2022]
Abstract
Respiratory viral infections are the leading cause of death worldwide. The current pandemic of coronavirus infection (COVID-19) challenged human beings for the treatment and prevention of this respiratory viral infection since its outbreak in 2019. Despite advancements in the medical field, scientists were helpless to give timely treatment and protection against this viral infection. Several drugs, whether antiviral or not, were given to the patients to reduce mortality and morbidity rate. Vaccines from various pharmaceutical manufacturers are now available to give immunization against covid-19. Still, coronavirus is continuously affecting people in the form of variants after mutation. Each new variant increases the infection risk and forces scientists to develop some innovative and effective treatments for this infection. The virus uses the host's cell machinery to grow and multiply in numbers. Therefore, scientists are facing challenges to develop antivirals that stop the virus without damaging the host cells too. The production of suitable antivirals or vaccines for the new virus would take several months, allowing the strain to cause severe damage to life. Inhalable formulation facilitates the delivery of medicinal products directly to the respiratory system without causing unwanted side effects associated with systemic absorption. Scientists are focusing on developing an inhaled version of the existing antivirals for the treatment of respiratory infections. This review focused on the inhalable formulations of antiviral agents in various respiratory viral infections including the ongoing covid-19 pandemic and important findings of the clinical studies. We also reviewed repurposed drugs that have been given through inhalation in covid-19 infection.
Collapse
|
2
|
Abstract
Parainfluenza viruses, members of the enveloped, negative-sense, single stranded RNA Paramyxoviridae family, impact global child health as the cause of significant lower respiratory tract infections. Parainfluenza viruses enter cells by fusing directly at the cell surface membrane. How this fusion occurs via the coordinated efforts of the two molecules that comprise the viral surface fusion complex, and how these efforts may be blocked, are the subjects of this chapter. The receptor binding protein of parainfluenza forms a complex with the fusion protein of the virus, remaining stably associated until a receptor is reached. At that point, the receptor binding protein actively triggers the fusion protein to undergo a series of transitions that ultimately lead to membrane fusion and viral entry. In recent years it has become possible to examine this remarkable process on the surface of viral particles and to begin to understand the steps in the transition of this molecular machine, using a structural biology approach. Understanding the steps in entry leads to several possible strategies to prevent fusion and inhibit infection.
Collapse
Affiliation(s)
- Tara C Marcink
- Department of Pediatrics, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, United States; Center for Host-Pathogen Interaction, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, United States
| | - Matteo Porotto
- Department of Pediatrics, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, United States; Center for Host-Pathogen Interaction, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, United States; Department of Microbiology & Immunology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, United States
| | - Anne Moscona
- Department of Pediatrics, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, United States; Center for Host-Pathogen Interaction, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, United States; Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Caserta, Italy; Department of Physiology & Cellular Biophysics, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, United States.
| |
Collapse
|
3
|
Los-Arcos I, Iacoboni G, Aguilar-Guisado M, Alsina-Manrique L, Díaz de Heredia C, Fortuny-Guasch C, García-Cadenas I, García-Vidal C, González-Vicent M, Hernani R, Kwon M, Machado M, Martínez-Gómez X, Maldonado VO, Pla CP, Piñana JL, Pomar V, Reguera-Ortega JL, Salavert M, Soler-Palacín P, Vázquez-López L, Barba P, Ruiz-Camps I. Recommendations for screening, monitoring, prevention, and prophylaxis of infections in adult and pediatric patients receiving CAR T-cell therapy: a position paper. Infection 2020; 49:215-231. [PMID: 32979154 PMCID: PMC7518951 DOI: 10.1007/s15010-020-01521-5] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 08/29/2020] [Indexed: 12/11/2022]
Abstract
Chimeric antigen receptor (CAR) T-cell therapy is one of the most promising emerging treatments for B-cell malignancies. Recently, two CAR T-cell products (axicabtagene ciloleucel and tisagenlecleucel) have been approved for patients with aggressive B-cell lymphoma and acute lymphoblastic leukemia; many other CAR-T constructs are in research for both hematological and non-hematological diseases. Most of the patients receiving CAR-T therapy will develop fever at some point after infusion, mainly due to cytokine release syndrome (CRS). The onset of CRS is often indistinguishable from an infection, which makes management of these patients challenging. In addition to the lymphodepleting chemotherapy and CAR T cells, the treatment of complications with corticosteroids and/or tocilizumab increases the risk of infection in these patients. Data regarding incidence, risk factors and prevention of infections in patients receiving CAR-T cell therapy are scarce. To assist in patient care, a multidisciplinary team from hospitals designated by the Spanish Ministry of Health to perform CAR-T therapy prepared these recommendations. We reviewed the literature on the incidence, risk factors, and management of infections in adult and pediatric patients receiving CAR-T cell treatment. Recommendations cover different areas: monitoring and treatment of hypogammaglobulinemia, prevention, prophylaxis, and management of bacterial, viral, and fungal infections as well as vaccination prior and after CAR-T cell therapy.
