1
|
Amini L, Kaeda J, Fritsche E, Roemhild A, Kaiser D, Reinke P. Clinical adoptive regulatory T Cell therapy: State of the art, challenges, and prospective. Front Cell Dev Biol 2023; 10:1081644. [PMID: 36794233 PMCID: PMC9924129 DOI: 10.3389/fcell.2022.1081644] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 12/29/2022] [Indexed: 02/01/2023] Open
Abstract
Rejection of solid organ transplant and graft versus host disease (GvHD) continue to be challenging in post transplantation management. The introduction of calcineurin inhibitors dramatically improved recipients' short-term prognosis. However, long-term clinical outlook remains poor, moreover, the lifelong dependency on these toxic drugs leads to chronic deterioration of graft function, in particular the renal function, infections and de-novo malignancies. These observations led investigators to identify alternative therapeutic options to promote long-term graft survival, which could be used concomitantly, but preferably, replace pharmacologic immunosuppression as standard of care. Adoptive T cell (ATC) therapy has evolved as one of the most promising approaches in regenerative medicine in the recent years. A range of cell types with disparate immunoregulatory and regenerative properties are actively being investigated as potential therapeutic agents for specific transplant rejection, autoimmunity or injury-related indications. A significant body of data from preclinical models pointed to efficacy of cellular therapies. Significantly, early clinical trial observations have confirmed safety and tolerability, and yielded promising data in support of efficacy of the cellular therapeutics. The first class of these therapeutic agents commonly referred to as advanced therapy medicinal products have been approved and are now available for clinical use. Specifically, clinical trials have supported the utility of CD4+CD25+FOXP3+ regulatory T cells (Tregs) to minimize unwanted or overshooting immune responses and reduce the level of pharmacological immunosuppression in transplant recipients. Tregs are recognized as the principal orchestrators of maintaining peripheral tolerance, thereby blocking excessive immune responses and prevent autoimmunity. Here, we summarize rationale for the adoptive Treg therapy, challenges in manufacturing and clinical experiences with this novel living drug and outline future perspectives of its use in transplantation.
Collapse
Affiliation(s)
- Leila Amini
- Berlin Center for Advanced Therapies, Charité-Universitätsmedizin Berlin, Berlin, Germany,Berlin Institute of Health—Center for Regenerative Therapies, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Jaspal Kaeda
- Berlin Center for Advanced Therapies, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Enrico Fritsche
- Berlin Center for Advanced Therapies, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Andy Roemhild
- Berlin Center for Advanced Therapies, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Daniel Kaiser
- Berlin Center for Advanced Therapies, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Petra Reinke
- Berlin Center for Advanced Therapies, Charité-Universitätsmedizin Berlin, Berlin, Germany,Berlin Institute of Health—Center for Regenerative Therapies, Charité-Universitätsmedizin Berlin, Berlin, Germany,*Correspondence: Petra Reinke,
| |
Collapse
|
2
|
Snelgrove SL, Susanto O, Yeung L, Hall P, Norman MU, Corbett AJ, Kitching AR, Hickey MJ. T-cell receptor αβ + double-negative T cells in the kidney are predominantly extravascular and increase in abundance in response to ischemia-reperfusion injury. Immunol Cell Biol 2023; 101:49-64. [PMID: 36222375 PMCID: PMC10953373 DOI: 10.1111/imcb.12595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 10/10/2022] [Accepted: 10/11/2022] [Indexed: 01/03/2023]
Abstract
T-cell receptor+ CD4- CD8- double-negative (DN) T cells are a population of T cells present in low abundance in blood and lymphoid organs, but enriched in various organs including the kidney. Despite burgeoning interest in these cells, studies examining their abundance in the kidney have reported conflicting results. Here we developed a flow cytometry strategy to clearly segregate DN T cells from other immune cells in the mouse kidney and used it to characterize their phenotype and response in renal ischemia-reperfusion injury (IRI). These experiments revealed that in the healthy kidney, most DN T cells are located within the renal parenchyma and exhibit an effector memory phenotype. In response to IRI, the number of renal DN T cells is unaltered after 24 h, but significantly increased by 72 h. This increase is not related to alterations in proliferation or apoptosis. By contrast, adoptive transfer studies indicate that circulating DN T cells undergo preferential recruitment to the postischemic kidney. Furthermore, DN T cells show the capacity to upregulate CD8, both in vivo following adoptive transfer and in response to ex vivo activation. Together, these findings provide novel insights regarding the phenotype of DN T cells in the kidney, including their predominant extravascular location, and show that increases in their abundance in the kidney following IRI occur in part as a result of increased recruitment from the circulation. Furthermore, the observation that DN T cells can upregulate CD8 in vivo has important implications for detection and characterization of DN T cells in future studies.
Collapse
Affiliation(s)
- Sarah L Snelgrove
- Centre for Inflammatory Diseases, Monash University Department of MedicineMonash Medical CentreClaytonVICAustralia
| | - Olivia Susanto
- Centre for Inflammatory Diseases, Monash University Department of MedicineMonash Medical CentreClaytonVICAustralia
| | - Louisa Yeung
- Centre for Inflammatory Diseases, Monash University Department of MedicineMonash Medical CentreClaytonVICAustralia
| | - Pamela Hall
- Centre for Inflammatory Diseases, Monash University Department of MedicineMonash Medical CentreClaytonVICAustralia
| | - M Ursula Norman
- Centre for Inflammatory Diseases, Monash University Department of MedicineMonash Medical CentreClaytonVICAustralia
| | - Alexandra J Corbett
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and ImmunityThe University of MelbourneMelbourneVICAustralia
| | - A Richard Kitching
- Centre for Inflammatory Diseases, Monash University Department of MedicineMonash Medical CentreClaytonVICAustralia
- Departments of Nephrology and Paediatric NephrologyMonash Medical CentreClaytonVICAustralia
| | - Michael J Hickey
- Centre for Inflammatory Diseases, Monash University Department of MedicineMonash Medical CentreClaytonVICAustralia
| |
Collapse
|
3
|
Newman-Rivera AM, Kurzhagen JT, Rabb H. TCRαβ+ CD4-/CD8- "double negative" T cells in health and disease-implications for the kidney. Kidney Int 2022; 102:25-37. [PMID: 35413379 PMCID: PMC9233047 DOI: 10.1016/j.kint.2022.02.035] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 02/10/2022] [Accepted: 02/28/2022] [Indexed: 12/22/2022]
Abstract
Double negative (DN) T cells, one of the least studied T lymphocyte subgroups, express T cell receptor αβ but lack CD4 and CD8 coreceptors. DN T cells are found in multiple organs including kidney, lung, heart, gastrointestinal tract, liver, genital tract, and central nervous system. DN T cells suppress inflammatory responses in different disease models including experimental acute kidney injury, and significant evidence supports an important role in the pathogenesis of systemic lupus erythematosus. However, little is known about these cells in other kidney diseases. Therefore, it is important to better understand different functions of DN T cells and their signaling pathways as promising therapeutic targets, particularly with the increasing application of T cell-directed therapy in humans. In this review, we aim to summarize studies performed on DN T cells in normal and diseased organs in the setting of different disease models with a focus on kidney.
Collapse
Affiliation(s)
| | | | - Hamid Rabb
- Nephrology Division, Johns Hopkins University, Baltimore, Maryland, USA.
| |
Collapse
|
4
|
Chen X, Wang D, Zhu X. Application of double-negative T cells in haematological malignancies: recent progress and future directions. Biomark Res 2022; 10:11. [PMID: 35287737 PMCID: PMC8919567 DOI: 10.1186/s40364-022-00360-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 02/26/2022] [Indexed: 12/16/2022] Open
Abstract
Haematologic malignancies account for a large proportion of cancers worldwide. The high occurrence and mortality of haematologic malignancies create a heavy social burden. Allogeneic haematopoietic stem cell transplantation is widely used in the treatment of haematologic malignancies. However, graft-versus-host disease and relapse after allogeneic haematopoietic stem cell transplantation are inevitable. An emerging treatment method, adoptive cellular therapy, has been effectively used in the treatment of haematologic malignancies. T cells, natural killer (NK) cells and tumour-infiltrating lymphocytes (TILs) all have great potential in therapeutic applications, and chimeric antigen receptor T (CAR-T) cell therapy especially has potential, but cytokine release syndrome and off-target effects are common. Efficient anticancer measures are urgently needed. In recent years, double-negative T cells (CD3+CD4-CD8-) have been found to have great potential in preventing allograft/xenograft rejection and inhibiting graft-versus-host disease. They also have substantial ability to kill various cell lines derived from haematologic malignancies in an MHC-unrestricted manner. In addition, healthy donor expanded double-negative T cells retain their antitumour abilities and ability to inhibit graft-versus-host disease after cryopreservation under good manufacturing practice (GMP) conditions, indicating that double-negative T cells may be able to be used as an off-the-shelf product. In this review, we shed light on the potential therapeutic ability of double-negative T cells in treating haematologic malignancies. We hope to exploit these cells as a novel therapy for haematologic malignancies.
