1
|
Niu D, Ma X, Yuan T, Niu Y, Xu Y, Sun Z, Ping Y, Li W, Zhang J, Wang T, Church GM. Porcine genome engineering for xenotransplantation. Adv Drug Deliv Rev 2021; 168:229-245. [PMID: 32275950 DOI: 10.1016/j.addr.2020.04.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 03/28/2020] [Accepted: 04/06/2020] [Indexed: 02/06/2023]
Abstract
The extreme shortage of human donor organs for treatment of patients with end-stage organ failures is well known. Xenotransplantation, which might provide unlimited organ supply, is a most promising strategy to solve this problem. Domestic pigs are regarded as ideal organ-source animals owing to similarity in anatomy, physiology and organ size to humans as well as high reproductive capacity and low maintenance cost. However, several barriers, which include immune rejection, inflammation and coagulative dysfunctions, as well as the cross-species transmission risk of porcine endogenous retrovirus, blocked the pig-to-human xenotransplantation. With the rapid development of genome engineering technologies and the potent immunosuppressive medications in recent years, these barriers could be eliminated through genetic modification of pig genome together with the administration of effective immunosuppressants. A number of candidate genes involved in the regulation of immune response, inflammation and coagulation have been explored to optimize porcine xenograft survival in non-human primate recipients. PERV inactivation in pigs has also been accomplished to firmly address the safety issue in pig-to-human xenotransplantation. Many encouraging preclinical milestones have been achieved with some organs surviving for years. Therefore, the clinical trials of some promising organs, such as islet, kidney and heart, are aimed to be launched in the near future.
Collapse
Affiliation(s)
- Dong Niu
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, China-Australian Joint Laboratory for Animal Health Big Data Analytics, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang A&F University, Hangzhou, P.R. China
| | - Xiang Ma
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, China-Australian Joint Laboratory for Animal Health Big Data Analytics, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang A&F University, Hangzhou, P.R. China
| | - Taoyan Yuan
- Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang 310021, China
| | - Yifan Niu
- Nanjing Kgene Genetic Engineering Co., Ltd, Nanjing, Jiangsu 211300, China
| | - Yibin Xu
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Zhongxin Sun
- Cosmetic & Plastic Surgery Department, Hangzhou First People's Hospital, Hangzhou, Zhejiang 310006, China
| | - Yuan Ping
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Weifen Li
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Jufang Zhang
- Cosmetic & Plastic Surgery Department, Hangzhou First People's Hospital, Hangzhou, Zhejiang 310006, China.
| | - Tao Wang
- Nanjing Kgene Genetic Engineering Co., Ltd, Nanjing, Jiangsu 211300, China.
| | - George M Church
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA; Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA 02138, USA.
| |
Collapse
|
2
|
Smyth LA, Meader L, Xiao F, Woodward M, Brady HJM, Lechler R, Lombardi G. Constitutive expression of the anti-apoptotic Bcl-2 family member A1 in murine endothelial cells leads to transplant tolerance. Clin Exp Immunol 2017; 188:219-225. [PMID: 28120329 DOI: 10.1111/cei.12931] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/06/2017] [Indexed: 11/26/2022] Open
Abstract
Anti-apoptotic genes, including those of the Bcl-2 family, have been shown to have dual functionality inasmuch as they inhibit cell death but also regulate inflammation. Several anti-apoptotic molecules have been associated with endothelial cell (EC) survival following transplantation; however, their exact role has yet to be elucidated in respect to controlling inflammation. In this study we created mice expressing murine A1 (Bfl-1), a Bcl-2 family member, under the control of the human intercellular adhesion molecule 2 (ICAM-2) promoter. Constitutive expression of A1 in murine vascular ECs conferred protection from cell death induced by the proinflammatory cytokine tumour necrosis factor (TNF)-α. Importantly, in a mouse model of heart allograft transplantation, expression of A1 in vascular endothelium increased survival in the absence of CD8+ T cells. Better graft outcome in mice receiving an A1 transgenic heart correlated with a reduced immune infiltration, which may be related to increased EC survival and reduced expression of adhesion molecules on ECs. In conclusion, constitutive expression of the anti-apoptotic molecule Bfl1 (A1) in murine vascular ECs leads to prolonged allograft survival due to modifying inflammation.