Collapse
Affiliation(s)
- Ibai Los-Arcos
- Infectious Diseases Department, Hospital Universitari Vall D'Hebron, Barcelona, Spain.,Department of Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Gloria Iacoboni
- Deparment of Hematology, Vall D'Hebron Institute of Oncology (VHIO), Hospital Universitari Vall D'Hebron, Barcelona, Spain.,Department of Medicine, Universitat Autònoma de Barcelona, Passeig Vall d'Hebron 119-129, 08035, Barcelona, Spain
| | - Manuela Aguilar-Guisado
- Department of Infectious Diseases, Microbiology and Preventive Medicine, University Hospital Virgen del Rocío/CSIC/Institute of Biomedicine of Seville (IBIS), Seville, Spain
| | - Laia Alsina-Manrique
- Clinical Immunology and Primary Immunodeficiencies Unit, Hospital Sant Joan de Deu, Barcelona, Spain
| | - Cristina Díaz de Heredia
- Paediatric Oncology and Hematology Department, Hematopoietic Stem Cell Transplantation, Hospital Universitari Vall D'Hebron, Barcelona, Spain
| | | | - Irene García-Cadenas
- Hematology Department, Hospital de La Santa Creu I Sant Pau, Sant Pau and Jose Carreras Leukemia Research Institutes, Autonomous University of Barcelona, Barcelona, Spain
| | - Carolina García-Vidal
- Department of Infectious Diseases, Hospital Clínic, IDIBAPS (Institut D'Investigacions biomèdiques Agust Pi I Sunyer), Universitat de Barcelona, Barcelona, Spain
| | - Marta González-Vicent
- Hematopoietic Stem Cell Transplantation and Cellular Therapy Unit, Hospital Infantil Universitario "Niño Jesus", Madrid, Spain
| | - Rafael Hernani
- Department of Hematology, Hospital Clínico Universitario, Institute for Research INCLIVA, Valencia, Spain
| | - Mi Kwon
- Haematology and Haemotherapy Department, Hospital General Universitario Gregorio Marañón, Gregorio Marañón Health Research Institute, Madrid, Spain
| | - Marina Machado
- Clinical Microbiology and Infectious Diseases, Hospital General Universitario Gregorio Marañón, Gregorio Marañón Health Research Institute, Madrid, Spain
| | - Xavier Martínez-Gómez
- Epidemiology Department, Vall D'Hebron University Hospital, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Valentín Ortiz Maldonado
- Department of Hematology, Hospital Clínic de Barcelona, Institut D'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), University of Barcelona, Barcelona, Spain
| | - Carolina Pinto Pla
- Infectious Diseases Unit, Hospital Clínico Universitario, Instituto de Investigación INCLIVA, Valencia, Spain
| | - José Luis Piñana
- Hematology Division, Hospital Universitario Y politécnico La Fe, Instituto de investigación sanitaria La Fe, Valencia, CIBERONC, Instituto Carlos III, Madrid, Spain
| | - Virginia Pomar
- Infectious Disease Unit, Internal Medicine Department, Hospital de La Santa Creu I Sant Pau, Barcelona, Spain
| | - Juan Luis Reguera-Ortega
- Department of Haematology, University Hospital Virgen del Rocío/CSIC/Institute of Biomedicine of Seville (IBIS), Seville, Spain
| | - Miguel Salavert
- Infectious Diseases Unit, Área Clínica Médica, Hospital Universitario Y Politécnico La Fe, Valencia, Spain
| | - Pere Soler-Palacín
- Pediatric Infectious Diseases and Immunodeficiencies Unit, Hospital, Universitari Vall D'Hebron, Barcelona, Spain
| | | | - Pere Barba
- Deparment of Hematology, Vall D'Hebron Institute of Oncology (VHIO), Hospital Universitari Vall D'Hebron, Barcelona, Spain. .,Department of Medicine, Universitat Autònoma de Barcelona, Passeig Vall d'Hebron 119-129, 08035, Barcelona, Spain.
