1
|
Bicak EA. A first in literature: anesthesia management in kidney transplant surgery of a patient with McArdle disease. Niger J Clin Pract 2023; 26:1045-1049. [PMID: 37635594 DOI: 10.4103/njcp.njcp_895_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2023]
Abstract
McArdle disease is an inherited myopathy that autosomal recessive inheritance and is also known as glycogen storage disease type 5. Myoglobinuria, increase in serum CK level and darkening of urine color secondary to myoglobinuria are typical. Patients may have symptoms associated with increased rhabdomyolysis secondary acute renal failure or hyperkalemia after long and strenuous exercise periods. Today, many studies in the literature have shown that transplantation is superior to dialysis in patients with end-stage renal disease. Our case is a 53-year-old male patient with the diagnosis of McArdle syndrome who was going to have a kidney transplant. The patient had essential hypertension and history of HBsAg+. Total intravenous anesthesia technique was chosen as the anesthesia technique because inhaled anesthetic agents may trigger malignant hyperthermia in the patient. We didn't experience any perioperative complications in our patient. In conclusion, renal transplantation performed with total intravenous in a McArdle syndrome patient may be a simple and effective technique.
Collapse
Affiliation(s)
- E A Bicak
- Department of Anesthesiology and Reanimation, Gazi Yaşargil Training and Research Hospital, Anesthesiology and Reanimation Clinic, Diyarbakir, Turkey
| |
Collapse
|
2
|
Hopkins PM. What is malignant hyperthermia susceptibility? Br J Anaesth 2023:S0007-0912(23)00189-7. [PMID: 37198032 DOI: 10.1016/j.bja.2023.04.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 04/07/2023] [Accepted: 04/17/2023] [Indexed: 05/19/2023] Open
Abstract
The molecular mechanisms of susceptibility to malignant hyperthermia are complex. The malignant hyperthermia susceptibility phenotype should be reserved for patients who have a personal or family history consistent with malignant hyperthermia under anaesthesia and are subsequently demonstrated through diagnostic testing to be at risk.
Collapse
Affiliation(s)
- Philip M Hopkins
- Leeds Institute of Medical Research at St James's, University of Leeds, Leeds, UK; Malignant Hyperthermia Investigation Unit, Department of Anaesthesia, Leeds Teaching Hospitals NHS Trust, Leeds, UK.
| |
Collapse
|
3
|
de Mello JM, Andrade PV, Santos JM, Oliveira ASB, Vainzof M, do Amaral JLG, Almeida da Silva HC. Predictive factors of the contracture test for diagnosing malignant hyperthermia in a Brazilian population sample: a retrospective observational study. BRAZILIAN JOURNAL OF ANESTHESIOLOGY (ELSEVIER) 2023; 73:145-152. [PMID: 35835312 PMCID: PMC10068564 DOI: 10.1016/j.bjane.2022.06.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 06/01/2022] [Accepted: 06/03/2022] [Indexed: 10/17/2022]
Abstract
INTRODUCTION Malignant Hyperthermia (MH) is a pharmacogenetic, hereditary and autosomal dominant syndrome triggered by halogenates/succinylcholine. The In Vitro Contracture Test (IVCT) is the gold standard diagnostic test for MH, and it evaluates abnormal skeletal muscle reactions of susceptible individuals (earlier/greater contracture) when exposed to caffeine/halothane. MH susceptibility episodes and IVCT seem to be related to individual features. OBJECTIVE To assess variables that correlate with IVCT in Brazilian patients referred for MH investigation due to a history of personal/family MH. METHODS We examined IVCTs of 80 patients investigated for MH between 2004‒2019. We recorded clinical data (age, sex, presence of muscle weakness or myopathy with muscle biopsy showing cores, genetic evaluation, IVCT result) and IVCT features (initial and final maximum contraction, caffeine/halothane concentration triggering contracture of 0.2g, contracture at caffeine concentration of 2 and 32 mmoL and at 2% halothane, and contraction after 100 Hz stimulation). RESULTS Mean age of the sample was 35±13.3 years, and most of the subjects were female (n=43 or 54%) and MH susceptible (60%). Of the 20 subjects undergoing genetic investigation, 65% showed variants in RYR1/CACNA1S genes. We found no difference between the positive and negative IVCT groups regarding age, sex, number of probands, presence of muscle weakness or myopathy with muscle biopsy showing cores. Regression analysis revealed that the best predictors of positive IVCT were male sex (+12%), absence of muscle weakness (+20%), and personal MH background (+17%). CONCLUSIONS Positive IVCT results have been correlated to male probands, in accordance with early publications. Furthermore, normal muscle strength has been confirmed as a significant predictor of positive IVCT while investigating suspected MH cases.
Collapse
Affiliation(s)
- Jean Marcel de Mello
- Universidade Federal de São Paulo, Escola Paulista de Medicina, Centro de Hipertermia Maligna, Disciplina de Anestesiologia, Dor e Terapia Intensiva, São Paulo, SP, Brazil
| | - Pamela Vieira Andrade
- Universidade Federal de São Paulo, Escola Paulista de Medicina, Centro de Hipertermia Maligna, Disciplina de Anestesiologia, Dor e Terapia Intensiva, São Paulo, SP, Brazil
| | - Joilson Moura Santos
- Universidade Federal de São Paulo, Escola Paulista de Medicina, Centro de Hipertermia Maligna, Disciplina de Anestesiologia, Dor e Terapia Intensiva, São Paulo, SP, Brazil
| | | | - Mariz Vainzof
- Universidade de São Paulo, Instituto de Biociências, Departamento de Genética e Biologia Evolutiva, São Paulo, SP, Brazil
| | - José Luiz Gomes do Amaral
- Universidade Federal de São Paulo, Escola Paulista de Medicina, Centro de Hipertermia Maligna, Disciplina de Anestesiologia, Dor e Terapia Intensiva, São Paulo, SP, Brazil
| | - Helga Cristina Almeida da Silva
- Universidade Federal de São Paulo, Escola Paulista de Medicina, Centro de Hipertermia Maligna, Disciplina de Anestesiologia, Dor e Terapia Intensiva, São Paulo, SP, Brazil.
| |
Collapse
|
4
|
Dalmas-Laurent AF, Bruneau B, Roux-Buisson N. Hyperthermie maligne de l’anesthésie. ANESTHÉSIE & RÉANIMATION 2023. [DOI: 10.1016/j.anrea.2023.01.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
|
5
|
Janssens L, De Puydt J, Milazzo M, Symoens S, De Bleecker JL, Herdewyn S. Risk of malignant hyperthermia in patients carrying a variant in the skeletal muscle ryanodine receptor 1 gene. Neuromuscul Disord 2022; 32:864-869. [PMID: 36283893 DOI: 10.1016/j.nmd.2022.10.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 10/12/2022] [Accepted: 10/13/2022] [Indexed: 12/15/2022]
Abstract
Malignant hyperthermia is a life-threatening disorder, which can be prevented by avoiding certain anesthetic agents. Pathogenic variants in the skeletal muscle ryanodine receptor 1-gene are linked to malignant hyperthermia. We retrospectively studied 15 patients who presented to our clinic with symptoms of muscle dysfunction (weakness, myalgia or cramps) and were later found to have a variant in the skeletal muscle ryanodine receptor 1-gene. Symptoms, creatine kinase levels, electromyography, muscle biopsy and in vitro contracture test results were reviewed. Six out of the eleven patients, with a variant of unknown significance in the skeletal muscle ryanodine receptor 1-gene, had a positive in vitro contracture test, indicating malignant hyperthermia susceptibility. In one patient, with two variants of unknown significance, both variants were required to express the malignant hyperthermia-susceptibility trait. Neurologists should consider screening the skeletal muscle ryanodine receptor 1-gene in patients with myalgia or cramps, even when few to no abnormalities on ancillary testing.
Collapse
Affiliation(s)
- Lise Janssens
- Faculty of medical and health sciences, Ghent University, Corneel Heymanslaan 10, Ghent 9000, Belgium
| | - Joris De Puydt
- University Hospital of Antwerp, Drie Eikenstraat 655, Edegem 2650, Belgium; Faculty of medical and health sciences, Antwerp University, Prinsstraat 13, Antwerp 2000, Belgium
| | - Mauro Milazzo
- Center for Medical Genetics Ghent, Ghent University Hospital, Corneel Heymanslaan 10, Ghent 9000, Belgium
| | - Sofie Symoens
- Faculty of medical and health sciences, Ghent University, Corneel Heymanslaan 10, Ghent 9000, Belgium; Center for Medical Genetics Ghent, Ghent University Hospital, Corneel Heymanslaan 10, Ghent 9000, Belgium
| | - Jan L De Bleecker
- Faculty of medical and health sciences, Ghent University, Corneel Heymanslaan 10, Ghent 9000, Belgium; Department of Neurology, Ghent University Hospital, Corneel Heymanslaan 10, Ghent 9000, Belgium
| | - Sarah Herdewyn
- Department of Neurology, Ghent University Hospital, Corneel Heymanslaan 10, Ghent 9000, Belgium.
| |
Collapse
|
6
|
Malignant Hyperthermia in PICU—From Diagnosis to Treatment in the Light of Up-to-Date Knowledge. CHILDREN 2022; 9:children9111692. [DOI: 10.3390/children9111692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 10/04/2022] [Accepted: 10/31/2022] [Indexed: 11/06/2022]
Abstract
Malignant Hyperthermia (MH) is a rare, hereditary, life-threatening disease triggered by volatile anesthetics and succinylcholine. Rarely, MH can occur after non-pharmacological triggers too. MH was detected more often in children and young adults, which makes this topic very important for every pediatric specialist, both anesthesiologists and intensivists. MH crisis is a life-threatening severe hypermetabolic whole-body reaction. Triggers of MH are used in pediatric intensive care unit (PICU) as well, volatile anesthetics in difficult sedation, status asthmaticus or epilepticus, and succinylcholine still sometimes in airway management. Recrudescence or delayed onset of MH crisis hours after anesthesia was previously described. MH can also be a cause of rhabdomyolysis and hyperpyrexia in the PICU. In addition, patients with neuromuscular diseases are often admitted to PICU and they might be at risk for MH. The most typical symptoms of MH are hypercapnia, tachycardia, hyperthermia, and muscle rigidity. Thinking of the MH as the possible cause of deterioration of a patient’s clinical condition is the key to early diagnosis and treatment. The sooner the correct treatment is commenced, the better patient´s outcome. This narrative review article aims to summarize current knowledge and guidelines about recognition, treatment, and further management of MH in PICU.
Collapse
|
7
|
Management of patients susceptible to malignant hyperthermia: A surgeon's perspective. Int J Pediatr Otorhinolaryngol 2022; 159:111187. [PMID: 35660936 DOI: 10.1016/j.ijporl.2022.111187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Revised: 03/28/2022] [Accepted: 05/21/2022] [Indexed: 11/22/2022]
Abstract
OBJECTIVES Malignant hyperthermia (MH) susceptibility caries broad implications for the care of pediatric surgical patients. While precautions must often be taken for only a vague family history, two options exist to assess MH-susceptibility. We evaluate the use of MH precautions and susceptibility testing at a freestanding children's hospital. METHODS This single institution retrospective cohort study identified patients of any age who received general anesthetics utilizing MH precautions over a five-year period. The electronic medical record was further queried for patients diagnosed with MH. The indication for MH precautions and uses of susceptibility testing are assessed. Secondary outcomes included a diagnosis of bona fide MH. RESULTS A total of 125 patients received 174 anesthetics with MH precautions at a mean age of 114 months (0-363 months). Otolaryngology was the procedural service most frequently involved in the care of the cohort (n = 45; 26%). A reported personal or family history of MH (n = 102; 59%) was the most common indication for precautions, followed by muscular dystrophy (n = 29; 17%). No MH events occurred in the cohort and further review of ICD-9 and -10 diagnosis codes found no MH diagnoses. No study subjects received muscle biopsy and contracture testing and only 5 (4%) underwent genetic testing for genomic variants known to cause MH susceptibility. A case example is given to highlight the implications of a reported MH history. CONCLUSION Otolaryngologists should maintain a familiarity with the precautions necessary to manage patients at risk for MH and MH-like reactions. Without an accessible test to rule out susceptibility, surgeons must rely on a careful history to appropriately utilize precautions. An inappropriate label of "MH-susceptible" may result in decreased access to care and treatment delays.
