1
|
Galdina V, Puga Yung GL, Seebach JD. Cytotoxic Responses Mediated by NK Cells and Cytotoxic T Lymphocytes in Xenotransplantation. Transpl Int 2025; 38:13867. [PMID: 40012743 PMCID: PMC11862997 DOI: 10.3389/ti.2025.13867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Accepted: 01/09/2025] [Indexed: 02/28/2025]
Abstract
Xenotransplantation represents a potential solution to the shortage of organs for transplantation. The recent advancements in porcine genetic modification have addressed hyperacute and acute vascular rejection; however, challenges persist with regard to delayed xenograft rejection. Porcine endothelial cells (pECs) represent a crucial target in the context of xenograft rejection, which is mediated by cytotoxic lymphocytes. It is crucial to comprehend the manner in which human natural killer (NK) cells and cytotoxic CD8+ T lymphocytes (CTL) recognize and target pECs in order to develop efficacious prophylactic strategies against rejection. The objective of the present review is to synthesize the existing knowledge regarding the mechanisms and techniques employed to modulate xenogeneic responses mediated by human NK cells and CTL. We will elucidate recent methodological advancements, debate potential novel strategies, and emphasize the imperative necessity for further research and innovative approaches to enhance graft survival.
Collapse
|
2
|
Meier RPH, Muller YD, Balaphas A, Morel P, Pascual M, Seebach JD, Buhler LH. Xenotransplantation: back to the future? Transpl Int 2018; 31:465-477. [PMID: 29210109 DOI: 10.1111/tri.13104] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Revised: 10/05/2017] [Accepted: 11/26/2017] [Indexed: 12/26/2022]
Abstract
The field of xenotransplantation has fluctuated between great optimism and doubts over the last 50 years. The initial clinical attempts were extremely ambitious but faced technical and ethical issues that prompted the research community to go back to preclinical studies. Important players left the field due to perceived xenozoonotic risks and the lack of progress in pig-to-nonhuman-primate transplant models. Initial apparently unsurmountable issues appear now to be possible to overcome due to progress of genetic engineering, allowing the generation of multiple-xenoantigen knockout pigs that express human transgenes and the genomewide inactivation of porcine endogenous retroviruses. These important steps forward were made possible by new genome editing technologies, such as CRISPR/Cas9, allowing researchers to precisely remove or insert genes anywhere in the genome. An additional emerging perspective is the possibility of growing humanized organs in pigs using blastocyst complementation. This article summarizes the current advances in xenotransplantation research in nonhuman primates, and it describes the newly developed genome editing technology tools and interspecific organ generation.
Collapse
Affiliation(s)
- Raphael P H Meier
- Visceral and Transplant Surgery, University Hospitals of Geneva, Geneva, Switzerland
| | - Yannick D Muller
- Division of Clinical Immunology and Allergy, Department of Medical Specialties, University Hospitals and Medical Faculty, Geneva, Switzerland.,Transplantation Center, Lausanne University Hospital, Lausanne, Switzerland
| | - Alexandre Balaphas
- Visceral and Transplant Surgery, University Hospitals of Geneva, Geneva, Switzerland
| | - Philippe Morel
- Visceral and Transplant Surgery, University Hospitals of Geneva, Geneva, Switzerland
| | - Manuel Pascual
- Transplantation Center, Lausanne University Hospital, Lausanne, Switzerland
| | - Jörg D Seebach
- Division of Clinical Immunology and Allergy, Department of Medical Specialties, University Hospitals and Medical Faculty, Geneva, Switzerland
| | - Leo H Buhler
- Visceral and Transplant Surgery, University Hospitals of Geneva, Geneva, Switzerland
| |
Collapse
|
3
|
The Role of NK Cells in Pig-to-Human Xenotransplantation. J Immunol Res 2017; 2017:4627384. [PMID: 29410970 PMCID: PMC5749293 DOI: 10.1155/2017/4627384] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Accepted: 10/31/2017] [Indexed: 02/07/2023] Open
Abstract
Recruitment of human NK cells to porcine tissues has been demonstrated in pig organs perfused ex vivo with human blood in the early 1990s. Subsequently, the molecular mechanisms leading to adhesion and cytotoxicity in human NK cell-porcine endothelial cell (pEC) interactions have been elucidated in vitro to identify targets for therapeutic interventions. Specific molecular strategies to overcome human anti-pig NK cell responses include (1) blocking of the molecular events leading to recruitment (chemotaxis, adhesion, and transmigration), (2) expression of human MHC class I molecules on pECs that inhibit NK cells, and (3) elimination or blocking of pig ligands for activating human NK receptors. The potential of cell-based strategies including tolerogenic dendritic cells (DC) and regulatory T cells (Treg) and the latest progress using transgenic pigs genetically modified to reduce xenogeneic NK cell responses are discussed. Finally, we present the status of phenotypic and functional characterization of nonhuman primate (NHP) NK cells, essential for studying their role in xenograft rejection using preclinical pig-to-NHP models, and summarize key advances and important perspectives for future research.
