1
|
Mori D, Inami C, Ikeda R, Sawahata M, Urata S, Yamaguchi ST, Kobayashi Y, Fujita K, Arioka Y, Okumura H, Kushima I, Kodama A, Suzuki T, Hirao T, Yoshimi A, Sobue A, Ito T, Noda Y, Mizoguchi H, Nagai T, Kaibuchi K, Okabe S, Nishiguchi K, Kume K, Yamada K, Ozaki N. Mice with deficiency in Pcdh15, a gene associated with bipolar disorders, exhibit significantly elevated diurnal amplitudes of locomotion and body temperature. Transl Psychiatry 2024; 14:216. [PMID: 38806495 PMCID: PMC11133426 DOI: 10.1038/s41398-024-02952-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 05/16/2024] [Accepted: 05/20/2024] [Indexed: 05/30/2024] Open
Abstract
Genetic factors significantly affect the pathogenesis of psychiatric disorders. However, the specific pathogenic mechanisms underlying these effects are not fully understood. Recent extensive genomic studies have implicated the protocadherin-related 15 (PCDH15) gene in the onset of psychiatric disorders, such as bipolar disorder (BD). To further investigate the pathogenesis of these psychiatric disorders, we developed a mouse model lacking Pcdh15. Notably, although PCDH15 is primarily identified as the causative gene of Usher syndrome, which presents with visual and auditory impairments, our mice with Pcdh15 homozygous deletion (Pcdh15-null) did not exhibit observable structural abnormalities in either the retina or the inner ear. The Pcdh15-null mice showed very high levels of spontaneous motor activity which was too disturbed to perform standard behavioral testing. However, the Pcdh15 heterozygous deletion mice (Pcdh15-het) exhibited enhanced spontaneous locomotor activity, reduced prepulse inhibition, and diminished cliff avoidance behavior. These observations agreed with the symptoms observed in patients with various psychiatric disorders and several mouse models of psychiatric diseases. Specifically, the hyperactivity may mirror the manic episodes in BD. To obtain a more physiological, long-term quantification of the hyperactive phenotype, we implanted nano tag® sensor chips in the animals, to enable the continuous monitoring of both activity and body temperature. During the light-off period, Pcdh15-null exhibited elevated activity and body temperature compared with wild-type (WT) mice. However, we observed a decreased body temperature during the light-on period. Comprehensive brain activity was visualized using c-Fos mapping, which was assessed during the activity and temperature peak and trough. There was a stark contrast between the distribution of c-Fos expression in Pcdh15-null and WT brains during both the light-on and light-off periods. These results provide valuable insights into the neural basis of the behavioral and thermal characteristics of Pcdh15-deletion mice. Therefore, Pcdh15-deletion mice can be a novel model for BD with mania and other psychiatric disorders, with a strong genetic component that satisfies both construct and surface validity.
Collapse
Affiliation(s)
- Daisuke Mori
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan.
- Brain and Mind Research Center, Nagoya University, Nagoya, Aichi, Japan.
- Department of Pathophysiology of Mental Disorders, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan.
| | - Chihiro Inami
- Department of Neuropsychopharmacology and Hospital Pharmacy, Nagoya University, Graduate School of Medicine, Nagoya, Aichi, Japan
- Department of Neuropharmacology, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Aichi, Japan
| | - Ryosuke Ikeda
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Masahito Sawahata
- Department of Neuropsychopharmacology and Hospital Pharmacy, Nagoya University, Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Shinji Urata
- Department of Otolaryngology, Graduate School of Medicine, The University of Tokyo, Tokyo Pref., Japan
- Department of Cellular Neurobiology, Graduate School of Medicine, The University of Tokyo, Tokyo Pref., Japan
| | - Sho T Yamaguchi
- Department of Neuropharmacology, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Aichi, Japan
| | | | - Kosuke Fujita
- Department of Ophthalmology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Yuko Arioka
- Department of Pathophysiology of Mental Disorders, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
- Center for Advanced Medicine and Clinical Research, Nagoya University Hospital, Nagoya, Aichi, Japan
| | - Hiroki Okumura
- Department of Pathophysiology of Mental Disorders, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
- Department of Neuropsychopharmacology and Hospital Pharmacy, Nagoya University, Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Itaru Kushima
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
- Department of Pathophysiology of Mental Disorders, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
- Medical Genomics Center, Nagoya University Hospital, Nagoya, Aichi, Japan
| | - Akiko Kodama
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
- Department of Pathophysiology of Mental Disorders, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Toshiaki Suzuki
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Takashi Hirao
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Akira Yoshimi
- Division of Clinical Sciences and Neuropsychopharmacology, Meijo University Faculty of Pharmacy, Nagoya, Aichi, Japan
| | - Akira Sobue
- Department of Neuropsychopharmacology and Hospital Pharmacy, Nagoya University, Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Takahiro Ito
- Division of Clinical Sciences and Neuropsychopharmacology, Meijo University Faculty of Pharmacy, Nagoya, Aichi, Japan
| | - Yukikiro Noda
- Division of Clinical Sciences and Neuropsychopharmacology, Meijo University Faculty of Pharmacy, Nagoya, Aichi, Japan
| | - Hiroyuki Mizoguchi
- Department of Neuropsychopharmacology and Hospital Pharmacy, Nagoya University, Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Taku Nagai
- Department of Neuropsychopharmacology and Hospital Pharmacy, Nagoya University, Graduate School of Medicine, Nagoya, Aichi, Japan
- Division of Behavioral Neuropharmacology, International Center for Brain Science (ICBS), Fujita Health University, Toyoake, Aichi, Japan
| | - Kozo Kaibuchi
- Division of Cell Biology, International Center for Brain Science, Fujita Health University, Toyoake, Aichi, Japan
| | - Shigeo Okabe
- Department of Cellular Neurobiology, Graduate School of Medicine, The University of Tokyo, Tokyo Pref., Japan
| | - Koji Nishiguchi
- Department of Ophthalmology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Kazuhiko Kume
- Department of Neuropharmacology, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Aichi, Japan
| | - Kiyofumi Yamada
- Department of Neuropsychopharmacology and Hospital Pharmacy, Nagoya University, Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Norio Ozaki
- Department of Pathophysiology of Mental Disorders, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
- Institute for Glyco-core Research (iGCORE), Nagoya University, Nagoya, Aichi, Japan
| |
Collapse
|
2
|
Long JY, Li B, Ding P, Mei H, Li Y. Correlations between multimodal neuroimaging and peripheral inflammation in different subtypes and mood states of bipolar disorder: a systematic review. Int J Bipolar Disord 2024; 12:5. [PMID: 38388844 PMCID: PMC10884387 DOI: 10.1186/s40345-024-00327-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 02/07/2024] [Indexed: 02/24/2024] Open
Abstract
BACKGROUND Systemic inflammation-immune dysregulation and brain abnormalities are believed to contribute to the pathogenesis of bipolar disorder (BD). However, the connections between peripheral inflammation and the brain, especially the interactions between different BD subtypes and episodes, remain to be elucidated. Therefore, we conducted the present study to provide a comprehensive understanding of the complex association between peripheral inflammation and neuroimaging findings in patients with bipolar spectrum disorders. METHODS This systematic review was registered in the International Prospective Register of Systematic Reviews (PROSPERO) database (CRD42023447044) and conducted according to the Population, Intervention, Comparison, Outcomes, and Study Design (PICOS) framework. Online literature databases (PubMed, Web of Science, Scopus, EMBASE, MEDLINE, PsycINFO, and the Cochrane Library) were searched for studies that simultaneously investigated both peripheral inflammation-related factors and magnetic resonance neurography of BD patients up to July 01, 2023. Then, we analysed the correlations between peripheral inflammation and neuroimaging, as well as the variation trends and the shared and specific patterns of these correlations according to different clinical dimensions. RESULTS In total, 34 publications ultimately met the inclusion criteria for this systematic review, with 2993 subjects included. Among all patterns of interaction between peripheral inflammation and neuroimaging, the most common pattern was a positive relationship between elevated inflammation levels and decreased neuroimaging measurements. The brain regions most susceptible to inflammatory activation were the anterior cingulate cortex, amygdala, prefrontal cortex, striatum, hippocampus, orbitofrontal cortex, parahippocampal gyrus, postcentral gyrus, and posterior cingulate cortex. LIMITATIONS The small sample size, insufficiently explicit categorization of BD subtypes and episodes, and heterogeneity of the research methods limited further implementation of quantitative data synthesis. CONCLUSIONS Disturbed interactions between peripheral inflammation and the brain play a critical role in BD, and these interactions exhibit certain commonalities and differences across various clinical dimensions of BD. Our study further confirmed that the fronto-limbic-striatal system may be the central neural substrate in BD patients.
Collapse
Affiliation(s)
- Jing-Yi Long
- Wuhan Mental Health Center, No. 89, Gongnongbing Rd., Jiang'an District, Wuhan, 430012, Hubei Province, China
- Affiliated Wuhan Mental Health Center, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China
| | - Bo Li
- School of Public Administration, China University of Geosciences, Wuhan, 430074, China
| | - Pei Ding
- Wuhan Mental Health Center, No. 89, Gongnongbing Rd., Jiang'an District, Wuhan, 430012, Hubei Province, China
- Affiliated Wuhan Mental Health Center, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China
| | - Hao Mei
- Zhongnan Hospital of Wuhan University, No. 169, East Lake Rd., Wuchang District, Wuhan, 430062, Hubei Province, China.
| | - Yi Li
- Wuhan Mental Health Center, No. 89, Gongnongbing Rd., Jiang'an District, Wuhan, 430012, Hubei Province, China.
- Affiliated Wuhan Mental Health Center, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
3
|
Videtta G, Squarcina L, Rossetti MG, Brambilla P, Delvecchio G, Bellani M. White matter modifications of corpus callosum in bipolar disorder: A DTI tractography review. J Affect Disord 2023; 338:220-227. [PMID: 37301293 DOI: 10.1016/j.jad.2023.06.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 05/08/2023] [Accepted: 06/04/2023] [Indexed: 06/12/2023]
Abstract
BACKGROUND The recent widespread use of diffusion tensor imaging (DTI) tractography allowed researchers to investigate the diffusivity modifications and neuroanatomical changes of white matter (WM) fascicles in major psychiatric disorders, including bipolar disorder (BD). In BD, corpus callosum (CC) seems to have a crucial role in explaining the pathophysiology and cognitive impairment of this psychiatric disorder. This review aims to provide an overview on the latest results emerging from studies that investigated neuroanatomical changes of CC in BD using DTI tractography. METHODS Bibliographic research was conducted on PubMed, Scopus and Web of Science datasets until March 2022. Ten studies fulfilled our inclusion criteria. RESULTS From the reviewed DTI tractography studies a significant decrease of fractional anisotropy emerged in the genu, body and splenium of CC of BD patients compared to controls. This finding is coupled with reduction of fiber density and modification in fiber tract length. Finally, an increase of radial and mean diffusivity in forceps minor and in the entire CC was also reported. LIMITATIONS Small sample size, heterogeneity in terms of methodological (diffusion gradient) and clinical (lifetime comorbidity, BD status, pharmacological treatments) characteristics. CONCLUSIONS Overall, these findings suggest the presence of structural modifications in CC in BD patients, which may in turn explain the cognitive impairments often observed in this psychiatric disorder, especially in executive processing, motor control and visual memory. Finally, structural modifications may suggest an impairment in the amount of functional information and a morphological impact within those brain regions connected by CC.
Collapse
Affiliation(s)
- Giovanni Videtta
- Department of Biomedical Sciences for Health, University of Milan, Milan, Italy
| | - Letizia Squarcina
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Maria Gloria Rossetti
- Department of Neurosciences and Mental Health, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Paolo Brambilla
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy; Department of Neurosciences and Mental Health, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Giuseppe Delvecchio
- Department of Neurosciences and Mental Health, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy.
| | - Marcella Bellani
- Section of Psychiatry, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| |
Collapse
|
4
|
Grewal S, McKinlay S, Kapczinski F, Pfaffenseller B, Wollenhaupt-Aguiar B. Biomarkers of neuroprogression and late staging in bipolar disorder: A systematic review. Aust N Z J Psychiatry 2023; 57:328-343. [PMID: 35403455 PMCID: PMC9950598 DOI: 10.1177/00048674221091731] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
BACKGROUND Bipolar disorder may undertake a progressive course in a subset of patients, and research efforts have been made to understand the biological basis underlying this process. This systematic review examined the literature available on biological markers associated with illness progression in bipolar disorder. METHODS Peer-reviewed articles were assessed using Embase, PsycINFO and PubMed, as well as from external sources. After initial screening, a total of 871 citations from databases and other sources were identified. Participants with a diagnosis of bipolar disorder were included in our systematic review; however, studies with participants younger than 15 or older than 65 were excluded. All studies were assessed using the Newcastle-Ottawa Scale assessment tool, and data pertaining to the results were extracted into tabular form using Google Sheets and Google Documents. The systematic review was registered on PROSPERO international prospective register of systematic reviews (ID Number: CRD42020154305). RESULTS A total of 35 studies were included in the systematic review. Increased ventricular size and reduction of grey matter volume were the most common brain changes associated with illness progression in bipolar disorder. Among the several biomarkers evaluated in this systematic review, findings also indicate a role of peripheral inflammatory markers in this process. DISCUSSION The studies evaluating the biological basis of the illness progression in bipolar disorder are still scarce and heterogeneous. However, current evidence supports the notion of neuroprogression, the pathophysiological process related to progressive brain changes associated with clinical progression in patients with bipolar disorder. The increase in peripheral inflammatory biomarkers and the neuroanatomical changes in bipolar disorder suggest progressive systemic and structural brain alterations, respectively.