Collapse
|
8
|
Su IM, Wang PK, Chen CY, Huang HT, Day YJ. Rapid screening for mutations associated with malignant hyperthermia using high-resolution melting curve analysis. Tzu Chi Med J 2021; 33:399-405. [PMID: 34760638 PMCID: PMC8532588 DOI: 10.4103/tcmj.tcmj_271_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 01/12/2021] [Accepted: 02/09/2021] [Indexed: 11/13/2022] Open
Abstract
OBJECTIVES The diagnosis of malignant hyperthermia (MH) is based on clinical signs or laboratory testing. The gold standard laboratory test is the in vitro contracture test, although it is invasive, expensive, and only performed at specialized centers. Genetic diagnosis is another option, although direct mutation screening is a laborious task. Therefore, we evaluated whether high-resolution melting (HRM) curve analysis could be used as a rapid screening tool to target MH-associated mutations. MATERIALS AND METHODS The feasibility of HRM analysis was evaluated using plasmids that were constructed by cloning wild-type or mutated versions of the ryanodine receptor 1 (RYR1) gene into the pCR2.1 plasmid. We obtained engineered plasmids and patient DNA extracted from blood samples with known wild-type or mutated sequences that are associated with MH. Amplicon lengths were kept relatively short (<250 bp) to improve discrimination between the engineered and patient plasmids. Real-time polymerase chain reaction (PCR) cycling and HRM analysis of the engineered plasmids and patient DNA were performed using the LightCycler 480 System (Roche). RESULTS The HRM results were clearly different from those obtained using real-time PCR. Furthermore, the HRM analysis provided sufficient resolution to identify two single-nucleotide variants in the tested RYR1 exons. CONCLUSION We conclude that HRM analysis can provide high resolution for identifying single-nucleotide variants in RYR1, which might be useful for predicting the risk of MH in the preanesthesia setting.
Collapse
Affiliation(s)
- I-Min Su
- Department of Anesthesiology, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| | - Po-Kai Wang
- Department of Anesthesiology, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| | - Chun-Yu Chen
- Department of Anesthesiology, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Hsien-Tse Huang
- Department of Anesthesiology, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| | - Yuan-Ji Day
- Department of Anesthesiology, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
- Department of Anesthesiology, Chang Gung Memorial Hospital, Taoyuan, Taiwan
- Department of Anesthesiology, Tung's Taichung MetroHarbor Hospital, Taichung, Taiwan
| |
Collapse
|
9
|
Johnston JJ, Dirksen RT, Girard T, Gonsalves SG, Hopkins PM, Riazi S, Saddic LA, Sambuughin N, Saxena R, Stowell K, Weber J, Rosenberg H, Biesecker LG. Variant curation expert panel recommendations for RYR1 pathogenicity classifications in malignant hyperthermia susceptibility. Genet Med 2021; 23:1288-1295. [PMID: 33767344 PMCID: PMC8263483 DOI: 10.1038/s41436-021-01125-w] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 02/07/2021] [Accepted: 02/09/2021] [Indexed: 12/15/2022] Open
Abstract
Purpose As a ClinGen Expert Panel (EP) we set out to adapt the ACMG pathogenicity criteria for classification of RYR1 variants as related to autosomal dominantly-inherited malignant hyperthermia (MH). Methods We specified ACMG/AMP criteria for variant classification for RYR1 and MH. Proposed rules were piloted on 84 variants. We applied quantitative evidence calibration for several criteria using likelihood ratios based on the Bayesian framework. Results Seven ACMG/AMP criteria were adopted without changes, nine were adopted with RYR1-specific modifications, and ten were dropped. The in silico (PP3 and BP4) and hot spot criteria (PM1) were evaluated quantitatively. REVEL gave an odds ratio (OR) of 23:1 for PP3 and 14:1 for BP4 using trichotomized cut-offs of ≥0.85 (pathogenic) and ≤0.5 (benign). The PM1 hotspot criterion had an OR of 24:1. PP3 and PM1 were implemented at moderate strength. Applying the revised ACMG criteria to 44 recognized MH variants, 29 were classified as pathogenic, 13 as likely pathogenic, and two as variants of uncertain significance. Conclusion Curation of these variants will facilitate classification of RYR1/MH genomic testing results, which is especially important for secondary findings analyses. Our approach to quantitatively calibrating criteria is generalizable to other variant curation expert panels.
Collapse
Affiliation(s)
- Jennifer J Johnston
- Medical Genomics and Metabolic Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA.
| | - Robert T Dirksen
- Department of Pharmacology and Physiology, University of Rochester Medical School, Rochester, NY, USA
| | - Thierry Girard
- Department of Anesthesiology, University of Basel, Basel, Switzerland
| | - Stephen G Gonsalves
- Medical Genomics and Metabolic Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Philip M Hopkins
- MH Unit, Leeds Institute of Medical Research at St James's, University of Leeds, Leeds, UK
| | - Sheila Riazi
- Department of Anesthesia and Pain Medicine, University Health Network, University of Toronto, Toronto, ON, Canada
| | - Louis A Saddic
- Department of Anesthesiology, University of California Los Angeles, Los Angeles, CA, USA
| | - Nyamkhishig Sambuughin
- Consortium for Health and Military Performance, Uniformed Services University Health Science, Bethesda, MD, USA
| | - Richa Saxena
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Kathryn Stowell
- School of Fundamental Sciences, Massey University, Palmerston North, New Zealand
| | | | | | - Leslie G Biesecker
- Medical Genomics and Metabolic Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA.,NIH Intramural Sequencing Center, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
10
|
Relevance of pathogenicity prediction tools in human RYR1 variants of unknown significance. Sci Rep 2021; 11:3445. [PMID: 33564012 PMCID: PMC7873245 DOI: 10.1038/s41598-021-82024-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Accepted: 12/29/2020] [Indexed: 12/12/2022] Open
Abstract
Malignant hyperthermia (MH) is a pharmacogenetic disorder of skeletal muscle metabolism characterized by generalized muscle rigidity, increased body temperature, rhabdomyolysis, hyperkalemia and severe metabolic acidosis. The underlying mechanism of MH involves excessive Ca2+ release from myotubes via the ryanodine receptor type 1 (RYR1) and the voltage-dependent L-type calcium channel (CACNA1S). As more than 300 variants of unknown significance have been detected to date, we examined whether freely available pathogenicity prediction tools are able to detect relevant MH causing variants. In this diagnostic accuracy study, blood samples from 235 individuals with a history of a clinical malignant hyperthermia or their close relatives were genetically screened for RYR1 variants of all 106 RYR1 exons and additionally for known variants of CACNA1S. In vitro contracture tests were conducted on muscle biopsies obtained from all individuals, independently of whether a pathogenic variant, a variant of unknown significance or no variant was detected. Comparisons were made to three established bioinformatic pathogenicity detection tools to identify the clinical impact of the variants of unknown significance. All detected genetic variants were tested for pathogenicity by three in silico approaches and compared to the in vitro contracture test. Sensitivity and specificity of exon screening of all individuals listed in our MH database was analyzed. Exon screening identified 97 (41%) of the 235 individuals as carriers of pathogenic variants. Variants of unknown significance were detected in 21 individuals. Variants of unknown significance were subdivided into 19 malignant-hyperthermia-susceptible individuals and 2 non-malignant-hyperthermia-susceptible individuals. All pathogenic variants as well as the malignant-hyperthermia-suspectible variants were correctly identified by the bioinformatic prediction tools. Sensitivity of in silico approaches ranged between 0.71 and 0.98 (Polyphen 0.94 [CI 95% 0.75; 0.99]; Sift 0.98 [CI 95% 0.81; 0.99]; MutationTaster 0.92 [CI 95% 0.75; 0.99]). Specificity differed depending on the used tool (Polphen 0.98 [CI 95% 0.32; 0.99]; Sift 0.98 [CI 95% 0.32; 0.99]; MutationTaster 0.00 [CI 95% 0.00; 0.60]). All pathogenic variants and variants of unknown significance were scored as probably damaging in individuals, demonstrating a high sensitivity. Specificity was very low in one of the three tested programs. However, due to potential genotype–phenotype discordance, bioinformatic prediction tools are currently of limited value in diagnosing pathogenicity of MH-susceptible variants.
Collapse
|
11
|
Ibarra Moreno CA, Kraeva N, Zvaritch E, Figueroa L, Rios E, Biesecker L, Van Petegem F, Hopkins PM, Riazi S. A multi-dimensional analysis of genotype-phenotype discordance in malignant hyperthermia susceptibility. Br J Anaesth 2020; 125:995-1001. [PMID: 32861507 PMCID: PMC7729844 DOI: 10.1016/j.bja.2020.07.042] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 07/16/2020] [Accepted: 07/16/2020] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND Malignant hyperthermia (MH) susceptibility is an inherited condition, diagnosed either by the presence of a pathogenic genetic variant or by in vitro caffeine-halothane contracture testing. Through a multi-dimensional approach, we describe the implications of discordance between genetic and in vitro test results in a patient with a family history of possible MH. METHODS The patient, whose brother had a possible MH reaction, underwent the caffeine-halothane contracture test (CHCT) according to the North American MH Group protocol. Screening of the complete RYR1 and CACNA1S transcripts was done using Sanger sequencing. Additional functional analyses included skinned myofibre calcium-induced calcium release sensitivity, calcium signalling assays in cultured myotubes, and in silico evaluation of the effect of any genetic variants on their chemical environment. RESULTS The patient's CHCT result was negative but she carried an RYR1 variant c.1209C>G, p.Ile403Met, that is listed as pathogenic by the European Malignant Hyperthermia Group. Functional tests indicated a gain-of-function effect with a weak impact, and the variant was predicted to affect the folding stability of the 3D structure of the RyR1 protein. Based on American College of Medical Genetics and Genomics/Association of Molecular Pathology guidelines, this variant would be characterised as a variant of uncertain significance. CONCLUSIONS Available data do not confirm or exclude an increased risk of MH for this patient. Further research is needed to correlate RyR1 functional assays, including the current gold standard testing for MH susceptibility, with clinical phenotypes. The pathogenicity of genetic variants associated with MH susceptibility should be re-evaluated.
Collapse
Affiliation(s)
- Carlos A Ibarra Moreno
- Malignant Hyperthermia Investigation Unit, Department of Anesthesia, University Health Network, University of Toronto, Toronto, ON, Canada
| | - Natalia Kraeva
- Malignant Hyperthermia Investigation Unit, Department of Anesthesia, University Health Network, University of Toronto, Toronto, ON, Canada
| | - Elena Zvaritch
- Malignant Hyperthermia Investigation Unit, Department of Anesthesia, University Health Network, University of Toronto, Toronto, ON, Canada
| | - Lourdes Figueroa
- Department of Physiology and Biophysics, Rush University Medical Center, Chicago, IL, USA
| | - Eduardo Rios
- Department of Physiology and Biophysics, Rush University Medical Center, Chicago, IL, USA
| | - Leslie Biesecker
- Medical Genomics and Metabolic Genetics Branch, National Human Genome Research Institute, Bethesda, MD, USA
| | - Filip Van Petegem
- Department of Biochemistry and Molecular Biology, The University of British Columbia, Vancouver, BC, Canada
| | - Philip M Hopkins
- Leeds Institute of Medical Research at St James's, University of Leeds, Leeds, UK; Department of Anaesthesia, St James's University Hospital, Leeds Teaching Hospitals NHS Trust, Leeds, UK
| | - Sheila Riazi
- Malignant Hyperthermia Investigation Unit, Department of Anesthesia, University Health Network, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
12
|
Overlapping Mechanisms of Exertional Heat Stroke and Malignant Hyperthermia: Evidence vs. Conjecture. Sports Med 2020; 50:1581-1592. [DOI: 10.1007/s40279-020-01318-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
13
|
Reggiani C. Caffeine as a tool to investigate sarcoplasmic reticulum and intracellular calcium dynamics in human skeletal muscles. J Muscle Res Cell Motil 2020; 42:281-289. [PMID: 32034582 DOI: 10.1007/s10974-020-09574-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 01/30/2020] [Indexed: 12/23/2022]
Abstract
Caffeine is worldwide used for its power to increase cognitive and physical performance. The ergogenic effects of caffeine, however, do not depend on a direct action on muscles. Actually, the actions of caffeine on skeletal muscles, take place at millimolar concentrations which are far above the micromolar level reached after a regular consumption of coffee or similar drinks, and close to a lethal concentration. At millimolar concentrations caffeine exerts a powerful effect on sarcoplasmic reticulum (SR) activating the release of calcium via ryanodine receptors and, possibly, inhibiting calcium reuptake. For this reason caffeine has become a valuable tool for studying SR function and for diagnostics of SR related muscle disorders. This review aims to briefly describe the effects and the mechanism of action of caffeine on sarcoplasmic reticulum and to focus on its use to study intracellular calcium dynamics in human muscle fibers in physiological and pathological conditions.