Collapse
Affiliation(s)
- L A Smyth
- Medical Research Council (MRC) Centre for Transplantation, King's College London, London, UK, National Institute for Health Research (NIHR) Comprehensive Biomedical Research Centre, Guy's and St Thomas' NHS Foundation Trust and King's College London, London, UK.,School of Health, Sports and Biosciences, University of East London, London, UK
| | - L Meader
- Medical Research Council (MRC) Centre for Transplantation, King's College London, London, UK, National Institute for Health Research (NIHR) Comprehensive Biomedical Research Centre, Guy's and St Thomas' NHS Foundation Trust and King's College London, London, UK
| | - F Xiao
- Medical Research Council (MRC) Centre for Transplantation, King's College London, London, UK, National Institute for Health Research (NIHR) Comprehensive Biomedical Research Centre, Guy's and St Thomas' NHS Foundation Trust and King's College London, London, UK
| | - M Woodward
- Peter Gorer Department of Immunobiology, Borough Wing, Guy's Hospital, King's College, London, UK
| | - H J M Brady
- Immunology and Infection Section, Division of Cell and Molecular Biology, Sir Alexander Fleming Building, Imperial College, London, UK
| | - R Lechler
- Medical Research Council (MRC) Centre for Transplantation, King's College London, London, UK, National Institute for Health Research (NIHR) Comprehensive Biomedical Research Centre, Guy's and St Thomas' NHS Foundation Trust and King's College London, London, UK
| | - G Lombardi
- Medical Research Council (MRC) Centre for Transplantation, King's College London, London, UK, National Institute for Health Research (NIHR) Comprehensive Biomedical Research Centre, Guy's and St Thomas' NHS Foundation Trust and King's College London, London, UK
| |
Collapse
|
3
|
|
4
|
Lee HJ, Lee BC, Kim YH, Paik NW, Rho HM. Characterization of Transgenic Pigs That Express Human Decay Accelerating Factor and Cell Membrane-tethered Human Tissue Factor Pathway Inhibitor. Reprod Domest Anim 2011; 46:325-32. [DOI: 10.1111/j.1439-0531.2010.01670.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
5
|
Gock H, Nottle M, Lew AM, d'Apice AJ, Cowan P. Genetic modification of pigs for solid organ xenotransplantation. Transplant Rev (Orlando) 2011; 25:9-20. [DOI: 10.1016/j.trre.2010.10.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2010] [Revised: 08/13/2010] [Accepted: 10/01/2010] [Indexed: 10/18/2022]
|
6
|
Crikis S, Zhang XM, Dezfouli S, Dwyer KM, Murray-Segal LM, Salvaris E, Selan C, Robson SC, Nandurkar HH, Cowan PJ, d’Apice AJF. Anti-inflammatory and anticoagulant effects of transgenic expression of human thrombomodulin in mice. Am J Transplant 2010; 10:242-50. [PMID: 20055798 PMCID: PMC5472991 DOI: 10.1111/j.1600-6143.2009.02939.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Thrombomodulin (TBM) is an important vascular anticoagulant that has species specific effects. When expressed as a transgene in pigs, human (h)TBM might abrogate thrombotic manifestations of acute vascular rejection (AVR) that occur when GalT-KO and/or complement regulator transgenic pig organs are transplanted to primates. hTBM transgenic mice were generated and characterized to determine whether this approach might show benefit without the development of deleterious hemorrhagic phenotypes. hTBM mice are viable and are not subject to spontaneous hemorrhage, although they have a prolonged bleeding time. They are resistant to intravenous collagen-induced pulmonary thromboembolism, stasis-induced venous thrombosis and pulmonary embolism. Cardiac grafts from hTBM mice to rats treated with cyclosporine in a model of AVR have prolonged survival compared to controls. hTBM reduced the inflammatory reaction in the vein wall in the stasis-induced thrombosis and mouse-to-rat xenograft models and reduced HMGB1 levels in LPS-treated mice. These results indicate that transgenic expression of hTBM has anticoagulant and antiinflammatory effects that are graft-protective in murine models.
Collapse
Affiliation(s)
- S. Crikis
- Immunology Research Centre, The University of Melbourne, St. Vincent’s Hospital, Fitzroy, Vic. 3065, Australia,Department of Medicine, The University of Melbourne, St. Vincent’s Hospital, Fitzroy, Vic. 3065, Australia
| | - X. M. Zhang
- Immunology Research Centre, The University of Melbourne, St. Vincent’s Hospital, Fitzroy, Vic. 3065, Australia
| | - S. Dezfouli
- Immunology Research Centre, The University of Melbourne, St. Vincent’s Hospital, Fitzroy, Vic. 3065, Australia
| | - K. M. Dwyer
- Immunology Research Centre, The University of Melbourne, St. Vincent’s Hospital, Fitzroy, Vic. 3065, Australia,Department of Medicine, The University of Melbourne, St. Vincent’s Hospital, Fitzroy, Vic. 3065, Australia
| | - L. M. Murray-Segal
- Immunology Research Centre, The University of Melbourne, St. Vincent’s Hospital, Fitzroy, Vic. 3065, Australia
| | - E. Salvaris
- Immunology Research Centre, The University of Melbourne, St. Vincent’s Hospital, Fitzroy, Vic. 3065, Australia
| | - C. Selan