Collapse
Affiliation(s)
- Sonya Grewal
- Department of Psychiatry and
Behavioural Neurosciences, McMaster University, Hamilton, ON, Canada
| | - Stuart McKinlay
- Department of Psychiatry and
Behavioural Neurosciences, McMaster University, Hamilton, ON, Canada
| | - Flávio Kapczinski
- Department of Psychiatry and
Behavioural Neurosciences, McMaster University, Hamilton, ON, Canada
- Mood Disorders Program, St. Joseph’s
Healthcare Hamilton, Hamilton, ON, Canada
- Instituto Nacional de Ciência e
Tecnologia Translacional em Medicina (INCT-TM), Porto Alegre, Brazil
- Department of Psychiatry, Universidade
Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Bianca Pfaffenseller
- Department of Psychiatry and
Behavioural Neurosciences, McMaster University, Hamilton, ON, Canada
- Mood Disorders Program, St. Joseph’s
Healthcare Hamilton, Hamilton, ON, Canada
| | - Bianca Wollenhaupt-Aguiar
- Department of Psychiatry and
Behavioural Neurosciences, McMaster University, Hamilton, ON, Canada
- Mood Disorders Program, St. Joseph’s
Healthcare Hamilton, Hamilton, ON, Canada
| |
Collapse
|
5
|
Kandilarova S, Stoyanov D, Aryutova K, Paunova R, Mantarkov M, Mitrev I, Todeva-Radneva A, Specht K. Effective Connectivity Between the Orbitofrontal Cortex and the Precuneus Differentiates Major Psychiatric Disorders: Results from a Transdiagnostic Spectral DCM Study. CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2023; 22:180-190. [PMID: 34533450 DOI: 10.2174/1871527320666210917142815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 08/09/2021] [Accepted: 08/12/2021] [Indexed: 12/16/2022]
Abstract
BACKGROUND & OBJECTIVE We have previously identified aberrant connectivity of the left precuneus, ventrolateral prefrontal cortex, anterior cingulate cortex, and anterior insula in patients with either a paranoid (schizophrenia), or a depressive syndrome (both unipolar and bipolar). In the current study, we attempted to replicate and expand these findings by including a healthy control sample and separating the patients in a depressive episode into two groups: unipolar and bipolar depression. We hypothesized that the connections between those major nodes of the resting state networks would demonstrate different patterns in the three patient groups compared to the healthy subjects. METHODS Resting-state functional MRI was performed on a sample of 101 participants, of which 26 patients with schizophrenia (current psychotic episodes), 24 subjects with Bipolar Disorder (BD), 33 with Major Depressive Disorder (MDD) (both BD and MDD patients were in a current depressive episode), and 21 healthy controls. Spectral Dynamic Causal Modeling was used to calculate the coupling values between eight regions of interest, including the anterior precuneus (PRC), anterior hippocampus, anterior insula, angular gyrus, lateral Orbitofrontal Cortex (OFC), middle frontal gyrus, planum temporale, and anterior thalamus. RESULTS & CONCLUSION We identified disturbed effective connectivity from the left lateral orbitofrontal cortex to the left anterior precuneus that differed significantly between unipolar depression, where the influence was inhibitory, and bipolar depression, where the effect was excitatory. A logistic regression analysis correctly classified 75% of patients with unipolar and bipolar depression based solely on the coupling values of this connection. In addition, patients with schizophrenia demonstrated negative effective connectivity from the anterior PRC to the lateral OFC, which distinguished them from healthy controls and patients with major depression. Future studies with unmedicated patients will be needed to establish the replicability of our findings.
Collapse
Affiliation(s)
- Sevdalina Kandilarova
- Department of Psychiatry and Medical Psychology, Medical University-Plovdiv, Plovdiv, Bulgaria
- Division of Translational Neuroscience, Research Institute at Medical University-Plovdiv, Plovdiv, Bulgaria
| | - Drozdstoy Stoyanov
- Department of Psychiatry and Medical Psychology, Medical University-Plovdiv, Plovdiv, Bulgaria
- Division of Translational Neuroscience, Research Institute at Medical University-Plovdiv, Plovdiv, Bulgaria
| | - Katrin Aryutova
- Department of Psychiatry and Medical Psychology, Medical University-Plovdiv, Plovdiv, Bulgaria
- Division of Translational Neuroscience, Research Institute at Medical University-Plovdiv, Plovdiv, Bulgaria
| | - Rossitsa Paunova
- Department of Psychiatry and Medical Psychology, Medical University-Plovdiv, Plovdiv, Bulgaria
- Division of Translational Neuroscience, Research Institute at Medical University-Plovdiv, Plovdiv, Bulgaria
| | - Mladen Mantarkov
- Department of Psychiatry and Medical Psychology, Medical University-Plovdiv, Plovdiv, Bulgaria
| | - Ivo Mitrev
- Department of Psychiatry and Medical Psychology, Medical University-Plovdiv, Plovdiv, Bulgaria
| | - Anna Todeva-Radneva
- Department of Psychiatry and Medical Psychology, Medical University-Plovdiv, Plovdiv, Bulgaria
- Division of Translational Neuroscience, Research Institute at Medical University-Plovdiv, Plovdiv, Bulgaria
| | - Karsten Specht
- Department of Biological and Medical Psychology, University of Bergen, Bergen, Norway
| |
Collapse
|
6
|
Xie H, Cao Y, Long X, Xiao H, Wang X, Qiu C, Jia Z. A comparative study of gray matter volumetric alterations in adults with attention deficit hyperactivity disorder and bipolar disorder type I. J Psychiatr Res 2022; 155:410-419. [PMID: 36183596 DOI: 10.1016/j.jpsychires.2022.09.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 07/29/2022] [Accepted: 09/16/2022] [Indexed: 10/31/2022]
Abstract
BACKGROUND Attention deficit hyperactivity disorder (ADHD) and bipolar disorder type I (BD-Ι) share great overlapping symptoms and are highly comorbid. We aimed to compare and obtain the common and distinct gray matter volume (GMV) patterns in adult patients. METHOD We searched four databases to include whole-brain voxel-based morphometry studies and compared the GMV patterns between ADHD and healthy controls (HCs), between BD-I and HCs, and between ADHD and BD-I using anisotropic effect-size signed differential mapping software. RESULTS We included 677 ADHD and 452 BD-Ι patients. Compared with HCs, ADHD patients showed smaller GMV in the anterior cingulate cortex (ACC) and supramarginal gyrus but a larger caudate nucleus. Compared with HCs, BD-Ι patients showed smaller GMV in the orbitofrontal cortex, parahippocampal gyrus, and amygdala. No common GMV alterations were found, whereas ADHD showed the smaller ACC and larger amygdala relative to BD-Ι. Subgroup analyses revealed the larger insula in manic patients, which was positively associated with the Young Mania Rating Scale. The decreased median cingulate cortex (MCC) was positively associated with the ages in ADHD, whereas the MCC was negatively associated with the ages in BD-Ι. LIMITATIONS All included data were cross-sectional; Potential effects of medication and disease course were not analyzed due to the limited data. CONCLUSIONS ADHD showed altered GMV in the frontal-striatal frontal-parietal circuits, and BD-Ι showed altered GMV in the prefrontal-amygdala circuit. These findings could contribute to a better understanding of the neuropathology of the two disorders.
Collapse
Affiliation(s)
- Hongsheng Xie
- Department of Nuclear Medicine, West China Hospital of Sichuan University, Chengdu, 610041, China; Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Yuan Cao
- Department of Nuclear Medicine, West China Hospital of Sichuan University, Chengdu, 610041, China; Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Xipeng Long
- Department of Nuclear Medicine, West China Hospital of Sichuan University, Chengdu, 610041, China; Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Hongqi Xiao
- Mental Health Center, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Xiuli Wang
- Department of Psychiatry, The Fourth People's Hospital of Chengdu, Chengdu, 610041, China
| | - Changjian Qiu
- Mental Health Center, West China Hospital of Sichuan University, Chengdu, 610041, China.
| | - Zhiyun Jia
- Department of Nuclear Medicine, West China Hospital of Sichuan University, Chengdu, 610041, China; Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
7
|
Zhu Z, Zhao Y, Wen K, Li Q, Pan N, Fu S, Li F, Radua J, Vieta E, Kemp GJ, Biswa BB, Gong Q. Cortical thickness abnormalities in patients with bipolar disorder: A systematic review and meta-analysis. J Affect Disord 2022; 300:209-218. [PMID: 34971699 DOI: 10.1016/j.jad.2021.12.080] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 10/10/2021] [Accepted: 12/19/2021] [Indexed: 02/08/2023]
Abstract
BACKGROUND An increasing number of neuroimaging studies report alterations of cortical thickness (CT) related to the neuropathology of bipolar disorder (BD). We provide here a whole-brain vertex-wise meta-analysis, which may help improve the spatial precision of these identifications. METHODS A comprehensive meta-analysis was performed to investigate the differences in CT between patients with BD and healthy controls (HCs) by using a newly developed mask for CT analysis in seed-based d mapping (SDM) meta-analytic software. We used meta-regression to explore the effects of demographics and clinical characteristics on CT. This meta-review was conducted in accordance with PRISMA guideline. RESULTS We identified 21 studies meeting criteria for the systematic review, of which 11 were eligible for meta-analysis. The meta-analysis comprising 649 BD patients and 818 HCs showed significant cortical thinning in the left insula extending to left Rolandic operculum and Heschl gyrus, the orbital part of left inferior frontal gyrus (IFG), the medial part of left superior frontal gyrus (SFG) as well as bilateral anterior cingulate cortex (ACC) in BD. In meta-regression analyses, mean patient age was negatively correlated with reduced CT in the left insula. LIMITATIONS All enrolled studies were cross-sectional; we could not explore the potential effects of medication and mood states due to the limited data. CONCLUSIONS Our results suggest that BD patients have significantly thinner frontoinsular cortex than HCs, and the results may be helpful in revealing specific neuroimaging biomarkers of BD patients.
Collapse
Affiliation(s)
- Ziyu Zhu
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Youjin Zhao
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, Sichuan, China; Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, Sichuan, China; Functional and Molecular Imaging Key Laboratory of Sichuan Province, Chengdu, Sichuan, China
| | - Keren Wen
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Qian Li
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Nanfang Pan
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Shiqin Fu
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Fei Li
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, Sichuan, China; Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, Sichuan, China; Functional and Molecular Imaging Key Laboratory of Sichuan Province, Chengdu, Sichuan, China
| | - Joaquim Radua
- Functional and Molecular Imaging Key Laboratory of Sichuan Province, Chengdu, Sichuan, China; Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Mental Health Research Networking Center (CIBERSAM), Barcelona, Spain; Department of Clinical Neuroscience, Centre for Psychiatric Research and Education, Karolinska Institutet, Stockholm, Sweden; Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, Northern Ireland United Kingdom
| | - Eduard Vieta
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Mental Health Research Networking Center (CIBERSAM), Barcelona, Spain; Barcelona Bipolar Disorders and Depressive Unit, Hospital Clinic, Institute of Neurosciences, University of Barcelona, Barcelona, Spain
| | - Graham J Kemp
- Liverpool Magnetic Resonance Imaging Centre (LiMRIC) and Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Bharat B Biswa
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ, USA; The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Qiyong Gong
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, Sichuan, China; Department of Radiology, West China Xiamen Hospital of Sichuan University, Xiamen, Fujian, China.
| |
Collapse
|
8
|
Qiu S, Chen F, Chen G, Jia Y, Gong J, Luo X, Zhong S, Zhao L, Lai S, Qi Z, Huang L, Wang Y. Abnormal resting-state regional homogeneity in unmedicated bipolar II disorder. J Affect Disord 2019; 256:604-610. [PMID: 31299441 DOI: 10.1016/j.jad.2019.06.037] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 05/06/2019] [Accepted: 06/29/2019] [Indexed: 02/06/2023]
Abstract
BACKGROUND Previous studies demonstrated that patients with bipolar disorder (BD) exhibited abnormal neural activity in multiple brain regions. However, no study has been conducted to identify regional intrinsic neural activity changes in BD II. In the present study, we used the regional homogeneity (ReHo) approach to explore the regional abnormal neural activity in bipolar II disorder METHODS: One hundred unmedicated patients with BD II depression and 100 healthy controls (HC) underwent the resting-state functional magnetic resonance imaging. The ReHo values of each voxel was calculated in the whole brain. The two-sample t-test and threshold-free cluster enhancement (TFCE) correction were applied for the ReHo analysis. RESULTS Compared with the HC group, the BD II group showed significantly decreased ReHo in the left orbitofrontal cortex, and increased ReHo in the right precentral gyrus, right supplementary motor area and bilateral middle occipital gyrus (P < .05, TFCE corrected). LIMITATIONS This study lacks the evidence of brain structural changes, and used the cross-sectional design which did not explore local alterations of remitted and manic patients. CONCLUSION Our findings revealed abnormal local intrinsic neural activity during resting state which may contribute to the pathophysiology of bipolar II disorder. Particularly the disrupted balance between the prefrontal cortex and primary sensorimotor regions provides evidence for the unique pathological mechanism underlying BD.