Collapse
Affiliation(s)
- Carlo Reggiani
- Department of Biomedical Sciences, University of Padova, Via Marzolo 3, 35131, Padua, Italy. .,ZRS-Science and Research Center, Koper, Slovenia.
| |
Collapse
|
14
|
Yang L, Tautz T, Zhang S, Fomina A, Liu H. The current status of malignant hyperthermia. J Biomed Res 2020; 34:75-85. [PMID: 32305961 DOI: 10.7555/jbr.33.20180089] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Malignant hyperthermia (MH) is a rare and life-threatening pharmacogenetic disorder triggered by volatile anesthetics, the depolarizing muscle relaxant succinylcholine, and rarely by strenuous exercise or environmental heat. The exact prevalence of MH is unknown, and it varies from 1:16 000 in Denmark to 1:100 000 in New York State. The underlying mechanism of MH is excessive calcium release from the sarcoplasmic reticulum (SR), leading to uncontrolled skeletal muscle hyper-metabolism. Genetic mutations in ryanodine receptor type 1 ( RYR1) and CACNA1S have been identified in approximately 50% to 86% and 1% of MH-susceptible (MHS) individuals, respectively. Classic clinical symptoms of MH include hypercarbia, sinus tachycardia, masseter spasm, hyperthermia, acidosis, muscle rigidity, hyperkalemia, myoglobinuria, and etc. There are two types of testing for MH: a genetic test and a contracture test. Contracture testing is still being considered as the gold standard for MH diagnosis. Dantrolene is the only available drug approved for the treatment of MH through suppressing the calcium release from SR. Since clinical symptoms of MH are highly variable, it can be difficult to establish a diagnosis of MH. Nevertheless, prompt diagnosis and treatments are crucial to avoid a fatal outcome. Therefore, it is very important for anesthesiologists to raise awareness and understand the characteristics of MH. This review summarizes epidemiology, clinical symptoms, diagnosis and treatments of MH and any new developments.
Collapse
Affiliation(s)
- Lukun Yang
- Department of Anesthesiology, the Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong 519000, China;Department of Anesthesiology and Pain Medicine, University of California Davis Health, Sacramento, CA 95817, USA
| | - Timothy Tautz
- Department of Anesthesiology and Pain Medicine, University of California Davis Health, Sacramento, CA 95817, USA
| | - Shulin Zhang
- Department of Pathology and Laboratory Medicine, College of Medicine, University of Kentucky, Lexington, KY 40506, USA
| | - Alla Fomina
- Department of Physiology and Membrane Biology, University of California Davis Health, Sacramento, CA 95817, USA
| | - Hong Liu
- Department of Anesthesiology and Pain Medicine, University of California Davis Health, Sacramento, CA 95817, USA
| |
Collapse
|
15
|
Hopkins P, Cooke P, Clarke R, Guttormsen A, Platt P, Dewachter P, Ebo D, Garcez T, Garvey L, Hepner D, Khan D, Kolawole H, Kopac P, Krøigaard M, Laguna J, Marshall S, Mertes P, Rose M, Sabato V, Savic L, Savic S, Takazawa T, Volcheck G, Voltolini S, Sadleir P. Consensus clinical scoring for suspected perioperative immediate hypersensitivity reactions. Br J Anaesth 2019; 123:e29-e37. [DOI: 10.1016/j.bja.2019.02.029] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 02/26/2019] [Accepted: 02/28/2019] [Indexed: 12/27/2022] Open
|
16
|
Parker R, Schiemann AH, Langton E, Bulger T, Pollock N, Bjorksten A, Gillies R, Hutchinson D, Roxburgh R, Stowell KM. Functional Characterization of C-terminal Ryanodine Receptor 1 Variants Associated with Central Core Disease or Malignant Hyperthermia. J Neuromuscul Dis 2019; 4:147-158. [PMID: 28527222 PMCID: PMC5467713 DOI: 10.3233/jnd-170210] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Background: Central core disease and malignant hyperthermia are human disorders of skeletal muscle resulting from aberrant Ca2+ handling. Most malignant hyperthermia and central core disease cases are associated with amino acid changes in the type 1 ryanodine receptor (RyR1), the skeletal muscle Ca2+-release channel. Malignant hyperthermia exhibits a gain-of-function phenotype, and central core disease results from loss of channel function. For a variant to be classified as pathogenic, functional studies must demonstrate a correlation with the pathophysiology of malignant hyperthermia or central core disease. Objective: We assessed the pathogenicity of four C-terminal variants of the ryanodine receptor using functional analysis. The variants were identified in families affected by either malignant hyperthermia or central core disease. Methods: Four variants were introduced separately into human cDNA encoding the skeletal muscle ryanodine receptor. Following transient expression in HEK-293T cells, functional studies were carried out using calcium release assays in response to an agonist. Two previously characterized variants and wild-type skeletal muscle ryanodine receptor were used as controls. Results: The p.Met4640Ile variant associated with central core disease showed no difference in calcium release compared to wild-type. The p.Val4849Ile variant associated with malignant hyperthermia was more sensitive to agonist than wild-type but did not reach statistical significance and two variants (p.Phe4857Ser and p.Asp4918Asn) associated with central core disease were completely inactive. Conclusions: The p.Val4849Ile variant should be considered a risk factor for malignant hyperthermia, while the p.Phe4857Ser and p.Asp4918Asn variants should be classified as pathogenic for central core disease.
Collapse
Affiliation(s)
- Remai Parker
- Institute of Fundamental Sciences, Massey University, Palmerston North, New Zealand
| | - Anja H Schiemann
- Institute of Fundamental Sciences, Massey University, Palmerston North, New Zealand
| | | | - Terasa Bulger
- Department of Anaesthesia and Intensive Care, Palmerston North Hospital, Palmerston North, New Zealand
| | - Neil Pollock
- Department of Anaesthesia and Intensive Care, Palmerston North Hospital, Palmerston North, New Zealand
| | - Andrew Bjorksten
- Department of Anaesthesia and Pain Management, Royal Melbourne Hospital, Melbourne
| | - Robyn Gillies
- Department of Anaesthesia and Pain Management, Royal Melbourne Hospital, Melbourne
| | - David Hutchinson
- Department of Neurology, Auckland City Hospital, Auckland, New Zealand
| | - Richard Roxburgh
- Department of Neurology, Auckland City Hospital, Auckland, New Zealand
| | - Kathryn M Stowell
- Institute of Fundamental Sciences, Massey University, Palmerston North, New Zealand
| |
Collapse
|
17
|
Heytens K, De Ridder W, De Bleecker J, Heytens L, Baets J. Exertional rhabdomyolysis: Relevance of clinical and laboratory findings, and clues for investigation. Anaesth Intensive Care 2019; 47:128-133. [DOI: 10.1177/0310057x19835830] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Some degree of exertional rhabdomyolysis (ER), striated muscle breakdown associated with strenuous exercise, is a well-known phenomenon associated with endurance sports. However in rare cases, severe and/or recurrent ER is a manifestation of an underlying condition, which puts patients at risk for significant morbidity and mortality. Selecting the patients that need a diagnostic work up of an acute rhabdomyolysis episode is an important task. Based on the diagnostic work up of three illustrative patients treated in our hospital, retrospectively using the ‘RHABDO’ screening tool, we discuss the clinical and biochemical clues that should trigger further investigation for an underlying condition. Finally, we describe the most common genetic causes of this clinical syndrome.
Collapse
Affiliation(s)
- Karel Heytens
- Department of Intensive Care, Royal Adelaide Hospital, Adelaide, Australia
| | | | | | - Luc Heytens
- Department of Neurology, University Hospital Antwerp, Belgium
- MH Research Unit, University of Antwerp, Belgium
| | - Jonathan Baets
- Department of Neurology, University Hospital Antwerp, Belgium
- Laboratory of Neurogenetics and Biobank, University of Antwerp, Belgium
| |
Collapse
|
18
|
RYR1 Sequence Variants in Myopathies: Expression and Functional Studies in Two Families. BIOMED RESEARCH INTERNATIONAL 2019; 2019:7638946. [PMID: 31165076 PMCID: PMC6500691 DOI: 10.1155/2019/7638946] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 03/19/2019] [Indexed: 12/26/2022]
Abstract
The skeletal muscle ryanodine receptor (RyR1), i.e., the Ca2+ channel of the sarco/endoplasmic reticulum (S/ER), and the voltage-dependent calcium channel Cav1.1 are the principal channels involved in excitation-contraction coupling in skeletal muscle. RYR1 gene variants are linked to distinct skeletal muscle disorders, including malignant hyperthermia susceptibility and central core disease (CCD), mainly with autosomal dominant inheritance, and autosomal recessive myopathies with a broad phenotypic and histopathological spectrum. The age at onset of RYR1-related myopathies varies from infancy to adulthood. We report the identification of four RYR1 variants in two Italian families: one with myopathy and variants c.4003C>T (p.R1335C) and c.7035C>A (p.S2345R), and another with CCD and variants c.9293G>T (p.S3098I) and c.14771_14772insTAGACAGGGTGTTGCTCTGTTGCCCTTCTT (p.F4924_V4925insRQGVALLPFF). We demonstrate that, in patient-specific lymphoblastoid cells, the c.4003C>T (p.R1335C) variant is not expressed and the in-frame 30-nucleotide insertion variant is expressed at a low level. Moreover, Ca2+ release in response to the RyR1 agonist 4-chloro-m-cresol and to thapsigargin showed that the c.7035C>A (p.S2345R) variant causes depletion of S/ER Ca2+ stores and that the compound heterozygosity for variant c.9293G>T (p.S3098I) and the 30-nucleotide insertion increases RyR1-dependent Ca2+ release without affecting ER Ca2+ stores. In conclusion, we detected and functionally characterized disease-causing variants of the RyR1 channel in patient-specific lymphoblastoid cells. This paper is dedicated to the memory and contribution of Luigi Del Vecchio.