| | - Isabel Ruiz-Camps
- Infectious Diseases Department, Hospital Universitari Vall D'Hebron, Barcelona, Spain.,Department of Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain
| |
Collapse
|
4
|
Clinical and epidemiological characteristics of human parainfluenza virus infections of children in southern Taiwan. JOURNAL OF MICROBIOLOGY, IMMUNOLOGY, AND INFECTION = WEI MIAN YU GAN RAN ZA ZHI 2017; 51:749-755. [PMID: 28757139 DOI: 10.1016/j.jmii.2016.08.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Revised: 08/24/2016] [Accepted: 08/26/2016] [Indexed: 11/23/2022]
Abstract
BACKGROUND Human parainfluenza viruses (HPIV) 1-4 had been analyzed as being one of the most frequent causes of hospitalizations for young children with respiratory tract illnesses. METHODS This retrospective study was performed from children virologically confirmed as HPIV infection through throat swab or nasopharyngeal aspirates at a tertiary care university hospital, between January 2012 and December 2014. HPIV4 was not checked and analyzed, due to not include in the commercial kit. The demographic, epidemiological, clinical presentations, diagnosis, treatment, outcomes, and laboratory data were analyzed. RESULTS Totally 398 cases were enrolled, including 39 (9.8%) of HPIV1, 67 (16.8%) of HPIV2, and 292 (73.4%) of HPIV3. The mean age of HPIV-infected children was 2.9 year-old, and 50.5% were among one to three year-old. A total of 56.8% HPIV3-infected children were among one to three years old, however, no HPIV2-infected children was younger than one year-old. The HPIV1-infected patients were more common to develop wheezing and diagnose as acute bronchiolitis. HPIV2-infected children were more likely to have hoarseness (23.9%), and were associated with croup (25.4%). HPIV3 was isolated from two fatal cases, with neurological underlying diseases. CONCLUSION The impact caused by HPIVs infections is significant in hospitalized children. In the current study, our results contribute to the epidemiologic, clinical and laboratory information of HPIV infection in children in the important areas of respiratory tract infection that could support the development of optimization management.
Collapse
|
5
|
|
6
|
Swamy MA, Malhotra B, Reddy PVJ, Kumar N, Tiwari JK, Gupta ML. Distribution and Trends of Human Parainfluenza Viruses in Hospitalised Children. Indian J Pediatr 2016; 83:1109-13. [PMID: 27173651 PMCID: PMC7091168 DOI: 10.1007/s12098-016-2139-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Accepted: 04/27/2016] [Indexed: 11/24/2022]
Abstract
OBJECTIVE To study the distribution of Human Parainfluenza viruses (HPIV) 1-4 and their trends in children ≤5 y of age, hospitalised at a tertiary care centre, Jaipur and co-infection with other respiratory viruses. METHODS Nasopharyngeal aspirate and throat swabs were collected and processed for extraction of nucleic acid using automated extraction system and real time RT-PCR was performed using primers and probes specific to HPIV 1-4 and other respiratory viruses on 743 samples. RESULTS Total positivity for Parainfluenza viruses 1-4 was found to be 69/743 (9.28 %), of which 50/533 (9.38 %) were boys and 19/210 (9.05 %) girls. Predominance of HPIV- 3 was observed [41/743 (5.52%)] followed by HPIV-1 in 13/743 (1.75%), HPIV-4 in 10/743 (1.34%) and HPIV-2 in 5/743 (0.67%) patients. Maximum positivity was observed in age group 25-36 mo (12.98%) followed by 13-24 mo group (11.96%). HPIVs were found to be circulating round the year and each year. Co-infections with other respiratory viruses were observed in 22/69 (31.88%) of HPIV positive patients. CONCLUSIONS All the four types of HPIV were found to be circulating in the index population during all the three years, predominantly during post monsoon and winter seasons. HPIV vaccination should be targeted for all types.