Collapse
Affiliation(s)
- Shaojuan Qiu
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Feng Chen
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Guanmao Chen
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Yanbin Jia
- Department of Psychiatry, First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Jiaying Gong
- Department of Radiology, Six Affiliated Hospital of Sun Yat-sen University, Guangzhou 510655, China
| | - Xiaomei Luo
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Shuming Zhong
- Department of Psychiatry, First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Lianping Zhao
- Department of Radiology, Gansu Provincial Hospital, Gansu 730000, China
| | - Shunkai Lai
- Department of Psychiatry, First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Zhangzhang Qi
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Li Huang
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou 510630, China.
| | - Ying Wang
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou 510630, China.
| |
Collapse
|
9
|
Wang X, Luo Q, Tian F, Cheng B, Qiu L, Wang S, He M, Wang H, Duan M, Jia Z. Brain grey-matter volume alteration in adult patients with bipolar disorder under different conditions: a voxel-based meta-analysis. J Psychiatry Neurosci 2019; 44:89-101. [PMID: 30354038 PMCID: PMC6397036 DOI: 10.1503/jpn.180002] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND The literature on grey-matter volume alterations in bipolar disorder is heterogeneous in its findings. METHODS Using effect-size differential mapping, we conducted a meta-analysis of grey-matter volume alterations in patients with bipolar disorder compared with healthy controls. RESULTS We analyzed data from 50 studies that included 1843 patients with bipolar disorder and 2289 controls. Findings revealed lower grey-matter volumes in the bilateral superior frontal gyri, left anterior cingulate cortex and right insula in patients with bipolar disorder and in patients with bipolar disorder type I. Patients with bipolar disorder in the euthymic and depressive phases had spatially distinct regions of altered grey-matter volume. Meta-regression revealed that the proportion of female patients with bipolar disorder or bipolar disorder type I was negatively correlated with regional grey-matter alteration in the right insula; the proportion of patients with bipolar disorder or bipolar disorder type I taking lithium was positively correlated with regional grey-matter alterations in the left anterior cingulate/paracingulate gyri; and the proportion of patients taking antipsychotic medications was negatively correlated with alterations in the anterior cingulate/paracingulate gyri. LIMITATIONS This study was cross-sectional; analysis techniques, patient characteristics and clinical variables in the included studies were heterogeneous. CONCLUSION Structural grey-matter abnormalities in patients with bipolar disorder and bipolar disorder type I were mainly in the prefrontal cortex and insula. Patients' mood state might affect grey-matter alterations. Abnormalities in regional grey-matter volume could be correlated with patients' specific demographic and clinical features.
Collapse
Affiliation(s)
- Xiuli Wang
- From the Department of Psychiatry, the Fourth People’s Hospital of Chengdu, Chengdu, China (Duan, He, H. Wang, S. Wang, X. Wang); the Department of Radiology, Huaxi MR Research Center (HMRRC), West China Hospital of Sichuan University, Chengdu, China (Luo, Jia); the Department of Nuclear Medicine, West China Hospital of Sichuan University, Chengdu, China (Tian, Jia); the Department of Radiology, West China Second University Hospital of Sichuan University, Chengdu, China (Cheng); and the Department of Radiology, the Second People’s Hospital of Yibin, Yibin, China (Qiu)
| | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Wang X, Tian F, Wang S, Cheng B, Qiu L, He M, Wang H, Duan M, Dai J, Jia Z. Gray matter bases of psychotic features in adult bipolar disorder: A systematic review and voxel-based meta-analysis of neuroimaging studies. Hum Brain Mapp 2018; 39:4707-4723. [PMID: 30096212 DOI: 10.1002/hbm.24316] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Accepted: 07/05/2018] [Indexed: 02/05/2023] Open
Abstract
Psychotic bipolar disorder (P-BD) is a specific subset that presents greater risk of relapse and worse outcomes than nonpsychotic bipolar disorder (NP-BD). To explore the neuroanatomical bases of psychotic dimension in bipolar disorder (BD), a systematic review was carried out based on the gray matter volume (GMV) among P-BD and NP-BD patients and healthy controls (HC). Further, we conducted a meta-analysis of GMV differences between P-BD patients and HC using a whole-brain imaging approach. Our review revealed that P-BD patients exhibited smaller GMVs mainly in the prefronto-temporal and cingulate cortices, the precentral gyrus, and insula relative to HC both qualitatively and quantitatively. Qualitatively the comparison between P-BD and NP-BD patients suggested inconsistent GMV alterations mainly involving the prefrontal cortex, while NP-BD patients showed GMV deficits in local regions compared with HC. The higher proportions of female patients and patients taking psychotropic medication in P-BD and P-BD type I were associated with smaller GMV in the right precentral gyrus, and the right insula, respectively. In conclusions, psychosis in BD might be associated with specific cortical GMV deficits. Gender and psychotropic medication might have effects on the regional GMVs in P-BD patients. It is necessary to distinguish psychotic dimension in neuroimaging studies of BD.
Collapse
Affiliation(s)
- Xiuli Wang
- Department of Psychiatry, The Fourth People's Hospital of Chengdu, Chengdu, China
| | - Fangfang Tian
- Department of Nuclear Medicine, West China Hospital of Sichuan University, Chengdu, China
| | - Song Wang
- Department of Radiology, Huaxi MR Research Center (HMRRC), West China Hospital of Sichuan University, Chengdu, China
| | - Bochao Cheng
- Department of Radiology, West China Second University Hospital of Sichuan University, Chengdu, China
| | - Lihua Qiu
- Department of Radiology, The Second People's Hospital of Yibin, Yibin, China
| | - Manxi He
- Department of Psychiatry, The Fourth People's Hospital of Chengdu, Chengdu, China
| | - Hongming Wang
- Department of Psychiatry, The Fourth People's Hospital of Chengdu, Chengdu, China
| | - Mingjun Duan
- Department of Psychiatry, The Fourth People's Hospital of Chengdu, Chengdu, China
| | - Jing Dai
- Department of Psychiatry, The Fourth People's Hospital of Chengdu, Chengdu, China
| | - Zhiyun Jia
- Department of Nuclear Medicine, West China Hospital of Sichuan University, Chengdu, China.,Department of Radiology, Huaxi MR Research Center (HMRRC), West China Hospital of Sichuan University, Chengdu, China
| |
Collapse
|
11
|
Deng F, Wang Y, Huang H, Niu M, Zhong S, Zhao L, Qi Z, Wu X, Sun Y, Niu C, He Y, Huang L, Huang R. Abnormal segments of right uncinate fasciculus and left anterior thalamic radiation in major and bipolar depression. Prog Neuropsychopharmacol Biol Psychiatry 2018; 81:340-349. [PMID: 28912043 DOI: 10.1016/j.pnpbp.2017.09.006] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Revised: 09/03/2017] [Accepted: 09/10/2017] [Indexed: 12/22/2022]
Abstract
Differential brain structural abnormalities between bipolar disorder (BD) and major depressive disorder (MDD) may reflect different pathological mechanisms underlying these two brain disorders. However, few studies have directly compared the brain structural properties, especially in white matter (WM) tracts, between BD and MDD. Using automated fiber-tract quantification (AFQ), we utilized diffusion tensor images (DTI) from 67 unmedicated depressed patients, including 31 BD and 36 MDD, and 45 healthy controls (HC) to create fractional anisotropy (FA) tract profiles along 20 major WM tracts. Then, we compared between-group differences in FA values at each node along the fiber tracts. To differentiate the BD and the MDD, we enrolled the diffusion measures of the tract profiles into support vector machine (SVM), a type of machine learning algorithm. The BD showed lower FA in the insular cortex portion of the right uncinate fasciculus (UF) compared to the MDD and in the prefrontal lobe portion of the right UF compared to the HC. The MDD showed lower FA in the prefrontal lobe portion of the left anterior thalamic radiation (ATR) compared to the HC. Using the SVM approach, we found the FA tract profile of the left ATR can be used to differentiate the BD and the MDD at an accuracy up to 68.33% (p=0.018). These findings suggested that the BD and the MDD may be characterized by different abnormalities in specific segments of brain WM tracts, especially in two frontal-situated tracts, the right UF and the left ATR.
Collapse
Affiliation(s)
- Feng Deng
- Center for the Study of Applied Psychology, Key Laboratory of Mental Health and Cognitive Science of Guangdong Province, School of Psychology, Institute for Brain Research and Rehabilitation (IBRR), South China Normal University, Guangzhou 510631, China
| | - Ying Wang
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou 510630, China; Clinical Experimental Center, First Affiliated Hospital of Jinan University, Guangzhou 510630, China.
| | - Huiyuan Huang
- Center for the Study of Applied Psychology, Key Laboratory of Mental Health and Cognitive Science of Guangdong Province, School of Psychology, Institute for Brain Research and Rehabilitation (IBRR), South China Normal University, Guangzhou 510631, China
| | - Meiqi Niu
- Center for the Study of Applied Psychology, Key Laboratory of Mental Health and Cognitive Science of Guangdong Province, School of Psychology, Institute for Brain Research and Rehabilitation (IBRR), South China Normal University, Guangzhou 510631, China
| | - Shuming Zhong
- Department of Psychiatry, First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Ling Zhao
- Center for the Study of Applied Psychology, Key Laboratory of Mental Health and Cognitive Science of Guangdong Province, School of Psychology, Institute for Brain Research and Rehabilitation (IBRR), South China Normal University, Guangzhou 510631, China
| | - Zhangzhang Qi
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Xiaoyan Wu
- Center for the Study of Applied Psychology, Key Laboratory of Mental Health and Cognitive Science of Guangdong Province, School of Psychology, Institute for Brain Research and Rehabilitation (IBRR), South China Normal University, Guangzhou 510631, China
| | - Yao Sun
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Chen Niu
- Center for the Study of Applied Psychology, Key Laboratory of Mental Health and Cognitive Science of Guangdong Province, School of Psychology, Institute for Brain Research and Rehabilitation (IBRR), South China Normal University, Guangzhou 510631, China
| | - Yuan He
- Center for the Study of Applied Psychology, Key Laboratory of Mental Health and Cognitive Science of Guangdong Province, School of Psychology, Institute for Brain Research and Rehabilitation (IBRR), South China Normal University, Guangzhou 510631, China
| | - Li Huang
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Ruiwang Huang
- Center for the Study of Applied Psychology, Key Laboratory of Mental Health and Cognitive Science of Guangdong Province, School of Psychology, Institute for Brain Research and Rehabilitation (IBRR), South China Normal University, Guangzhou 510631, China.
| |
Collapse
|
12
|
Lee J, Choi S, Kang J, Won E, Tae WS, Lee MS, Ham BJ. Structural characteristics of the brain reward circuit regions in patients with bipolar I disorder: A voxel-based morphometric study. Psychiatry Res Neuroimaging 2017; 269:82-89. [PMID: 28963911 DOI: 10.1016/j.pscychresns.2017.09.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2017] [Revised: 08/11/2017] [Accepted: 09/18/2017] [Indexed: 12/30/2022]
Abstract
Bipolar I disorder (BD-I) is often misdiagnosed, leading to inadequate treatment and significant disability along with reduced quality of life. Recent neural models suggest that the reward circuitry is affected in bipolar disorder. The purpose of the present study was to identify structural abnormalities in the brain reward-processing neural circuitry among patients with BD-I. 21 patients with BD-I and 21 healthy controls (HC) participated in this study. Structural magnetic resonance imaging was performed. Region-of-interest (ROI) voxel-based morphometry analysis was applied to assess the presence of structural changes between the BD-I patient group and the control group. The results of the reward circuitry ROI analysis revealed lower gray matter volumes in the left ventromedial prefrontal cortex (VMPFC), left dorsomedial prefrontal cortex (DMPFC), and left ventrolateral prefrontal cortex (VLPFC) in patients with BD-I compared to HC. Our results suggest that abnormalities in the brain reward-processing neural circuitry, especially those in the left VMPFC, left DMPFC, and left VLPFC, may play an important role in the pathophysiology of BD-I.