Collapse
|
19
|
Hudig K, Pollock N, Bulger T, Machon RG, Woodhead A, Schiemann AH, Stowell KM. Masseter muscle rigidity and the role of DNA analysis to confirm malignant hyperthermia susceptibility. Anaesth Intensive Care 2019; 47:60-68. [PMID: 30864471 DOI: 10.1177/0310057x18811816] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Malignant hyperthermia (MH) is an uncommon, autosomal dominant disorder of skeletal muscle, triggered by inhalational anaesthetics or depolarizing muscle relaxants. Masseter muscle rigidity (MMR) can be regarded as potentially a preceding sign for an MH reaction. Susceptibility to MH can be determined by the in vitro contracture test (IVCT) or DNA analysis where a familial variant is known. Our aims were to review patients with MMR, where IVCT and DNA analysis had been undertaken, to determine if DNA analysis could be used as an initial screening tool for MH susceptibility, and, by reviewing standard monitored variables (SMVs), to determine if any clinical characteristics could be used to differentiate between MMR patients who are MH susceptible (MHS) and those who are not. Patients with MMR were identified from the Palmerston North Hospital MH Reactions Database. IVCT and DNA analysis results were documented. DNA testing was performed retrospectively in the majority of patients as many patients had presented before DNA analysis was available. Forty-one patients were analysed. Fourteen were DNA positive/IVCT positive and six DNA positive only (48% in total), seven were IVCT positive/DNA negative and 14 were IVCT normal. Increased creatine kinase (>18,000 units/L) was consistent with MH susceptibility. Severity of MMR was not linked to MH susceptibility. This study confirmed that DNA analysis can be used as a first-line test for MH susceptibility in patients presenting with MMR (consistent with European MH Group recommendations). Creatine kinase was the only SMV that was significantly different between MHS and MH normal individuals.
Collapse
Affiliation(s)
- Kate Hudig
- 1 Department of Anaesthesia, Starship Children's Hospital, New Zealand
| | - Neil Pollock
- 2 Department of Anaesthesia and Intensive Care, Palmerston North Hospital, New Zealand
| | - Terasa Bulger
- 2 Department of Anaesthesia and Intensive Care, Palmerston North Hospital, New Zealand
| | - Roslyn G Machon
- 2 Department of Anaesthesia and Intensive Care, Palmerston North Hospital, New Zealand
| | - Andrew Woodhead
- 3 Department of Anaesthesia and Pain Management, Wellington Regional Hospital, New Zealand
| | - Anja H Schiemann
- 4 Institute of Fundamental Sciences, Massey University, New Zealand
| | | |
Collapse
|
20
|
Kaur H, Katyal N, Yelam A, Kumar K, Srivastava H, Govindarajan R. Malignant Hyperthermia. MISSOURI MEDICINE 2019; 116:154-159. [PMID: 31040503 PMCID: PMC6461318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Malignant Hyperthermia (MH) is a life-threatening pharmacogenetic disorder which results from exposure to volatile anesthetic agents and depolarizing muscle relaxants. It manifests as a hypermetabolic response resulting in tachycardia, tachypnea, hyperthermia, hypercapnia, acidosis, muscle rigidity and rhabdomyolysis. An increase in the end-tidal carbon dioxide is one of the earliest diagnostic signs. Dantrolene sodium is effective in the management of MH, and should be available whenever general anesthesia is administered. This review also aims to highlight the genetics and pathology of MH, along with its association with various inherited myopathy syndromes like central core disease, multi-mini core disease, Native-American myopathy, and King-Denborough syndrome.
Collapse
Affiliation(s)
- Harleen Kaur
- Harleen Kaur, MBBS, Nakul Katyal, MD, Anudeep Yelam, MBBS, Keerthana Kumar, MBBS, and Raghav Govindarajan, MD, MSMA member since 2013, are in the Department of Neurology, University of Missouri School of Medicine
| | - Nakul Katyal
- Harleen Kaur, MBBS, Nakul Katyal, MD, Anudeep Yelam, MBBS, Keerthana Kumar, MBBS, and Raghav Govindarajan, MD, MSMA member since 2013, are in the Department of Neurology, University of Missouri School of Medicine
| | - Anudeep Yelam
- Harleen Kaur, MBBS, Nakul Katyal, MD, Anudeep Yelam, MBBS, Keerthana Kumar, MBBS, and Raghav Govindarajan, MD, MSMA member since 2013, are in the Department of Neurology, University of Missouri School of Medicine
| | - Keerthana Kumar
- Harleen Kaur, MBBS, Nakul Katyal, MD, Anudeep Yelam, MBBS, Keerthana Kumar, MBBS, and Raghav Govindarajan, MD, MSMA member since 2013, are in the Department of Neurology, University of Missouri School of Medicine
| | - Hirsch Srivastava
- Harleen Kaur, MBBS, Nakul Katyal, MD, Anudeep Yelam, MBBS, Keerthana Kumar, MBBS, and Raghav Govindarajan, MD, MSMA member since 2013, are in the Department of Neurology, University of Missouri School of Medicine
| | - Raghav Govindarajan
- Harleen Kaur, MBBS, Nakul Katyal, MD, Anudeep Yelam, MBBS, Keerthana Kumar, MBBS, and Raghav Govindarajan, MD, MSMA member since 2013, are in the Department of Neurology, University of Missouri School of Medicine
| |
Collapse
|
21
|
Genetic epidemiology of malignant hyperthermia in the UK. Br J Anaesth 2018; 121:944-952. [PMID: 30236257 DOI: 10.1016/j.bja.2018.06.028] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2018] [Revised: 06/01/2018] [Accepted: 06/20/2018] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND Gaps in our understanding of genetic susceptibility to malignant hyperthermia (MH) limit the application and interpretation of genetic diagnosis of the condition. Our aim was to define the prevalence and role of variants in the three genes implicated in MH susceptibility in the largest comprehensively phenotyped MH cohort worldwide. METHODS We initially included one individual from each positive family tested in the UK MH Unit since 1971 to detect variants in RYR1, CACNA1S, or STAC3. Screening for genetic variants has been ongoing since 1991 and has involved a range of techniques, most recently next generation sequencing. We assessed the pathogenicity of variants using standard guidelines, including family segregation studies. The prevalence of recurrent variants of unknown significance was compared with the prevalence reported in a large database of sequence variants in low-risk populations. RESULTS We have confirmed MH susceptibility in 795 independent families, for 722 of which we have a DNA sample. Potentially pathogenic variants were found in 555 families, with 25 RYR1 and one CACNA1S variants previously unclassified recurrent variants significantly over-represented (P<1×10-7) in our cohort compared with the Exome Aggregation Consortium database. There was genotype-phenotype discordance in 86 of 328 families suitable for segregation analysis. We estimate non-RYR1/CACNA1S/STAC3 susceptibility occurs in 14-23% of MH families. CONCLUSIONS Our data provide current estimates of the role of variants in RYR1, CACNA1S, and STAC3 in susceptibility to MH in a predominantly white European population.
Collapse
|
22
|
A comprehensive review of malignant hyperthermia: Preventing further fatalities in orthopedic surgery. J Orthop 2018; 15:578-580. [PMID: 29881197 DOI: 10.1016/j.jor.2018.05.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 05/06/2018] [Indexed: 12/13/2022] Open
Abstract
Most frequently associated with orthopedic surgery, malignant hyperthermia is a rare genetic condition linked to volatile anesthetics and succinylcholine. If not treated quickly with appropriate measures, death may result. To aid in the prevention of further fatalities, this review seeks to educate clinicians and staff on the presentation and treatment of this disease, as well as to provide a comprehensive overview by further addressing prevalence, similar conditions, pathogenesis and other aspects. Although the number of deaths due to malignant hyperthermia has greatly declined in the last several years, increased knowledge may eliminate associated mortalities, particularly in the orthopedic setting.
Collapse
|
23
|
Frei D, Stowell KM, Langton EE, McRedmond L, Pollock NA, Bulger TF. Administration of Anaesthetic Triggering Agents to Patients Tested Malignant Hyperthermia Normal and Their Relatives in New Zealand: An Update. Anaesth Intensive Care 2017; 45:611-618. [DOI: 10.1177/0310057x1704500512] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Testing for malignant hyperthermia in New Zealand involves two tests—in vitro contracture testing of excised lateral quadriceps muscle and DNA analysis. In vitro contracture testing is regarded as the gold standard in malignant hyperthermia diagnosis but several publications have questioned the reliability of a normal result. Analysis of 479 anaesthetic records in 280 patients or their descendants throughout New Zealand who had tested negative for malignant hyperthermia, demonstrated there was no evidence of malignant hyperthermia episodes in this group who had been administered anaesthetic triggering agents. A wide range of anaesthetics were used over the study period. Analysis of each anaesthetic record was undertaken using the malignant hyperthermia grading scale which determines the likelihood that an anaesthetic event represents a malignant hyperthermia episode. Confirmation of the negative results was further supported by normal DNA analysis of patients in 48% of anaesthetics. There are advantages to using inhalational agents in certain situations and although demonstrating a zero risk of a malignant hyperthermia episode is not statistically possible, evidence in this large series suggests that the risk of an episode in these patients is extremely low and may be negligible. We suggest that anaesthetic triggering agents can be used safely in patients with normal in vitro contracture tests, and in their descendants.
Collapse
Affiliation(s)
- D. Frei
- Department of Anaesthesia and Pain Management, Wellington Regional Hospital, Wellington, New Zealand
| | - K. M. Stowell
- Institute of Fundamental Sciences, Massey University, Palmerston North, Manawatu, New Zealand
| | - E. E. Langton
- Specialist Anaesthetist, Department of Anaesthesia and Pain Management, Wellington Regional Hospital, Wellington, New Zealand
| | - L. McRedmond
- University of Auckland Medical School, University of Auckland, Auckland, New Zealand
| | - N. A. Pollock
- Department of Anaesthesia and Intensive Care, Palmerston North Hospital, Palmerston North, Manawatu, New Zealand
| | - T. F. Bulger
- Department of Anaesthesia and Intensive Care, Palmerston North Hospital, Palmerston North, Manawatu, New Zealand
| |
Collapse
|
24
|
Bjorksten AR, Gillies RL, Hockey BM, Du Sart D. Sequencing of genes involved in the movement of calcium across human skeletal muscle sarcoplasmic reticulum: continuing the search for genes associated with malignant hyperthermia. Anaesth Intensive Care 2017; 44:762-768. [PMID: 27832566 DOI: 10.1177/0310057x1604400625] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The genetic basis of malignant hyperthermia (MH) is not fully characterised and likely involves more than just the currently classified mutations in the gene encoding the skeletal muscle ryanodine receptor (RYR1) and the gene encoding the α1 subunit of the dihydropyridine receptor (CACNA1S). In this paper we sequence other genes involved in calcium trafficking within skeletal muscle in patients with positive in vitro contracture tests, searching for alternative genes associated with MH. We identified four rare variants in four different genes (CACNB1, CASQ1, SERCA1 and CASQ2) encoding proteins involved in calcium handling in skeletal muscle in a cohort of 30 Australian MH susceptible probands in whom prior complete sequencing of RYR1 and CACNA1S had yielded no rare variants. These four variants have very low minor allele frequencies and while it is tempting to speculate that they have a role in MH, they remain at present variants of unknown significance. Nevertheless they provide the basis for a new set of functional studies, which may indeed identify novel players in MH.