- Immunology Research Centre, The University of Melbourne, St. Vincent’s Hospital, Fitzroy, Vic. 3065, Australia
| | - S. C. Robson
- Liver Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
| | - H. H. Nandurkar
- Immunology Research Centre, The University of Melbourne, St. Vincent’s Hospital, Fitzroy, Vic. 3065, Australia,Department of Medicine, The University of Melbourne, St. Vincent’s Hospital, Fitzroy, Vic. 3065, Australia
| | - P. J. Cowan
- Immunology Research Centre, The University of Melbourne, St. Vincent’s Hospital, Fitzroy, Vic. 3065, Australia,Department of Medicine, The University of Melbourne, St. Vincent’s Hospital, Fitzroy, Vic. 3065, Australia
| | - A. J. F. d’Apice
- Immunology Research Centre, The University of Melbourne, St. Vincent’s Hospital, Fitzroy, Vic. 3065, Australia,Department of Medicine, The University of Melbourne, St. Vincent’s Hospital, Fitzroy, Vic. 3065, Australia,Corresponding author: Professor Anthony J. F. d’Apice,
| |
Collapse
|
7
|
Liu B, Cheng C, Wu Y, Wei J, Li G, Ma T. Transgenic mice designed to express human alpha-1,2-fucosyltransferase in combination of human DAF and CD59 to avoid xenograft rejection. SCIENCE IN CHINA. SERIES C, LIFE SCIENCES 2008; 51:199-204. [PMID: 18246307 DOI: 10.1007/s11427-008-0019-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2007] [Accepted: 11/29/2007] [Indexed: 11/24/2022]
Abstract
The expression of human alpha-1,2-fucosyltransferase (HT) or complement regulatory proteins has been proved as an strategy to overcome hypercute rejection in discordant xenogeneic organ transplantation. In this study, we examined whether peripheral blood mononuclear cells (PBMCs) from polytransgenic mice expressing the human HT, and complement regulatory proteins (DAF and CD59), can provide more effective protection against xenograft rejection. Transgenic mice were produced by co-injection of gene constructs for human HT, DAF and/or CD59. Flow Cytometry (FCM) was used to screen the positive transgenic mice. PBMCs from transgenic mice were incubated with 15% human serum to evaluate natural antibody binding, complement activation and expression of adhesion molecules. Three transgenes were strongly expressed in PBMCs of transgenic mice, and HT expression significantly reduced expression of the major xenoepitope galactose-alpha-1,3-galactose (alpha-Gal). Functional studies with PBMCs showed that co-expression of HT and DAF or CD59 markedly increased their resistance to human serum-mediated cytolysis when compared with single transgenic PBMCs. Moreover, the combined expression of triple transgenes in PBMCs led to the greatest protection against human serum-mediated cytolysis, avoided hyperacute rejection and reduced expression of adhesion molecules. Strong co-expression of triple transgenes was completely protected from xenograft hyperacute rejection and partially inhibited acute vascular rejection. The studies suggest that engineering mice to express triple molecules represents an critical step toward prolonging xenograft survival and might be more suitable for xenotransplantation.
Collapse
Affiliation(s)
- BingQian Liu
- Department of Urology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
| | | | | | | | | | | |
Collapse
|
8
|
Mysore TB, Shinkel TA, Collins J, Salvaris EJ, Fisicaro N, Murray-Segal LJ, Johnson LEA, Lepore DA, Walters SN, Stokes R, Chandra AP, O'Connell PJ, d'Apice AJF, Cowan PJ. Overexpression of glutathione peroxidase with two isoforms of superoxide dismutase protects mouse islets from oxidative injury and improves islet graft function. Diabetes 2005; 54:2109-16. [PMID: 15983212 DOI: 10.2337/diabetes.54.7.2109] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Primary nonfunction of transplanted islets results in part from their sensitivity to reactive oxygen species (ROS) generated during the isolation and transplantation process. Our aim was to examine whether coexpression of antioxidant enzymes to detoxify multiple ROS increased the resistance of mouse islets to oxidative stress and improved the initial function of islet grafts. Islets from transgenic mice expressing combinations of human copper/zinc superoxide dismutase (SOD), extracellular SOD, and cellular glutathione peroxidase (Gpx-1) were subjected to oxidative stress in vitro. Relative viability after hypoxanthine/xanthine oxidase treatment was as follows: extracellular SOD + Gpx-1 + Cu/Zn SOD > extracellular SOD + Gpx-1 > extracellular SOD > wild type. Expression of all three enzymes was the only combination protective against hypoxia/reoxygenation. Islets from transgenic or control wild-type mice were then transplanted into streptozotocin-induced diabetic recipients in a syngeneic marginal islet mass model, and blood glucose levels were monitored for 7 days. In contrast to single- and double-transgenic grafts, triple-transgenic grafts significantly improved control of blood glucose compared with wild type. Our results indicate that coexpression of antioxidant enzymes has a complementary beneficial effect and may be a useful approach to reduce primary nonfunction of islet grafts.