Collapse
Affiliation(s)
- Junyong Lee
- Department of Psychiatry, Korea University Anam Hospital, Korea University College of Medicine, Seoul, Republic of Korea
| | - Sunyoung Choi
- Department of Brain and Cognitive Engineering, Korea University, Seoul, Republic of Korea
| | - June Kang
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul, Republic of Korea
| | - Eunsoo Won
- Department of Psychiatry, Korea University Anam Hospital, Korea University College of Medicine, Seoul, Republic of Korea
| | - Woo-Suk Tae
- Brain Convergence Research Center, Korea University Anam Hospital, Seoul, Republic of Korea
| | - Min-Soo Lee
- Department of Psychiatry, Korea University Anam Hospital, Korea University College of Medicine, Seoul, Republic of Korea.
| | - Byung-Joo Ham
- Department of Psychiatry, Korea University Anam Hospital, Korea University College of Medicine, Seoul, Republic of Korea; Brain Convergence Research Center, Korea University Anam Hospital, Seoul, Republic of Korea.
| |
Collapse
|
13
|
Rive MM, Redlich R, Schmaal L, Marquand AF, Dannlowski U, Grotegerd D, Veltman DJ, Schene AH, Ruhé HG. Distinguishing medication-free subjects with unipolar disorder from subjects with bipolar disorder: state matters. Bipolar Disord 2016; 18:612-623. [PMID: 27870505 DOI: 10.1111/bdi.12446] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Accepted: 10/01/2016] [Indexed: 01/24/2023]
Abstract
OBJECTIVES Recent studies have indicated that pattern recognition techniques of functional magnetic resonance imaging (fMRI) data for individual classification may be valuable for distinguishing between major depressive disorder (MDD) and bipolar disorder (BD). Importantly, medication may have affected previous classification results as subjects with MDD and BD use different classes of medication. Furthermore, almost all studies have investigated only depressed subjects. Therefore, we focused on medication-free subjects. We additionally investigated whether classification would be mood state independent by including depressed and remitted subjects alike. METHODS We applied Gaussian process classifiers to investigate the discriminatory power of structural MRI (gray matter volumes of emotion regulation areas) and resting-state fMRI (resting-state networks implicated in mood disorders: default mode network [DMN], salience network [SN], and lateralized frontoparietal networks [FPNs]) in depressed (n=42) and remitted (n=49) medication-free subjects with MDD and BD. RESULTS Depressed subjects with MDD and BD could be classified based on the gray matter volumes of emotion regulation areas as well as DMN functional connectivity with 69.1% prediction accuracy. Prediction accuracy using the FPNs and SN did not exceed chance level. It was not possible to discriminate between remitted subjects with MDD and BD. CONCLUSIONS For the first time, we showed that medication-free subjects with MDD and BD can be differentiated based on structural MRI as well as resting-state functional connectivity. Importantly, the results indicated that research concerning diagnostic neuroimaging tools distinguishing between MDD and BD should consider mood state as only depressed subjects with MDD and BD could be correctly classified. Future studies, in larger samples are needed to investigate whether the results can be generalized to medication-naïve or first-episode subjects.
Collapse
Affiliation(s)
- Maria M Rive
- Program for Mood Disorders, Department of Psychiatry, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Ronny Redlich
- Department of Psychiatry, University of Münster, Münster, Germany
| | - Lianne Schmaal
- Department of Psychiatry and Neuroscience, Campus Amsterdam, VU University Medical Center, Amsterdam, the Netherlands
| | - André F Marquand
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, the Netherlands
| | - Udo Dannlowski
- Department of Psychiatry, University of Münster, Münster, Germany
| | | | - Dick J Veltman
- Department of Psychiatry, VU University Medical Center, Amsterdam, the Netherlands
| | - Aart H Schene
- Program for Mood Disorders, Department of Psychiatry, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands.,Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, the Netherlands.,Department of Psychiatry, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Henricus G Ruhé
- Program for Mood Disorders, Department of Psychiatry, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands.,Department of Psychiatry, Mood and Anxiety Disorders, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| |
Collapse
|
14
|
Fraguas D, Díaz-Caneja CM, Pina-Camacho L, Janssen J, Arango C. Progressive brain changes in children and adolescents with early-onset psychosis: A meta-analysis of longitudinal MRI studies. Schizophr Res 2016; 173:132-139. [PMID: 25556081 DOI: 10.1016/j.schres.2014.12.022] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Revised: 12/11/2014] [Accepted: 12/15/2014] [Indexed: 11/26/2022]
Abstract
BACKGROUND Studies on longitudinal brain volume changes in patients with early-onset psychosis (EOP) are particularly valuable for understanding the neurobiological basis of brain abnormalities associated with psychosis. However, findings have not been consistent across studies in this population. We aimed to conduct a meta-analysis on progressive brain volume changes in children and adolescents with EOP. METHODS A systematic literature search of magnetic resonance imaging (MRI) studies comparing longitudinal brain volume changes in children and adolescents with EOP and healthy controls was conducted. The annualized rates of relative change in brain volume by region of interest (ROI) were used as raw data for the meta-analysis. The effect of age, sex, duration of illness, and specific diagnosis on volume change was also evaluated. RESULTS Five original studies with 156 EOP patients (mean age at baseline MRI in the five studies ranged from 13.3 to 16.6years, 67.31% males) and 163 age- and sex-matched healthy controls, with a mean duration of follow-up of 2.46years (range 2.02-3.40), were included. Frontal gray matter (GM) was the only region in which significant differences in volume change over time were found between patients and controls (Hedges' g -0.435, 95% confidence interval (CI): -0.678 to -0.193, p<0.001). Younger age at baseline MRI was associated with greater loss of temporal GM volume over time in patients as compared with controls (p=0.005). Within patients, a diagnosis of schizophrenia was related to greater occipital GM volume loss over time (p=0.001). CONCLUSIONS Compared with healthy individuals, EOP patients show greater progressive frontal GM loss over the first few years after illness onset. Age at baseline MRI and diagnosis of schizophrenia appear to be significant moderators of particular specific brain volume changes.
Collapse
Affiliation(s)
- David Fraguas
- Child and Adolescent Psychiatry Department, Hospital General Universitario Gregorio Marañón, CIBERSAM, Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), School of Medicine, Universidad Complutense, Madrid, Spain
| | - Covadonga M Díaz-Caneja
- Child and Adolescent Psychiatry Department, Hospital General Universitario Gregorio Marañón, CIBERSAM, Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), School of Medicine, Universidad Complutense, Madrid, Spain
| | - Laura Pina-Camacho
- Child and Adolescent Psychiatry Department, Hospital General Universitario Gregorio Marañón, CIBERSAM, Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), School of Medicine, Universidad Complutense, Madrid, Spain; Department of Child and Adolescent Psychiatry, Institute of Psychiatry, King's College London, London, UK
| | - Joost Janssen
- Child and Adolescent Psychiatry Department, Hospital General Universitario Gregorio Marañón, CIBERSAM, Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), School of Medicine, Universidad Complutense, Madrid, Spain; Brain Center Rudolf Magnus, Department of Psychiatry, University Medical Center Utrecht, The Netherlands
| | - Celso Arango
- Child and Adolescent Psychiatry Department, Hospital General Universitario Gregorio Marañón, CIBERSAM, Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), School of Medicine, Universidad Complutense, Madrid, Spain.
| |
Collapse
|
15
|
Abstract
BACKGROUND Grounded in a model focused on exposure to response-contingent positive reinforcement, and with evidence supporting its acute treatment effects for unipolar depression, an adjunctive behavioral activation (BA) intervention may be especially well suited to the treatment of bipolar depression. The goal of this study was to modify BA for the adjunctive treatment of bipolar depression and to pilot it in a proof of concept trial to assess its preliminary feasibility and acceptability for this population. METHODS Twelve adults with bipolar depression were recruited from hospital settings and enrolled in a 20-week open trial of the modified BA, delivered in 16 outpatient sessions, as an adjunct to community pharmacotherapy for bipolar disorder. Symptom severity was assessed at pretreatment and posttreatment by an independent evaluator. Patient satisfaction was also assessed posttreatment. RESULTS Feasibility and acceptability were high, with 10 of 12 patients completing treatment, an average of 14.8 (SD=5.2) of 16 sessions attended, and high levels of self-reported treatment satisfaction. Patients exhibited statistically significant improvement from pretreatment to posttreatment on measures of depressive symptoms, manic symptoms, and severity of suicidal ideation. CONCLUSIONS Although preliminary and requiring replication in a larger sample, these study data suggest that a modified BA intervention may offer promise as an adjunctive approach for the acute treatment of bipolar depression. Future studies that use more rigorous randomized controlled designs and that directly assess potential mechanisms of action are recommended.
Collapse
|
16
|
Sandoval H, Soares JC, Mwangi B, Asonye S, Alvarado LA, Zavala J, Ramirez ME, Sanches M, Enge LR, Escamilla MA. Confirmation of MRI anatomical measurements as endophenotypic markers for bipolar disorder in a new sample from the NIMH Genetics of Bipolar Disorder in Latino Populations study. Psychiatry Res Neuroimaging 2016; 247:34-41. [PMID: 26670713 DOI: 10.1016/j.pscychresns.2015.11.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Revised: 09/02/2015] [Accepted: 11/17/2015] [Indexed: 01/01/2023]
Abstract
The main objective of this study is to establish potential neuromorphometric differences which might act as markers of genetic risk for bipolar disorder and therefore serve as endophenotypes for discovery of genes that contribute to bipolar disorder. Magnetic resonance imaging (MRI) was used to assess structural brain volumes of 49 subjects. Volumetric analyses were first performed to test possible differences in the volume of brain structures between subjects with bipolar disorder type I (BPI) and control subjects in a new sample, based on regions previously reported in the literature as being either increased or decreased in size in bipolar patients. Subsequently, for those brain regions showing statistical difference between subjects with BPI and control subjects in our new sample, we tested whether unaffected first degree relatives (UFRs) of the BPI subjects also showed similar differences compared with controls. Four specific regions (right prefrontal, right middle prefrontal, right globus pallidus and left globus pallidus) met criteria for being possible endophenotypes for BPI in this sample.
Collapse
Affiliation(s)
- Hugo Sandoval
- Center of Excellence for Neurosciences, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center, El Paso, TX, USA
| | - Jair C Soares
- UT Center of Excellence on Mood Disorders, Department of Psychiatry and Behavioral Sciences, UT Houston Medical School, Houston, TX, USA
| | - Benson Mwangi
- UT Center of Excellence on Mood Disorders, Department of Psychiatry and Behavioral Sciences, UT Houston Medical School, Houston, TX, USA
| | - Stephanie Asonye
- UT Center of Excellence on Mood Disorders, Department of Psychiatry and Behavioral Sciences, UT Houston Medical School, Houston, TX, USA
| | - Luis A Alvarado
- Division of Biostatistics and Epidemiology, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center, El Paso, TX, USA
| | - Juan Zavala
- Center of Excellence for Neurosciences, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center, El Paso, TX, USA; Department of Psychiatry, Paul L. Foster School of Medicine, Texas Tech University, Health Sciences Center, El Paso, TX, USA
| | - Mercedes E Ramirez
- Center of Excellence for Neurosciences, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center, El Paso, TX, USA; Department of Psychiatry, Paul L. Foster School of Medicine, Texas Tech University, Health Sciences Center, El Paso, TX, USA
| | - Marsal Sanches
- UT Center of Excellence on Mood Disorders, Department of Psychiatry and Behavioral Sciences, UT Houston Medical School, Houston, TX, USA
| | - Luke R Enge
- Department of Psychology, Social Cognitive and Neurosciences, University of Texas at El Paso, El Paso, TX, USA
| | - Michael A Escamilla
- Center of Excellence for Neurosciences, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center, El Paso, TX, USA; Department of Psychiatry, Paul L. Foster School of Medicine, Texas Tech University, Health Sciences Center, El Paso, TX, USA.
| |
Collapse
|
17
|
A Multi-Dimensional and Integrative Approach to Examining the High-Risk and Ultra-High-Risk Stages of Bipolar Disorder. EBioMedicine 2015; 2:919-28. [PMID: 26425699 PMCID: PMC4563124 DOI: 10.1016/j.ebiom.2015.06.027] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Revised: 06/25/2015] [Accepted: 06/27/2015] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Validating the high-risk (HR) and ultra-high-risk (UHR) stages of bipolar disorder (BP) may help enable early intervention strategies. METHODS We followed up with 44 offspring of parents with BP, subdividing into the HR and UHR categories. The offspring were aged 8-28 years and were free of any current DSM-IV diagnoses. Our multilevel, integrative approach encompassed gray matter (GM) volumes, brain network connectivity, neuropsychological performance, and clinical outcomes. FINDINGS Compared with the healthy controls (HCs) (n = 33), the HR offspring (n = 26) showed GM volume reductions in the right orbitofrontal cortex. Compared with the HR offspring, the UHR offspring (n = 18) exhibited increased GM volumes in four regions. Both the HR and UHR offspring displayed abnormalities in the inferior occipital cortex regarding the measures of degree and centrality, reflecting the connections and roles of the region, respectively. In the UHR versus the HR offspring, the UHR offspring exhibited upwards-shifted small world topologies that reflect high clustering and efficiency in the brain networks. Compared with the HCs, the UHR offspring had significantly lower assortativity, which was suggestive of vulnerability. Finally, processing speed, visual-spatial, and general function were impaired in the UHR offspring but not in the HR offspring. INTERPRETATION The abnormalities observed in the HR offspring appear to be inherited, whereas those associated with the UHR offspring represent stage-specific changes predisposing them to developing the disorder.
Collapse
|
18
|
Oertel-Knöchel V, Reuter J, Reinke B, Marbach K, Feddern R, Alves G, Prvulovic D, Linden DEJ, Knöchel C. Association between age of disease-onset, cognitive performance and cortical thickness in bipolar disorders. J Affect Disord 2015; 174:627-35. [PMID: 25577157 DOI: 10.1016/j.jad.2014.10.060] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Revised: 10/29/2014] [Accepted: 10/31/2014] [Indexed: 01/08/2023]
Abstract
OBJECTIVES Neuroimaging studies in patients with bipolar disorder (BD) have indicated a number of structural brain changes, including reduced cortical thickness. However, the effects of the course of illness, clinical and cognitive variables on cortical thickness in BD patients have not yet been evaluated. METHODS A total of 67 individuals (32 patients with euthymic BD and 35 healthy and age-matched controls) underwent 3D-anatomical magnetic resonance imaging (MRI). Whole-brain cortical thickness and group differences were assessed using the Freesurfer software. Course of disease variables, clinical and cognitive parameters were correlated with cortical thickness measures. RESULTS We found reduced cortical thickness in BD patients compared with controls in the frontal and temporal lobes and in several limbic areas. We also report significant associations between cortical thickness and age of disease-onset, speed of cognitive processing, executive function and depression severity in BD patients. CONCLUSIONS Cortical thickness reduction across frontal and limbic areas is a structural correlate of affective symptom severity and cognitive impairments in BD as well of age of disease-onset. We may assume that frontal lobe structural abnormalities are present in bipolar disorder, and might lead to dysfunctional cognitive functioning. The causality and functional relevance beyond mere correlation, however, is yet to be established. Our findings encourage further longitudinal studies in BD patients and in healthy at-risk subjects in order to discern the temporal order and development of morphological changes and clinical symptoms.