Collapse
Affiliation(s)
- A R Bjorksten
- Senior Scientist, Malignant Hyperthermia Diagnostic Unit, Department of Anaesthesia and Pain Management, Royal Melbourne Hospital, Anaesthesia, Perioperative and Pain Medicine Unit, Department of Pharmacology and Therapeutics, University of Melbourne, Victorian Clinical Genetics Service Molecular Genetics Laboratory, Murdoch Children's Research Institut
| | - R L Gillies
- Head, Malignant Hyperthermia Diagnostic Unit, Department of Anaesthesia and Pain Management, Royal Melbourne Hospital, Anaesthesia, Perioperative and Pain Medicine Unit, University of Melbourne, Victoria
| | - B M Hockey
- Malignant Hyperthermia Diagnostic Unit, Department of Anaesthesia and Pain Management, Royal Melbourne Hospital, Consultant Anaesthetist, Anaesthesia, Perioperative and Pain Medicine Unit, University of Melbourne, Victoria
| | - D Du Sart
- Research Affiliate/Head, Victorian Clinical Genetics Service Molecular Genetics Laboratory, Murdoch Childrens Research Institute, Royal Children's Hospital, Melbourne, Victoria
| |
Collapse
|
25
|
Nicoll BK, Ferreira C, Hopkins PM, Shaw MA, Hope IA. Aging Effects of Caenorhabditis elegans Ryanodine Receptor Variants Corresponding to Human Myopathic Mutations. G3 (BETHESDA, MD.) 2017; 7:1451-1461. [PMID: 28325813 PMCID: PMC5427508 DOI: 10.1534/g3.117.040535] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Accepted: 03/07/2017] [Indexed: 12/31/2022]
Abstract
Delaying the decline in skeletal muscle function will be critical to better maintenance of an active lifestyle in old age. The skeletal muscle ryanodine receptor, the major intracellular membrane channel through which calcium ions pass to elicit muscle contraction, is central to calcium ion balance and is hypothesized to be a significant factor for age-related decline in muscle function. The nematode Caenorhabditis elegans is a key model system for the study of human aging, and strains were generated with modified C. elegans ryanodine receptors corresponding to human myopathic variants linked with malignant hyperthermia and related conditions. The altered response of these strains to pharmacological agents reflected results of human diagnostic tests for individuals with these pathogenic variants. Involvement of nerve cells in the C. elegans responses may relate to rare medical symptoms concerning the central nervous system that have been associated with ryanodine receptor variants. These single amino acid modifications in C. elegans also conferred a reduction in lifespan and an accelerated decline in muscle integrity with age, supporting the significance of ryanodine receptor function for human aging.
Collapse
Affiliation(s)
- Baines K Nicoll
- Leeds Institute of Biomedical and Clinical Sciences, St James's University Hospital, LS9 7TF, United Kingdom
- School of Biology, Faculty of Biological Sciences, University of Leeds, LS2 9JT, United Kingdom
| | - Célia Ferreira
- School of Biology, Faculty of Biological Sciences, University of Leeds, LS2 9JT, United Kingdom
| | - Philip M Hopkins
- Leeds Institute of Biomedical and Clinical Sciences, St James's University Hospital, LS9 7TF, United Kingdom
| | - Marie-Anne Shaw
- Leeds Institute of Biomedical and Clinical Sciences, St James's University Hospital, LS9 7TF, United Kingdom
| | - Ian A Hope
- School of Biology, Faculty of Biological Sciences, University of Leeds, LS2 9JT, United Kingdom
| |
Collapse
|
26
|
Heytens K, De Bleecker J, Verbrugghe W, Baets J, Heytens L. Exertional rhabdomyolysis and heat stroke: Beware of volatile anesthetic sedation. World J Crit Care Med 2017; 6:21-27. [PMID: 28224104 PMCID: PMC5295166 DOI: 10.5492/wjccm.v6.i1.21] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Revised: 09/27/2016] [Accepted: 11/17/2016] [Indexed: 02/06/2023] Open
Abstract
In view of the enormous popularity of mass sporting events such as half-marathons, the number of patients with exertional rhabdomyolysis or exercise-induced heat stroke admitted to intensive care units (ICUs) has increased over the last decade. Because these patients have been reported to be at risk for malignant hyperthermia during general anesthesia, the intensive care community should bear in mind that the same risk of life-threatening rhabdomyolysis is present when these patients are admitted to an ICU, and volatile anesthetic sedation is chosen as the sedative technique. As illustrated by the three case studies we elaborate upon, a thorough diagnostic work-up is needed to clarify the subsequent risk of strenuous exercise, and the anesthetic exposure to volatile agents in these patients and their families. Other contraindications for the use of volatile intensive care sedation consist of known malignant hyperthermia susceptibility, congenital myopathies, Duchenne muscular dystrophy, and intracranial hypertension.
Collapse
|
27
|
Hoppe K, Hack G, Lehmann-Horn F, Jurkat-Rott K, Wearing S, Zullo A, Carsana A, Klingler W. Hypermetabolism in B-lymphocytes from malignant hyperthermia susceptible individuals. Sci Rep 2016; 6:33372. [PMID: 27646467 PMCID: PMC5028841 DOI: 10.1038/srep33372] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Accepted: 08/24/2016] [Indexed: 01/20/2023] Open
Abstract
Malignant hyperthermia (MH) is a pharmacogenetic disorder of skeletal muscle metabolism which is characterized by generalized muscle rigidity, increased body temperature, rhabdomyolysis, and severe metabolic acidosis. The underlying mechanism of MH involves excessive Ca(2+) release in myotubes via the ryanodine receptor type 1 (RyR1). As RyR1 is also expressed in B-lymphocytes, this study investigated whether cellular metabolism of native B-lymphocytes was also altered in MH susceptible (MHS) individuals. A potent activator of RyR1, 4-chloro-m-cresol (4-CmC) was used to challenge native B-lymphocytes in a real-time, metabolic assay based on a pH-sensitive silicon biosensor chip. At the cellular level, a dose-dependent, phasic acidification occurred with 4-CmC. The acidification rate, an indicator of metabolic activation, was significantly higher in B-lymphocytes from MHS patients and required 3 to 5 fold lower concentrations of 4-CmC to evoke similar acidification rates to MHN. Native B-lymphocytes from MHS individuals are more sensitive to 4-CmC than those from MHN, reflecting a greater Ca(2+) turnover. The acidification response, however, was less pronounced than in muscle cells, presumably reflecting the lower expression of RyR1 in B-lymphocytes.
Collapse
Affiliation(s)
- Kerstin Hoppe
- Department of Anaesthesia, Intensive Care Medicine and Pain Therapy, Frankfurt University, Theodor-Stern-Kai 7, 60590 Frankfurt, Germany
| | - Guido Hack
- Division of Neurophysiology in the Center of Rare Diseases, Ulm University, Albert-Einstein-Allee 23, 89081 Ulm, Germany
| | - Frank Lehmann-Horn
- Division of Neurophysiology in the Center of Rare Diseases, Ulm University, Albert-Einstein-Allee 23, 89081 Ulm, Germany
| | - Karin Jurkat-Rott
- Division of Neurophysiology in the Center of Rare Diseases, Ulm University, Albert-Einstein-Allee 23, 89081 Ulm, Germany
| | - Scott Wearing
- Institute of Health and Biomedical Innovation, Queensland University of Technology, 60 Musk Avenue, Kelvin Grove 4059, Australia
| | - Alberto Zullo
- Department of Science and Technologies, University of Sannio, Benevento, Italy and CEINGE Advanced Biotechnologies s.c.ar.l, Naples, Italy
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | - Antonella Carsana
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | - Werner Klingler
- Division of Neurophysiology in the Center of Rare Diseases, Ulm University, Albert-Einstein-Allee 23, 89081 Ulm, Germany
- Department of Neuroanaesthesiology, Neurosurgical University, Ludwig-Heilmeyerstr. 2, 89312 Guenzburg, Germany
| |
Collapse
|
28
|
Stephens J, Schiemann AH, Roesl C, Miller D, Massey S, Pollock N, Bulger T, Stowell K. Functional analysis of RYR1 variants linked to malignant hyperthermia. Temperature (Austin) 2016; 3:328-339. [PMID: 27857962 PMCID: PMC4964997 DOI: 10.1080/23328940.2016.1153360] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Revised: 02/04/2016] [Accepted: 02/05/2016] [Indexed: 11/04/2022] Open
Abstract
Malignant hyperthermia manifests as a rapid and sustained rise in temperature in response to pharmacological triggering agents, e.g. inhalational anesthetics and the muscle relaxant suxamethonium. Other clinical signs include an increase in end-tidal CO2, increased O2 consumption, as well as tachycardia, and if untreated a malignant hyperthermia episode can result in death. The metabolic changes are caused by dysregulation of skeletal muscle Ca2+ homeostasis, resulting from a defective ryanodine receptor Ca2+ channel, which resides in the sarcoplasmic reticulum and controls the flux of Ca2+ ions from intracellular stores to the cytoplasm. Most genetic variants associated with susceptibility to malignant hyperthermia occur in the RYR1 gene encoding the ryanodine receptor type 1. While malignant hyperthermia susceptibility can be diagnosed by in vitro contracture testing of skeletal muscle biopsy tissue, it is advantageous to use DNA testing. Currently only 35 of over 400 potential variants in RYR1 have been classed as functionally causative of malignant hyperthermia and thus can be used for DNA diagnostic tests. Here we describe functional analysis of 2 RYR1 variants (c. 7042_7044delCAG, p.ΔGlu2348 and c.641C>T, p.Thr214Met) that occur in the same malignant hyperthermia susceptible family. The p.Glu2348 deletion, causes hypersensitivity to ryanodine receptor agonists using in vitro analysis of cloned human RYR1 cDNA expressed in HEK293T cells, while the Thr214Met substitution, does not appear to significantly alter sensitivity to agonist in the same system. We suggest that the c. 7042_7044delCAG, p.ΔGlu2348 RYR1 variant could be added to the list of diagnostic mutations for susceptibility to malignant hyperthermia.
Collapse
Affiliation(s)
- Jeremy Stephens
- Institute of Fundamental Sciences, Massey University , Palmerston North, New Zealand
| | - Anja H Schiemann
- Institute of Fundamental Sciences, Massey University , Palmerston North, New Zealand
| | - Cornelia Roesl
- Centre for Integrative Physiology, The University of Edinburgh , Edinburgh, United Kingdom
| | - Dorota Miller
- UK Malignant Hyperthermia Investigation Unit, Leeds Institute of Biomedical & Clinical Sciences, School of Medicine, University of Leeds, St. James's University Hospital , Leeds, United Kingdom
| | - Sean Massey
- Institute of Fundamental Sciences, Massey University , Palmerston North, New Zealand
| | - Neil Pollock
- Anaesthetic Department, Palmerston North Hospital , Palmerston North, New Zealand
| | - Terasa Bulger
- Anaesthetic Department, Palmerston North Hospital , Palmerston North, New Zealand
| | - Kathryn Stowell
- Institute of Fundamental Sciences, Massey University , Palmerston North, New Zealand
| |
Collapse
|
29
|
Malignant Hyperthermia, Exertional Heat Illness, and RYR1 Variants: The Muscle May Not Be the Brain. Anesthesiology 2016; 124:510. [DOI: 10.1097/aln.0000000000000979] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
30
|
Abstract
BACKGROUND Malignant hyperthermia (MH) is triggered by reactions to anesthetics. Reports link nonanesthetic-induced MH-like reactions to a variety of disorders. The objective of the authors was to retrospectively investigate the reasons for referrals for MH testing in nonanesthetic cases and assess their phenotype. In addition, the response to the administration of oral dantrolene in nonanesthetic probands with positive caffeine-halothane contracture test (CHCT) was investigated. METHODS Following institutional research ethics board approval, probands without reaction to anesthesia, who underwent CHCT, were selected. Clinical details and response to dantrolene were analyzed. RESULTS In total, 87 of 136 (64%) patients referred for nonanesthetic indications tested positive to the CHCT. Of these, 47 with a high creatine kinase (CK), 9 with exercise-induced rhabdomyolysis and/or exercise intolerance, 2 with high CK and exercise-induced rhabdomyolysis and/or exercise intolerance, 15 with postviral chronic fatigue, and 14 with muscle weakness of unknown etiology had a positive CHCT. These patients had a higher CK compared with those with negative CHCT. Oral dantrolene improved the musculoskeletal symptoms in 28 of 34 (82%) CHCT-positive patients. Response to treatment was associated with a significantly higher pretreatment CK and a greater posttreatment CK reduction. CONCLUSIONS A positive CHCT may represent more than simply an anesthetic-related disorder. Individuals with positive CHCTs may exhibit muscle symptoms without exposure to MH-triggering anesthetics. Oral dantrolene may be useful in alleviating these symptoms.