Collapse
Affiliation(s)
- Tharun B Mysore
- Immunology Research Centre, St. Vincent's Hospital Melbourne, P.O. Box 2900, Fitzroy 3065, Victoria, Australia
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Zhou CY, McInnes E, Copeman L, Langford G, Parsons N, Lancaster R, Richards A, Carrington C, Thompson S. Transgenic pigs expressing human CD59, in combination with human membrane cofactor protein and human decay-accelerating factor. Xenotransplantation 2005; 12:142-8. [PMID: 15693845 DOI: 10.1111/j.1399-3089.2005.00209.x] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
BACKGROUND The expression of human complement regulators has been proved as an effective strategy to overcome hyperacute rejection in discordant xenogeneic organ transplantation. In this study, we tested the hypotheses that expression of triple transgenes for human complement regulators and provide more effective protection to the transplanted pig tissues. METHODS Pigs transgenic for human complement regulatory proteins, human CD59 (hCD59) and human membrane cofactor protein (hMCP), have been generated using large genomic constructs. Heterozygous human decay-accelerating factor (hDAF) transgenic pigs, from a previously established line, were bred with hCD59 or hCD59 plus hMCP pigs to produce animals that expressed both hCD59 and hDAF, or expressed triple transgenes hCD59, hDAF and hMCP. RESULTS All three transgenes were widely expressed in most of the tissues analyzed, but the expression of hMCP was at low levels. In cytotoxicity assays on porcine peripheral blood mononuclear cells, the expression of a single transgenic protein, hCD59, or hCD59 in combination with hMCP provided similar protection against human complement-mediated damage as the single expression of hDAF. However, the expression of triple transgenic proteins or double hCD59 and hDAF transgenic proteins provided greater protection than either hCD59 or hDAF alone. CONCLUSIONS Thus, pigs transgenic for multiple transgenes provide a greater degree of human complement regulation and hence might be more suitable for xenotransplantation.
Collapse
Affiliation(s)
- Chun-Yan Zhou
- Imutran Ltd. (a Novartis Pharma AG Company), PO Box 399, Cambridge CB2 2YP, UK.
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Shapiro AMJ, Nanji SA, Lakey JRT. Clinical islet transplant: current and future directions towards tolerance. Immunol Rev 2003; 196:219-36. [PMID: 14617207 DOI: 10.1046/j.1600-065x.2003.00085.x] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The ultimate goal of islet transplantation is to completely correct the diabetic state from an unlimited donor source, without the need for chronic immunosuppressive drug therapy. Although islet transplantation provides an opportunity to develop innovative strategies for tolerance in the clinic, both alloimmune and autoimmune barriers must be controlled, if stable graft function is to be maintained long-term. After islet extraction from the pancreas, the cellular graft may be stored in tissue culture or cryopreserved for banking, providing an opportunity not only to optimally condition the recipient but also to allow in vitro immunologic manipulation of the graft before transplantation, unlike solid organ grafts. As such, islets may be considered a "special case." Remarkable progress has occurred in the last three years, with dramatic improvements in outcomes after clinical islet transplantation. The introduction of a steroid-free, sirolimus-based, anti-rejection protocol and islets prepared from two (or rarely three) donors led to high rates of insulin independence. The "Edmonton Protocol" has been successfully replicated by other centers in an international multicenter trial. A number of key refinements in pancreas transportation, processing, purification on non-ficoll-based media, storage of islets in culture for two days and newer immunological conditioning and induction therapies have led to continued advancement through extensive collaboration between key centers. This review outlines the historical development of islet transplantation over the past 30 years, provides an update on current clinical outcomes, and summarizes a series of unique opportunities for development and early testing of tolerance protocols in patients.
Collapse
Affiliation(s)
- A M James Shapiro
- Clinical Islet Transplant Program and Department of Surgery, University of Alberta, 200 College Plaza, 8215 112 Street, Edmonton, Alberta, Canada T6G 2C8.
| | | | | |
Collapse
|
11
|
Malassagne B, Regimbeau JM, Taboit F, Troalen F, Chéreau C, Moiré N, Attal J, Batteux F, Conti F, Calmus Y, Houssin D, Boulard C, Houdebine LM, Weill B. Hypodermin A, a new inhibitor of human complement for the prevention of xenogeneic hyperacute rejection. Xenotransplantation 2003; 10:267-77. [PMID: 12694547 DOI: 10.1034/j.1399-3089.2003.02030.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
BACKGROUND Hyperacute rejection (HAR) of discordant xenografts in the pig-to-human combination can be prevented using tranplants expressing transgenic molecules that inhibit human complement. Hypodermin A (HA), a serine esterase that degrades C3, was tested in the guinea-pig-to-rat and in the pig-to-human combinations. METHODS Hypodermin A was tested in vitro, ex vivo, and in vivo models of HAR in the guinea-pig-to-rat combination. Hamster ovary cells (CHO) and a line of porcine aortic endothelial cells (PAEC11) were transfected with HA complementary DNA (cDNA). RESULTS The pattern of degradation of rat and human C3 by HA was different (multiple bands lower than 40 kDa) from the physiologic pattern observed after spontaneous degradation of rat C3 or physiologic activation of human C3. The CH50 activity in serum was significantly lower in rats treated with 3.2 mg HA/kg than in untreated rats (45 +/- 16 U/ml vs. 700 +/- 63 U/ml, P < 0.05). Sera from rats injected with 3.2 mg/kg of HA were less effective in lysing guinea-pig endothelial cells (12 +/- 7%) than normal rat sera (79 +/- 3%; P < 0.001). Ex vivo, guinea-pig hearts perfused by rat serum supplemented with HA survived longer than those perfused by non-treated serum (210 +/- 34 and 154 +/- 71 min, respectively; P < 0.05). In vivo, guinea-pig hearts transplanted into HA treated rats survived longer than in non-treated rats (27 +/- 5 min vs. 13 +/- 4 min; P < 0.001). In the presence of human serum, smaller amounts of C6 and C5b-9 were deposited onto HA-transfected CHO cells than onto control cells. The mHA-PAEC11 cells were significantly more resistant to lysis by human C than control PAEC11 cells. CONCLUSIONS These data suggest that transgenic HA could be used to prevent hyperacute xenogeneic rejection.