Collapse
Affiliation(s)
- Xingchi Chen
- Department of hematology, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, Anhui, China.,Blood and Cell Therapy Institute, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, Anhui, China.,Anhui Provincial Key Laboratory of Blood Research and Applications, Hefei, 230001, Anhui, China
| | - Dongyao Wang
- Department of hematology, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, Anhui, China.,Blood and Cell Therapy Institute, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, Anhui, China.,Anhui Provincial Key Laboratory of Blood Research and Applications, Hefei, 230001, Anhui, China
| | - Xiaoyu Zhu
- Department of hematology, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, Anhui, China. .,Blood and Cell Therapy Institute, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, Anhui, China. .,Anhui Provincial Key Laboratory of Blood Research and Applications, Hefei, 230001, Anhui, China.
| |
Collapse
|
5
|
Gan X, Gu J, Ju Z, Lu L. Diverse Roles of Immune Cells in Transplant Rejection and Immune Tolerance. ENGINEERING 2022; 10:44-56. [DOI: 10.1016/j.eng.2021.03.029] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
|
6
|
The Presence of a Marked Imbalance Between Regulatory T Cells and Effector T Cells Reveals That Tolerance Mechanisms Could Be Compromised in Heart Transplant Children. Transplant Direct 2021; 7:e693. [PMID: 33928185 PMCID: PMC8078462 DOI: 10.1097/txd.0000000000001152] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 03/05/2021] [Accepted: 03/06/2021] [Indexed: 12/19/2022] Open
Abstract
Regulatory T cells (Treg) are crucial for the induction and maintenance of graft tolerance. In pediatric heart transplant procedures, the thymus is routinely excised, removing the primary source of T-cell replenishment. Consequently, thymectomy joined to the effects of immunosuppression on the T-cell compartment may have a detrimental impact on Treg values, compromising the intrinsic tolerance mechanisms and the protective role of Treg preventing graft rejection in heart transplant children.
Collapse
|
7
|
López-Abente J, Martínez-Bonet M, Bernaldo-de-Quirós E, Camino M, Gil N, Panadero E, Gil-Jaurena JM, Clemente M, Urschel S, West L, Pion M, Correa-Rocha R. Basiliximab impairs regulatory T cell (TREG) function and could affect the short-term graft acceptance in children with heart transplantation. Sci Rep 2021; 11:827. [PMID: 33436905 PMCID: PMC7803770 DOI: 10.1038/s41598-020-80567-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 12/21/2020] [Indexed: 12/26/2022] Open
Abstract
CD25, the alpha chain of the IL-2 receptor, is expressed on activated effector T cells that mediate immune graft damage. Induction immunosuppression is commonly used in solid organ transplantation and can include antibodies blocking CD25. However, regulatory T cells (Tregs) also rely on CD25 for their proliferation, survival, and regulatory function. Therefore, CD25-blockade may compromise Treg protective role against rejection. We analysed in vitro the effect of basiliximab (BXM) on the viability, phenotype, proliferation and cytokine production of Treg cells. We also evaluated in vivo the effect of BXM on Treg in thymectomized heart transplant children receiving BXM in comparison to patients not receiving induction therapy. Our results show that BXM reduces Treg counts and function in vitro by affecting their proliferation, Foxp3 expression, and IL-10 secretion capacity. In pediatric heart-transplant patients, we observed decreased Treg counts and a diminished Treg/Teff ratio in BXM-treated patients up to 6-month after treatment, recovering baseline values at the end of the 12-month follow up period. These results reveal that the use of BXM could produce detrimental effects on Tregs, and support the evidence suggesting that BXM induction could impair the protective role of Tregs in the period of highest incidence of acute graft rejection.
Collapse
Affiliation(s)
- Jacobo López-Abente
- Laboratory of Immune-Regulation, Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Pabellón de Medicina Experimental, Planta Baja. C/ Maiquez, 6., 28006, Madrid, Spain
| | - Marta Martínez-Bonet
- Laboratory of Immune-Regulation, Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Pabellón de Medicina Experimental, Planta Baja. C/ Maiquez, 6., 28006, Madrid, Spain
| | - Esther Bernaldo-de-Quirós
- Laboratory of Immune-Regulation, Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Pabellón de Medicina Experimental, Planta Baja. C/ Maiquez, 6., 28006, Madrid, Spain
| | - Manuela Camino
- Pediatric-Cardiology Department, Hospital General Universitario Gregorio Marañón, Madrid, Spain
| | - Nuria Gil
- Pediatric-Cardiology Department, Hospital General Universitario Gregorio Marañón, Madrid, Spain
| | - Esther Panadero
- Pediatric-Cardiology Department, Hospital General Universitario Gregorio Marañón, Madrid, Spain
| | - Juan Miguel Gil-Jaurena
- Pediatric Cardiac Surgery Unit, Hospital General Universitario Gregorio Marañón, Madrid, Spain
| | - Maribel Clemente
- Cell Culture Unit, Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain
| | - Simon Urschel
- Pediatric Cardiac Transplantation, University of Alberta/Stollery Children's Hospital, Edmonton, AB, Canada.,Alberta Transplant Institute, University of Alberta, Edmonton, AB, Canada.,Canadian National Transplant Research Program Investigator, CNTRP, Edmonton, AB, Canada
| | - Lori West
- Pediatric Cardiac Transplantation, University of Alberta/Stollery Children's Hospital, Edmonton, AB, Canada.,Alberta Transplant Institute, University of Alberta, Edmonton, AB, Canada.,Canadian National Transplant Research Program Investigator, CNTRP, Edmonton, AB, Canada
| | - Marjorie Pion
- Laboratory of Immune-Regulation, Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Pabellón de Medicina Experimental, Planta Baja. C/ Maiquez, 6., 28006, Madrid, Spain
| | - Rafael Correa-Rocha
- Laboratory of Immune-Regulation, Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Pabellón de Medicina Experimental, Planta Baja. C/ Maiquez, 6., 28006, Madrid, Spain. .,Canadian National Transplant Research Program Investigator, CNTRP, Edmonton, AB, Canada.
| |
Collapse
|
8
|
Maina E, Devriendt B, Cox E. Food allergen-specific sublingual immunotherapy modulates peripheral T cell responses of dogs with adverse food reactions. Vet Immunol Immunopathol 2019; 212:38-42. [PMID: 31213250 DOI: 10.1016/j.vetimm.2019.05.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 05/27/2019] [Accepted: 05/28/2019] [Indexed: 11/28/2022]
Abstract
Food allergen-specific sublingual immunotherapy (FA-SLIT) is a novel, safe and effective approach in dogs with adverse food reactions (AFR) to reduce their clinical symptoms. However, little is known about the specific immune components which mediate this reduction in clinical symptoms. In humans, regulatory T cells seem to play an important role in this desensitisation process. Here, we investigated changes in peripheral T cell responses of dogs with AFR upon FA-SLIT. Five dogs received a dose escalation of FA-SLIT over a six-month period. An oral food challenge was performed at the beginning and end of the study to assess the efficacy of the FA-SLIT. Using in vitro allergen-recall assays, we assessed the proliferation of T cell subsets before and at the end of the treatment. FA-SLIT significantly increased the percentage of proliferating CD4-CD8- double-negative (DN) T cells, while the percentage of allergen-specific CD4-CD8+ and CD4+CD8+ double-positive (DP) T cells decreased upon treatment. These findings indicate that sublingual immunotherapy in dogs activates DN T cells, which might be important for the desensitisation of dogs with adverse food reactions. However, further research is needed to corroborate these findings and to further elucidate the mechanism of action of FA-SLIT in dogs with AFR.