Collapse
|
31
|
Cystathionine β-synthase-derived hydrogen sulfide is involved in human malignant hyperthermia. Clin Sci (Lond) 2015; 130:35-44. [PMID: 26460077 DOI: 10.1042/cs20150521] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Accepted: 10/12/2015] [Indexed: 12/13/2022]
Abstract
Hydrogen sulfide is an endogenous gasotransmitter and its mechanism of action involves activation of ATP-sensitive K(+) channels and phosphodiesterase inhibition. As both mechanisms are potentially involved in malignant hyperthermia (MH), in the present study we addressed the involvement of the L-cysteine/hydrogen sulfide pathway in MH. Skeletal muscle biopsies obtained from 25 MH-susceptible (MHS) and 56 MH-negative (MHN) individuals have been used to perform the in vitro contracture test (IVCT). Quantitative real-time PCR (qPCR) and Western blotting studies have also been performed. Hydrogen sulfide levels are measured in both tissue samples and plasma. In MHS biopsies an increase in cystathionine β-synthase (CBS) occurs, as both mRNA and protein expression compared with MHN biopsies. Hydrogen sulfide biosynthesis is increased in MHS biopsies (0.128±0.12 compared with 0.943±0.13 nmol/mg of protein per min for MHN and MHS biopsies, respectively; P<0.01). Addition of sodium hydrosulfide (NaHS) to MHS samples evokes a response similar, in the IVCT, to that elicited by either caffeine or halothane. Incubation of MHN biopsies with NaHS, before caffeine or halothane challenge, switches an MHN to an MHS response. In conclusion we demonstrate the involvement of the L-cysteine/hydrogen sulfide pathway in MH, giving new insight into MH molecular mechanisms. This finding has potential implications for clinical care and could help to define less invasive diagnostic procedures.
Collapse
|
32
|
Hopkins P, Rüffert H, Snoeck M, Girard T, Glahn K, Ellis F, Müller C, Urwyler A. European Malignant Hyperthermia Group guidelines for investigation of malignant hyperthermia susceptibility. Br J Anaesth 2015; 115:531-9. [DOI: 10.1093/bja/aev225] [Citation(s) in RCA: 133] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
33
|
Broman M, Islander G, Müller CR. Malignant hyperthermia, a Scandinavian update. Acta Anaesthesiol Scand 2015; 59:951-61. [PMID: 25989378 DOI: 10.1111/aas.12541] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Revised: 03/23/2015] [Accepted: 03/24/2015] [Indexed: 12/15/2022]
Abstract
BACKGROUND Malignant Hyperthermia (MH) is a rare pharmacogenetic disorder, triggered by halogenated anesthetics and/or succinylcholine. In susceptible individuals, these drugs can activate an explosive life threatening clinical reaction. Leading symptoms are hypercarbia, muscle rigidity, and metabolic acidosis. MH is inherited in an autosomal-dominant manner and linked to mutations in the large ryanodine 1 gene (RYR1) gene in the majority of cases. Very few MH patients have been found to carry mutations in the CACNA1S gene. METHODS For this review a large litterature search was carried out and the Swedish MH database consisting of 436 probands who have undergone in vitro muscle contraction test (IVCT) during 1984-2014 was analyzed. RESULTS Twelve different MH causative mutations have been found in Swedish patients so far. These mutations lead to a disturbed calcium balance in striated muscle tissue. A muscle biopsy for the IVCT or finding of an approved causative mutation are required for the diagnosis. CONCLUSION A Malignant Hyperthermia susceptible (MHS) patient should be anesthetized with trigger-free anesthesia. There are a few reports of MH-like reactions in patients unrelated to anesthesia. The outcome is dependent on early recognizing of the reaction and fast disconnection of the trigger agents and administration of dantrolene.
Collapse
Affiliation(s)
- M. Broman
- Perioperative and Intensive Care; Skåne University Hospital; Lund Sweden
| | - G. Islander
- Perioperative and Intensive Care; Skåne University Hospital; Lund Sweden
| | - C. R. Müller
- Biocentre; Institute for Human Genetics; Würzburg University; Würzburg Germany
| |
Collapse
|
34
|
Sagui E, Montigon C, Abriat A, Jouvion A, Duron-Martinaud S, Canini F, Zagnoli F, Bendahan D, Figarella-Branger D, Brégigeon M, Brosset C. Is there a link between exertional heat stroke and susceptibility to malignant hyperthermia? PLoS One 2015; 10:e0135496. [PMID: 26258863 PMCID: PMC4530942 DOI: 10.1371/journal.pone.0135496] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2014] [Accepted: 07/22/2015] [Indexed: 11/18/2022] Open
Abstract
Objective The identification of a predisposition toward malignant hyperthermia (MH) as a risk factor for exertional heat stroke (EHS) remains a matter of debate. Such a predisposition indicates a causal role for MH susceptibility (MHS) after EHS in certain national recommendations and has led to the use of an in vitro contracture test (IVCT) to identify the MHS trait in selected or unselected EHS patients. The aim of this study was to determine whether the MHS trait is associated with EHS. Methods EHS subjects in the French Armed Forces were routinely examined for MHS after experiencing an EHS episode. This retrospective study compared the features of IVCT-diagnosed MHS (iMHS) EHS subjects with those of MH-normal EHS patients and MH patients during the 2004–2010 period. MHS status was assessed using the European protocol. Results During the study period, 466 subjects (median age 25 years; 31 women) underwent MHS status investigation following an EHS episode. None of the subjects reported previous MH events. An IVCT was performed in 454 cases and was diagnostic of MHS in 45.6% of the study population, of MH susceptibility to halothane in 18.5%, of MH susceptibility to caffeine in 9.9%, and of MH susceptibility to halothane and caffeine in 17.2%. There were no differences in the clinical features, biological features or outcomes of iMHS EHS subjects compared with those of MH-normal or caffeine or halothane MHS subjects without known prior EHS episode. The recurrence rate was 12.7% and was not associated with MH status or any clinical or biological features. iMHS EHS patients exhibited a significantly less informative IVCT response than MH patients. Conclusions The unexpected high prevalence of the MHS trait after EHS suggested a latent disturbance of calcium homeostasis that accounted for the positive IVCT results. This study did not determine whether EHS patients have an increased risk of MH, and it could not determine whether MH susceptibility is a risk factor for EHS.
Collapse
Affiliation(s)
- Emmanuel Sagui
- French Military Hospital Laveran, Marseille, France
- Val de Grâce Military School, Paris, France
- Unité mixte de recherche 7291, laboratoire de neurosciences cognitives, Aix Marseille University, Marseille, France
- * E-mail:
| | - Coline Montigon
- French Military Hospital Laveran, Marseille, France
- Val de Grâce Military School, Paris, France
| | | | | | | | - Frédéric Canini
- Val de Grâce Military School, Paris, France
- Armed Forces Biomedical Research Institute, Brétigny/Orge, France
| | - Fabien Zagnoli
- Val de Grâce Military School, Paris, France
- French Military Hospital Clermont-Tonnerre, Brest, France
| | - David Bendahan
- Unité mixte de recherché 7339, Center for Magnetic Resonance in Biology and Medicine, Aix Marseille University, Marseille, France
| | - Dominique Figarella-Branger
- Service d’anatomie pathologique et de neuropathologie, Timone hospital, assistance publique/hôpitaux de Marseille, Marseille, France
| | | | | |
Collapse
|
35
|
Rosenberg H, Pollock N, Schiemann A, Bulger T, Stowell K. Malignant hyperthermia: a review. Orphanet J Rare Dis 2015; 10:93. [PMID: 26238698 PMCID: PMC4524368 DOI: 10.1186/s13023-015-0310-1] [Citation(s) in RCA: 299] [Impact Index Per Article: 33.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2015] [Accepted: 07/22/2015] [Indexed: 02/06/2023] Open
Abstract
Malignant hyperthermia (MH) is a pharmacogenetic disorder of skeletal muscle that presents as a hypermetabolic response to potent volatile anesthetic gases such as halothane, sevoflurane, desflurane, isoflurane and the depolarizing muscle relaxant succinylcholine, and rarely, in humans, to stressors such as vigorous exercise and heat. The incidence of MH reactions ranges from 1:10,000 to 1: 250,000 anesthetics. However, the prevalence of the genetic abnormalities may be as great as one in 400 individuals. MH affects humans, certain pig breeds, dogs and horses. The classic signs of MH include hyperthermia, tachycardia, tachypnea, increased carbon dioxide production, increased oxygen consumption, acidosis, hyperkalaemia, muscle rigidity, and rhabdomyolysis, all related to a hypermetabolic response. The syndrome is likely to be fatal if untreated. An increase in end-tidal carbon dioxide despite increased minute ventilation provides an early diagnostic clue. In humans the syndrome is inherited in an autosomal dominant pattern, while in pigs it is autosomal recessive. Uncontrolled rise of myoplasmic calcium, which activates biochemical processes related to muscle activation leads to the pathophysiologic changes. In most cases, the syndrome is caused by a defect in the ryanodine receptor. Over 400 variants have been identified in the RYR1 gene located on chromosome 19q13.1, and at least 34 are causal for MH. Less than 1 % of variants have been found in CACNA1S but not all of these are causal. Diagnostic testing involves the in vitro contracture response of biopsied muscle to halothane, caffeine, and in some centres ryanodine and 4-chloro-m-cresol. Elucidation of the genetic changes has led to the introduction of DNA testing for susceptibility to MH. Dantrolene sodium is a specific antagonist and should be available wherever general anesthesia is administered. Increased understanding of the clinical manifestation and pathophysiology of the syndrome, has lead to the mortality decreasing from 80 % thirty years ago to <5 % in 2006.
Collapse
Affiliation(s)
- Henry Rosenberg
- Department of Medical Education and Clinical Research, Saint Barnabas Medical Center, Livingston, NJ, 07039, USA.
| | - Neil Pollock
- Department of Anesthesia and Intensive Care, Palmerston North Hospital, Palmerston North, New Zealand.
| | - Anja Schiemann
- Institute of Fundamental Sciences, Massey University, Palmerston North, New Zealand.
| | - Terasa Bulger
- Department of Anesthesia and Intensive Care, Palmerston North Hospital, Palmerston North, New Zealand.
| | - Kathryn Stowell
- Institute of Fundamental Sciences, Massey University, Palmerston North, New Zealand.
| |
Collapse
|
36
|
Heytens L, Forget P, Scholtès JL, Veyckemans F. The Changing Face of Malignant Hyperthermia: Less Fulminant, More Insidious. Anaesth Intensive Care 2015; 43:506-11. [DOI: 10.1177/0310057x1504300415] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Modern anaesthetic techniques have resulted in the clinical presentation of malignant hyperthermia to be more often indolent and/or insidious than truly fulminant, as previously known in the anaesthetic community. We present four recently referred cases to illustrate this point: one late-onset case, two patients with slowly progressive hypercapnia as the sole sign and a fourth patient with postoperative myalgias and elevated creatine kinase. We also discuss the reasons for the shift in typical clinical presentation. The more insidious character of malignant hyperthermia is most likely due to the lower triggering potency of modern volatile anaesthetics, the mitigating effects of several intravenous drugs (neuromuscular blocking agents, alpha 2 adrenergic receptor agonists, beta-adrenergic blockade) or techniques (neuraxial anaesthesia) and the routine use of end-tidal CO2 monitoring leading to the early withdrawal of triggering drugs. Awareness among anaesthetists of this change in presentation is important since the clinical diagnosis is often more doubtful and, if corroborative evidence is not sought, the diagnosis may be delayed or missed altogether.
