1
|
Gleichsner AM, Reinhart K, Minchella DJ. Of mice and worms: are co-infections with unrelated parasite strains more damaging to definitive hosts? Int J Parasitol 2018; 48:881-885. [PMID: 30059691 DOI: 10.1016/j.ijpara.2018.05.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 05/24/2018] [Accepted: 05/31/2018] [Indexed: 11/29/2022]
Abstract
Intraspecific competition between co-infecting parasites can influence the amount of virulence, or damage, they do to their host. Kin selection theory dictates that infections with related parasite individuals should have lower virulence than infections with unrelated individuals, because they benefit from inclusive fitness and increased host longevity. These predictions have been tested in a variety of microparasite systems, and in larval stage macroparasites within intermediate hosts, but the influence of adult macroparasite relatedness on virulence has not been investigated in definitive hosts. This study used the human parasite Schistosoma mansoni to determine whether definitive hosts infected with related parasites experience lower virulence than hosts infected with unrelated parasites, and to compare the results from intermediate host studies in this system. The presence of unrelated parasites in an infection decreased parasite infectivity, the ability of a parasite to infect a definitive host, and total worm establishment in hosts, impacting the less virulent parasite strain more severely. Unrelated parasite co-infections had similar virulence to the more virulent of the two parasite strains. We combine these findings with complementary studies of the intermediate snail host and describe trade-offs in virulence and selection within the life cycle. Damage to the host by the dominant strain was muted by the presence of a competitor in the intermediate host, but was largely unaffected in the definitive host. Our results in this host-parasite system suggest that unrelated infections may select for higher virulence in definitive hosts while selecting for lower virulence in intermediate hosts.
Collapse
Affiliation(s)
- A M Gleichsner
- Department of Biological Sciences, Purdue University, 915 West State Street, West Lafayette, IN 47907, USA; Department of Biological Sciences, State University of New York, College at Plattsburgh, 101 Broad Street, Plattsburgh, NY 12901, USA.
| | - K Reinhart
- Department of Biological Sciences, Purdue University, 915 West State Street, West Lafayette, IN 47907, USA
| | - D J Minchella
- Department of Biological Sciences, Purdue University, 915 West State Street, West Lafayette, IN 47907, USA
| |
Collapse
|
2
|
Immune priming in arthropods: an update focusing on the red flour beetle. ZOOLOGY 2016; 119:254-61. [DOI: 10.1016/j.zool.2016.03.006] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Revised: 02/11/2016] [Accepted: 03/18/2016] [Indexed: 01/21/2023]
|
3
|
Goodacre SL, Fricke C, Martin OY. A screen for bacterial endosymbionts in the model organisms Tribolium castaneum, T. confusum, Callosobruchus maculatus, and related species. INSECT SCIENCE 2015; 22:165-177. [PMID: 24347564 DOI: 10.1111/1744-7917.12096] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 12/03/2013] [Indexed: 06/03/2023]
Abstract
Reproductive parasites such as Wolbachia are extremely widespread amongst the arthropods and can have a large influence over the reproduction and fitness of their hosts. Undetected infections could thus confound the results of a wide range of studies that focus on aspects of host behavior, reproduction, fitness, and degrees of reproductive isolation. This potential problem has already been underlined by work investigating the incidence of Wolbachia infections in stocks of the model system Drosophila melanogaster. Here we survey a range of lab stocks of further commonly used model arthropods, focusing especially on the flour beetles Tribolium castaneum and Tribolium confusum, the cowpea weevil Callosobruchus maculatus and related species (Coleoptera: Tenebrionidae and Bruchidae). These species are widespread stored product pests so knowledge of infections with symbionts further has potential use in informing biocontrol measures. Beetles were assessed for infection with 3 known microbial reproductive parasites: Wolbachia, Rickettsia, Spiroplasma. Infections with some of these microbes were found in some of the lab stocks studied, although overall infections were relatively rare. The consequences of finding infections in these or other species and the type of previous studies likely to be affected most are discussed.