Collapse
Affiliation(s)
- Elisa Maina
- Laboratory of Immunology, Faculty of Veterinary Medicine, Ghent University, Belgium
| | - Bert Devriendt
- Laboratory of Immunology, Faculty of Veterinary Medicine, Ghent University, Belgium
| | - Eric Cox
- Laboratory of Immunology, Faculty of Veterinary Medicine, Ghent University, Belgium.
| |
Collapse
|
9
|
Hillhouse EE, Thiant S, Moutuou MM, Lombard-Vadnais F, Parat R, Delisle JS, Ahmad I, Roy DC, Guimond M, Roy J, Lesage S. Double-Negative T Cell Levels Correlate with Chronic Graft-versus-Host Disease Severity. Biol Blood Marrow Transplant 2019; 25:19-25. [DOI: 10.1016/j.bbmt.2018.09.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Accepted: 09/06/2018] [Indexed: 02/07/2023]
|
10
|
Wang L, Ni M, Hückelhoven-Krauss A, Sellner L, Hoffmann JM, Neuber B, Luft T, Hegenbart U, Schönland S, Kleist C, Sill M, Chen BA, Wuchter P, Eckstein V, Krüger W, Hilgendorf I, Yerushalmi R, Nagler A, Müller-Tidow C, Ho AD, Dreger P, Schmitt M, Schmitt A. Modulation of B Cells and Homing Marker on NK Cells Through Extracorporeal Photopheresis in Patients With Steroid-Refractory/Resistant Graft-Vs.-Host Disease Without Hampering Anti-viral/Anti-leukemic Effects. Front Immunol 2018; 9:2207. [PMID: 30349527 PMCID: PMC6186805 DOI: 10.3389/fimmu.2018.02207] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 09/05/2018] [Indexed: 11/13/2022] Open
Abstract
Graft-vs.-host disease (GvHD), a severe complication of allogeneic hematopoietic stem cell transplantation, significantly affects the post-transplant morbidity and mortality. Systemic steroids remain the gold standard for the initial management of GvHD. However, up to 60% of patients will not sufficiently respond to steroids. Extracorporeal photopheresis (ECP), a cell-based immunotherapy, has shown good clinical results in such steroid-refractory/resistant GvHD patients. Given its immunomodulatory, but not global immunosuppressive and steroid-sparing capacity, ECP constitutes an attractive option. In the case of GvHD, the balance of immune cells is destroyed: effector cells are not any longer efficiently controlled by regulatory cells. ECP therapy may restore this balance. However, the precise mechanism and the impact of ECP on anti-viral/anti-leukemic function remain unclear. In this study, 839 ECP treatments were performed on patients with acute GvHD (aGvHD) and chronic GvHD (cGvHD). A comprehensive analysis of effector and regulatory cells in patients under ECP therapy included multi-parametric flow cytometry and tetramer staining, LuminexTM-based cytokine, interferon-γ enzyme-linked immunospot, and chromium-51 release assays. Gene profiling of myeloid-derived suppressor cells (MDSCs) was performed by microarray analysis. Immunologically, modulations of effector and regulatory cells as well as proinflammatory cytokines were observed under ECP treatment: (1) GvHD-relevant cell subsets like CD62L+ NK cells and newly defined CD19hiCD20hi B cells were modulated, but (2) quantity and quality of anti-viral/anti-leukemic effector cells were preserved. (3) The development of MDSCs was promoted and switched from an inactivated subset (CD33-CD11b+) to an activated subset (CD33+CD11b+). (4) The frequency of Foxp3+CD4+ regulatory T cells (Tregs) and CD24+CD38hi regulatory B cells was considerably increased in aGvHD patients, and Foxp3+CD8+ Tregs in cGvHD patients. (5) Proinflammatory cytokines like IL-1β, IL-6, IL-8, and TNF-α were significantly reduced. In summary, ECP constitutes an effective immunomodulatory therapy for patients with steroid-refractory/resistant GvHD without impairment of anti-viral/leukemia effects.
Collapse
Affiliation(s)
- Lei Wang
- Department of Internal Medicine V, University Clinic Heidelberg, Heidelberg, Germany
| | - Ming Ni
- Department of Internal Medicine V, University Clinic Heidelberg, Heidelberg, Germany.,Department of Hematology, the Affiliated Hospital of Guizhou Medical University, Guizhou, China
| | | | - Leopold Sellner
- Department of Internal Medicine V, University Clinic Heidelberg, Heidelberg, Germany
| | - Jean-Marc Hoffmann
- Department of Internal Medicine V, University Clinic Heidelberg, Heidelberg, Germany
| | - Brigitte Neuber
- Department of Internal Medicine V, University Clinic Heidelberg, Heidelberg, Germany
| | - Thomas Luft
- Department of Internal Medicine V, University Clinic Heidelberg, Heidelberg, Germany
| | - Ute Hegenbart
- Department of Internal Medicine V, University Clinic Heidelberg, Heidelberg, Germany
| | - Stefan Schönland
- Department of Internal Medicine V, University Clinic Heidelberg, Heidelberg, Germany
| | - Christian Kleist
- Department of Nuclear Medicine, University Clinic Heidelberg, Heidelberg, Germany
| | - Martin Sill
- Division Biostatistics, German Cancer Research Center, Heidelberg, Germany
| | - Bao-An Chen
- Department of Hematology, Zhongda Hospital, Southeast University, Nanjing, China
| | - Patrick Wuchter
- Department of Internal Medicine V, University Clinic Heidelberg, Heidelberg, Germany.,German Red Cross Blood Service, Medical Faculty Mannheim, Institute of Transfusion Medicine and Immunology Mannheim, Mannheim, Germany
| | - Volker Eckstein
- Department of Internal Medicine V, University Clinic Heidelberg, Heidelberg, Germany
| | - William Krüger
- Department of Internal Medicine C, Haematology, Oncology, Stem Cell Transplantation, Palliative Care, University Clinic Greifswald, Greifswald, Germany
| | - Inken Hilgendorf
- Department of Internal Medicine II, University Clinic Jena, Jena, Germany
| | - Ronit Yerushalmi
- Hematology Division, Chaim Sheba Medical Center, Tel Hashomer, Israel
| | - Arnon Nagler
- Hematology Division, Chaim Sheba Medical Center, Tel Hashomer, Israel
| | - Carsten Müller-Tidow
- Department of Internal Medicine V, University Clinic Heidelberg, Heidelberg, Germany
| | - Anthony D Ho
- Department of Internal Medicine V, University Clinic Heidelberg, Heidelberg, Germany
| | - Peter Dreger
- Department of Internal Medicine V, University Clinic Heidelberg, Heidelberg, Germany
| | - Michael Schmitt
- Department of Internal Medicine V, University Clinic Heidelberg, Heidelberg, Germany
| | - Anita Schmitt
- Department of Internal Medicine V, University Clinic Heidelberg, Heidelberg, Germany
| |
Collapse
|
11
|
Achita P, Dervovic D, Ly D, Lee JB, Haug T, Joe B, Hirano N, Zhang L. Infusion of ex-vivo expanded human TCR-αβ + double-negative regulatory T cells delays onset of xenogeneic graft-versus-host disease. Clin Exp Immunol 2018; 193:386-399. [PMID: 30066399 DOI: 10.1111/cei.13145] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/05/2018] [Indexed: 12/25/2022] Open
Abstract
Despite the demonstration of potent immunosuppressive function of T cell receptor (TCR)-αβ+ double-negative regulatory T cells (DN Tregs ), scarce numbers and lack of effective expansion method limit their clinical applications. Here we describe an approach that allows for ∼3500-fold ex-vivo expansion of human DN Tregs within 3 weeks with > 97% purity. Ex-vivo-expanded DN Tregs suppress proliferation of polyclonally stimulated autologous T and B cells in vitro through direct cell-to-cell contact. In vivo, we demonstrate for the first time that infusion of human DN Tregs delayed an onset of xenogeneic graft-versus-host disease (GVHD) significantly in a humanized mouse model. Furthermore, preincubation of ex-vivo-expanded DN Tregs with a mechanistic target of rapamycin (mTOR) inhibitor rapamycin enhanced their immune regulatory function further. Taken together, this study demonstrates that human DN Tregs can be expanded ex vivo to therapeutic numbers. The expanded DN Tregs can suppress proliferation of T and B cells and attenuate GVHD, highlighting the potential clinical use of DN Tregs to mitigate GVHD.