Collapse
Affiliation(s)
- B Malassagne
- Laboratoire d'Immunologie, AP-HP, Faculté Cochin, Université Paris V, Paris, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Cowan PJ, Shinkel TA, Fisicaro N, Godwin JW, Bernabéu C, Almendro N, Rius C, Lonie AJ, Nottle MB, Wigley PL, Paizis K, Pearse MJ, d'Apice AJF. Targeting gene expression to endothelium in transgenic animals: a comparison of the human ICAM-2, PECAM-1 and endoglin promoters. Xenotransplantation 2003; 10:223-31. [PMID: 12694542 DOI: 10.1034/j.1399-3089.2003.01140.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
It is highly likely that successful pig-to-human xenotransplantation of vascularized organs will require genetic modification of the donor pig, and in particular of donor vascular endothelium. Promoters are generally tested in transgenic mice before generating transgenic pigs. Several promoters have been used to drive endothelial cell-specific expression in mice but none have yet been tested in pigs. We compared the promoters of three human genes that are predominantly expressed in vascular endothelium: intercellular adhesion molecule 2 (ICAM-2), platelet endothelial cell adhesion molecule 1 (PECAM-1) and endoglin. Expression of human complement regulatory proteins (hCRPs), directed by each of the promoters in mice, was largely restricted to vascular endothelium and leukocyte subpopulations. However, expression from the PECAM-1 promoter was weak in liver and non-uniform in the small vessels of heart, kidney, and lung. Conversely, expression from the endoglin promoter was consistently strong in the small vessels of these organs but was absent in larger vessels. The ICAM-2 promoter, which produced strong and uniform endothelial expression in all organs examined, was therefore used to generate hCRP transgenic pigs. Leukocytes from 57 pigs containing at least one intact transgene were tested for transgene expression by flow cytometry. Forty-seven of these transgenic pigs were further analyzed by immunohistochemical staining of liver biopsies, and 18 by staining of heart and kidney sections. Only two of the pigs showed expression, which appeared to be restricted to vascular endothelium in heart and kidney but was markedly weaker than in transgenic mice produced with the same batch of DNA. Thus, in this case, promoter performance in mice and pigs was not equivalent. The weak expression driven by the human ICAM-2 promoter in pigs relative to mice suggests the need for additional regulatory elements to achieve species-specific gene expression in pigs.
Collapse
Affiliation(s)
- Peter J Cowan
- Immunology Research Center, St Vincent's Hospital, Melbourne, Victoria, Australia.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Outline of a Risk Assessment: The Welfare of Future Xeno-Donor Pigs. Anim Welf 2003. [DOI: 10.1017/s0962728600025653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
AbstractThe welfare of transgenic animals is often not considered prior to their generation. However, we demonstrate here how a welfare risk assessment can be carried out before transgenic animals are created. We describe a risk assessment identifying potential welfare problems in transgenic pigs generated for future xeno-donation of organs. This assessment is based on currently available information concerning transgenic animal models in which one or more transgenes relevant to future xeno-donation have been inserted. The welfare risk assessment reveals that future xeno-donor pigs may have an increased tendency toward septicaemias, reduced fertility and/or impaired vision. The transgenic animal models used in generating hypotheses about the welfare of xeno-donor pigs can also assist in the testing of these hypotheses. To ensure high levels of welfare of transgenic animals, analogous risk assessments can be used to identify potential welfare problems during the early stages of the generation of new transgenic animals. Such assessments may form part of the basis on which licenses to generate new transgenic animals are granted to research groups.
Collapse
|
14
|
Galactose-α1,3-galactose knockout mouse: a surrogate recipient. Curr Opin Organ Transplant 2003. [DOI: 10.1097/00075200-200303000-00013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
15
|
Murakami H, Nagashima H, Takahagi Y, Miyagawa S, Fujimura T, Toyomura K, Nakai R, Yamada M, Kurihara T, Shigehisa T, Okabe M, Seya T, Shirakura R, Kinoshita T. Transgenic pigs expressing human decay-accelerating factor regulated by porcine MCP gene promoter. Mol Reprod Dev 2002; 61:302-11. [PMID: 11835575 DOI: 10.1002/mrd.10043] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Porcine membrane cofactor protein (pMCP) is abundantly expressed throughout the body with particularly strong expression on the vascular endothelia. Previous studies demonstrated that the promoter of the pMCP gene induced efficient expression of a human complement regulatory protein, decay-accelerating factor (DAF; CD55), in transgenic mice. In the present study, we tried to produce transgenic pigs with two hybrid genes, 0.9/hDAF and 5.4/hDAF, which were composed of human DAF (hDAF) gene regulated under pMCP promoters of different lengths (0.9 and 5.4 kb). Five live founder transgenic pigs were obtained only with the 0.9/hDAF construct. Although, four founder pigs transmitted the transgene to the second generation, the transmission rates varied among founders. We examined the expression of hDAF in tissues of descendants of two lines (Dm1 and Dm4). Human DAF specific RNAs were confirmed by an RT-PCR analysis in all organs examined. Levels of hDAF protein in the organs from the descendants of Dm1 line were higher than those in the corresponding human organs as determined by enzyme-linked immunosorbent assay. Immunohistochemical studies showed that the tissue distribution of hDAF in the descendants of both lines was similar to that of endogenous pMCP. The expression level of hDAF on the vascular endothelial cells in Dm1 line was twice that on the corresponding human cells. We tested whether proinflammatory cytokines upregulate an efficiency of pMCP promoter on hDAF expression in transgenic pigs. Although the expression of hDAF on the human endothelial cells increased with a combination of cytokines, tumor necrosis factor alpha and interferon-gamma, no cytokine-induced upregulation was seen in the cells of transgenic pigs. The endothelial cells from transgenic pigs exhibited high resistance to the human serum-mediated cytolysis.