Collapse
Affiliation(s)
- M Anjaneya Swamy
- Department of Microbiology & Immunology, Advanced Basic Sciences & Clinical Research Laboratory, (ICMR Grade - I Viral Diagnostics & Research Laboratory), Sawai Man Singh Medical College, Jawahar Lal Nehru Marg, Jaipur, 302004, Rajasthan, India
| | - Bharti Malhotra
- Department of Microbiology & Immunology, Advanced Basic Sciences & Clinical Research Laboratory, (ICMR Grade - I Viral Diagnostics & Research Laboratory), Sawai Man Singh Medical College, Jawahar Lal Nehru Marg, Jaipur, 302004, Rajasthan, India.
| | - P V Janardhan Reddy
- Department of Microbiology & Immunology, Advanced Basic Sciences & Clinical Research Laboratory, (ICMR Grade - I Viral Diagnostics & Research Laboratory), Sawai Man Singh Medical College, Jawahar Lal Nehru Marg, Jaipur, 302004, Rajasthan, India
| | - Neeraj Kumar
- Department of Microbiology & Immunology, Advanced Basic Sciences & Clinical Research Laboratory, (ICMR Grade - I Viral Diagnostics & Research Laboratory), Sawai Man Singh Medical College, Jawahar Lal Nehru Marg, Jaipur, 302004, Rajasthan, India
| | - Jitendra Kumar Tiwari
- Department of Microbiology & Immunology, Advanced Basic Sciences & Clinical Research Laboratory, (ICMR Grade - I Viral Diagnostics & Research Laboratory), Sawai Man Singh Medical College, Jawahar Lal Nehru Marg, Jaipur, 302004, Rajasthan, India
| | - M L Gupta
- Department of Medicine Pediatrics, J. K. Lone Hospital, Jaipur, Rajasthan, India
| |
Collapse
|
7
|
Abstract
Human parainfluenza viruses (HPIVs) are single-stranded, enveloped RNA viruses of the Paramyoviridaie family. There are four serotypes which cause respiratory illnesses in children and adults. HPIVs bind and replicate in the ciliated epithelial cells of the upper and lower respiratory tract and the extent of the infection correlates with the location involved. Seasonal HPIV epidemics result in a significant burden of disease in children and account for 40% of pediatric hospitalizations for lower respiratory tract illnesses (LRTIs) and 75% of croup cases. Parainfluenza viruses are associated with a wide spectrum of illnesses which include otitis media, pharyngitis, conjunctivitis, croup, tracheobronchitis, and pneumonia. Uncommon respiratory manifestations include apnea, bradycardia, parotitis, and respiratory distress syndrome and rarely disseminated infection. Immunity resulting from disease in childhood is incomplete and reinfection with HPIV accounts for 15% of respiratory illnesses in adults. Severe disease and fatal pneumonia may occur in elderly and immunocompromised adults. HPIV pneumonia in recipients of hematopoietic stem cell transplant (HSCT) is associated with 50% acute mortality and 75% mortality at 6 months. Though sensitive molecular diagnostics are available to rapidly diagnose HPIV infection, effective antiviral therapies are not available. Currently, treatment for HPIV infection is supportive with the exception of croup where the use of corticosteroids has been found to be beneficial. Several novel drugs including DAS181 appear promising in efforts to treat severe disease in immunocompromised patients, and vaccines to decrease the burden of disease in young children are in development.
Collapse
Affiliation(s)
- Angela R Branche
- Department of Medicine, University of Rochester, Rochester, New York
| | - Ann R Falsey
- Department of Medicine, University of Rochester, Rochester, New York
| |
Collapse
|
8
|
Dignan FL, Clark A, Aitken C, Gilleece M, Jayakar V, Krishnamurthy P, Pagliuca A, Potter MN, Shaw B, Skinner R, Turner A, Wynn RF, Coyle P. BCSH/BSBMT/UK clinical virology network guideline: diagnosis and management of common respiratory viral infections in patients undergoing treatment for haematological malignancies or stem cell transplantation. Br J Haematol 2016; 173:380-93. [PMID: 27060988 PMCID: PMC7161808 DOI: 10.1111/bjh.14027] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2015] [Revised: 12/30/2015] [Accepted: 01/03/2016] [Indexed: 12/21/2022]
Abstract
A joint working group established by the Haemato-oncology subgroup of the British Committee for Standards in Haematology, the British Society for Bone Marrow Transplantation and the UK Clinical Virology Network has reviewed the available literature and made recommendations for the diagnosis and management of respiratory viral infections in patients with haematological malignancies or those undergoing haematopoietic stem cell transplantation. This guideline includes recommendations for the diagnosis, prevention and treatment of respiratory viral infections in adults and children. The suggestions and recommendations are primarily intended for physicians practising in the United Kingdom.