Collapse
Affiliation(s)
- Viola Oertel-Knöchel
- Laboratory of Neurophysiology and Neuroimaging, Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, Goethe University, Frankfurt/Main, Germany.
| | - Johanna Reuter
- Laboratory of Neurophysiology and Neuroimaging, Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, Goethe University, Frankfurt/Main, Germany
| | - Britta Reinke
- Laboratory of Neurophysiology and Neuroimaging, Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, Goethe University, Frankfurt/Main, Germany; Brain Imaging Center (BIC), Goethe-University, Frankfurt/Main, Germany
| | - Katharina Marbach
- Laboratory of Neurophysiology and Neuroimaging, Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, Goethe University, Frankfurt/Main, Germany
| | - Richard Feddern
- Laboratory of Neurophysiology and Neuroimaging, Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, Goethe University, Frankfurt/Main, Germany
| | - Gilberto Alves
- Center for Alzheimer׳s Disease and Related Disorders, Universidade Federal do Rio de Janeiro, Brazil
| | - David Prvulovic
- Laboratory of Neurophysiology and Neuroimaging, Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, Goethe University, Frankfurt/Main, Germany
| | - David E J Linden
- School of Psychology, Cardiff University, United Kingdom; MRC Centre for Neuropsychiatric Genetics & Genomics, Institute of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, United Kingdom
| | - Christian Knöchel
- Laboratory of Neurophysiology and Neuroimaging, Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, Goethe University, Frankfurt/Main, Germany
| |
Collapse
|
19
|
Kapczinski F, Magalhães PVS, Balanzá-Martinez V, Dias VV, Frangou S, Gama CS, Gonzalez-Pinto A, Grande I, Ha K, Kauer-Sant'Anna M, Kunz M, Kupka R, Leboyer M, Lopez-Jaramillo C, Post RM, Rybakowski JK, Scott J, Strejilevitch S, Tohen M, Vazquez G, Yatham L, Vieta E, Berk M. Staging systems in bipolar disorder: an International Society for Bipolar Disorders Task Force Report. Acta Psychiatr Scand 2014; 130:354-63. [PMID: 24961757 DOI: 10.1111/acps.12305] [Citation(s) in RCA: 159] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/30/2014] [Indexed: 12/14/2022]
Abstract
OBJECTIVE We discuss the rationale behind staging systems described specifically for bipolar disorders. Current applications, future directions and research gaps in clinical staging models for bipolar disorders are outlined. METHOD We reviewed the literature pertaining to bipolar disorders, focusing on the first episode onwards. We systematically searched data on staging models for bipolar disorders and allied studies that could inform the concept of staging. RESULTS We report on several dimensions that are relevant to staging concepts in bipolar disorder. We consider whether staging offers a refinement to current diagnoses by reviewing clinical studies of treatment and functioning and the potential utility of neurocognitive, neuroimaging and peripheral biomarkers. CONCLUSION Most studies to date indicate that globally defined late-stage patients have a worse overall prognosis and poorer response to standard treatment, consistent with patterns for end-stage medical disorders. We believe it is possible at this juncture to speak broadly of 'early'- and 'late'-stage bipolar disorder. Next steps require further collaborative efforts to consider the details of preillness onset and intermediary stages, and how many additional stages are optimal.
Collapse
Affiliation(s)
- F Kapczinski
- National Institute for Translational Medicine, Hospital de Clínicas de Porto Alegre, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Janssen J, Alemán-Gómez Y, Schnack H, Balaban E, Pina-Camacho L, Alfaro-Almagro F, Castro-Fornieles J, Otero S, Baeza I, Moreno D, Bargalló N, Parellada M, Arango C, Desco M. Cortical morphology of adolescents with bipolar disorder and with schizophrenia. Schizophr Res 2014; 158:91-9. [PMID: 25085384 DOI: 10.1016/j.schres.2014.06.040] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Revised: 05/12/2014] [Accepted: 06/24/2014] [Indexed: 01/23/2023]
Abstract
INTRODUCTION Recent evidence points to overlapping decreases in cortical thickness and gyrification in the frontal lobe of patients with adult-onset schizophrenia and bipolar disorder with psychotic symptoms, but it is not clear if these findings generalize to patients with a disease onset during adolescence and what may be the mechanisms underlying a decrease in gyrification. METHOD This study analyzed cortical morphology using surface-based morphometry in 92 subjects (age range 11-18 years, 52 healthy controls and 40 adolescents with early-onset first-episode psychosis diagnosed with schizophrenia (n=20) or bipolar disorder with psychotic symptoms (n=20) based on a two year clinical follow up). Average lobar cortical thickness, surface area, gyrification index (GI) and sulcal width were compared between groups, and the relationship between the GI and sulcal width was assessed in the patient group. RESULTS Both patients groups showed decreased cortical thickness and increased sulcal width in the frontal cortex when compared to healthy controls. The schizophrenia subgroup also had increased sulcal width in all other lobes. In the frontal cortex of the combined patient group sulcal width was negatively correlated (r=-0.58, p<0.001) with the GI. CONCLUSIONS In adolescents with schizophrenia and bipolar disorder with psychotic symptoms there is cortical thinning, decreased GI and increased sulcal width of the frontal cortex present at the time of the first psychotic episode. Decreased frontal GI is associated with the widening of the frontal sulci which may reduce sulcal surface area. These results suggest that abnormal growth (or more pronounced shrinkage during adolescence) of the frontal cortex represents a shared endophenotype for psychosis.
Collapse
Affiliation(s)
- Joost Janssen
- Instituto de Investigación Sanitaria Gregorio Marañón, Dr. Esquerdo, 46, 28007 Madrid, Spain; Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Dr. Esquerdo, 46, 28007 Madrid, Spain; Child and Adolescent Psychiatry Department, Hospital General Universitario Gregorio Marañón, Dr. Esquerdo, 46, 28007 Madrid, Spain; Brain Center Rudolf Magnus, Department of Psychiatry, University Medical Center Utrecht, Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands.
| | - Yasser Alemán-Gómez
- Instituto de Investigación Sanitaria Gregorio Marañón, Dr. Esquerdo, 46, 28007 Madrid, Spain; Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Dr. Esquerdo, 46, 28007 Madrid, Spain; Departamento de Bioingeniería e Ingeniería Aeroespacial, Universidad Carlos III de Madrid, Avda. de la Universidad, 30, 28911 Leganés, Madrid, Spain
| | - Hugo Schnack
- Brain Center Rudolf Magnus, Department of Psychiatry, University Medical Center Utrecht, Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
| | - Evan Balaban
- Behavioral Neurosciences Program, McGill University, N8-15 Stewart Biological Sciences Building, 1205 Docteur Penfield Avenue, Montreal QC H3A 1B1, Canada
| | - Laura Pina-Camacho
- Instituto de Investigación Sanitaria Gregorio Marañón, Dr. Esquerdo, 46, 28007 Madrid, Spain; Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Dr. Esquerdo, 46, 28007 Madrid, Spain; Department of Child and Adolescent Psychiatry, Institute of Psychiatry, King's College London, 16 de Crespigny Park, London SE5 8AF, UK
| | - Fidel Alfaro-Almagro
- Instituto de Investigación Sanitaria Gregorio Marañón, Dr. Esquerdo, 46, 28007 Madrid, Spain
| | - Josefina Castro-Fornieles
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Dr. Esquerdo, 46, 28007 Madrid, Spain; Department of Child and Adolescent Psychiatry and Psychology, Institut Clinic of Neurosciences, Hospital Clínic Universitari of Barcelona, Villarroel, 170, Barcelona 08036, Spain; Department of Psychiatry and Clinical Psychobiology, University of Barcelona, Casanovas, 143, Barcelona 08036, Spain
| | - Soraya Otero
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Dr. Esquerdo, 46, 28007 Madrid, Spain; Child and Adolescent Mental Health Unit, Department of Psychiatry and Psychology, Hospital Universitario Marqués de Valdecilla, Avda. Valdecilla nº 25, 39008 Santander, Spain
| | - Inmaculada Baeza
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Dr. Esquerdo, 46, 28007 Madrid, Spain; Department of Child and Adolescent Psychiatry and Psychology, Institut Clinic of Neurosciences, Hospital Clínic Universitari of Barcelona, Villarroel, 170, Barcelona 08036, Spain
| | - Dolores Moreno
- Instituto de Investigación Sanitaria Gregorio Marañón, Dr. Esquerdo, 46, 28007 Madrid, Spain; Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Dr. Esquerdo, 46, 28007 Madrid, Spain; Child and Adolescent Psychiatry Department, Hospital General Universitario Gregorio Marañón, Dr. Esquerdo, 46, 28007 Madrid, Spain
| | - Nuria Bargalló
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Dr. Esquerdo, 46, 28007 Madrid, Spain; Magnetic Resonance Image Core Facility, IDIBAPS (Institut d'Investigacions Biomèdiques August Pi i Sunyer), Barcelona, Spain; Image Diagnostic Center, Hospital Clínic, Barcelona, Spain
| | - Mara Parellada
- Instituto de Investigación Sanitaria Gregorio Marañón, Dr. Esquerdo, 46, 28007 Madrid, Spain; Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Dr. Esquerdo, 46, 28007 Madrid, Spain; Child and Adolescent Psychiatry Department, Hospital General Universitario Gregorio Marañón, Dr. Esquerdo, 46, 28007 Madrid, Spain
| | - Celso Arango
- Instituto de Investigación Sanitaria Gregorio Marañón, Dr. Esquerdo, 46, 28007 Madrid, Spain; Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Dr. Esquerdo, 46, 28007 Madrid, Spain; Child and Adolescent Psychiatry Department, Hospital General Universitario Gregorio Marañón, Dr. Esquerdo, 46, 28007 Madrid, Spain
| | - Manuel Desco
- Instituto de Investigación Sanitaria Gregorio Marañón, Dr. Esquerdo, 46, 28007 Madrid, Spain; Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Dr. Esquerdo, 46, 28007 Madrid, Spain; Departamento de Bioingeniería e Ingeniería Aeroespacial, Universidad Carlos III de Madrid, Avda. de la Universidad, 30, 28911 Leganés, Madrid, Spain
| |
Collapse
|
21
|
Phillips ML, Swartz HA. A critical appraisal of neuroimaging studies of bipolar disorder: toward a new conceptualization of underlying neural circuitry and a road map for future research. Am J Psychiatry 2014; 171:829-43. [PMID: 24626773 PMCID: PMC4119497 DOI: 10.1176/appi.ajp.2014.13081008] [Citation(s) in RCA: 404] [Impact Index Per Article: 40.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
OBJECTIVE In this critical review, the authors appraise neuroimaging findings in bipolar disorder in emotion-processing, emotion-regulation, and reward-processing neural circuitry in order to synthesize the current knowledge of the neural underpinnings of bipolar disorder and provide a neuroimaging research road map for future studies. METHOD The authors examined findings from all major studies in bipolar disorder that used functional MRI, volumetric analysis, diffusion imaging, and resting-state techniques, integrating findings to provide a better understanding of larger-scale neural circuitry abnormalities in bipolar disorder. RESULTS Bipolar disorder can be conceptualized, in neural circuitry terms, as parallel dysfunction in prefrontal cortical (especially ventrolateral prefrontal cortical)-hippocampal-amygdala emotion-processing and emotion-regulation circuits bilaterally, together with an "overactive" left-sided ventral striatal-ventrolateral and orbitofrontal cortical reward-processing circuitry, resulting in characteristic behavioral abnormalities associated with bipolar disorder: emotional lability, emotional dysregulation, and heightened reward sensitivity. A potential structural basis for these functional abnormalities is gray matter volume decreases in the prefrontal and temporal cortices, the amygdala, and the hippocampus and fractional anisotropy decreases in white matter tracts connecting prefrontal and subcortical regions. CONCLUSIONS Neuroimaging studies of bipolar disorder clearly demonstrate abnormalities in neural circuits supporting emotion processing, emotion regulation, and reward processing, although there are several limitations to these studies. Future neuroimaging research in bipolar disorder should include studies adopting dimensional approaches; larger studies examining neurodevelopmental trajectories in youths with bipolar disorder or at risk for bipolar disorder; multimodal neuroimaging studies using integrated systems approaches; and studies using pattern recognition approaches to provide clinically useful individual-level data. Such studies will help identify clinically relevant biomarkers to guide diagnosis and treatment decision making for individuals with bipolar disorder.