Collapse
Affiliation(s)
- P Achita
- Toronto General Research Institute, University Health Network, Toronto, ON, Canada.,Institute of Medical Science, Toronto, ON, Canada
| | - D Dervovic
- Toronto General Research Institute, University Health Network, Toronto, ON, Canada
| | - D Ly
- Toronto General Research Institute, University Health Network, Toronto, ON, Canada
| | - J B Lee
- Toronto General Research Institute, University Health Network, Toronto, ON, Canada.,Department of Immunology, University of Toronto, Toronto, ON, Canada
| | - T Haug
- Department of Internal Medicine, University of Erlangen-Nuremberg, Erlangen, Germany
| | - B Joe
- Toronto General Research Institute, University Health Network, Toronto, ON, Canada
| | - N Hirano
- Department of Immunology, University of Toronto, Toronto, ON, Canada.,Princess Margaret Cancer Center, University Health Network, Toronto, ON, Canada
| | - L Zhang
- Toronto General Research Institute, University Health Network, Toronto, ON, Canada.,Institute of Medical Science, Toronto, ON, Canada.,Department of Immunology, University of Toronto, Toronto, ON, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
12
|
Liu L, He C, Liu J, Lv Z, Wang G, Gao H, Dai Y, Cooper DKC, Cai Z, Mou L. Transplant Tolerance: Current Insights and Strategies for Long-Term Survival of Xenografts. Arch Immunol Ther Exp (Warsz) 2018; 66:355-364. [PMID: 29992337 DOI: 10.1007/s00005-018-0517-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 06/18/2018] [Indexed: 12/20/2022]
Abstract
Xenotransplantation is an attractive solution to the problem of allograft shortage. However, transplants across discordant species barriers are subject to vigorous immunologic and pathobiologic hurdles, some of which might be overcome with the induction of immunologic tolerance. Several strategies have been designed to induce tolerance to a xenograft at both the central (including induction of mixed chimerism and thymic transplantation) and peripheral (including adoptive transfer of regulatory cells and blocking T cell costimulation) levels. Currently, xenograft tolerance has been well-established in rodent models, but these protocols have not yet achieved similar success in nonhuman primates. This review will discuss the major barriers that impede the establishment of immunological tolerance across xenogeneic barriers and the potential solution to these challenges, and provide a perspective on the future of the development of novel tolerance-inducing strategies.
Collapse
Affiliation(s)
- Lu Liu
- Shenzhen Xenotransplantation Medical Engineering Research and Development Center' Institute of Translational Medicine, Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, Shenzhen University School of Medicine, Shenzhen University Health Science Center, Shenzhen, 518035, Guangdong, China.,Department of Gastroenterology' Center For Digestive Diseases, People's Hospital of Baoan District, The 8th people's Hospital of Shenzhen, Shenzhen, 518101, Guangdong, China
| | - Chen He
- Department of Ophthalmology, Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, Shenzhen, 518035, Guangdong, China
| | - Jintao Liu
- Department of Gastroenterology' Center For Digestive Diseases, People's Hospital of Baoan District, The 8th people's Hospital of Shenzhen, Shenzhen, 518101, Guangdong, China
| | - Zhiwu Lv
- Department of Gastroenterology' Center For Digestive Diseases, People's Hospital of Baoan District, The 8th people's Hospital of Shenzhen, Shenzhen, 518101, Guangdong, China
| | - Ganlu Wang
- Department of Gastroenterology' Center For Digestive Diseases, People's Hospital of Baoan District, The 8th people's Hospital of Shenzhen, Shenzhen, 518101, Guangdong, China
| | - Hanchao Gao
- Shenzhen Xenotransplantation Medical Engineering Research and Development Center' Institute of Translational Medicine, Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, Shenzhen University School of Medicine, Shenzhen University Health Science Center, Shenzhen, 518035, Guangdong, China
| | - Yifan Dai
- Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| | - David K C Cooper
- Xenotransplantation Program/Department of Surgery, The University of Alabama at Birmingham, Birmingham, AL, 35233, USA
| | - Zhiming Cai
- Shenzhen Xenotransplantation Medical Engineering Research and Development Center' Institute of Translational Medicine, Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, Shenzhen University School of Medicine, Shenzhen University Health Science Center, Shenzhen, 518035, Guangdong, China
| | - Lisha Mou
- Shenzhen Xenotransplantation Medical Engineering Research and Development Center' Institute of Translational Medicine, Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, Shenzhen University School of Medicine, Shenzhen University Health Science Center, Shenzhen, 518035, Guangdong, China.
| |
Collapse
|
13
|
Ezzelarab MB. Regulatory T cells from allo- to xenotransplantation: Opportunities and challenges. Xenotransplantation 2018; 25:e12415. [DOI: 10.1111/xen.12415] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Accepted: 05/03/2018] [Indexed: 12/11/2022]
Affiliation(s)
- Mohamed B. Ezzelarab
- Thomas E. Starzl Transplantation Institute; University of Pittsburgh Medical Center; Pittsburgh PA USA
| |
Collapse
|
14
|
Collin R, Doyon K, Mullins-Dansereau V, Karam M, Chabot-Roy G, Hillhouse EE, Orthwein A, Lesage S. Genetic interaction between two insulin-dependent diabetes susceptibility loci, Idd2 and Idd13, in determining immunoregulatory DN T cell proportion. Immunogenetics 2018; 70:495-509. [PMID: 29696366 DOI: 10.1007/s00251-018-1060-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 04/12/2018] [Indexed: 12/21/2022]
Abstract
Several immune regulatory cell types participate in the protection against autoimmune diseases such as autoimmune diabetes. Of these immunoregulatory cells, we and others have shown that peripheral CD4-CD8- double negative (DN) T cells can induce antigen-specific immune tolerance. Particularly, we have described that diabetes-prone mice exhibit a lower number of peripheral DN T cells compared to diabetes-resistant mice. Identifying the molecular pathways that influence the size of the DN T cell pool in peripheral lymphoid organs may thus be of interest for maintaining antigen-specific immune tolerance. Hence, through immunogenetic approaches, we found that two genetic loci linked to autoimmune diabetes susceptibility, namely Idd2 and Idd13, independently contribute to the partial restoration of DN T cell proportion in secondary lymphoid organs. We now extend these findings to show an interaction between the Idd2 and Idd13 loci in determining the number of DN T cells in secondary lymphoid organs. Using bioinformatics tools, we link potential biological pathways arising from interactions of genes encoded within the two loci. By focusing on cell cycle, we validate that both the Idd2 and Idd13 loci influence RAD51 expression as well as DN T cell progression through the cell cycle. Altogether, we find that genetic interactions between Idd2 and Idd13 loci modulate cell cycle progression, which contributes, at least in part, to defining the proportion of DN T cells in secondary lymphoid organs.
Collapse
Affiliation(s)
- Roxanne Collin
- Division of Immunology-oncology, Maisonneuve-Rosemont Hospital, Research Center, Montréal, 5415 l'Assomption Blvd, Québec, H1T 2M4, Canada.,Département de microbiologie, infectiologie et immunologie, Université de Montréal, Montréal, Québec, H3C 3J7, Canada
| | - Kathy Doyon
- Division of Immunology-oncology, Maisonneuve-Rosemont Hospital, Research Center, Montréal, 5415 l'Assomption Blvd, Québec, H1T 2M4, Canada
| | - Victor Mullins-Dansereau
- Division of Immunology-oncology, Maisonneuve-Rosemont Hospital, Research Center, Montréal, 5415 l'Assomption Blvd, Québec, H1T 2M4, Canada.,Département de microbiologie, infectiologie et immunologie, Université de Montréal, Montréal, Québec, H3C 3J7, Canada
| | - Martin Karam
- Division of Experimental Medicine, McGill University, Montréal, Québec, H4A 3J1, Canada.,Lady Davis Institute, Jewish General Hospital, 3755 Côte Ste-Catherine, Montréal, Québec, H3T 1E2, Canada
| | - Geneviève Chabot-Roy
- Division of Immunology-oncology, Maisonneuve-Rosemont Hospital, Research Center, Montréal, 5415 l'Assomption Blvd, Québec, H1T 2M4, Canada
| | - Erin E Hillhouse
- Division of Immunology-oncology, Maisonneuve-Rosemont Hospital, Research Center, Montréal, 5415 l'Assomption Blvd, Québec, H1T 2M4, Canada
| | - Alexandre Orthwein
- Division of Experimental Medicine, McGill University, Montréal, Québec, H4A 3J1, Canada. .,Lady Davis Institute, Jewish General Hospital, 3755 Côte Ste-Catherine, Montréal, Québec, H3T 1E2, Canada. .,Department of Oncology, McGill University, Montréal, Québec, H4A 3J1, Canada.
| | - Sylvie Lesage
- Division of Immunology-oncology, Maisonneuve-Rosemont Hospital, Research Center, Montréal, 5415 l'Assomption Blvd, Québec, H1T 2M4, Canada. .,Département de microbiologie, infectiologie et immunologie, Université de Montréal, Montréal, Québec, H3C 3J7, Canada.