Collapse
Affiliation(s)
- Fiona L Dignan
- Department of Haematology, Central Manchester NHS Foundation Trust, Manchester, UK
| | - Andrew Clark
- Bone Marrow Transplant Unit, Beatson Oncology Centre, Gartnavel Hospital, Glasgow, UK
| | - Celia Aitken
- West of Scotland Specialist Virology Centre, Glasgow Royal Infirmary, Glasgow, UK
| | - Maria Gilleece
- Department of Haematology, Leeds Teaching Hospitals Trust, Leeds, UK
| | - Vishal Jayakar
- Department of Haematology, Kingston Hospital NHS Trust, Kingston upon Thames, London, UK
| | | | - Antonio Pagliuca
- Department of Haematological Medicine, King's College Hospital, London, UK
| | - Michael N Potter
- Section of Haemato-oncology, The Royal Marsden NHS Foundation Trust, London, UK
| | - Bronwen Shaw
- Section of Haemato-oncology, The Royal Marsden NHS Foundation Trust, London, UK
| | - Roderick Skinner
- Department of Paediatric and Adolescent Haematology/Oncology, Great North Children's Hospital, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle, UK
| | - Andrew Turner
- Department of Virology, Central Manchester NHS Foundation Trust, Manchester, UK
| | - Robert F Wynn
- Royal Manchester Children's Hospital, Manchester, UK
| | - Peter Coyle
- Regional Virus Laboratory, Department of Microbiology, Belfast Health and Social Care Trust, Belfast, UK
| |
Collapse
|
9
|
Ribavirin. MEYLER'S SIDE EFFECTS OF DRUGS 2016. [PMCID: PMC7151912 DOI: 10.1016/b978-0-444-53717-1.01403-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
10
|
Manuel O, López‐Medrano F, Kaiser L, Welte T, Carratalà J, Cordero E, Hirsch HH. Influenza and other respiratory virus infections in solid organ transplant recipients. Clin Microbiol Infect 2015; 20 Suppl 7:102-8. [PMID: 26451405 PMCID: PMC7129960 DOI: 10.1111/1469-0691.12595] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [MESH Headings] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- O. Manuel
- Infectious Diseases Service and Transplantation CenterUniversity Hospital and University of LausanneLausanneSwitzerland
| | - F. López‐Medrano
- Unit of Infectious DiseasesHospital Universitario ‘12 de Octubre’Instituto de Investigación Hospital ‘12 de Octubre’ (i+12)School of MedicineUniversidad ComplutenseMadridSpain
| | - L. Kaiser
- Division of Infectious Diseases and Division of Laboratory MedicineUniversity of Geneva HospitalsGenevaSwitzerland
| | - T. Welte
- Department of Respiratory MedicineHannover Medical SchoolHannoverGermany
| | - J. Carratalà
- Department of Infectious DiseaseHospital Universitari de BellvitgeBarcelonaSpain
- Insitut d'Investigació Biomèdica de Bellvitge (IDIBELL)L'Hospitalet de LlobregatUniversity of BarcelonaBarcelonaSpain
| | - E. Cordero
- Hospital Universitario Virgen del RocíoInstituto de Biomedicina de SevillaSevilleSpain
| | - H. H. Hirsch
- Transplantation and Clinical VirologyDepartment of Biomedicine (Haus Petersplatz)University of BaselBaselSwitzerland
| | | |
Collapse
|
11
|
Velkov T, Abdul Rahim N, Zhou Q(T, Chan HK, Li J. Inhaled anti-infective chemotherapy for respiratory tract infections: successes, challenges and the road ahead. Adv Drug Deliv Rev 2015; 85:65-82. [PMID: 25446140 PMCID: PMC4429008 DOI: 10.1016/j.addr.2014.11.004] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Revised: 11/04/2014] [Accepted: 11/05/2014] [Indexed: 12/31/2022]
Abstract
One of the most common causes of illnesses in humans is from respiratory tract infections caused by bacterial, viral or fungal pathogens. Inhaled anti-infective drugs are crucial for the prophylaxis and treatment of respiratory tract infections. The benefit of anti-infective drug delivery via inhalation is that it affords delivery of sufficient therapeutic dosages directly to the primary site of infection, while minimizing the risks of systemic toxicity or avoiding potential suboptimal pharmacokinetics/pharmacodynamics associated with systemic drug exposure. This review provides an up-to-date treatise of approved and novel developmental inhaled anti-infective agents, with particular attention to effective strategies for their use, pulmonary pharmacokinetic properties and safety.