Collapse
|
22
|
Eker C, Simsek F, Yılmazer EE, Kitis O, Cinar C, Eker OD, Coburn K, Gonul AS. Brain regions associated with risk and resistance for bipolar I disorder: a voxel-based MRI study of patients with bipolar disorder and their healthy siblings. Bipolar Disord 2014; 16:249-61. [PMID: 24589068 DOI: 10.1111/bdi.12181] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2012] [Accepted: 08/30/2013] [Indexed: 11/29/2022]
Abstract
OBJECTIVE Bipolar I disorder is a highly heritable disorder but not all siblings manifest with the illness, even though they may share similar genetic and environmental risk factors. Thus, sibling studies may help to identify brain structural endophenotypes associated with risk and resistance for the disorder. METHODS Structural magnetic resonance imaging (MRI) scans were acquired for 28 euthymic patients with bipolar disorder, their healthy siblings, and 30 unrelated healthy controls. Statistical Parametric Mapping 8 (SPM8) was used to identify group differences in regional gray matter volume by voxel-based morphometry (VBM). RESULTS Using analysis of covariance, gray matter analysis of the groups revealed a group effect indicating that the left orbitofrontal cortex [Brodmann area (BA) 11] was smaller in patients with bipolar disorder than in unrelated healthy controls [F = 14.83, p < 0.05 (family-wise error); 7 mm(3) ]. Paired t-tests indicated that the orbitofrontal cortex of patients with bipolar disorder [t = 5.19, p < 0.05 (family-wise error); 37 mm(3) ] and their healthy siblings [t = 3.89, p < 0.001 (uncorrected); 63 mm(3) ] was smaller than in unrelated healthy controls, and that the left dorsolateral prefrontal cortex was larger in healthy siblings than in patients with bipolar disorder [t = 4.28, p < 0.001 (uncorrected); 323 mm(3) ] and unrelated healthy controls [t = 4.36, p < 0.001 (uncorrected); 245 mm(3) ]. Additional region-of-interest analyses also found volume deficits in the right cerebellum of patients with bipolar disorder [t = 3.92, p < 0.001 (uncorrected); 178 mm(3) ] and their healthy siblings [t = 4.23, p < 0.001 (uncorrected); 489 mm(3) ], and in the left precentral gyrus of patients with bipolar disorder [t = 3.61, p < 0.001 (uncorrected); 115 mm(3) ] compared to unrelated healthy controls. CONCLUSIONS The results of this study suggest that a reduction in the volume of the orbitofrontal cortex, which plays a role in the automatic regulation of emotions and is a part of the medial prefrontal network, is associated with the heritability of bipolar disorder. Conversely, increased dorsolateral prefrontal cortex volume may be a neural marker of a resistance factor as it is part of a network of voluntary emotion regulation and balances the effects of the disrupted automatic emotion regulation system.
Collapse
Affiliation(s)
- Cagdas Eker
- Department of Psychiatry, Ege University School of Medicine, Bornova, Izmir, Turkey; SoCAT Lab and Affective Disorders Unit, Ege University School of Medicine, Bornova, Izmir, Turkey; Department of Neuroscience, Ege University Institute of Health Sciences, Bornova, Izmir, Turkey
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Ranta ME, Chen M, Crocetti D, Prince JL, Subramaniam K, Fischl B, Kaufmann WE, Mostofsky SH. Automated MRI parcellation of the frontal lobe. Hum Brain Mapp 2014; 35:2009-26. [PMID: 23897577 PMCID: PMC4034317 DOI: 10.1002/hbm.22309] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2011] [Revised: 03/12/2013] [Accepted: 04/02/2013] [Indexed: 01/26/2023] Open
Abstract
Examination of associations between specific disorders and physical properties of functionally relevant frontal lobe sub-regions is a fundamental goal in neuropsychiatry. Here, we present and evaluate automated methods of frontal lobe parcellation with the programs FreeSurfer(FS) and TOADS-CRUISE(T-C), based on the manual method described in Ranta et al. [2009]: Psychiatry Res 172:147-154 in which sulcal-gyral landmarks were used to manually delimit functionally relevant regions within the frontal lobe: i.e., primary motor cortex, anterior cingulate, deep white matter, premotor cortex regions (supplementary motor complex, frontal eye field, and lateral premotor cortex) and prefrontal cortex (PFC) regions (medial PFC, dorsolateral PFC, inferior PFC, lateral orbitofrontal cortex [OFC] and medial OFC). Dice's coefficient, a measure of overlap, and percent volume difference were used to measure the reliability between manual and automated delineations for each frontal lobe region. For FS, mean Dice's coefficient for all regions was 0.75 and percent volume difference was 21.2%. For T-C the mean Dice's coefficient was 0.77 and the mean percent volume difference for all regions was 20.2%. These results, along with a high degree of agreement between the two automated methods (mean Dice's coefficient = 0.81, percent volume difference = 12.4%) and a proof-of-principle group difference analysis that highlights the consistency and sensitivity of the automated methods, indicate that the automated methods are valid techniques for parcellation of the frontal lobe into functionally relevant sub-regions. Thus, the methodology has the potential to increase efficiency, statistical power and reproducibility for population analyses of neuropsychiatric disorders with hypothesized frontal lobe contributions.
Collapse
Affiliation(s)
- Marin E. Ranta
- Kennedy Krieger InstituteLaboratory for Neurocognitive Imaging and ResearchBaltimoreMaryland
| | - Min Chen
- Department of Electrical and Computer EngineeringJohns Hopkins UniversityBaltimoreMaryland
| | - Deana Crocetti
- Kennedy Krieger InstituteLaboratory for Neurocognitive Imaging and ResearchBaltimoreMaryland
| | - Jerry L. Prince
- Department of Electrical and Computer EngineeringJohns Hopkins UniversityBaltimoreMaryland
- Department of Radiology and Radiological ScienceJohns Hopkins UniversityBaltimoreMaryland
- Department of Biomedical EngineeringJohns Hopkins UniversityBaltimoreMaryland
| | - Krish Subramaniam
- Athinoula A. Martinos Center for Biomedical ImagingCharlestownMassachusetts
| | - Bruce Fischl
- Athinoula A. Martinos Center for Biomedical ImagingCharlestownMassachusetts
- Department of RadiologyHarvard Medical SchoolCharlestownMassachusetts
- Division of Health Sciences and TechnologyMassachusetts Institute of TechnologyCambridgeMassachusetts
- Computer Science and Artificial Intelligence LaboratoryMassachusetts Institute of TechnologyCambridgeMassachusetts
- Computer Science and AI Lab (CSAIL)Massachusetts Institute of TechnologyCambridgeMassachusetts
| | - Walter E. Kaufmann
- Kennedy Krieger InstituteLaboratory for Neurocognitive Imaging and ResearchBaltimoreMaryland
- Department of Radiology and Radiological ScienceJohns Hopkins UniversityBaltimoreMaryland
- Department of PathologyJohns Hopkins University School of MedicineBaltimoreMaryland
- Department of PediatricsJohns Hopkins University School of MedicineBaltimoreMaryland
- Department of Psychiatry and Behavioral SciencesJohns Hopkins University School of MedicineBaltimoreMaryland
- Department of NeurologyJohns Hopkins University School of MedicineBaltimoreMaryland
| | - Stewart H. Mostofsky
- Kennedy Krieger InstituteLaboratory for Neurocognitive Imaging and ResearchBaltimoreMaryland
- Department of PediatricsJohns Hopkins University School of MedicineBaltimoreMaryland
- Department of NeurologyJohns Hopkins University School of MedicineBaltimoreMaryland
| |
Collapse
|
24
|
Gao W, Jiao Q, Qi R, Zhong Y, Lu D, Xiao Q, Lu S, Xu C, Zhang Y, Liu X, Yang F, Lu G, Su L. Combined analyses of gray matter voxel-based morphometry and white matter tract-based spatial statistics in pediatric bipolar mania. J Affect Disord 2013; 150:70-6. [PMID: 23477846 DOI: 10.1016/j.jad.2013.02.021] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2012] [Revised: 02/05/2013] [Accepted: 02/05/2013] [Indexed: 12/11/2022]
Abstract
BACKGROUND Ample evidence has suggested the presence of gray matter (GM) and white matter (WM) abnormalities in bipolar disorder (BD) patients, including pediatric bipolar disorder (PBD). However, little research has been done in PBD patients that carefully classify the mood states. The aim of the present study is to investigate the brain structural changes in PBD-mania children and adolescents. METHODS Eighteen children and adolescents with bipolar mania (male/female, 6/12) aged 10-18 years old and 18 age- and sex-matched healthy controls were included in the present study. The 3D T1-weighted magnetic resonance imaging (MRI) and diffusion tensor imaging (DTI) data were obtained on a Siemens 3.0 T scanner. Voxel-based morphometry (VBM) analysis and tract-based spatial statistics (TBSS) analysis were conducted to compare the gray matter volume and white matter fractional anisotropy (FA) value between patients and controls. Correlations of the MRI data of each survived area with clinical characteristics in PBD patients were further analyzed. RESULTS As compared with the control group, PBD-mania children showed decreased gray matter volume in the left hippocampus. Meanwhile, significant lower FA value was detected in the right anterior cingulate (AC) in the patient group. No region of increased gray matter volume or FA value was observed in PBD-mania. The hippocampal volume was negatively associated with the Young Mania Rating Scale (YMRS) score when controlling for clinical characteristics in PBD-mania patients, however, there was no significant correlation of FA value of the survived area with illness duration, the onset age, number of episodes, or the YMRS score in PBD-mania patients. LIMITATION The present outcomes require replication in larger samples and verification in medication free subjects. CONCLUSIONS Our findings highlighted that extensive brain structural lesions (including GM and WM) were existed in PBD-mania. The widespread occurrence of structural abnormalities mainly located in the anterior limbic network (ALN) which suggested that this network might contribute to emotional and cognitive dysregulations in PBD.
Collapse
Affiliation(s)
- Weijia Gao
- Mental Health Institute of the Second Xiangya Hospital, Key Laboratory of Psychiatry and Mental Health of Hunan Province, Central South University, Changsha, Hunan, China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
White matter microstructural abnormalities in bipolar disorder: A whole brain diffusion tensor imaging study. NEUROIMAGE-CLINICAL 2013; 2:558-68. [PMID: 24179807 PMCID: PMC3777761 DOI: 10.1016/j.nicl.2013.03.016] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2013] [Revised: 03/26/2013] [Accepted: 03/27/2013] [Indexed: 12/11/2022]
Abstract
Background Bipolar disorder (BD) is a chronic mental illness characterized by severe disruptions in mood and cognition. Diffusion tensor imaging (DTI) studies suggest that white matter (WM) tract abnormalities may contribute to the clinical hallmarks of the disorder. Using DTI and whole brain voxel-based analysis, we mapped the profile of WM anomalies in BD. All patients in our sample were euthymic and lithium free when scanned. Methods Diffusion-weighted and T1-weighted structural brain images were acquired from 23 lithium-free euthymic subjects with bipolar I disorder and 19 age- and sex-matched healthy control subjects on a 1.5 T MRI scanner. Scans were processed to provide measures of fractional anisotropy (FA) and mean and radial diffusivity (MD and RD) at each WM voxel, and processed scans were nonlinearly aligned to a customized brain imaging template for statistical group comparisons. Results Relative to controls, the bipolar group showed widespread regions of lower FA, including the corpus callosum, cortical and thalamic association fibers. MD and RD were abnormally elevated in patients in many of these same regions. Conclusions Our findings agree with prior reports of WM abnormalities in the corpus callosum and further link a bipolar diagnosis with structural abnormalities of the tapetum, fornix and stria terminalis. Future studies assessing the diagnostic specificity and prognostic implications of these abnormalities would be of interest. Using DTI and whole brain voxel-based analysis, we mapped WM anomalies in BD. Relative to controls, the bipolar group showed widespread regions of lower FA. MD and RD were abnormally elevated in patients in many of these same regions.
Collapse
|
26
|
Three-dimensional mapping of hippocampal and amygdalar structure in euthymic adults with bipolar disorder not treated with lithium. Psychiatry Res 2013; 211:195-201. [PMID: 23149020 PMCID: PMC3594485 DOI: 10.1016/j.pscychresns.2012.08.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2012] [Revised: 06/22/2012] [Accepted: 08/04/2012] [Indexed: 01/21/2023]
Abstract
Structural neuroimaging studies of the amygdala and hippocampus in bipolar disorder have been largely inconsistent. This may be due in part to differences in the proportion of subjects taking lithium or experiencing an acute mood state, as both factors have recently been shown to influence gray matter structure. To avoid these problems, we evaluated euthymic subjects not currently taking lithium. Thirty-two subjects with bipolar type I disorder and 32 healthy subjects were scanned using magnetic resonance imaging. Subcortical regions were manually traced, and converted to three-dimensional meshes to evaluate the main effect of bipolar illness on radial distance. Statistical analyses found no evidence for a main effect of bipolar illness in either region, although exploratory analyses found a significant age by diagnosis interaction in the right amygdala, as well as positive associations between radial distance of the left amygdala and both prior hospitalizations for mania and current medication status. These findings suggest that, when not treated with lithium or in an acute mood state, patients with bipolar disorder exhibit no structural abnormalities of the amygdala or hippocampus. Future studies, nevertheless, that further elucidate the impact of age, course of illness, and medication on amygdala structure in bipolar disorder are warranted.