Collapse
Affiliation(s)
- Hiroshi Murakami
- The Animal Engineering Research Institute, Tsukuba, Ibaraki, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Nottle MB, Haskard KA, Verma PJ, Du ZT, Grupen CG, McIlfatrick SM, Ashman RJ, Harrison SJ, Barlow H, Wigley PL, Lyons IG, Cowan PJ, Crawford RJ, Tolstoshev PL, Pearse MJ, Robins AJ, d'Apice AJ. Effect of DNA concentration on transgenesis rates in mice and pigs. Transgenic Res 2001; 10:523-31. [PMID: 11817540 DOI: 10.1023/a:1013007329936] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
A retrospective analysis of transgenesis rates obtained in seven pronuclear microinjection programs was undertaken to determine if a relationship existed between the amount of DNA injected and transgenesis rates in the pig. Logistic regression analysis showed that as the concentration of DNA injected increased from 1 to 10 ng/microl, the number of transgenics when expressed as a proportion of the number liveborn (integration rate) increased from 4% to an average of 26%. A similar relationship was found when the number of molecules of DNA injected per picolitre was analysed. No evidence was obtained to suggest either parameter influenced integration rate in mice when the same constructs were injected. The number of transgenics liveborn when expressed as a proportion of ova injected (efficiency rate), increased as DNA concentration increased up to 7.5 ng/microl and then decreased at 10 ng/microl for both species suggesting that at this concentration DNA (or possible contaminants) may have influenced embryo survival. The relationship between efficiency and the number of molecules injected per picolitre was complex suggesting that the concentration at which DNA was injected was a better determinant of integration and efficiency rates. In conclusion, the present study suggests that transgenes need to be injected at concentrations of between 5 and 10 ng/microl to maximise integration and efficiency rates in pigs.
Collapse
Affiliation(s)
- M B Nottle
- BresaGen Limited, Adelaide, South Australia.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Monsinjon T, Richard V, Fontaine M. Complement and its implications in cardiac ischemia/reperfusion: strategies to inhibit complement. Fundam Clin Pharmacol 2001; 15:293-306. [PMID: 11903498 DOI: 10.1046/j.1472-8206.2001.00040.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Although reperfusion of the ischemic myocardium is an absolute necessity to salvage tissue from eventual death, it is also associated with pathologic changes that represent either an acceleration of processes initiated during ischemia or new pathophysiological changes that were initiated after reperfusion. This so-called "reperfusion injury" is accompanied by a marked inflammatory reaction, which contributes to tissue injury. In addition to the well known role of oxygen free radicals and white blood cells, activation of the complement system probably represents one of the major contributors of the inflammatory reaction upon reperfusion. The complement may be activated through three different pathways: the classical, the alternative, and the lectin pathway. During reperfusion, complement may be activated by exposure to intracellular components such as mitochondrial membranes or intermediate filaments. Two elements of the activated complement contribute directly or indirectly to damages: anaphylatoxins (C3a and C5a) and the membrane attack complex (MAC). C5a, the most potent chemotactic anaphylatoxin, may attract neutrophils to the site of inflammation, leading to superoxide production, while MAC is deposited over endothelial cells and smooth vessel cells, leading to cell injury. Experimental evidence suggests that tissue salvage may be achieved by inhibition of the complement pathway. As the complement is composed of a cascade of proteins, it provides numerous sites for pharmacological interventions during acute myocardial infarction. Although various strategies aimed at modulating the complement system have been tested, the ideal approach probably consists of maintaining the activity of C3 (a central protein of the complement cascade) and inhibiting the later events implicated in ischemia/reperfusion and also in targeting inhibition in a tissue-specific manner.