Collapse
|
12
|
Cotugno N, Manno EC, Stoppa F, Sinibaldi S, Saffirio C, D'Argenio P, Marano M, Di Nardo M, Palma P. Severe parainfluenza pneumonia in a case of transient hypogammalobulinemia of infancy. BMJ Case Rep 2013; 2013:bcr-2013-009959. [PMID: 23814123 DOI: 10.1136/bcr-2013-009959] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Human parainfluenza viruses (HPIVs) infection, largely known to cause self-limiting bronchiolitis and pneumonia in immune competent patients, can lead to severe to fatal pulmonary disease in immune disorders, such as primary or acquired-immune deficiencies. We report the case of a 1-year-old child who developed an acute respiratory distress syndrome. Because of a progressive respiratory failure unresponsive to conventional treatment extracorporeal membrane oxygenation (ECMO) was rapidly started. HPIV-3 infection was diagnosed on the rhinopharyngeal fluid and immunological examinations revealed a hypogammaglobulinemia. A combination therapy with ribavirin, intravenous immunoglobulin (IVIG) and steroid under ECMO support was started with considerable improvement. Subsequent analysis and more specific immunological assessment resulted normal confirming the diagnosis of transient hypogammaglobulinemia of infancy (THI). This case highlights the importance of prompt therapy with early ECMO support in combination with ribavirin, IVIG and steroids in patients affected by severe HPIV-3 pneumonia and THI.
Collapse
Affiliation(s)
- Nicola Cotugno
- University Department of Pediatrics (DPUO), Bambino Gesù Children's Hospital IRCCS, Rome, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Liu WK, Liu Q, Chen DH, Liang HX, Chen XK, Huang WB, Qin S, Yang ZF, Zhou R. Epidemiology and clinical presentation of the four human parainfluenza virus types. BMC Infect Dis 2013; 13:28. [PMID: 23343342 PMCID: PMC3560251 DOI: 10.1186/1471-2334-13-28] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2012] [Accepted: 01/21/2013] [Indexed: 11/27/2022] Open
Abstract
Background Human parainfluenza viruses (HPIVs) are important causes of upper respiratory tract illness (URTI) and lower respiratory tract illness (LRTI). To analyse epidemiologic and clinical characteristics of the four types of human parainfluenza viruses (HPIVs), patients with acute respiratory tract illness (ARTI) were studied in Guangzhou, southern China. Methods Throat swabs (n=4755) were collected and tested from children and adults with ARTI over a 26-month period, and 4447 of 4755 (93.5%) patients’ clinical presentations were recorded for further analysis. Results Of 4755 patients tested, 178 (3.7%) were positive for HPIV. Ninety-nine (2.1%) samples were positive for HPIV-3, 58 (1.2%) for HPIV-1, 19 (0.4%) for HPIV-2 and 8 (0.2%) for HPIV-4. 160/178 (88.9%) HPIV-positive samples were from paediatric patients younger than 5 years old, but no infant under one month of age was HPIV positive. Seasonal peaks of HPIV-3 and HPIV-1 occurred as autumn turned to winter and summer turned to autumn. HPIV-2 and HPIV-4 were detected less frequently, and their frequency of isolation increased when the frequency of HPIV-3 and HPIV-1 declined. HPIV infection led to a wide spectrum of symptoms, and more “hoarseness” (p=0.015), “abnormal pulmonary breathing sound” (p<0.001), “dyspnoea” (p<0.001), “pneumonia” (p=0.01), and “diarrhoea” (p<0.001) presented in HPIV-positive patients than HPIV-negative patients. 10/10 (100%) HPIV-positive adult patients (≥14 years old) presented with systemic influenza-like symptoms, while 90/164 (54.9%) HPIV-positive paediatric patients (<14 years old) presented with these symptoms (p=0.005). The only significant difference in clinical presentation between HPIV types was “Expectoration” (p<0.001). Co-infections were common, with 33.3%–63.2% of samples positive for the four HPIV types also testing positive for other respiratory pathogens. However, no significant differences were seen in clinical presentation between patients solely infected with HPIV and patients co-infected with HPIV and other respiratory pathogens. Conclusions HPIV infection led to a wide spectrum of symptoms, and similar clinical manifestations were found in the patients with four different types of HPIVs. The study suggested pathogenic activity of HPIV in gastrointestinal illness. The clinical presentation of HPIV infection may differ by patient age.