Collapse
|
27
|
Hegarty CE, Foland-Ross LC, Narr KL, Sugar CA, McGough JJ, Thompson PM, Altshuler LL. ADHD comorbidity can matter when assessing cortical thickness abnormalities in patients with bipolar disorder. Bipolar Disord 2012; 14:843-55. [PMID: 23167934 PMCID: PMC3506177 DOI: 10.1111/bdi.12024] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
OBJECTIVES Attention-deficit hyperactivity disorder (ADHD) is prevalent in patients with bipolar disorder (BP), but very few studies consider this when interpreting magnetic resonance imaging findings. No studies, to our knowledge, have screened for or controlled for the presence of ADHD when examining cortical thickness in patients with BP. We used a 2 × 2 design to evaluate the joint effects of BP and ADHD on cortical thickness and uncover the importance of ADHD comorbidity in BP subjects. METHODS The study included 85 subjects: 31 healthy controls, 17 BP-only, 19 ADHD-only, and 18 BP/ADHD. All patients with BP were subtype I, euthymic, and not taking lithium. Groups did not differ significantly in age or gender distribution. We used cortical thickness measuring tools combined with cortical pattern matching methods to align sulcal/gyral anatomy across participants. Significance maps were used to check for both main effects of BP and ADHD and their interaction. Post-hoc comparisons assessed how the effects of BP on cortical thickness varied as a function of the presence or absence of ADHD. RESULTS Interactions of BP and ADHD diagnoses were found in the left subgenual cingulate and right orbitofrontal cortex, demonstrating that the effect of BP on cortical thickness depends on ADHD status. CONCLUSIONS Some brain abnormalities attributed to BP may result from the presence of ADHD. Diagnostic interactions were found in regions previously implicated in the pathophysiology of BP, making it vital to control for an ADHD comorbid diagnosis when attempting to isolate neural or genetic abnormalities specific to BP.
Collapse
Affiliation(s)
- Catherine E Hegarty
- Jane and Terry Semel Institute of Neuroscience and Human Behavior, University of California at Los Angeles (UCLA), Los Angeles
| | - Lara C Foland-Ross
- Mood and Anxiety Disorders Laboratory, Department of Psychology, Stanford University, Stanford
| | - Katherine L Narr
- Laboratory of Neuro Imaging, Department of Neurology, David Geffen School of Medicine, UCLA
| | - Catherine A Sugar
- Jane and Terry Semel Institute of Neuroscience and Human Behavior, University of California at Los Angeles (UCLA), Los Angeles,Department of Biostatistics, School of Public Health, UCLA,Department of Psychiatry, VA Greater Los Angeles Healthcare System, West Los Angeles Healthcare Center, UCLA, Los Angeles, USA
| | - James J McGough
- Jane and Terry Semel Institute of Neuroscience and Human Behavior, University of California at Los Angeles (UCLA), Los Angeles,Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, UCLA, Los Angeles, USA
| | - Paul M Thompson
- Jane and Terry Semel Institute of Neuroscience and Human Behavior, University of California at Los Angeles (UCLA), Los Angeles,Laboratory of Neuro Imaging, Department of Neurology, David Geffen School of Medicine, UCLA
| | - Lori L Altshuler
- Jane and Terry Semel Institute of Neuroscience and Human Behavior, University of California at Los Angeles (UCLA), Los Angeles,Department of Psychiatry, VA Greater Los Angeles Healthcare System, West Los Angeles Healthcare Center, UCLA, Los Angeles, USA,Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, UCLA, Los Angeles, USA
| |
Collapse
|
28
|
Foland-Ross LC, Brooks JO, Mintz J, Bartzokis G, Townsend J, Thompson PM, Altshuler LL. Mood-state effects on amygdala volume in bipolar disorder. J Affect Disord 2012; 139:298-301. [PMID: 22521854 PMCID: PMC3372678 DOI: 10.1016/j.jad.2012.03.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2011] [Revised: 02/08/2012] [Accepted: 03/03/2012] [Indexed: 11/26/2022]
Abstract
BACKGROUND Prior structural neuroimaging studies of the amygdala in patients with bipolar disorder have reported higher or lower volumes, or no difference relative to healthy controls. These inconsistent findings may have resulted from combining subjects in different mood states. The prefrontal cortex has recently been reported to have a lower volume in depressed versus euthymic bipolar patients. Here we examined whether similar mood state-dependent volumetric differences are detectable in the amygdala. METHODS Forty subjects, including 28 with bipolar disorder type I (12 depressed and 16 euthymic), and 12 healthy comparison subjects were scanned on a 3T magnetic resonance image (MRI) scanner. Amygdala volumes were manually traced and compared across subject groups, adjusting for sex and total brain volume. RESULTS Statistical analyses found a significant effect of mood state and hemisphere on amygdala volume. Subsequent comparisons revealed that amygdala volumes were significantly lower in the depressed bipolar group compared to both the euthymic bipolar (p=0.005) and healthy control (p=0.043) groups. LIMITATIONS Our study was cross-sectional and some patients were medicated. CONCLUSIONS Our results suggest that mood state influences amygdala volume in subjects with bipolar disorder. Future studies that replicate these findings in unmedicated patient samples scanned longitudinally are needed.
Collapse
Affiliation(s)
- Lara C. Foland-Ross
- Laboratory of Neuro Imaging, Dept. of Neurology, UCLA School of Medicine, Los Angeles, CA
| | - John O. Brooks
- Semel Institute for Neuroscience and Human Behavior at UCLA, Los Angeles, CA
| | - Jim Mintz
- University of Texas Health Science Center at San Antonio, San Antonio, TX
| | - George Bartzokis
- Semel Institute for Neuroscience and Human Behavior at UCLA, Los Angeles, CA
| | - Jennifer Townsend
- Semel Institute for Neuroscience and Human Behavior at UCLA, Los Angeles, CA
| | - Paul M. Thompson
- Laboratory of Neuro Imaging, Dept. of Neurology, UCLA School of Medicine, Los Angeles, CA
| | - Lori L. Altshuler
- Semel Institute for Neuroscience and Human Behavior at UCLA, Los Angeles, CA,Department of Psychiatry, VA Greater Los Angeles Healthcare System, West Los Angeles Healthcare Center, Los Angeles, CA
| |
Collapse
|
29
|
Hafeman DM, Chang KD, Garrett AS, Sanders EM, Phillips ML. Effects of medication on neuroimaging findings in bipolar disorder: an updated review. Bipolar Disord 2012; 14:375-410. [PMID: 22631621 DOI: 10.1111/j.1399-5618.2012.01023.x] [Citation(s) in RCA: 258] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
OBJECTIVE Neuroimaging is an important tool for better understanding the neurobiological underpinnings of bipolar disorder (BD). However, potential study participants are often receiving psychotropic medications which can possibly confound imaging data. To better interpret the results of neuroimaging studies in BD, it is important to understand the impact of medications on structural magnetic resonance imaging (sMRI), functional MRI (fMRI), and diffusion tensor imaging (DTI). METHODS To better understand the impact of medications on imaging data, we conducted a literature review and searched MEDLINE for papers that included the key words bipolar disorder and fMRI, sMRI, or DTI. The search was limited to papers that assessed medication effects and had not been included in a previous review by Phillips et al. (Medication effects in neuroimaging studies of bipolar disorder. Am J Psychiatry 2008; 165: 313-320). This search yielded 74 sMRI studies, 46 fMRI studies, and 15 DTI studies. RESULTS Medication appeared to influence many sMRI studies, but had limited impact on fMRI and DTI findings. From the structural studies, the most robust finding (20/45 studies) was that lithium was associated with increased volumes in areas important for mood regulation, while antipsychotic agents and anticonvulsants were generally not. Regarding secondary analysis of the medication effects of fMRI and DTI studies, few showed significant effects of medication, although rigorous analyses were typically not possible when the majority of subjects were medicated. Medication effects were more frequently observed in longitudinal studies designed to assess the impact of particular medications on the blood oxygen level-dependent (BOLD) signal. With a few exceptions, the observed effects were normalizing, meaning that the medicated individuals with BD were more similar than their unmedicated counterparts to healthy subjects. CONCLUSIONS The effects of psychotropic medications, when present, are predominantly normalizing and thus do not seem to provide an alternative explanation for differences in volume, white matter tracts, or BOLD signal between BD participants and healthy subjects. However, the normalizing effects of medication could obfuscate differences between BD and healthy subjects, and thus might lead to type II errors.
Collapse
Affiliation(s)
- Danella M Hafeman
- Department of Psychiatry, Western Psychiatric Institute and Clinic, University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA.
| | | | | | | | | |
Collapse
|
30
|
Benedetti F, Radaelli D, Poletti S, Locatelli C, Falini A, Colombo C, Smeraldi E. Opposite effects of suicidality and lithium on gray matter volumes in bipolar depression. J Affect Disord 2011; 135:139-47. [PMID: 21807414 DOI: 10.1016/j.jad.2011.07.006] [Citation(s) in RCA: 102] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2011] [Revised: 07/08/2011] [Accepted: 07/09/2011] [Indexed: 12/20/2022]
Abstract
BACKGROUND Mood disorders are associated with the highest increase of attempted and completed suicide. Suicidality in major depressive disorder and in schizophrenia has been associated with reduced gray matter volumes in orbitofrontal cortex. Lithium reduces the suicide risk of patients with bipolar disorder (BD) to the same levels of the general population, and can increase GM volumes. We studied the effect of a positive history of attempted suicide and ongoing lithium treatment on regional GM volumes of patients affected by bipolar depression. METHODS With a correlational design, we studied 57 currently depressed inpatients with bipolar disorder: 19 with and 38 without a positive history of suicide attempts, 39 unmedicated and 18 with ongoing lithium treatment. Total and regional gray matter volumes were assessed using voxel-based morphometry. RESULTS Total GM volume is inversely correlated with depression severity. A positive history of suicide attempts was associated with higher stress in early life. Suicide attempters showed reduced GM volumes in several brain areas including dorsolateral prefrontal cortex, orbitofrontal cortex, anterior cingulate, superior temporal cortex, parieto-occipital cortex, and basal ganglia. Long term lithium treatment was associated with increased GM volumes in the same areas where suicide was associated with decreased GM. CONCLUSIONS Reduced GM volumes in critical cortical areas of suicidal patients could be a biological correlate of an impaired ability to associate choices and outcomes and to plan goal-directed behaviors based on a lifetime historical perspective, which, coupled with mood-congruent depressive cognitive distortions, could lead to more hopelessness and suicide. Lithium could exert its specific therapeutic effect on suicide by acting in the same areas.
Collapse
Affiliation(s)
- Francesco Benedetti
- Department of Clinical Neurosciences, Scientific Institute San Raffaele and University Vita-Salute, Milan, Italy.
| | | | | | | | | | | | | |
Collapse
|
31
|
Minor physical anomalies in patients with bipolar I disorder and normal controls. J Affect Disord 2011; 135:193-200. [PMID: 21846578 DOI: 10.1016/j.jad.2011.07.019] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2011] [Revised: 07/19/2011] [Accepted: 07/19/2011] [Indexed: 02/02/2023]
Abstract
BACKGROUND The neurodevelopmental hypothesis is well established in schizophrenia but has received modest empirical support in bipolar disorder. In schizophrenia it is partly based on the higher prevalence of minor physical anomalies (MPAs), established by many well controlled studies. No studies with comparable designs have been performed in bipolar disorder. The present study aims to establish the rate and topographic distribution of MPAs in bipolar I patients. METHODS The subjects were 61 patients (25 men, 36 women) with bipolar I disorder and 103 normal subjects (49 men, 54 women) who were examined for MPAs using a modified version of the Waldrop Physical Anomaly Scale. RESULTS The bipolar I patients showed significantly higher regional MPA scores in 3 distinct regions - mouth, feet and head, as well as in the overall scores for the craniofacial complex, the periphery and the total MPA score. Differences were statistically significant for 3 anomalies - high/steepled palate, big gap between I and II toes and furrowed tongue that made significant contribution to the prediction of the patient-control status in a discriminant analysis model. CONCLUSIONS Our data suggest that aberrant processes of neurodevelopment may contribute to the etiology of bipolar I disorder. The field is open for further research using modern instruments and designs in order to identify potential biological markers for bipolar disorder.
Collapse
|
32
|
Bond DJ, Lang DJ, Noronha MM, Kunz M, Torres IJ, Su W, Honer WG, Lam RW, Yatham LN. The association of elevated body mass index with reduced brain volumes in first-episode mania. Biol Psychiatry 2011; 70:381-7. [PMID: 21497795 DOI: 10.1016/j.biopsych.2011.02.025] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2010] [Revised: 01/28/2011] [Accepted: 02/15/2011] [Indexed: 11/30/2022]
Abstract
BACKGROUND Compared with normal-weight patients, obese patients with bipolar I disorder (BD) suffer more manic and depressive episodes and make more suicide attempts. In the general population, obesity is associated with reduced total brain volume (TBV) and gray matter volume (GMV), but the neurobiology of obesity in BD has not been investigated. METHODS We used magnetic resonance imaging to examine TBV, GMV, white matter volume (WMV), as well as frontal, parietal, occipital, and temporal lobe volumes, in 55 healthy subjects (17 overweight/obese and 38 normal weight) and 57 patients with BD following their first manic episode (20 overweight/obese and 37 normal weight). RESULTS Linear regression analyses demonstrated that when other predictors of brain volume were accounted for, increased body mass index (BMI) in healthy subjects was significantly associated with decreased TBV and GMV. In contrast, increased BMI in patients with BD was significantly associated with decreased WMV and temporal lobe volume, areas of known vulnerability in early BD. CONCLUSIONS This is the first published report to show a relationship between elevated BMI and reduced brain volumes in BD, or any psychiatric illness. Our results suggest that obesity is associated with unique neurobiological changes in BD. They further imply a possible biological mechanism underlying the association between obesity and a more severe illness course in BD.