| |
Collapse
|
15
|
Advances on Non-CD4 + Foxp3+ T Regulatory Cells: CD8+, Type 1, and Double Negative T Regulatory Cells in Organ Transplantation. Transplantation 2015; 99:1553-9. [PMID: 26193065 DOI: 10.1097/tp.0000000000000813] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The overwhelming body of research on T regulatory cells (Treg) has focused on CD4 + CD25 + Foxp3+ T cells. However, recent years have witnessed a resurgence in interest in CD4 - CD8+, CD4 - CD8- (double negative [DN]), and CD4 + Foxp3- type 1 Treg (Tr1) Treg and their role in controlling autoimmune diseases and in promoting the survival of organ allografts and xenografts. CD8+ and DN Treg can arise spontaneously (natural Treg) or can be induced in situ. Both CD8+ and DN Treg have been shown to enhance the survival of organ allografts and xenografts. Additionally, both can suppress alloimmune responses by contact-dependent mechanisms by either inducing apoptosis or mediating direct cytolysis of effector T cells. CD8+, DN, and Tr1 Treg can also act in a contact-independent manner by elaborating soluble immunosuppressive factors, such as TGF-β and IL-10. Applying CD8+, DN, and Tr1 Treg for enhancing the survival of organ allografts and xenografts is still in its infancy but holds significant potential. Furthermore, there is a need for a more comprehensive understanding of how current immunosuppressive therapies applied to organ transplantations affect the wide array of Treg populations.
Collapse
|
16
|
Abstract
Immune responses by innate and adaptive immune cells are crucial for the suppression of carcinogenesis and tumor spread. Effector T cells such as, cytotoxic CD8(+) T (CTL), natural killer (NK), and NK T cells (NKT cells) prevent tumor growth by their ability to induce apoptosis in cancer cells. To circumvent anti-tumor immunity, tumors commonly attract regulatory T cells (Treg), which suppress the function of CTL and NKT cells in a contact- and cytokine-dependent manner. Recent findings in patients with thyroid cancer have suggested that an imbalance between immune suppressive and anti-tumor cells occurs during thyroid carcinogenesis. However, the composition and regulation of immune responses in thyroid cancer are still elusive and a comprehensive immune profile of thyroid cancer is missing. In this issue of Endocrine-Related Cancer, Imam et al. compare immune profiles between patients with papillary thyroid carcinoma and autoimmune thyroiditis. Their data suggest that an imbalance between immunosuppressive Treg cells and effector T cells occurs during papillary thyroid carcinogenesis. Their study identified double-negative T cells as a novel key factor involved in this process. Future research is required to recapitulate these findings, to elucidate the mechanisms by which the immune response is regulated and to evaluate if this process might be used for the therapeutical management of thyroid cancer.
Collapse
Affiliation(s)
- Frank Weber
- Department of General-Visceral- and Transplantations Surgery, Division of Endocrine Surgery, Medical Faculty, University Hospital Essen, University of Duisburg-Essen, Hufelandstrasse 55, 45130 Essen, Germany
| |
Collapse
|
17
|
Li W, Tian Y, Li Z, Gao J, Shi W, Zhu J, Zhang D. Ex vivo converted double negative T cells suppress activated B cells. Int Immunopharmacol 2014; 20:164-9. [PMID: 24613134 DOI: 10.1016/j.intimp.2014.02.034] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Revised: 02/21/2014] [Accepted: 02/24/2014] [Indexed: 02/06/2023]
Abstract
Although the ability of endogenous CD4(-)CD8(-) double negative (DN) T cells to suppress B cells has been documented, the extent to which ex vivo converted DN T cells suppress B cells activity is still being explored. The aim of this study was to determine whether and what extent ex vivo converted CD4(-)CD8(-) DN T cells suppress B cell activation and antibody production. We found that ex vivo converted DN T cells suppressed proliferation of activated B cells in a perforin and cell-cell contact dependent manner. In addition, ex vivo converted DN T cells significantly inhibited the production of IgG by stimulated B cells. This study provides evidence that ex vivo converted CD4(-)CD8(-) double negative T cells can down-regulate immune responses by suppressing B cell proliferation and IgG production, and supports efforts to develop ex vivo DN T cell therapies.
Collapse
Affiliation(s)
- WenXia Li
- Department of Hepatobiliary Surgery, Peking University People's Hospital, NO. 11, Xizhimen South Street, Xicheng District, Beijing 100044, China
| | - Yue Tian
- Research Center, Beijing Friendship Hospital, Capital Medical University, No. 95, Yongan Road, Xicheng District, Beijing 100050, China
| | - Zhao Li
- Department of Hepatobiliary Surgery, Peking University People's Hospital, NO. 11, Xizhimen South Street, Xicheng District, Beijing 100044, China
| | - Jie Gao
- Department of Hepatobiliary Surgery, Peking University People's Hospital, NO. 11, Xizhimen South Street, Xicheng District, Beijing 100044, China
| | - Wen Shi
- Research Center, Beijing Friendship Hospital, Capital Medical University, No. 95, Yongan Road, Xicheng District, Beijing 100050, China
| | - JiYe Zhu
- Department of Hepatobiliary Surgery, Peking University People's Hospital, NO. 11, Xizhimen South Street, Xicheng District, Beijing 100044, China.
| | - Dong Zhang
- Research Center, Beijing Friendship Hospital, Capital Medical University, No. 95, Yongan Road, Xicheng District, Beijing 100050, China.
| |
Collapse
|
18
|
Liang Q, Jiao Y, Zhang T, Wang R, Li W, Zhang H, Huang X, Tang Z, Wu H. Double Negative (DN) [CD3⁺CD4⁻CD8⁻] T cells correlate with disease progression during HIV infection. Immunol Invest 2014; 42:431-7. [PMID: 23802173 DOI: 10.3109/08820139.2013.805763] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Although double negative T (DNT) cells (CD3⁺CD4⁻CD8⁻) share some characteristics with T regulatory cells, the relationship between DNT cells and disease progression in HIV infection is unclear. In this study, we analyzed the relationship between DNT cells and disease progression during the first 2 years of HIV infection. We found that DNT cell numbers tended to decrease with disease progression. There was a positive correlation between DNT cells and CD4 counts. The DNT cell numbers were significantly lower in the high viral load group compared with the low viral load group. Therefore, we conclude that DNT cells correlated with disease progression in HIV infection. These data provide valuable information for further understanding of the role of DNT cells during HIV infection.
Collapse
Affiliation(s)
- Qi Liang
- Department of Clinical Laboratory, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, China
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Lin CH, Zhang W, Ng TW, Zhang D, Jiang J, Pulikkottil B, Lakkis F, Gorantla VS, Lee WPA, Brandacher G, Zheng XX. Vascularized osteomyocutaneous allografts are permissive to tolerance by induction-based immunomodulatory therapy. Am J Transplant 2013; 13:2161-8. [PMID: 23718897 DOI: 10.1111/ajt.12275] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2012] [Revised: 03/27/2013] [Accepted: 03/28/2013] [Indexed: 01/25/2023]
Abstract
Vascularized composite allografts (VCAs) are unique among transplanted organs in that they are composed of multiple tissues with disparate antigenic and immunologic properties. As the predominant indications for VCAs are non-life-threatening conditions, there is an immediate need to develop tolerance induction strategies and to elucidate the mechanisms of VCA rejection and tolerance using VCA-specific animal models. In this study, we explore the effects of in vitro induced donor antigen-specific CD4(-) CD8(-) double negative (DN) Treg-based therapy, in a fully MHC mismatched mouse VCA such as a vascularized osteomyocutaneous as compared to a non-VCA such as a full thickness skin (FTS) transplantation model to elucidate the unique features of VCA rejection and tolerance. We demonstrate that combined therapy with antigen-induced CD4 derived DN Tregs and a short course of anti-lymphocyte serum, rapamycin and IL-2/Fc fusion protein results in donor-specific tolerance to VCA, but not FTS allografts. Macrochimerism was detected in VCA but not FTS allograft recipients up to >60 days after transplantation. Moreover, a significant increase of CD4(+) Foxp3(+) Tregs was found in the peripheral blood of tolerant VCA recipients. These data suggest that VCA are permissive to tolerance induced by DN Treg-based induction therapy.