Collapse
Affiliation(s)
- L. Heytens
- Department of Anaesthesiology, University Hospital Antwerp, Edegem, Belgium
| | - P. Forget
- Department of Anaesthesiology, Cliniques Universitaires Saint-Luc, Universitê Catholique de Louvain, Brussels, Belgium
| | - J. L. Scholtès
- Department of Anaesthesiology, Cliniques Universitaires Saint-Luc, Universitê Catholique de Louvain, Brussels, Belgium
| | - F. Veyckemans
- Department of Anaesthesiology, Cliniques Universitaires Saint-Luc, Universitê Catholique de Louvain, Brussels, Belgium
| |
Collapse
|
37
|
Fiszer D, Shaw MA, Fisher NA, Carr IM, Gupta PK, Watkins EJ, de Sa DR, Kim JH, Hopkins PM. Next-generation Sequencing of RYR1 and CACNA1S in Malignant Hyperthermia and Exertional Heat Illness. Anesthesiology 2015; 122:1033-46. [PMID: 25658027 PMCID: PMC4472733 DOI: 10.1097/aln.0000000000000610] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
BACKGROUND Variants in RYR1 are associated with the majority of cases of malignant hyperthermia (MH), a form of heat illness pharmacogenetically triggered by general anesthetics, and they have also been associated with exertional heat illness (EHI). CACNA1S has also been implicated in MH. The authors applied a targeted next-generation sequencing approach to identify variants in RYR1 and CACNA1S in a cohort of unrelated patients diagnosed with MH susceptibility. They also provide the first comprehensive report of sequencing of these two genes in a cohort of survivors of EHI. METHODS DNA extracted from blood was genotyped using a "long" polymerase chain reaction technique, with sequencing on the Illumina GAII or MiSeq platforms (Illumina Inc., USA). Variants were assessed for pathogenicity using bioinformatic approaches. For further follow-up, DNA from additional family members and up to 211 MH normal and 556 MH-susceptible unrelated individuals was tested. RESULTS In 29 MH patients, the authors identified three pathogenic and four novel RYR1 variants, with a further five RYR1 variants previously reported in association with MH. Three novel RYR1 variants were found in the EHI cohort (n = 28) along with two more previously reported in association with MH. Two other variants were reported previously associated with centronuclear myopathy. The authors found one and three rare variants of unknown significance in CACNA1S in the MH and EHI cohorts, respectively. CONCLUSIONS Targeted next-generation sequencing proved efficient at identifying diagnostically useful and potentially implicated variants in RYR1 and CACNA1S in MH and EHI.
Collapse
Affiliation(s)
- Dorota Fiszer
- Leeds Institute of Biomedical & Clinical Sciences, School of Medicine, University of Leeds, United Kingdom
- Malignant Hyperthermia Investigation Unit, St. James’s University Hospital, Leeds, United Kingdom
| | - Marie-Anne Shaw
- Leeds Institute of Biomedical & Clinical Sciences, School of Medicine, University of Leeds, United Kingdom
- Malignant Hyperthermia Investigation Unit, St. James’s University Hospital, Leeds, United Kingdom
| | - Nickla A. Fisher
- Malignant Hyperthermia Investigation Unit, St. James’s University Hospital, Leeds, United Kingdom
| | - Ian M. Carr
- Leeds Institute of Biomedical & Clinical Sciences, School of Medicine, University of Leeds, United Kingdom
| | - Pawan K. Gupta
- Malignant Hyperthermia Investigation Unit, St. James’s University Hospital, Leeds, United Kingdom
| | - Elizabeth J. Watkins
- Malignant Hyperthermia Investigation Unit, St. James’s University Hospital, Leeds, United Kingdom
| | - Daniel Roiz de Sa
- Environmental Medicine and Science Division, Institute of Naval Medicine, Alverstoke, Hampshire, United Kingdom
| | - Jerry H. Kim
- Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, Washington
| | - Philip M. Hopkins
- Leeds Institute of Biomedical & Clinical Sciences, School of Medicine, University of Leeds, United Kingdom
- Malignant Hyperthermia Investigation Unit, St. James’s University Hospital, Leeds, United Kingdom
| |
Collapse
|
38
|
Gillies RL, Bjorksten AR, Du Sart D, Hockey BM. Analysis of the entire ryanodine receptor type 1 and alpha 1 subunit of the dihydropyridine receptor (CACNA1S) coding regions for variants associated with malignant hyperthermia in Australian families. Anaesth Intensive Care 2015; 43:157-66. [PMID: 25735680 DOI: 10.1177/0310057x1504300204] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Defects in the genes coding for the skeletal muscle ryanodine receptor (RYR1) and alpha 1 subunit of the dihydropyridine receptor (CACNA1S) have been identified as causative for malignant hyperthermia (MH). Sixty-two MH susceptible individuals presenting to the same diagnostic centre had copy deoxyribonucleic acid, derived from muscle ribonucleic acid, sequenced to identify variants with the potential to be responsible for the MH phenotype in both RYR1 and CACNA1S. These genetic findings were combined with clinical episode details and in vitro contracture test results to improve our understanding of the Australian MH cohort. Twelve novel variants were identified in RYR1 and six in CACNA1S. Known RYR1 causative mutations were identified in six persons and novel variants in RYR1 and CACNA1S in a further 17 persons. Trends indicated higher mutation identification in those with more definitive clinical episodes and stronger in vitro contracture test responses.
Collapse
Affiliation(s)
- R L Gillies
- Department of Anaesthesia and Pain Management, Royal Melbourne Hospital, Parkville, Victoria
| | - A R Bjorksten
- Department of Anaesthesia and Pain Management, Royal Melbourne Hospital, Parkville, Victoria
| | - D Du Sart
- Victorian Clinical Genetics Services, Parkville, Victoria
| | - B M Hockey
- Department of Anaesthesia and Pain Management, Royal Melbourne Hospital, Parkville, Victoria
| |
Collapse
|
39
|
Abstract
Abstract
Background:
In 1997, the International Classification of Diseases (ICD), 9th Revision Clinical Modification (ICD-9) coding system introduced the code for malignant hyperthermia (MH) (995.86). The aim of this study was to estimate the accuracy of coding for MH in hospital discharge records.
Methods:
An expert panel of anesthesiologists reviewed medical records for patients with a discharge diagnosis of MH based on ICD-9 or ICD-10 codes from January 1, 2006 to December 31, 2008 at six tertiary care medical centers in North America. All cases were categorized as possible, probable, or fulminant MH, history of MH (family or personal) or other.
Results:
A total of 47 medical records with MH diagnoses were reviewed; 68.1% had a documented surgical procedure and general anesthesia, and 23.4% (95% CI, 12.3–38.0%) had a possible, probable, or fulminant MH event. Dantrolene was given in 81% of the MH events. All patients judged to have an incident MH event survived to discharge. Family and personal history of MH accounted for 46.8% of cases. High fever without evidence of MH during admission accounted for 23.4%, and the reason for MH coding was unclear in 6.4% of cases.
Conclusions:
Approximately one quarter of ICD-9 or ICD-10 coded MH diagnoses in hospital discharge records refer to incident MH episodes and an additional 47% to MH susceptibility (including personal history or family history). Information such as surgical procedure, anesthesia billing data, and dantrolene administration may aid in identifying incident MH cases among those with an ICD-9 or ICD-10 coded MH diagnosis in their hospital discharge records.
Collapse
|
40
|
|
41
|
Riazi S, Kraeva N, Muldoon SM, Dowling J, Ho C, Petre MA, Parness J, Dirksen RT, Rosenberg H. Malignant hyperthermia and the clinical significance of type-1 ryanodine receptor gene (RYR1) variants: proceedings of the 2013 MHAUS Scientific Conference. Can J Anaesth 2014; 61:1040-9. [PMID: 25189431 DOI: 10.1007/s12630-014-0227-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Accepted: 08/11/2014] [Indexed: 01/07/2023] Open
Abstract
The Malignant Hyperthermia Association of the United States and the Department of Anesthesia at the University of Toronto sponsored a Scientific Conference on November 1-2, 2013 in Toronto, ON, Canada. The multidisciplinary group of experts, including clinicians, geneticists, and physiologists involved in research related to malignant hyperthermia (MH), shared new insights into the pathophysiology of diseases linked to the type-1 ryanodine receptor gene (RYR1) as well as the relationship between MH and "awake MH" conditions, such as exertional rhabdomyolysis and exertional heat illness. In addition, the molecular genetics of MH and clinical issues related to the diagnosis and management of disorders linked to RYR1 were presented. The conference also honoured Dr. David H. MacLennan for his contributions to our understanding of the genetics, pathogenesis, and treatment of MH and other RYR1-related myopathies. This report represents a summary of the proceedings of this conference.
Collapse
Affiliation(s)
- Sheila Riazi
- Malignant Hyperthermia Investigation Unit, Toronto General Hospital, UHN, 200 Elizabeth Street, Eaton 3-323, Toronto, ON, M5G 2C4, Canada,
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Maharaj R, Osborne I. The King-Denborough syndrome in the paediatric patient. SOUTHERN AFRICAN JOURNAL OF ANAESTHESIA AND ANALGESIA 2014. [DOI: 10.1080/22201173.2007.10872471] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
43
|
Homozygote und „compound“-heterozygote RYR1-Mutationen. Anaesthesist 2014; 63:643-50. [DOI: 10.1007/s00101-014-2351-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Revised: 06/02/2014] [Accepted: 06/03/2014] [Indexed: 11/25/2022]
|
44
|
Roesl C, Sato K, Schiemann A, Pollock N, Stowell KM. Functional characterisation of the R2452W ryanodine receptor variant associated with malignant hyperthermia susceptibility. Cell Calcium 2014; 56:195-201. [PMID: 25086907 DOI: 10.1016/j.ceca.2014.07.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Revised: 06/26/2014] [Accepted: 07/10/2014] [Indexed: 10/25/2022]
Abstract
Malignant hyperthermia (MH) is a pharmacogenetic disorder that manifests in susceptible individuals exposed to volatile anaesthetics. Over 400 variants in the ryanodine receptor 1 (RYR1) have been reported but relatively few have been definitively associated with susceptibility to MH. This is largely due to the technical challenges of demonstrating abnormal Ca(2+) release from the sarcoplasmic reticulum. This study focuses on the R2452W variant and its functional characterisation with the aim of classifying this variant as MH causative. HEK293 cells were transiently transfected with full-length human wildtype or R2452W mutant RYR1 cDNA. In addition, B-lymphoblastoid cells from blood and myoblasts propagated from in vitro contracture tests were extracted from patients positive for the R2452W variant. All cell lines generated were loaded with the ratiometric dye Fura-2 AM, stimulated with the RYR1-specific agonist 4-chloro-m-cresol and Ca(2+) release from the sarcoplasmic/endoplasmic reticulum was monitored by fluorescence emission. All cells expressing the RYR1 R2452W variant show a significantly higher Ca(2+) release in response to the agonist, 4-chloro-m-cresol, compared to cells expressing RYR1 WT. These results indicate that the R2452W variant results in a hypersensitive ryanodine receptor 1 and suggest that the R2452W variant in the ryanodine receptor 1 is likely to be causative of MH.