Collapse
Affiliation(s)
- David J Bond
- Mood Disorders Centre, University of British Columbia, Vancouver, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Brooks JO, Foland-Ross LC, Thompson PM, Altshuler LL. Preliminary evidence of within-subject changes in gray matter density associated with remission of bipolar depression. Psychiatry Res 2011; 193:53-5. [PMID: 21561743 PMCID: PMC3986411 DOI: 10.1016/j.pscychresns.2010.12.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2010] [Revised: 12/13/2010] [Accepted: 12/14/2010] [Indexed: 12/31/2022]
Abstract
A preliminary within-subjects MRI study of seven patients with a diagnosis of bipolar I disorder revealed that, compared to remission, depression was associated with gray matter density increases in subgenual prefrontal cortex, parahippocampal gyrus, and inferior temporal gyri. Decreases were observed in superior and inferior frontal gyri and anterior cingulate.
Collapse
Affiliation(s)
- John O Brooks
- Semel Institute for Neuroscience and Human Behavior at UCLA, Los Angeles, CA 90024, USA.
| | | | | | | |
Collapse
|
34
|
Foland-Ross LC, Thompson PM, Sugar CA, Madsen SK, Shen JK, Penfold C, Ahlf K, Rasser PE, Fischer J, Yang Y, Townsend J, Bookheimer SY, Altshuler LL. Investigation of cortical thickness abnormalities in lithium-free adults with bipolar I disorder using cortical pattern matching. Am J Psychiatry 2011; 168:530-9. [PMID: 21285139 PMCID: PMC3640313 DOI: 10.1176/appi.ajp.2010.10060896] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
OBJECTIVE Although several lines of evidence implicate gray matter abnormalities in the prefrontal cortex and anterior cingulate cortex in patients with bipolar disorder, findings have been largely inconsistent across studies. Differences in patients' medication status or mood state or the application of traditional volumetric methods that are insensitive to subtle neuroanatomical differences may have contributed to variations in findings. The authors used MRI in conjunction with cortical pattern matching methods to assess cortical thickness abnormalities in euthymic bipolar patients who were not receiving lithium treatment. METHOD Thirty-four lithium-free euthymic patients with bipolar I disorder and 31 healthy comparison subjects underwent MRI scanning. Data were processed to measure cortical gray matter thickness. Thickness maps were spatially normalized using cortical pattern matching and were analyzed to assess illness effects and associations with clinical variables. RESULTS Relative to healthy comparison subjects, euthymic bipolar patients had significantly thinner gray matter in the left and right prefrontal cortex (Brodmann's areas 11, 10, 8, and 44) and the left anterior cingulate cortex (Brodmann's areas 24/32). Thinning in these regions was more pronounced in patients with a history of psychosis. No areas of thicker cortex were detected in bipolar patients relative to healthy comparison subjects. CONCLUSIONS Using a technique that is highly sensitive to subtle neuroanatomical differences, significant regional cortical thinning was found in lithium-free euthymic patients with bipolar disorder.
Collapse
Affiliation(s)
- Lara C. Foland-Ross
- Laboratory of NeuroImaging, Department of Neurology, UCLA School of Medicine, Los Angeles, CA
| | - Paul M. Thompson
- Laboratory of NeuroImaging, Department of Neurology, UCLA School of Medicine, Los Angeles, CA
| | - Catherine A. Sugar
- Department of Biostatistics, UCLA, Los Angeles, CA,Department of Psychiatry and Biobehavioral Sciences, UCLA, Los Angeles, CA
| | - Sarah K. Madsen
- Laboratory of NeuroImaging, Department of Neurology, UCLA School of Medicine, Los Angeles, CA
| | - Jim K. Shen
- Department of Psychiatry and Biobehavioral Sciences, UCLA, Los Angeles, CA
| | | | - Kyle Ahlf
- Department of Biostatistics, UCLA, Los Angeles, CA
| | - Paul E. Rasser
- Schizophrenia Research Institute; and Priority Centre for Brain & Mental Health Research, University of Newcastle, Callaghan, New South Wales 2308, Australia
| | | | - Yilan Yang
- Laboratory of NeuroImaging, Department of Neurology, UCLA School of Medicine, Los Angeles, CA
| | | | | | - Lori L. Altshuler
- Department of Biostatistics, UCLA, Los Angeles, CA,Department of Psychiatry, VA Greater Los Angeles Healthcare System, West Los Angeles Healthcare Center, Los Angeles, CA
| |
Collapse
|
35
|
Germaná C, Kempton MJ, Sarnicola A, Christodoulou T, Haldane M, Hadjulis M, Girardi P, Tatarelli R, Frangou S. The effects of lithium and anticonvulsants on brain structure in bipolar disorder. Acta Psychiatr Scand 2010; 122:481-7. [PMID: 20560901 DOI: 10.1111/j.1600-0447.2010.01582.x] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
OBJECTIVE To investigate the effect of lithium, anticonvulsants and antipsychotics on brain structure in bipolar disorder (BD). METHOD A cross-sectional structural brain magnetic resonance imaging study of 74 remitted patients with BD, aged 18-65, who were receiving long-term prophylactic treatment with lithium or anticonvulsants or antipsychotics. Global and regional grey matter, white matter, and cerebrospinal fluid volumes were compared between treatment groups. RESULTS Grey matter in the subgenual anterior cingulate gyrus on the right (extending into the hypothalamus) and in the postcentral gyrus, the hippocampus/amygdale complex and the insula on the left was greater in BD patients on lithium treatment compared to all other treatment groups. CONCLUSION Lithium treatment in BD has a significant effect on brain structure particularly in limbic/paralimbic regions associated with emotional processing.
Collapse
Affiliation(s)
- C Germaná
- Institute of Psychiatry King's College London, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Dickstein DP, Finger EC, Skup M, Pine DS, Blair JR, Leibenluft E. Altered neural function in pediatric bipolar disorder during reversal learning. Bipolar Disord 2010; 12:707-19. [PMID: 21040288 PMCID: PMC3391027 DOI: 10.1111/j.1399-5618.2010.00863.x] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
OBJECTIVE Data documenting the functional impairment associated with the diagnosis of bipolar disorder (BD) in children and adolescents highlight the need for greater understanding of its pathophysiology. Toward that end, we demonstrated previously that BD youth have behavioral deficits on reversal learning tasks. On such tasks, participants must first acquire a stimulus/response relationship through trial-and-error learning, and then discern when the stimulus/reward relationship reverses. Here, we use event-related functional magnetic resonance imaging (fMRI) to elucidate neural correlates of reversal learning deficits in euthymic BD youth compared to typically developing controls. METHOD We compared euthymic pediatric BD participants (n = 16) versus age-, sex-, and IQ-matched controls (n = 16). Our main outcome measure was blood oxygen level-dependent (BOLD) signal measured with fMRI during an event-related probabilistic reversal task. RESULTS Pediatric BD participants had significantly greater neural activity than controls in fronto-parietal regions during the reversal phase, particularly in response to punished reversal errors (p < 0.05 corrected for multiple comparisons). CONCLUSIONS Our current study suggests that during reversal learning, BD youths inefficiently recruit regions associated with processing response conflict and implementing alternative responses, including subdivisions of the frontal cortex and the parietal cortex. Such deficits are present in euthymic BD youth. Further work is necessary to evaluate the specificity of such alterations.
Collapse
Affiliation(s)
- Daniel P Dickstein
- Mood and Anxiety Disorders Program, National Institute of Mental Health, Bethesda, MD 20892, USA.
| | | | | | | | | | | |
Collapse
|
37
|
Suicidality and brain volumes in pediatric epilepsy. Epilepsy Behav 2010; 18:286-90. [PMID: 20494620 DOI: 10.1016/j.yebeh.2010.04.018] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2010] [Revised: 04/12/2010] [Accepted: 04/14/2010] [Indexed: 11/20/2022]
Abstract
This study examined the relationship between suicidal ideation and frontotemporal volumes, particularly orbital frontal gyrus volume, in 51 subjects with epilepsy with a mean age of 9.8 (2.1) years. Structured psychiatric interviews of the children and parents provided information on suicidal behavior and DSM-IV diagnoses. Tissue of 1.5-T MRI scans was segmented, and total brain, frontal lobe, frontal parcellations, and temporal lobe volumes were computed. The 11 subjects with epilepsy with suicidal ideation had significantly smaller right orbital frontal gyrus white matter volumes and larger left temporal lobe gray matter volumes than the 40 children without suicidal thoughts. Given the role of the orbital frontal gyrus in both emotional regulation and epilepsy, these findings highlight the biological underpinnings of suicidal ideation in pediatric epilepsy.
Collapse
|
38
|
Takahashi T, Malhi GS, Wood SJ, Yücel M, Walterfang M, Tanino R, Suzuki M, Pantelis C. Insular cortex volume in established bipolar affective disorder: a preliminary MRI study. Psychiatry Res 2010; 182:187-90. [PMID: 20417066 DOI: 10.1016/j.pscychresns.2010.01.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2009] [Revised: 01/11/2010] [Accepted: 01/13/2010] [Indexed: 11/19/2022]
Abstract
This structural magnetic resonance imaging study investigated insular cortex volume in 26 patients with bipolar I disorder and 24 matched controls. While insular volume did not differ between these groups, exploratory analyses demonstrated that the number of depressive episodes correlated negatively with the anterior insular volume in the patients, suggesting it may have a role in the pathophysiology of bipolar disorder.
Collapse
Affiliation(s)
- Tsutomu Takahashi
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, University of Melbourne and Melbourne Health, 161 Barry Street, Carlton South, Victoria 3053, Australia.
| | | | | | | | | | | | | | | |
Collapse
|
39
|
McNamara RK. DHA deficiency and prefrontal cortex neuropathology in recurrent affective disorders. J Nutr 2010; 140:864-8. [PMID: 20147466 PMCID: PMC2838627 DOI: 10.3945/jn.109.113233] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Increasing evidence suggests that docosahexaenoic acid [DHA, 22:6(n-3)], the principal (n-3) fatty acid in brain gray matter, has neurotrophic and neuroprotective properties. Preliminary clinical evidence also suggests that the perinatal accrual, and the subsequent dietary maintenance of, cortical DHA is positively associated with cortical gray matter volumes. The pathophysiology of recurrent affective disorders, including unipolar and bipolar depression, is associated with (n-3) fatty acid deficiency, DHA deficits, impaired astrocyte mediated vascular coupling, neuronal shrinkage, and reductions in gray matter volume in the prefrontal cortex (PFC). Preclinical studies have also observed neuronal shrinkage and indices of astrocyte pathology in the DHA-deficient rat brain. Together, this body of evidence supports the proposition that DHA deficiency increases vulnerability to neuronal atrophy in the PFC of patients with affective disorders. Because projections from the PFC modulate multiple limbic structures involved in affective regulation, this represents one plausible mechanism by which (n-3) fatty acid deficiency may increase vulnerability to recurrent affective disorders.
Collapse
|
40
|
Dickstein DP, Finger EC, Skup M, Pine DS, Blair JR, Leibenluft E, Leibenluft E. Neural activation during encoding of emotional faces in pediatric bipolar disorder. Bipolar Disord 2007; 9:679-92. [PMID: 17988357 PMCID: PMC2946159 DOI: 10.1111/j.1399-5618.2007.00418.x] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
OBJECTIVE Neurobiological understanding of bipolar disorder (BD) is limited by a paucity of functional magnetic resonance imaging (fMRI) research examining correlates of psychological processes. To begin to address these limitations, the current study tests the hypothesis that pediatric BD (PBD) subjects exhibit altered neural activation during encoding of emotional faces compared to typically developing controls. METHODS Pediatric BD subjects (n=23; mean age=14.2+/-3.1 years) and controls (n=22; mean age=14.7+/-2.3 years) were matched on age, gender, and IQ. In this event-related fMRI study, subjects were scanned while viewing emotional faces and given a surprise recognition memory test 30 min postscan. Our main outcome measure was between-group differences in neural activation during successful versus unsuccessful face encoding. RESULTS Pediatric BD youth exhibited reduced memory for emotional faces, relative to healthy comparisons, particularly on fearful faces. Event-related fMRI analyses controlling for this behavioral difference showed that PBD subjects, compared to controls, had increased neural activation in the striatum and anterior cingulate cortex when successfully encoding happy faces and in the orbitofrontal cortex when successfully encoding angry faces. There were no between-group differences in neural activation during fearful face encoding. CONCLUSIONS Our results extend what is known about memory and face emotion processing impairments in PBD subjects by showing increased fronto-striatal activation during encoding of emotional faces. Further work is required to determine the impact of mood state, medication, and comorbid illnesses on these findings.
Collapse
Affiliation(s)
- Daniel P Dickstein
- Division of Intramural Research Program, National Institute of Mental Health, Pediatrics and Developmental Neuropsychiatry Branch, Bethesda, MD 20892-2670, USA.
| | - Elizabeth C Finger
- Mood and Anxiety Disorders Program, National Institute of Mental Health, Bethesda, MD,Department of Clinical Neurological Sciences, University of Western Ontario, London, Ontario, Canada
| | - Martha Skup
- Mood and Anxiety Disorders Program, National Institute of Mental Health, Bethesda, MD,Biostatistics Program, Yale University, New Haven, CT, USA
| | - Daniel S Pine
- Mood and Anxiety Disorders Program, National Institute of Mental Health, Bethesda, MD
| | - James R Blair
- Mood and Anxiety Disorders Program, National Institute of Mental Health, Bethesda, MD
| | - Ellen Leibenluft
- Mood and Anxiety Disorders Program, National Institute of Mental Health, Bethesda, MD
| | | |
Collapse
|