Collapse
Affiliation(s)
- C H Lin
- Department of Plastic Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Hillhouse EE, Delisle JS, Lesage S. Immunoregulatory CD4(-)CD8(-) T cells as a potential therapeutic tool for transplantation, autoimmunity, and cancer. Front Immunol 2013; 4:6. [PMID: 23355840 PMCID: PMC3553425 DOI: 10.3389/fimmu.2013.00006] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2012] [Accepted: 01/05/2013] [Indexed: 11/17/2022] Open
Abstract
A central objective in organ transplantation and the treatment or prevention of autoimmune disease is the achievement of antigen-specific immune tolerance. An additional challenge in bone marrow transplantation for the treatment of hematological malignancies is the prevention of graft-vs-host disease (GVHD) while maintaining graft-vs-tumor activity. Interestingly, CD4-CD8- (double negative, DN) T cells, which exhibit a unique antigen-specific immunoregulatory potential, appear to exhibit all of the properties to respond to these challenges. Herein, we review the therapeutic potential of immunoregulatory DN T cells in various immunopathological settings, including graft tolerance, GVHD, cancer, and autoimmunity.
Collapse
Affiliation(s)
- Erin E Hillhouse
- Department of Microbiology and Immunology, University of Montreal Montreal, QC, Canada ; Research Center, Maisonneuve-Rosemont Hospital Montreal, QC, Canada
| | | | | |
Collapse
|
21
|
Wang X, Yan W, Lu Y, Chen T, Sun Y, Qin X, Zhang J, Han M, Guo W, Wang H, Wu D, Xi D, Luo X, Ning Q. CD4-CD8-T cells contribute to the persistence of viral hepatitis by striking a delicate balance in immune modulation. Cell Immunol 2012; 280:76-84. [PMID: 23261832 PMCID: PMC7094652 DOI: 10.1016/j.cellimm.2012.11.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2012] [Revised: 08/04/2012] [Accepted: 11/12/2012] [Indexed: 12/13/2022]
Abstract
Viral hepatitis remains the most common cause of liver disease and a major public health problem. Here, we focus on the role of CD4 CD8 double negative T (DN T) cells involved in the mechanisms of viral persistence in hepatitis. C3H/HeJ mice infected with murine hepatitis virus strain 3 (MHV-3) were used to display chronic viral hepatitis. DN T cells dramatically increased in MHV-3 infected mice. Adoptive transfer of DN T cells from MHV-3 infected mice led to a significant increase in mice survival. The DN T cells with production of IFN-γ and IL-2 are able to kill virus-specific CD8(+) T cells via the Fas/FasL dependent pathway. The delicate balance of multiple effects of DN T cells may lead to viral persistence in MHV-3 induced hepatitis. In short, our study identified DN T cells contributing to viral persistence in MHV-3 induced hepatitis in C3H/HeJ mice, which provides a rationale for modulating DN T cells for the management of viral hepatitis.
Collapse
Affiliation(s)
- Xiaojing Wang
- Department of Infectious Disease and Institute of Infectious Disease, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Hillhouse EE, Lesage S. A comprehensive review of the phenotype and function of antigen-specific immunoregulatory double negative T cells. J Autoimmun 2012; 40:58-65. [PMID: 22910322 DOI: 10.1016/j.jaut.2012.07.010] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2012] [Revised: 07/31/2012] [Accepted: 07/31/2012] [Indexed: 12/18/2022]
Abstract
Double negative T cells that lack the expression of both CD4 and CD8 T cell co-receptors exhibit a most unique antigen-specific immunoregulatory potential first described over a decade ago. Due to their immunoregulatory function, this rare T cell population has been studied in both mice and humans for their contribution to peripheral tolerance and disease prevention. Consequently, double negative cells are gaining interest as a potential cellular therapeutic. Herein, we review the phenotype and function of double negative T cells with emphasis on their capacity to induce antigen-specific immune tolerance. While the phenotypic and functional similarities between double negative T cells identified in mouse and humans are highlighted, we also call attention to the need for a specific marker of double negative T cells, which will facilitate future studies in humans. Altogether, due to their unique properties, double negative T cells present a promising therapeutic potential in the context of various disease settings.
Collapse
Affiliation(s)
- Erin E Hillhouse
- Department of Microbiology and Immunology, University of Montreal, Montreal, Quebec H3C 3J7, Canada; Maisonneuve-Rosemont Hospital Research Center, Montreal, Quebec H1T 2M4, Canada.
| | | |
Collapse
|
23
|
Juvet SC, Zhang L. Double negative regulatory T cells in transplantation and autoimmunity: recent progress and future directions. J Mol Cell Biol 2012; 4:48-58. [PMID: 22294241 DOI: 10.1093/jmcb/mjr043] [Citation(s) in RCA: 109] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
T lymphocytes bearing the αβ T cell receptor (TCR) but lacking CD4, CD8, and markers of natural killer (NK) cell differentiation are known as 'double-negative' (DN) T cells and have been described in both humans and rodent models. We and others have shown that DN T cells can act as regulatory T cells (Tregs) that are able to prevent allograft rejection, graft-versus-host disease, and autoimmune diabetes. In the last few years, new data have revealed evidence of DN Treg function in vivo in rodents and humans. Moreover, significant advances have been made in the mechanisms by which DN Tregs target antigen-specific T cells. One major limitation of the field is the lack of a specific marker that can be used to distinguish truly regulatory DN T cells (DN Tregs) from non-regulatory ones, and this is the central challenge in the coming years. Here, we review recent progress on the role of DN Tregs in transplantation and autoimmunity, and their mechanisms of action. We also provide some perspectives on how DN Tregs compare with Foxp3(+) Tregs.
Collapse
Affiliation(s)
- Stephen C Juvet
- Division of Respirology and Clinician-Scientist Training Program, Department of Medicine, Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | | |
Collapse
|
24
|
Su Y, Huang X, Wang S, Min WP, Yin Z, Jevnikar AM, Zhang ZX. Double negative Treg cells promote nonmyeloablative bone marrow chimerism by inducing T-cell clonal deletion and suppressing NK cell function. Eur J Immunol 2012; 42:1216-1225. [PMID: 22539294 DOI: 10.1002/eji.201141808] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The establishment of immune tolerance and prevention of chronic rejection remain major goals in clinical transplantation. In bone marrow (BM) transplantation, T cells and NK cells play important roles for graft rejection. In addition, graft-versus-host-disease (GVHD) remains a major obstacle for BM transplantation. In this study, we aimed to establish mixed chimerism in an irradiation-free condition. Our data indicate that adoptive transfer of donor-derived T-cell receptor (TCR) αβ(+) CD3(+) CD4(-) CD8(-) NK1.1(-) (double negative, DN) Treg cells prior to C57BL/6 to BALB/c BM transplantation, in combination with cyclophosphamide, induced a stable-mixed chimerism and acceptance of C57BL/6 skin allografts but rejection of third-party C3H (H-2k) skin grafts. Adoptive transfer of CD4(+) and CD8(+) T cells, but not DN Treg cells, induced GVHD in this regimen. The recipient T-cell alloreactive responsiveness was reduced in the DN Treg cell-treated group and clonal deletions of TCRVβ2, 7, 8.1/2, and 8.3 were observed in both CD4(+) and CD8(+) T cells. Furthermore, DN Treg-cell treatment suppressed NK cell-mediated BM rejection in a perforin-dependent manner. Taken together, our results suggest that adoptive transfer of DN Treg cells can control both adoptive and innate immunities and promote stable-mixed chimerism and donor-specific tolerance in the irradiation-free regimen.
Collapse
Affiliation(s)
- Ye Su
- The Multi-Organ Transplant Program, London Health Sciences Centre, London, Ontario, Canada
| | | | | | | | | | | | | |
Collapse
|
25
|
Lee BO, Jones JE, Peters CJ, Whitacre D, Frelin L, Hughes J, Kim WK, Milich DR. Identification of a unique double-negative regulatory T-cell population. Immunology 2012; 134:434-47. [PMID: 22044159 DOI: 10.1111/j.1365-2567.2011.03502.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Regulatory T (Treg) cells represent one of the main mechanisms of regulating self-reactive immune cells. Treg cells are thought to play a role in down-regulating immune responses to self or allogeneic antigens in the periphery. Although the function of Treg cells has been demonstrated in many experimental settings, the precise mechanisms and antigen specificity often remain unclear. In a hepatitis B e antigen-T-cell receptor (HBeAg-TCR) double transgenic mouse model, we observed a phenotypically unique (TCR+) CD4- /CD8- CD25(+/-) GITR(high) PD-1(high) FoxP3-) HBeAg-specific population that demonstrates immune regulatory function. This HBeAg-specific double-negative regulatory cell population proliferates vigorously in vitro, in contrast to any other known regulatory population, in an interleukin-2-independent manner.