Collapse
Affiliation(s)
- Wen-Kuan Liu
- State Key Laboratory of Respiratory Diseases (Guangzhou Medical University), 1 Kang Da Road, Guangzhou, Guangdong 510230, China
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Hirsch HH, Martino R, Ward KN, Boeckh M, Einsele H, Ljungman P. Fourth European Conference on Infections in Leukaemia (ECIL-4): guidelines for diagnosis and treatment of human respiratory syncytial virus, parainfluenza virus, metapneumovirus, rhinovirus, and coronavirus. Clin Infect Dis 2012; 56:258-66. [PMID: 23024295 PMCID: PMC3526251 DOI: 10.1093/cid/cis844] [Citation(s) in RCA: 228] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Community-acquired respiratory virus (CARV) infections have been recognized as a significant cause of morbidity and mortality in patients with leukemia and those undergoing hematopoietic stem cell transplantation (HSCT). Progression to lower respiratory tract infection with clinical and radiological signs of pneumonia and respiratory failure appears to depend on the intrinsic virulence of the specific CARV as well as factors specific to the patient, the underlying disease, and its treatment. To better define the current state of knowledge of CARVs in leukemia and HSCT patients, and to improve CARV diagnosis and management, a working group of the Fourth European Conference on Infections in Leukaemia (ECIL-4) 2011 reviewed the literature on CARVs, graded the available quality of evidence, and made recommendations according to the Infectious Diseases Society of America grading system. Owing to differences in screening, clinical presentation, and therapy for influenza and adenovirus, ECIL-4 recommendations are summarized for CARVs other than influenza and adenovirus.
Collapse
Affiliation(s)
- Hans H Hirsch
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital Basel, Switzerland.
| | | | | | | | | | | |
Collapse
|
15
|
Falsey AR. Current management of parainfluenza pneumonitis in immunocompromised patients: a review. Infect Drug Resist 2012; 5:121-7. [PMID: 22893749 PMCID: PMC3418768 DOI: 10.2147/idr.s25874] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Parainfluenza viruses (PIV) are common respiratory viruses that belong to the Paramyxoviridae family. PIV infection can lead to a wide variety of clinical syndromes ranging from mild upper respiratory illness to severe pneumonia. Severe disease can be seen in elderly or chronically ill persons and may be fatal in persons with compromised immune systems, particularly children with severe combined immunodeficiency disease syndrome and hematopathic stem cell transplant recipients. At present, there are no licensed antiviral agents for the treatment of PIV infection. Aerosolized or systemic ribavirin in combination with intravenous gamma globulin has been reported in small, uncontrolled series and case reports of immunocompromised patients. A number of agents show antiviral activity in vitro and in animals, but none are currently approved for human use.
Collapse
Affiliation(s)
- Ann R Falsey
- University of Rochester, Rochester General Hospital, Rochester, NY, USA
| |
Collapse
|
16
|
Weigt SS, Gregson AL, Deng JC, Lynch JP, Belperio JA. Respiratory viral infections in hematopoietic stem cell and solid organ transplant recipients. Semin Respir Crit Care Med 2011; 32:471-93. [PMID: 21858751 PMCID: PMC4209842 DOI: 10.1055/s-0031-1283286] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Respiratory viral infections (RVIs) are common causes of mild illness in immunocompetent children and adults with rare occurrences of significant morbidity or mortality. Complications are more common in the very young, very old, and those with underlying lung diseases. However, RVIs are increasingly recognized as a cause of morbidity and mortality in recipients of hematopoietic stem cell transplants (HSCT) and solid organ transplants (SOTs). Diagnostic techniques for respiratory syncytial virus (RSV), parainfluenza, influenza, and adenovirus have been clinically available for decades, and these infections are known to cause serious disease in transplant recipients. Modern molecular technology has now made it possible to detect other RVIs including human metapneumovirus, coronavirus, and bocavirus, and the role of these viruses in causing serious disease in transplant recipients is still being worked out. This article reviews the current information regarding epidemiology, pathogenesis, clinical presentation, diagnosis, and treatment of these infections, as well as the aspects of clinical significance of RVIs unique to HSCT or SOT.