Collapse
|
18
|
Fisicaro N, Aminian A, Hinchliffe SJ, Morgan BP, Pearse MJ, D'Apice AJ, Cowan PJ. The pig analogue of CD59 protects transgenic mouse hearts from injury by human complement. Transplantation 2000; 70:963-8. [PMID: 11014650 DOI: 10.1097/00007890-200009270-00014] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND It has been proposed that hyperacute rejection (HAR) of pig-to-primate vascularized xenografts is due in large part to ineffective regulation of recipient complement by pig complement regulatory proteins (CRPs), and indeed transgenic expression of human CRPs in pigs can prevent hyperacute rejection. However, at least one pig CRP (CD59) efficiently regulates human complement in vitro, suggesting that it is the level of expression of a particular CRP(s) rather than cross-species incompatibility that explains the HAR of porcine xenografts. We investigated the relative effectiveness of transgenically expressed pig and human CD59 in providing protection of mouse hearts from human complement in an ex vivo setting. METHODS Transgenic mice expressing pig CD59 or human CD59 under the control of the human ICAM-2 promoter, which restricts expression in tissues to vascular endothelium, were used. Hearts from mice expressing similar levels of pig CD59 or human CD59 were perfused ex vivo with 10% human plasma and heart function was monitored for 60 min. Sections of perfused hearts were examined for deposition of the membrane attack complex (MAC). RESULTS Control nontransgenic hearts (n=5) were rapidly affected by the addition of human plasma, with mean function falling to less than 10% of the initial level within 15 min. In contrast, hearts expressing either pig CD59 (n=6) or human CD59 (n=8) were protected from plasma-induced injury, maintaining 31 and 35% function, respectively, after 60 min of perfusion. MAC deposition was markedly reduced in both pig CD59 and human CD59 transgenic hearts compared to nontransgenic control hearts. CONCLUSIONS When highly expressed on endothelium in transgenic mice, pig CD59 provided equivalent protection to human CD59 in a model of human complement-mediated xenograft rejection. Thus supranormal expression of endogenous porcine CRPs may be a feasible alternative to the expression of human CRPs in preventing HAR of pig-to-primate xenografts.
Collapse
Affiliation(s)
- N Fisicaro
- Immunology Research Centre, St. Vincent's Hospital, Fitzroy, Victoria, Australia
| | | | | | | | | | | | | |
Collapse
|
19
|
Cowan PJ, Aminian A, Barlow H, Brown AA, Chen CG, Fisicaro N, Francis DM, Goodman DJ, Han W, Kurek M, Nottle MB, Pearse MJ, Salvaris E, Shinkel TA, Stainsby GV, Stewart AB, d'Apice AJ. Renal xenografts from triple-transgenic pigs are not hyperacutely rejected but cause coagulopathy in non-immunosuppressed baboons. Transplantation 2000; 69:2504-15. [PMID: 10910270 DOI: 10.1097/00007890-200006270-00008] [Citation(s) in RCA: 171] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND The genetic modification of pigs is a powerful strategy that may ultimately enable successful xenotransplantation of porcine organs into humans. METHODS Transgenic pigs were produced by microinjection of gene constructs for human complement regulatory proteins CD55 and CD59 and the enzyme alpha1,2-fucosyltransferase (H-transferase, HT), which reduces expression of the major xenoepitope galactose-alpha1,3-galactose (alphaGal). Kidneys from CD55/HT and CD55/CD59/HT transgenic pigs were transplanted into nephrectomised, nonimmunosuppressed adult baboons. RESULTS In several lines of transgenic pigs, CD55 and CD59 were expressed strongly in all tissues examined, whereas HT expression was relatively weak and did not significantly reduce alphaGal. Control nontransgenic kidneys (n=4) grafted into baboons were hyperacutely rejected within 1 hr. In contrast, kidneys from CD55/HT pigs (n=2) were rejected after 30 hr, although kidneys from CD55/CD59/HT pigs (n=6) maintained function for up to 5 days. In the latter grafts, infiltration by macrophages, T cells, and B cells was observed at days 3 and 5 posttransplantation. The recipients developed thrombocytopenia and abnormalities in coagulation, manifested in increased clotting times and an elevation in the plasma level of the fibrin degradation product D-dimer, within 2 days of transplantation. Treatment with low molecular weight heparin prevented profound thrombocytopenia but not the other aspects of coagulopathy. CONCLUSIONS Strong expression of CD55 and CD59 completely protected porcine kidneys from hyperacute rejection and allowed a detailed analysis of xenograft rejection in the absence of immunosuppression. Coagulopathy appears to be a common feature of pig-to-baboon renal transplantation and represents yet another major barrier to its clinical application.