Collapse
|
4
|
Lee IK, Son YM, Ju YJ, Song SK, Gu M, Song KD, Lee HC, Woo JS, Seol JG, Park SM, Han SH, Yun CH. Survival of porcine fibroblasts enhanced by human FasL and dexamethasone-treated human dendritic cells in vitro. Transpl Immunol 2014; 30:99-106. [PMID: 24518159 DOI: 10.1016/j.trim.2014.01.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Revised: 01/28/2014] [Accepted: 01/28/2014] [Indexed: 01/08/2023]
Abstract
Cell-mediated and acute vascular rejections remain to be one of the primary hurdles to achieve successful xenotransplantation. Fas ligand is known to be an important molecule for the formation of 'immune-privileged' condition and dendritic cells treated with dexamethasone (Dex-DCs) acting like tolerogenic DCs (tDCs) which are known to protect transplanted cells and organs from unwanted immune responses. The present study investigated the possibility that porcine fibroblasts expressing human Fas ligand (PhF) together with human Dex-DCs could induce prolonged survival of porcine fibroblasts in vitro. PhF was collected from an ear of human Fas ligand transgenic porcine and cell-line was established by MGEM Inc. PhF labeled with CFSE co-cultured with human peripheral blood mononuclear cells (hPBMCs) were examined with respect to induction of tolerance and cell death when co-cultured with Dex-DCs for 3days. PhF induced the apoptosis in hPBMCs, especially CD4(+) T cells. Dex-DCs showed significant (P<0.05) reduction on the expression of CD80, CD86 and MHC class I/II, and the secretion of IL-12p70, TNF-α and IL-10, but increase of latency-associated peptide (LAP). Survival of PhF was significantly higher than that of WT and it was increased in the presence of Dex-DCs when compared to the other DCs (i.e.,DCs, LPS-treated DCs and LPS/Dex-treated DCs) in vitro. Survival of PhF did not change by co-culture with Dex-DCs due to apoptotic cell death of Dex-DCs. Dex-DCs reduced the death of porcine fibroblasts and, at the same time, PhF induced the apoptosis from hPBMCs, but it was not synergistic.
Collapse
Affiliation(s)
- In Kyu Lee
- Department of Agricultural Biotechnology and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
| | - Young Min Son
- Department of Agricultural Biotechnology and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
| | - Young Jun Ju
- Department of Agricultural Biotechnology and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
| | - Sun Kwang Song
- Department of Agricultural Biotechnology and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
| | - Minjung Gu
- Department of Agricultural Biotechnology and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea; WCU Biomodulation major and Center for Food and Bioconvergence, Seoul National University, Seoul, Republic of Korea
| | - Ki-Duk Song
- Department of Agricultural Biotechnology and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea; WCU Biomodulation major and Center for Food and Bioconvergence, Seoul National University, Seoul, Republic of Korea
| | - Hwi-Cheul Lee
- Animal Biotechnology Division, National Institute of Animal Science, RDA, Suwon, Republic of Korea
| | - Jae-Seok Woo
- Animal Biotechnology Division, National Institute of Animal Science, RDA, Suwon, Republic of Korea
| | | | - Sung Moo Park
- Department of Agricultural Biotechnology and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea; WCU Biomodulation major and Center for Food and Bioconvergence, Seoul National University, Seoul, Republic of Korea
| | - Seung Hyun Han
- Department of Oral Microbiology & Immunology, DRI, School of Dentistry, Seoul National University, Seoul, Republic of Korea
| | - Cheol-Heui Yun
- Department of Agricultural Biotechnology and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea; WCU Biomodulation major and Center for Food and Bioconvergence, Seoul National University, Seoul, Republic of Korea.