Collapse
Affiliation(s)
- Byung O Lee
- Vaccine Research Institute of San Diego, San Diego, CA 92121, USA.
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Ye H, Chang Y, Zhao X, Huang X. Characterization of CD3+CD4-CD8- (double negative) T cells reconstitution in patients following hematopoietic stem-cell transplantation. Transpl Immunol 2011; 25:180-6. [PMID: 21911061 DOI: 10.1016/j.trim.2011.08.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2011] [Revised: 08/04/2011] [Accepted: 08/21/2011] [Indexed: 11/16/2022]
Abstract
BACKGROUND CD3+CD4-CD8-double negative (DN) T cells, as a distinct subset of regulatory T cells (Tregs), played a pivotal role in patients following hematopoietic stem-cell transplantation. METHODS This study examines the behavior of CD3+CD4-CD8- double negative (DN) T cells in 73 patients at days 30, 60, 90 and 180 after allo-HSCT. RESULTS There was no significant difference in neutrophil and platelet engraftment between the higher and lower absolute counts of 30days DN Tregs (p=0.674, 0.863, respectively). The reconstitution of DN Tregs was significantly slower than that of CD8+, CD4+, and CD3+CD8+CD28- T cells (p<0.001), but significantly faster than that of CD19+ and CD4+CD25+ T cells (p<0.001, p=0.032, respectively). Importantly, in the HLA mismatched group, DN Tregs reconstitution had significant effect on aGVHD (p=0.027) and there was significant correlation between aGVHD and DN Tregs reconstitution (p=0.035). DN Tregs reconstitution was significantly faster in the patients who were devoid of aGVHD than that of patients who developed aGVHD. Furthermore, we compared the absolute value of DN Tregs at 30days, 60days, 90days and 180days after allo-HSCT with grade aGVHD and found an inverse linear relationship in the HLA mismatched group (n=37, P<0.001, r=-0.573). CONCLUSIONS The successful expansion of DN Tregs at 60days after allo-HCST may help avoid severe manifestations of aGVHD in the HLA mismatched group, suggesting that DN Tregs have potential protection effect against aGVHD.
Collapse
Affiliation(s)
- Haige Ye
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing, China
| | | | | | | |
Collapse
|
27
|
Zhang D, Zhang W, Ng TW, Wang Y, Liu Q, Gorantla V, Lakkis F, Zheng XX. Adoptive cell therapy using antigen-specific CD4⁻CD8⁻T regulatory cells to prevent autoimmune diabetes and promote islet allograft survival in NOD mice. Diabetologia 2011; 54:2082-92. [PMID: 21594554 DOI: 10.1007/s00125-011-2179-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2010] [Accepted: 04/04/2011] [Indexed: 12/20/2022]
Abstract
AIMS/HYPOTHESIS A new differentiation pathway for CD4(-)CD8(-) (DN) T cells has recently been identified that exhibits the potent function of peripheral converted DN T cells in suppressing immune responses and provides the potential to treat autoimmune diseases. The aim of this study was to determine if the DN T cells converted from CD4(+) T cells of NOD mice retain the antigen-specific regulatory capacity and prevent autoimmune diabetes in vivo. We also sought to determine if the combination of DN T cells with rapamycin promotes islet allograft survival in autoimmune diabetic NOD recipients. METHODS NOD CD4(+) T cells were converted to DN T cells in an in vitro mixed-lymphocyte reaction, with or without GAD65 peptide, as previously reported. The antigen-specific DN T cells were adoptively transferred to NOD/SCID mice, new-onset diabetic NOD mice or islet-allograft-recipient NOD mice as the part of cell-based therapy. The development of diabetes and allograft survival was assessed by monitoring blood glucose levels. RESULTS NOD CD4(+) T cells were converted in vitro to DN T cells at a rate of 50% and expressed unique cell features. The DN T cells from NOD donors blocked autoimmunity and prevented diabetes in NOD models, and these effects were even greater for GAD65-peptide-primed DN T cells. DN T cells acted in conjunction with rapamycin to suppress alloantigen-triggered T cell proliferation, promoted apoptosis and prolonged islet allograft survival in NOD recipients. CONCLUSIONS/INTERPRETATION Administration of the islet beta cell antigen-specific DN T cells can prevent the development of autoimmune diabetes and promote islet allograft survival in NOD mice.
Collapse
Affiliation(s)
- D Zhang
- Beijing Friendship Hospital, Capital Medical University, Beijing, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Voelkl S, Gary R, Mackensen A. Characterization of the immunoregulatory function of human TCR-αβ+ CD4- CD8- double-negative T cells. Eur J Immunol 2011; 41:739-48. [PMID: 21287552 DOI: 10.1002/eji.201040982] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2010] [Revised: 11/12/2010] [Accepted: 12/15/2010] [Indexed: 12/21/2022]
Abstract
Regulatory T cells (Tregs) play an important role in the maintenance of immune tolerance to self-antigens and are involved in modulating immune responses in autoimmunity, transplant rejection, and tumor immunity. Recently, a novel subset of TCR-αβ(+) CD4(-) CD8(-) (double negative, DN) T cells has been described to specifically suppress T-cell responses in mice. Here, we demonstrate that human DN T cells are highly potent suppressors of both CD4(+) and CD8(+) T-cell responses. In contrast to naturally occurring CD4(+) CD25(+) Tregs, DN T cells have to be activated by antigen-presenting cells (APCs) to induce their regulatory potential. The suppressive activity of DN T cells is neither mediated indirectly by modulation of APCs nor by competition for T-cell growth factors. Furthermore, DN T-cell-mediated suppression toward responder T cells is TCR dependent and requires novel protein synthesis. In contrast to murine DN T cells, which eliminate effector T cells via Fas/FasL or perforin/granzyme, human DN T cells suppress proliferation of responder T cells by cell contact-dependent mechanisms. Taken together, our data indicate that human DN T cells exert strong immunosuppressive effects on both CD4(+) and CD8(+) T cells and may serve as a new therapeutic approach to treat autoimmunity and transplant rejection.
Collapse
Affiliation(s)
- Simon Voelkl
- Department of Internal Medicine 5 - Hematology/Oncology, University of Erlangen-Nürnberg, Erlangen, Germany
| | | | | |
Collapse
|
29
|
Mir KD, Gasper MA, Sundaravaradan V, Sodora DL. SIV infection in natural hosts: resolution of immune activation during the acute-to-chronic transition phase. Microbes Infect 2011; 13:14-24. [PMID: 20951225 PMCID: PMC3022004 DOI: 10.1016/j.micinf.2010.09.011] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2010] [Accepted: 09/09/2010] [Indexed: 10/18/2022]
Abstract
SIV-infected natural hosts do not progress to clinical AIDS yet display high viral replication and an acute immunologic response similar to pathogenic SIV/HIV infections. During chronic SIV infection, natural hosts suppress their immune activation, whereas pathogenic hosts display a highly activated immune state. Here, we review natural host SIV infections with an emphasis on specific immune cells and their contribution to the transition from the acute-to-chronic phases of infection.
Collapse
Affiliation(s)
- Kiran D Mir
- Seattle Biomedical Research Institute, Seattle, WA, USA
| | | | | | | |
Collapse
|
30
|
Duncan B, Nazarov–Stoica C, Surls J, Kehl M, Bona C, Casares S, Brumeanu TD. Double negative (CD3+ 4- 8-) TCR alphabeta splenic cells from young NOD mice provide long-lasting protection against type 1 diabetes. PLoS One 2010; 5:e11427. [PMID: 20625402 PMCID: PMC2896421 DOI: 10.1371/journal.pone.0011427] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2009] [Accepted: 06/07/2010] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Double negative CD3(+)4(-)8(-) TCR alphabeta splenic cells (DNCD3) can suppress the immune responses to allo and xenografts, infectious agents, tumors, and some autoimmune disorders. However, little is known about their role in autoimmune diabetes, a disease characterized by the reduction of insulin production subsequent to destruction of pancreatic beta-cells by a polyclonal population of self-reactive T-cells. Herein, we analyzed the function and phenotype of DNCD3 splenic cells in young NOD mice predisposed to several autoimmune disorders among which, the human-like autoimmune diabetes. METHODOLOGY/PRINCIPAL FINDINGS DNCD3 splenic cells from young NOD mice (1) provided long-lasting protection against diabetes transfer in NOD/Scid immunodeficient mice, (2) proliferated and differentiated in the spleen and pancreas of NOD/Scid mice and pre-diabetic NOD mice into IL-10-secreting T(R)-1 like cells in a Th2-like environment, and (3) their anti-diabetogenic phenotype is CD3(+)(CD4(-)CD8(-))CD28(+)CD69(+)CD25(low) Foxp3(-) iCTLA-4(-)TCR alphabeta(+) with a predominant Vbeta13 gene usage. CONCLUSIONS/SIGNIFICANCE These findings delineate a new T regulatory component in autoimmune diabetes apart from that of NKT and CD4(+)CD25(high) Foxp3(+)T-regulatory cells. DNCD3 splenic cells could be potentially manipulated towards the development of autologous cell therapies in autoimmune diabetes.