Collapse
Affiliation(s)
- Sara L Goodacre
- School of Biology, University of Nottingham, Queen's Medical Centre, Nottingham, NG7 2UH, United Kingdom
| | | | | |
Collapse
|
4
|
Kerstes NAG, Martin OY. Insect host-parasite coevolution in the light of experimental evolution. INSECT SCIENCE 2014; 21:401-414. [PMID: 24130157 DOI: 10.1111/1744-7917.12064] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 09/29/2013] [Indexed: 06/02/2023]
Abstract
The many ways parasites can impact their host species have been the focus of intense study using a range of approaches. A particularly promising but under-used method in this context is experimental evolution, because it allows targeted manipulation of known populations exposed to contrasting conditions. The strong potential of applying this method to the study of insect hosts and their associated parasites is demonstrated by the few available long-term experiments where insects have been exposed to parasites. In this review, we summarize these studies, which have delivered valuable insights into the evolution of resistance in response to parasite pressure, the underlying mechanisms, as well as correlated genetic responses. We further assess findings from relevant artificial selection studies in the interrelated contexts of immunity, life history, and reproduction. In addition, we discuss a number of well-studied Tribolium castaneum-Nosema whitei coevolution experiments in more detail and provide suggestions for research. Specifically, we suggest that future experiments should also be performed using nonmodel hosts and should incorporate contrasting experimental conditions, such as population sizes or environments. Finally, we expect that adding a third partner, for example, a second parasite or symbiont, to a host-parasite system could strongly impact (co)evolutionary dynamics.
Collapse
Affiliation(s)
- Niels A G Kerstes
- Experimental Ecology, Institute for Integrative Biology, D-USYS, ETH Zurich, Zurich, Switzerland
| | | |
Collapse
|
5
|
Hayward AD, Nussey DH, Wilson AJ, Berenos C, Pilkington JG, Watt KA, Pemberton JM, Graham AL. Natural selection on individual variation in tolerance of gastrointestinal nematode infection. PLoS Biol 2014; 12:e1001917. [PMID: 25072883 PMCID: PMC4114752 DOI: 10.1371/journal.pbio.1001917] [Citation(s) in RCA: 96] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Accepted: 06/19/2014] [Indexed: 11/19/2022] Open
Abstract
A 25-year study of wild sheep shows that individuals vary in how quickly they lose weight as parasite infections increase, and that those who lose the least weight when heavily infected produce more offspring. Hosts may mitigate the impact of parasites by two broad strategies: resistance, which limits parasite burden, and tolerance, which limits the fitness or health cost of increasing parasite burden. The degree and causes of variation in both resistance and tolerance are expected to influence host–parasite evolutionary and epidemiological dynamics and inform disease management, yet very little empirical work has addressed tolerance in wild vertebrates. Here, we applied random regression models to longitudinal data from an unmanaged population of Soay sheep to estimate individual tolerance, defined as the rate of decline in body weight with increasing burden of highly prevalent gastrointestinal nematode parasites. On average, individuals lost weight as parasite burden increased, but whereas some lost weight slowly as burden increased (exhibiting high tolerance), other individuals lost weight significantly more rapidly (exhibiting low tolerance). We then investigated associations between tolerance and fitness using selection gradients that accounted for selection on correlated traits, including body weight. We found evidence for positive phenotypic selection on tolerance: on average, individuals who lost weight more slowly with increasing parasite burden had higher lifetime breeding success. This variation did not have an additive genetic basis. These results reveal that selection on tolerance operates under natural conditions. They also support theoretical predictions for the erosion of additive genetic variance of traits under strong directional selection and fixation of genes conferring tolerance. Our findings provide the first evidence of selection on individual tolerance of infection in animals and suggest practical applications in animal and human disease management in the face of highly prevalent parasites. Animals can defend themselves against parasites through either resistance (reducing parasite numbers, for example, by killing them) or tolerance (maintaining health as infections levels increase, for example, by repairing damage). Resistance has been well-studied in wild animals, but tolerance has been less so. We analysed data on body weight collected over 25 years on a natural population of Soay sheep, infected with parasitic gut worms. As parasite burden increased, sheep lost weight. Crucially, there was variation among individuals: some lost weight rapidly with increasing infections (i.e., showed “low tolerance”), whereas others lost weight slowly (i.e., showed “high tolerance”). The least tolerant individuals lost 4.5 kg of body weight across the range of parasite burdens that we saw, whereas the most tolerant lost only around 0.36 kg. However, variation in tolerance did not have a heritable genetic basis, so that although tolerance varied between individuals, this was not due to genetic differences. Further analysis revealed that there was natural selection on tolerance. Individuals who were more tolerant of infection produced more offspring over the course of their lives. This study shows that natural selection can act upon resistance and tolerance simultaneously in nature, a result that has implications for both human health and livestock management.