| |
Collapse
|
5
|
Macario DK, Entersz I, Paul Abboud J, Nackman GB. Inhibition of Apoptosis Prevents Shear-Induced Detachment of Endothelial Cells. J Surg Res 2008; 147:282-9. [DOI: 10.1016/j.jss.2007.09.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2006] [Revised: 09/05/2007] [Accepted: 09/10/2007] [Indexed: 11/17/2022]
|
6
|
Current cellular innate immune hurdles in pig-to-primate xenotransplantation. Curr Opin Organ Transplant 2008; 13:171-7. [DOI: 10.1097/mot.0b013e3282f88a30] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
7
|
Brunlid G, Pruszak J, Holmes B, Isacson O, Sonntag KC. Immature and neurally differentiated mouse embryonic stem cells do not express a functional Fas/Fas ligand system. Stem Cells 2007; 25:2551-8. [PMID: 17615270 PMCID: PMC2951385 DOI: 10.1634/stemcells.2006-0745] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The potential of pluripotent embryonic stem (ES) cells to develop into functional cells or tissue provides an opportunity in the development of new therapies for many diseases including neurodegenerative disorders. The survival of implanted cells usually requires systemic immunosuppression, however, which severely compromises the host immune system, leading to complications in clinical transplantation. An optimal therapy would therefore be the induction of specific tolerance to the donor cells, while otherwise preserving functional immune responses. Fas ligand (FasL) is expressed in activated lymphocytes as well as cells in "immune-privileged" sites including the central nervous system. Its receptor, Fas, is expressed on various immune-reactive cell types, such as activated natural killer and T cells, monocytes, and polymorphic mononucleocytes, which can undergo apoptosis upon interaction with FasL. To render transplanted cells tolerant to host cellular immune responses, we genetically engineered mouse ES cells to express rat FasL (rFasL). The rFasL-expressing ES cells were analyzed for survival during in vitro neurodifferentiation and after transplantation to the rat brain without further immunosuppression. Although control transfected HEK-293T cells expressed functional rFasL, immature and differentiated mouse ES cells did not express the recombinant rFasL surface protein. Furthermore, there was no evidence for functional endogenous Fas and FasL expression on either ES cells or on neural cells after in vitro differentiation. Moreover, implanted rFasL-engineered ES cells did not survive in the rat brains in the absence of the immunosuppressive agent cyclosporine A. Our results indicate that immature and differentiated mouse ES cells do not express a functional Fas/FasL system. Disclosure of potential conflicts of interest is found at the end of this article.
Collapse
Affiliation(s)
- Gabriella Brunlid
- Harvard Medical School, Center for Neuroregeneration Research, Udall Parkinson's Disease Center of Excellence, McLean Hospital, 115 Mill Street, Belmont, Massachusetts 02478, USA
| | | | | | | | | |
Collapse
|
8
|
Kawamoto K, Tanemura M, Nishida T, Fukuzawa M, Ito T, Matsuda H. Significant Inhibition of Human CD8+ Cytotoxic T Lymphocyte-Mediated Xenocytotoxicity by Overexpression of the Human Decoy Fas Antigen. Transplantation 2006; 81:789-96. [PMID: 16534484 DOI: 10.1097/01.tp.0000199266.07237.25] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
BACKGROUND Human CD8(+) CTL-mediated killing may be important for xenograft rejection. The purpose of this study was to explore the preventing methods for CTL-mediated xenocytotoxicity by overexpression of human decoy Fas, which lacks a death domain in its cytoplasmic region, by binding competition with endogenous pig Fas. Moreover, the cytoprotective effect of this CTL-killing of membrane-bound human FasL, which is resistant to metalloproteolytic cleavage, was also assessed. METHODS Human CTL were generated by the stimulation of human PBMC with swine endothelial cells (SEC) and human IL-2, subsequently a CD8(+) population were selected by magnetic beads and employed as the effector cells. Stable SEC transfectants expressing either decoy Fas or membrane-bound FasL were established. Double-transfectants were also created. The amelioration of cytotoxicity to these transfectants was examined with Cr release assay. RESULTS.: Human CD8(+) CTL were highly detrimental against parental SEC. This CTL-killing was strongly inhibited by anti-FasL mAb treatment, however partial suppression was observed by Concanamycin A treatment. The overexpression of either decoy Fas or membrane-bound FasL in SEC markedly inhibited CTL-xenocytotoxicity. The double expressions of these molecules also significantly reduced this xenocytotoxicity despite the low levels of expression of either decoy Fas or membrane-bound FasL. CONCLUSION These findings indicate that the strong xenocytotoxicity of human CD8(+) CTL is mediated mainly by the Fas/FasL pathway. The overexpression of either decoy Fas or membrane-bound FasL were quite effective in preventing CTL-killing. Furthermore, the combined expression of both molecules in pig cells may create a window of opportunity for prolonging xenograft survival.