Collapse
Affiliation(s)
- Beverly Duncan
- National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Cristina Nazarov–Stoica
- Department of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland, United States of America
| | - Jacqueline Surls
- Department of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland, United States of America
| | - Margaret Kehl
- Department of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland, United States of America
| | - Constantin Bona
- Department of Microbiology, Mount Sinai School of Medicine, New York, New York, United States of America
| | - Sofia Casares
- Department of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland, United States of America
- Naval Medical Research Center, Silver Spring, Maryland, United States of America
| | - Teodor-D. Brumeanu
- Department of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland, United States of America
- * E-mail:
| |
Collapse
|
31
|
|
32
|
|
33
|
Voelkl S, Moore TV, Rehli M, Nishimura MI, Mackensen A, Fischer K. Characterization of MHC class-I restricted TCRalphabeta+ CD4- CD8- double negative T cells recognizing the gp100 antigen from a melanoma patient after gp100 vaccination. Cancer Immunol Immunother 2009; 58:709-18. [PMID: 18836718 PMCID: PMC2832593 DOI: 10.1007/s00262-008-0593-3] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2008] [Accepted: 09/05/2008] [Indexed: 12/18/2022]
Abstract
The immune attack against malignant tumors require the concerted action of CD8+ cytotoxic T lymphocytes (CTL) as well as CD4+ T helper cells. The contribution of T cell receptor (TCR) alphabeta+ CD4- CD8- double-negative (DN) T cells to anti-tumor immune responses is widely unknown. In previous studies, we have demonstrated that DN T cells with a broad TCR repertoire are present in humans in the peripheral blood and the lymph nodes of healthy individuals. Here, we characterize a human DN T cell clone (T4H2) recognizing an HLA-A2-restricted melanoma-associated antigenic gp100-peptide isolated from the peripheral blood of a melanoma patient. Antigen recognition by the T4H2 DN clone resulted in specific secretion of IFN-gamma and TNF. Although lacking the CD8 molecule the gp100-specific DN T cell clone was able to confer antigen-specific cytotoxicity against gp100-loaded target cells as well as HLA-A2+ gp100 expressing melanoma cells. The cytotoxic capacity was found to be perforin/granzymeB-dependent. Together, these data indicate that functionally active antigen-specific DN T cells recognizing MHC class I-restricted tumor-associated antigen (TAA) may contribute to anti-tumor immunity in vivo.
Collapse
MESH Headings
- Antigen Presentation
- Antigens, CD/analysis
- Antigens, Neoplasm/immunology
- Cancer Vaccines/immunology
- Cancer Vaccines/therapeutic use
- Cell Line, Tumor/immunology
- Clone Cells/immunology
- Clone Cells/metabolism
- Cytotoxicity, Immunologic
- Granzymes/immunology
- HLA-A2 Antigen/immunology
- Humans
- Immunophenotyping
- Immunotherapy, Active
- Interferon-gamma/metabolism
- Interleukins/metabolism
- Melanoma/blood
- Melanoma/immunology
- Melanoma/therapy
- Membrane Glycoproteins/immunology
- Perforin/immunology
- Receptors, Antigen, T-Cell, alpha-beta/analysis
- Receptors, Antigen, T-Cell, alpha-beta/immunology
- T-Lymphocyte Subsets/immunology
- T-Lymphocyte Subsets/metabolism
- T-Lymphocytes, Cytotoxic/immunology
- T-Lymphocytes, Cytotoxic/metabolism
- Tumor Necrosis Factor-alpha/metabolism
- gp100 Melanoma Antigen
Collapse
Affiliation(s)
- Simon Voelkl
- Department of Internal Medicine 5, Hematology/Oncology, University of Erlangen-Nuernberg, Krankenhausstrasse 12, 91054 Erlangen, Germany
- Department of Hematology and Oncology, University of Regensburg, 93042 Regensburg, Germany
| | - Tamson V. Moore
- Department of Surgery, The University of Chicago, Chicago, IL 60637 USA
| | - Michael Rehli
- Department of Hematology and Oncology, University of Regensburg, 93042 Regensburg, Germany
| | - Michael I. Nishimura
- Department of Surgery, The University of Chicago, Chicago, IL 60637 USA
- Departments of Surgery and Microbiology and Immunology, Medical University of South Carolina, Charleston, SC 29425 USA
| | - Andreas Mackensen
- Department of Internal Medicine 5, Hematology/Oncology, University of Erlangen-Nuernberg, Krankenhausstrasse 12, 91054 Erlangen, Germany
- Department of Hematology and Oncology, University of Regensburg, 93042 Regensburg, Germany
| | - Karin Fischer
- Department of Hematology and Oncology, University of Regensburg, 93042 Regensburg, Germany
| |
Collapse
|
34
|
Gordon EJ, Kelkar V. Natural killer T cell facilitated engraftment of rat skin but not islet xenografts in mice. Xenotransplantation 2009; 16:135-44. [DOI: 10.1111/j.1399-3089.2009.00524.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
35
|
Muller YD, Golshayan D, Ehirchiou D, Wekerle T, Seebach JD, Bühler LH. T regulatory cells in xenotransplantation. Xenotransplantation 2009; 16:121-8. [DOI: 10.1111/j.1399-3089.2009.00531.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
36
|
Prostaglandin E2 signaling through E prostanoid receptor 2 impairs proliferative response of double negative regulatory T cells. Int Immunopharmacol 2009; 9:534-9. [DOI: 10.1016/j.intimp.2009.01.023] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2009] [Accepted: 01/22/2009] [Indexed: 11/21/2022]
|
37
|
Current world literature. Curr Opin Organ Transplant 2009; 14:211-7. [PMID: 19307967 DOI: 10.1097/mot.0b013e32832ad721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
38
|
Abstract
PURPOSE OF REVIEW To review the latest development in cardiac xenotransplantation in small and large animal models and related in-vitro studies. RECENT FINDINGS With the recent introduction of alpha1,3-galactosyltransferase gene-knockout (GT-KO) pig organs for xenotransplantation, improved cardiac graft survival has been obtained. However, this experience has demonstrated the importance of pig antigens other than Galalpha1,3Gal (Gal) antigens (so-called nonGal antigens) as targets for primate anti-pig antibodies. Several in-vitro studies have confirmed that, although the incidence and levels of anti-nonGal antibodies in nonhuman primates and humans are significantly less when compared with total anti-pig antibodies (i.e., anti-Gal + anti-nonGal), they can result in complement-mediated lysis of GT-KO pig cells. More recently, it has been demonstrated that regulatory T cells suppress the cellular xenogeneic response, thus potentially preventing or reducing T-cell-mediated rejection. The importance of thrombotic microangiopathy as a feature of the immune/inflammatory response and incompatibilities between the coagulation-anticoagulation systems of pig and primate are receiving increasing attention. Development of GT-KO pigs transgenic for one or more 'antithrombotic' genes, for example, CD39 or tissue factor pathway inhibitor, may contribute to overcoming these problems. SUMMARY Although GT-KO pigs have provided an advance over wild-type pigs as a source of organs for transplantation into primates, further genetic modification of GT-KO pigs is required to overcome the remaining immune barriers before a clinical trial of cardiac xenotransplantation can be contemplated.
Collapse
Affiliation(s)
- Burcin Ekser
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
- Kidney and Pancreas Transplantation Unit, Department of Surgery and Organ Transplantation, University of Padua, Padua, Italy
| | - David K.C. Cooper
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| |
Collapse
|
39
|
Baertschiger RM, Buhler LH. Xenotransplantation literature update January-February, 2008. Xenotransplantation 2008; 15:200-4. [PMID: 18611229 DOI: 10.1111/j.1399-3089.2008.00473.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Reto M Baertschiger
- Surgical Research Unit, Department of Surgery, University Hospital Geneva, Geneva, Switzerland
| | | |
Collapse
|