Collapse
Affiliation(s)
- Cornelia Roesl
- Centre for Reproductive Health, University of Edinburgh, Edinburgh, United Kingdom
| | - Keisaku Sato
- Department of Medicine, University of Florida, Gainesville, FL, United States
| | - Anja Schiemann
- Institute of Fundamental Sciences, Massey University, Palmerston North, New Zealand
| | - Neil Pollock
- Department of Anaesthesia and Intensive Care, Palmerston North Hospital, Palmerstion North, New Zealand
| | - Kathryn M Stowell
- Institute of Fundamental Sciences, Massey University, Palmerston North, New Zealand.
| |
Collapse
|
45
|
Hoppe K, Schleip R, Lehmann-Horn F, Jäger H, Klingler W. Contractile elements in muscular fascial tissue - implications for in-vitro contracture testing for malignant hyperthermia. Anaesthesia 2014; 69:1002-8. [DOI: 10.1111/anae.12752] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/19/2014] [Indexed: 01/11/2023]
Affiliation(s)
- K. Hoppe
- Department of Anaesthesiology; Ulm University; Ulm Germany
- Department of Anaesthesia; Intensive Care Medicine and Pain Therapy; Frankfurt University; Frankfurt am Main Germany
| | - R. Schleip
- Division of Neurophysiology; Ulm University; Ulm Germany
| | | | - H. Jäger
- Division of Neurophysiology; Ulm University; Ulm Germany
| | - W. Klingler
- Division of Neurophysiology; Ulm University; Ulm Germany
- Department of Neuroanaesthesiology; Neurosurgical University; Guenzburg Germany
| |
Collapse
|
46
|
Sambuughin N, Zvaritch E, Kraeva N, Sizova O, Sivak E, Dickson K, Weglinski M, Capacchione J, Muldoon S, Riazi S, Hamilton S, Brandom B, MacLennan DH. Exome analysis identifies Brody myopathy in a family diagnosed with malignant hyperthermia susceptibility. Mol Genet Genomic Med 2014; 2:472-83. [PMID: 25614869 PMCID: PMC4303217 DOI: 10.1002/mgg3.91] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Revised: 05/13/2014] [Accepted: 05/13/2014] [Indexed: 02/02/2023] Open
Abstract
Whole exome sequencing (WES) was used to determine the primary cause of muscle disorder in a family diagnosed with a mild, undetermined myopathy and malignant hyperthermia (MH) susceptibility (MHS). WES revealed the compound heterozygous mutations, p.Ile235Asn and p.Glu982Lys, in ATP2A1, encoding the sarco(endo)plasmic reticulum Ca(2+) ATPase type 1 (SERCA1), a calcium pump, expressed in fast-twitch muscles. Recessive mutations in ATP2A1 are known to cause Brody myopathy, a rare muscle disorder characterized by exercise-induced impairment of muscle relaxation and stiffness. Analyses of affected muscles showed the absence of SERCA1, but SERCA2 upregulation in slow and fast myofibers, suggesting a compensatory mechanism that partially restores the diminished Ca(2+) transport in Brody myopathy. This compensatory adaptation to the lack of SERCA1 Ca(2+) pumping activity within the muscle explains, in part, the mild course of disease in our patient. Diagnosis of MHS in this family was secondary to a loss of SERCA1 due to disease-associated mutations. Although there are obvious differences in clinical expression and molecular mechanisms between MH and Brody myopathy, a feature common to both conditions is elevated myoplasmic Ca(2+) content. Prolonged intracellular Ca(2+) elevation is likely to have led to MHS diagnosis in vitro and postoperative MH-like symptoms in Brody patient.
Collapse
Affiliation(s)
- Nyamkhishig Sambuughin
- Defense and Veterans Center for Integrated Pain Management, Henry M. Jackson Foundation Rockville, Maryland ; Department of Anesthesiology, Uniformed Services University Bethesda, Maryland
| | - Elena Zvaritch
- Banting and Best Department of Medical Research, University of Toronto Toronto, Ontario, Canada
| | - Natasha Kraeva
- Department of Anesthesia, Toronto General Hospital Toronto, Ontario, Canada
| | - Olga Sizova
- Banting and Best Department of Medical Research, University of Toronto Toronto, Ontario, Canada
| | - Erica Sivak
- Department of Anesthesiology, Children's Hospital, University of Pittsburgh Pittsburgh, Pennsylvania
| | - Kelley Dickson
- Department of Anesthesiology, Uniformed Services University Bethesda, Maryland
| | | | - John Capacchione
- Department of Anesthesiology, Uniformed Services University Bethesda, Maryland
| | - Sheila Muldoon
- Department of Anesthesiology, Uniformed Services University Bethesda, Maryland
| | - Sheila Riazi
- Department of Anesthesia, Toronto General Hospital Toronto, Ontario, Canada
| | - Susan Hamilton
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine Houston, Texas
| | - Barbara Brandom
- Department of Anesthesiology, Children's Hospital, University of Pittsburgh Pittsburgh, Pennsylvania
| | - David H MacLennan
- Banting and Best Department of Medical Research, University of Toronto Toronto, Ontario, Canada
| |
Collapse
|
47
|
Thomas J, Crowhurst T. Exertional heat stroke, rhabdomyolysis and susceptibility to malignant hyperthermia. Intern Med J 2014; 43:1035-8. [PMID: 24004393 DOI: 10.1111/imj.12232] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2012] [Accepted: 01/30/2013] [Indexed: 11/28/2022]
Abstract
Unexpectedly severe exertional heat stroke and rhabdomyolysis should prompt a clinician to look for susceptibility to malignant hyperthermia. We report a case of exertional heat stroke and rhabdomyolysis in a man later determined to have the malignant hyperthermia phenotype. We review the existing literature regarding this association and suggest future research that could address areas of remaining clinical uncertainty.
Collapse
Affiliation(s)
- J Thomas
- School of Medicine, University of Adelaide, Adelaide, South Australia, Australia.
| | | |
Collapse
|
48
|
|
49
|
Zeng B, Chen GL, Daskoulidou N, Xu SZ. The ryanodine receptor agonist 4-chloro-3-ethylphenol blocks ORAI store-operated channels. Br J Pharmacol 2014; 171:1250-9. [PMID: 24670147 PMCID: PMC3952802 DOI: 10.1111/bph.12528] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2013] [Revised: 10/21/2013] [Accepted: 11/06/2013] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Depletion of the Ca(2+) store by ryanodine receptor (RyR) agonists induces store-operated Ca(2+) entry (SOCE). 4-Chloro-3-ethylphenol (4-CEP) and 4-chloro-m-cresol (4-CmC) are RyR agonists commonly used as research tools and diagnostic reagents for malignant hyperthermia. Here, we investigated the effects of 4-CEP and its analogues on SOCE. EXPERIMENTAL APPROACH SOCE and ORAI1-3 currents were recorded by Ca(2+) imaging and whole-cell patch recordings in rat L6 myoblasts and in HEK293 cells overexpressing STIM1/ORAI1-3. KEY RESULTS 4-CEP induced a significant release of Ca(2+) in rat L6 myoblasts, but inhibited SOCE. The inhibitory effect was concentration-dependent and more potent than its analogues 4-CmC and 4-chlorophenol (4-ClP). In the HEK293 T-REx cells overexpressing STIM1/ORAI1-3, 4-CEP inhibited the ORAI1, ORAI2 and ORAI3 currents evoked by thapsigargin. The 2-APB-induced ORAI3 current was also blocked by 4-CEP. This inhibitory effect was reversible and independent of the Ca(2+) release. The two analogues, 4-CmC and 4-ClP, also inhibited the ORAI1-3 channels. Excised patch and intracellular application of 4-CEP demonstrated that the action site was located extracellularly. Moreover, 4-CEP evoked STIM1 translocation and subplasmalemmal clustering through its Ca(2+) store-depleting effect via the activation of RyR, but no effect on STIM1 redistribution was observed in cells co-expressing STIM1/ORAI1-3. CONCLUSION AND IMPLICATIONS 4-CEP not only acts as a RyR agonist to deplete the Ca(2+) store and trigger STIM1 subplasmalemmal translocation and clustering, but also directly inhibits ORAI1-3 channels. These findings demonstrate a novel pharmacological property for the chlorophenol derivatives that act as RyR agonists.
Collapse
Affiliation(s)
- Bo Zeng
- Centre for Cardiovascular and Metabolic Research, Hull York Medical School, University of HullHull, UK
| | - Gui-Lan Chen
- Centre for Cardiovascular and Metabolic Research, Hull York Medical School, University of HullHull, UK
- Key Laboratory for Medical Electrophysiology, Ministry of Education of China, and the Institute of Cardiovascular Research, Luzhou Medical CollegeLuzhou, China
| | - Nikoleta Daskoulidou
- Centre for Cardiovascular and Metabolic Research, Hull York Medical School, University of HullHull, UK
| | - Shang-Zhong Xu
- Centre for Cardiovascular and Metabolic Research, Hull York Medical School, University of HullHull, UK
| |
Collapse
|
50
|
Klingler W, Heiderich S, Girard T, Gravino E, Heffron JJA, Johannsen S, Jurkat-Rott K, Rüffert H, Schuster F, Snoeck M, Sorrentino V, Tegazzin V, Lehmann-Horn F. Functional and genetic characterization of clinical malignant hyperthermia crises: a multi-centre study. Orphanet J Rare Dis 2014; 9:8. [PMID: 24433488 PMCID: PMC3896768 DOI: 10.1186/1750-1172-9-8] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2013] [Accepted: 01/08/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Malignant hyperthermia (MH) is a rare pharmacogenetic disorder which is characterized by life-threatening metabolic crises during general anesthesia. Classical triggering substances are volatile anesthetics and succinylcholine (SCh). The molecular basis of MH is excessive release of Ca2+ in skeletal muscle principally by a mutated ryanodine receptor type 1 (RyR1). To identify factors explaining the variable phenotypic presentation and complex pathomechanism, we analyzed proven MH events in terms of clinical course, muscle contracture, genetic factors and pharmocological triggers. METHODS In a multi-centre study including seven European MH units, patients with a history of a clinical MH episode confirmed by susceptible (MHS) or equivocal (MHE) in vitro contracture tests (IVCT) were investigated. A test result is considered to be MHE if the muscle specimens develop pathological contractures in response to only one of the two test substances, halothane or caffeine. Crises were evaluated using a clinical grading scale (CGS), results of IVCT and genetic screening. The effects of SCh and volatile anesthetics on Ca2+ release from sarcoplasmic reticulum (SR) were studied in vitro. RESULTS A total of 200 patients met the inclusion criteria. Two MH crises (1%) were triggered by SCh (1 MHS, 1 MHE), 18% by volatile anesthetics and 81% by a combination of both. Patients were 70% male and 50% were younger than 12 years old. Overall, CGS was in accord with IVCT results. Crises triggered by enflurane had a significantly higher CGS compared to halothane, isoflurane and sevoflurane. Of the 200 patients, 103 carried RyR1 variants, of which 14 were novel. CGS varied depending on the location of the mutation within the RyR1 gene. In contrast to volatile anesthetics, SCh did not evoke Ca2+ release from isolated rat SR vesicles. CONCLUSIONS An MH event could depend on patient-related risk factors such as male gender, young age and causative RyR1 mutations as well as on the use of drugs lowering the threshold of myoplasmic Ca2+ release. SCh might act as an accelerant by promoting unspecific Ca2+ influx via the sarcolemma and indirect RyR1 activation. Most MH crises develop in response to the combined administration of SCh and volatile anesthetics.
Collapse
Affiliation(s)
- Werner Klingler
- Department of Neuroanesthesiology, Ulm University, Ludwig-Heilmeyer-Str. 2, Günzburg 89312, Germany
- Division of Neurophysiology, Ulm University, Albert-Einstein Allee 11, Ulm 89081, Germany
- Rare Disease Center, University Hospital Ulm, Ulm 89081, Germany
| | - Sebastian Heiderich
- Department of Neuroanesthesiology, Ulm University, Ludwig-Heilmeyer-Str. 2, Günzburg 89312, Germany
- Division of Neurophysiology, Ulm University, Albert-Einstein Allee 11, Ulm 89081, Germany
- Department of Anesthesiology and Intensive Care Medicine, Hannover Medical School, Carl-Neuberg-Strasse 1, Hannover 30625, Germany
| | | | | | | | - Stephan Johannsen
- Department of Anesthesia and Critical Care, University of Würzburg, Würzburg, Germany
| | - Karin Jurkat-Rott
- Division of Neurophysiology, Ulm University, Albert-Einstein Allee 11, Ulm 89081, Germany
- Rare Disease Center, University Hospital Ulm, Ulm 89081, Germany
| | - Henrik Rüffert
- University of Leipzig, Helios Kliniken Leipziger Land Leipzig, Germany
| | - Frank Schuster
- Department of Anesthesia and Critical Care, University of Würzburg, Würzburg, Germany
| | - Marc Snoeck
- Department of Anesthesia, Canisius-Wilhelmina Hospital, University of Nijmegen, Nijmegen, The Netherlands
| | - Vincenzo Sorrentino
- Molecular Medicine Section, Department of Molecular and Developmental Medicine, University of Siena, via A. Moro 2, Siena 53100, Italy
| | | | - Frank Lehmann-Horn
- Division of Neurophysiology, Ulm University, Albert-Einstein Allee 11, Ulm 89081, Germany
- Rare Disease Center, University Hospital Ulm, Ulm 89081, Germany
| |
Collapse
|