Collapse
MESH Headings
- Animals
- Antibodies, Monoclonal/pharmacology
- Antigens, Heterophile/immunology
- Cytotoxicity, Immunologic/drug effects
- Fas Ligand Protein
- Graft Rejection/immunology
- Graft Rejection/prevention & control
- Humans
- Membrane Glycoproteins/antagonists & inhibitors
- Membrane Glycoproteins/genetics
- Membrane Glycoproteins/immunology
- Membrane Glycoproteins/metabolism
- Receptors, Cell Surface/genetics
- Receptors, Cell Surface/metabolism
- Receptors, Tumor Necrosis Factor/genetics
- Receptors, Tumor Necrosis Factor/metabolism
- Receptors, Tumor Necrosis Factor, Member 6b
- Sequence Deletion
- Swine/immunology
- T-Lymphocytes, Cytotoxic/drug effects
- T-Lymphocytes, Cytotoxic/immunology
- Transplantation, Heterologous/immunology
- Tumor Necrosis Factor Inhibitors
- Tumor Necrosis Factors/immunology
- Tumor Necrosis Factors/metabolism
- Up-Regulation
Collapse
Affiliation(s)
- Koichi Kawamoto
- Department of Surgery (E1), Osaka University Graduate School of Medicine, Osaka, Japan
| | | | | | | | | | | |
Collapse
|
9
|
Bielawska-Pohl A, Crola C, Caignard A, Gaudin C, Dus D, Kieda C, Chouaib S. Human NK Cells Lyse Organ-Specific Endothelial Cells: Analysis of Adhesion and Cytotoxic Mechanisms. THE JOURNAL OF IMMUNOLOGY 2005; 174:5573-82. [PMID: 15843556 DOI: 10.4049/jimmunol.174.9.5573] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Human organ-specific microvascular endothelial cells (ECs) were established and used in the present study to investigate their susceptibility to natural killer cell line (NKL)-induced lysis. Our data indicate that although IL-2-stimulated NKL (NKL2) cells adhered to the human peripheral (HPLNEC.B3), mesenteric lymph node (HMLNEC), brain (HBrMEC), and lung (HLMEC) and skin (HSkMEC.2) ECs, they significantly killed these cells quite differently. A more pronounced lysis of OSECs was also observed when IL-2-stimulated, purified peripheral blood NK cells were used as effector cells. In line with the correlation observed between adhesion pattern and the susceptibility to NKL2-mediated killing, we demonstrated using different chelators that the necessary adhesion step was governed by an Mg(2+)-dependent, but Ca(2+)-independent, mechanism as opposed to the subsequent Ca(2+)-dependent killing. To identify the cytotoxic pathway used by NKL2 cells, the involvement of the classical and alternate pathways was examined. Blocking of the Ca(2+)-dependent cytotoxicity pathway by EGTA/MgCl(2) significantly inhibited endothelial target cell killing, suggesting a predominant role for the perforin/granzyme pathway. Furthermore, using confocal microscopy, we demonstrated that the interaction between NKL2 effectors and ECs induced cytochrome c release and Bid translocation in target cells, indicating an involvement of the mitochondrial pathway in NKL2-induced EC death. In addition, although all tested cells were sensitive to the cytotoxic action of TNF, no susceptibility to TRAIL or anti-Fas mAb was observed. The present studies emphasize that human NK cell cytotoxicity toward ECs may be a potential target to block vascular injury.
Collapse
MESH Headings
- Cations, Divalent/chemistry
- Cell Adhesion/immunology
- Cell Communication/immunology
- Cell Death/immunology
- Cell Line
- Coculture Techniques
- Cytochromes c/metabolism
- Cytotoxicity Tests, Immunologic/methods
- Cytotoxicity, Immunologic
- Endothelial Cells/cytology
- Endothelial Cells/immunology
- Endothelium, Vascular/cytology
- Endothelium, Vascular/immunology
- Granzymes
- Humans
- Interleukin-2/pharmacology
- Killer Cells, Natural/cytology
- Killer Cells, Natural/immunology
- Ligands
- Lymphocyte Activation/immunology
- Mitochondria/enzymology
- Mitochondria/metabolism
- Organ Specificity/immunology
- Receptors, Tumor Necrosis Factor/metabolism
- Receptors, Tumor Necrosis Factor/physiology
- Serine Endopeptidases/physiology
- Shear Strength
- Stress, Mechanical
Collapse
Affiliation(s)
- Aleksandra Bielawska-Pohl
- Institut National de la Santé et de la Recherche Médicale, Unité 487, Institut Gustave Roussy, Villejuif, France
| | | | | | | | | | | | | |
Collapse
|
10
|
Buhler LH. Xenotransplantation literature update January-February, 2004. Xenotransplantation 2004; 11:301-3. [PMID: 15099212 DOI: 10.1111/j.1399-3089.2004.00135.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Leo H Buhler
- Department of Surgery, University Hospital Geneva, 1211 Geneva, Switzerland.
| |
Collapse
|