Collapse
Affiliation(s)
- S Samuel Weigt
- Division of Pulmonary, Department of Medicine, The David Geffen School of Medicine at UCLA, Los Angeles, California 90095, USA.
| | | | | | | | | |
Collapse
|
17
|
Hodson A, Kasliwal M, Streetly M, MacMahon E, Raj K. A parainfluenza-3 outbreak in a SCT unit: sepsis with multi-organ failure and multiple co-pathogens are associated with increased mortality. Bone Marrow Transplant 2011; 46:1545-50. [PMID: 21258418 PMCID: PMC7091637 DOI: 10.1038/bmt.2010.347] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The estimated frequency of parainfluenza virus 3 (PIV-3) infections following haematopoietic SCT (HSCT) is 2–7%, whereas reported mortality ranges from 18 to 33%. We report a retrospective outcome analysis following an outbreak of PIV-3 infection in our transplant unit. A total of 16 HSCT patients developed PIV-3 infection. All patients had upper respiratory tract infection, whereas lower respiratory tract infection occurred in 8 patients. Overall, 13 patients were treated with aerosolised Ribavirin (2 g t.d.s. for 5 days) and i.v. Ig (0.5 g/kg) as per standard protocol. One patient refused treatment, whereas two patients with full immune reconstitution were not treated. Overall mortality was 62.5%. Sepsis with multi-organ failure and the presence of pulmonary co-pathogens were both significantly associated with PIV-3-related mortality. Our series confirms that high mortality is associated with PIV-3 infection in HSCT recipients. In patients who develop PIV-3 infection, despite strict enforcement of infection control policies, the best strategy might be careful risk assessment, with effective broad-spectrum anti-microbials in those who are at risk of secondary infection.
Collapse
Affiliation(s)
- A Hodson
- Department of Haematology, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | | | | | | | | |
Collapse
|
18
|
Hsieh YJ, Chin H, Chiu NC, Huang FY. Hospitalized Pediatric Parainfluenza Virus Infections in a Medical Center. JOURNAL OF MICROBIOLOGY, IMMUNOLOGY, AND INFECTION = WEI MIAN YU GAN RAN ZA ZHI 2010; 43:360-5. [DOI: 10.1016/s1684-1182(10)60057-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2009] [Revised: 06/30/2009] [Accepted: 08/30/2009] [Indexed: 10/18/2022]
|
19
|
Wong SSY, Yuen KY. Antiviral therapy for respiratory tract infections. Respirology 2008; 13:950-71. [PMID: 18922142 PMCID: PMC7192202 DOI: 10.1111/j.1440-1843.2008.01404.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2008] [Revised: 07/10/2008] [Accepted: 08/04/2008] [Indexed: 12/24/2022]
Abstract
Viruses are important pathogens causing respiratory tract infections both in the community and health-care facility settings. They are extremely common causes of morbidity in the competent hosts and some are associated with significant mortality in the compromised individuals. With wider application of molecular techniques, novel viruses are being described and old viruses are found to have new significance in different epidemiological and clinical settings. Some of these emerging pathogens may have the potential to cause pandemics or global spread of a severe disease, as exemplified by severe acute respiratory syndrome and avian influenza. Antiviral therapy of viral respiratory infections is often unnecessary in the competent hosts because most of them are selflimiting and effective agents are not always available. In the immunocompromised individuals or for infections caused by highly pathogenic viruses, such as avian influenza viruses (AIV), antiviral treatment is highly desirable, despite the fact that many of the agents may not have undergone stringent clinical trials. In immunocompetent hosts, antiviral therapy can be stopped early because adaptive immune response can usually be mounted within 5-14 days. However, the duration of antiviral therapy in immunosuppressed hosts depends on clinical and radiological resolution, the degree and duration of immunosuppression, and therefore maintenance therapy is sometimes needed after the initial response. Immunotherapy and immunoprophylaxis appear to be promising directions for future research. Appropriate and targeted immunomodulation may play an important adjunctive role in some of these infections by limiting the extent of end-organ damage and multi-organ failure in some fulminant infections.
Collapse
Affiliation(s)
- Samson S Y Wong
- Department of Microbiology, Research Centre of Infection and Immunology, The University of Hong Kong, Queen Mary Hospital, Hong Kong
| | | |
Collapse
|