Collapse
Affiliation(s)
- P J Cowan
- Immunology Research Centre, St Vincent's Hospital, Fitzroy, Victoria, Australia
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Murakami H, Takahagi Y, Yoshitatsu M, Miyagawa S, Fujimura T, Toyomura K, Shigehisa T, Shirakura R, Kinoshita T. Porcine MCP gene promoter directs high level expression of human DAF (CD55) in transgenic mice. Immunobiology 2000; 201:583-97. [PMID: 10834315 DOI: 10.1016/s0171-2985(00)80076-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Porcine membrane cofactor protein (pMCP), a complement regulatory protein, is widely expressed in various tissues. Particularly, it is highly expressed on vascular endothelium. The objective of this study was to investigate whether the pMCP gene promoter can induce efficient expression of a human complement regulatory protein, decay-accelerating factor (DAF; CD55) in transgenic mice. Two fragments of the 5'-flanking region of pMCP gene (0.9 kb and 5.4 kb) connected with human DAF minigene (0.9/hDAF and 5.4/hDAF) were used to produce transgenic mice. The expression of hDAF in heart, liver, kidney, lung, pancreas, brain and testis of the transgenic mice was examined by immunohistochemical analysis. The vascular endothelia and the nerves in all organs examined were intensely stained. The staining pattern in these tissues was similar in all transgenic mice examined regardless of the length of the promoters. The surface expression levels of hDAF on peripheral red blood cells and splenocytes from a mouse carrying 5.4/hDAF hemizygously was twice the level of expression on corresponding human cells. The red blood cells and splenocytes from the transgenic mice exhibited resistance to lysis by human serum in a manner dependent upon expressed hDAF level. The hearts from the transgenic mice functioned for a significantly longer time than those from normal mice under perfusion with human serum in the Langendorff perfusion system. These results demonstrated that the pMCP gene promoter is a good candidate of the regulatory element in the transgene to produce transgenic animals for xenotransplantation.
Collapse
Affiliation(s)
- H Murakami
- Research and Development Center, Nippon Meat Packers, Inc., Tsukuba, Ibaraki, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Yélamos J, Ramírez P, Parrilla P. [Genetically engineered animals as organ donors in xenotransplantation]. Med Clin (Barc) 2000; 114:342-8. [PMID: 10786336 DOI: 10.1016/s0025-7753(00)71288-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- J Yélamos
- Unidad de Trasplante, Hospital Universitario Virgen de la Arrixaca, Murcia.
| | | | | |
Collapse
|
22
|
Salvaris E, Gock H, Han W, Murray-Segal L, Barlow H, Mottram P, Pearse M, Cowan P, Goodman D, d'Apice AJ. Naturally acquired anti-alpha Gal antibodies in a murine allograft model similar to delayed xenograft rejection. Xenotransplantation 2000; 7:42-7. [PMID: 10809056 DOI: 10.1034/j.1399-3089.2000.00040.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Antibodies directed against galactose-alpha1,3-galactose (alphaGal) are believed to play an important role in the pathogenesis of delayed xenograft rejection (DXR). This study was designed to determine whether alpha1,3-galactosyltransferase-deficient (Gal KO) mice can naturally acquire a sufficient anti-alphaGal titre to cause the delayed type rejection of alphaGal-expressing hearts. Gal KO mice of various ages were assessed for anti-alphaGal antibody levels. alphaGal-expressing hearts were transplanted heterotopically into these mice and monitored daily. Rejecting and surviving hearts were evaluated histologically. In Gal KO mice greater than 6-month-old, 64% had an anti-alphaGal antibody titre above the background level. When wild-type alphaGal-expressing hearts were transplanted into this group, 45% of grafts rejected within 5 to 13 days. Histological examination of the rejected hearts displayed marked tissue damage and an inflammatory infiltrate of predominantly macrophage/monocytes. Surviving grafts showed preserved morphology. Like humans, Gal KO mice naturally develop anti-alphaGal antibodies with age. The titre in these mice was sufficient to cause a "delayed-type" rejection of a significant proportion of alphaGal-expressing cardiac grafts. This model thus provides an opportunity to investigate the role of naturally acquired anti-alphaGal antibodies in the pathogenesis of DXR.
Collapse
Affiliation(s)
- E Salvaris
- Immunology Research Center, St Vincent's Hospital, Fitzroy, Australia
| | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Auchincloss H. Literature update 1998, part 3. Xenotransplantation 1999; 6:66-71. [PMID: 10355734 DOI: 10.1034/j.1399-3089.1999.00013.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- H Auchincloss
- Transplantation Unit, Surgical Services, Massachusetts General Hospital, Boston 02114, USA
| |
Collapse
|
24
|
Pearse MJ, Cowan PJ, Shinkel TA, Chen CG, d'Apice AJ. Anti-xenograft immune responses in alpha 1,3-galactosyltransferase knock-out mice. Subcell Biochem 1999; 32:281-310. [PMID: 10392000 DOI: 10.1007/978-1-4615-4771-6_12] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/13/2023]
Abstract
Although originally generated to test the effect of eliminating the alpha-Gal epitope on HAR, it is becoming increasingly clear that GalT KO mice offer a convenient and inexpensive model to investigate many aspects of the anti-xenorgraft immune response. Clearly, not all aspects of anti-xenograft rejection responses are identical in mice and primates, which should be kept in mind when interpreting results of GalT KO mouse studies. However, with this and other mouse models it is possible to test a large number of variables, which is impractical for both logistical and financial reasons with primates. Furthermore the short gestation time and large litter size of mice means that genetic strategies targeting different aspects of the anti-xenograft immune response can be combined and subsequently tested to identify the optimal combination of genetic and therapeutic approaches to achieve long term xenograft survival. In this regard the GalT KO mouse has been and will continue to be a valuable small animal model for the study of all facets of xenograft rejection involving anti-Gal antibodies.
Collapse
Affiliation(s)
- M J Pearse
- Immunology Research Centre, St Vincent's Hospital Melbourne, Fitzroy, Australia
| | | | | | | | | |
Collapse
|