Collapse
Affiliation(s)
- Adam D. Hayward
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, United Kingdom
- * E-mail: (ADH); (ALG)
| | - Daniel H. Nussey
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
- Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
- Centre for Immunity, Infection and Evolution, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Alastair J. Wilson
- Centre for Ecology and Conservation, University of Exeter, Cornwall Campus, Penryn, Cornwall, United Kingdom
| | - Camillo Berenos
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Jill G. Pilkington
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Kathryn A. Watt
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
- Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
- Centre for Immunity, Infection and Evolution, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Josephine M. Pemberton
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Andrea L. Graham
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, New Jersey, United States of America
- * E-mail: (ADH); (ALG)
| |
Collapse
|
6
|
Hall MD, Ebert D. The genetics of infectious disease susceptibility: has the evidence for epistasis been overestimated? BMC Biol 2013; 11:79. [PMID: 23855805 PMCID: PMC3711976 DOI: 10.1186/1741-7007-11-79] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2012] [Accepted: 07/08/2013] [Indexed: 12/30/2022] Open
Abstract
Interactions amongst genes, known as epistasis, are assumed to make a substantial contribution to the genetic variation in infectious disease susceptibility, but this claim is controversial. Here, we focus on the debate surrounding the evolutionary importance of interactions between resistance loci and argue that its role in explaining overall variance in disease outcomes may have been overestimated.
Collapse
Affiliation(s)
- Matthew D Hall
- University of Basel, Zoological Institute, Vesalgasse 1, Basel, CH-4051, Switzerland.
| | | |
Collapse
|
7
|
Bérénos C, Schmid-Hempel P, Wegner KM. Antagonistic Coevolution Accelerates the Evolution of Reproductive Isolation in Tribolium castaneum. Am Nat 2012; 180:520-8. [DOI: 10.1086/667589] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
8
|
Duncan AB, Agnew P, Noel V, Demettre E, Seveno M, Brizard JP, Michalakis Y. Proteome of Aedes aegypti in response to infection and coinfection with microsporidian parasites. Ecol Evol 2012; 2:681-94. [PMID: 22837817 PMCID: PMC3399191 DOI: 10.1002/ece3.199] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2011] [Accepted: 12/01/2011] [Indexed: 12/24/2022] Open
Abstract
Hosts are frequently infected with more than one parasite or pathogen at any one time, but little is known as to how they respond to multiple immune challenges compared to those involving single infections. We investigated the proteome of Aedes aegypti larvae following infection with either Edhazardia aedis or Vavraia culicis, and coinfections involving both. They are both obligate intracellular parasites belonging to the phylum microsporidia and infect natural populations of Ae. aegypti. The results found some proteins only showing modified abundance in response to infections involving E. aedis, while others were only differentially abundant when infections involved V. culicis. Some proteins only responded with modified abundance to the coinfection condition, while others were differentially abundant in response to all three types of infection. As time since infection increased, the response to each of the single parasite infections diverged, while the response to the E. aedis and coinfection treatments converged. Some of the proteins differentially abundant in response to infection were identified. They included two vacuolar ATPases, proteins known to have a role in determining the infection success of intracellular parasites. This result suggests microsporidia could influence the infection success of other intracellular pathogens infecting vector species of mosquito, including viruses, Plasmodium and Wolbachia.
Collapse
|
9
|
Hall MD, Ebert D. Disentangling the influence of parasite genotype, host genotype and maternal environment on different stages of bacterial infection in Daphnia magna. Proc Biol Sci 2012; 279:3176-83. [PMID: 22593109 DOI: 10.1098/rspb.2012.0509] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Individuals naturally vary in the severity of infectious disease when exposed to a parasite. Dissecting this variation into genetic and environmental components can reveal whether or not this variation depends on the host genotype, parasite genotype or a range of environmental conditions. Complicating this task, however, is that the symptoms of disease result from the combined effect of a series of events, from the initial encounter between a host and parasite, through to the activation of the host immune system and the exploitation of host resources. Here, we use the crustacean Daphnia magna and its parasite Pasteuria ramosa to show how disentangling genetic and environmental factors at different stages of infection improves our understanding of the processes shaping infectious disease. Using compatible host-parasite combinations, we experimentally exclude variation in the ability of a parasite to penetrate the host, from measures of parasite clearance, the reduction in host fecundity and the proliferation of the parasite. We show how parasite resistance consists of two components that vary in environmental sensitivity, how the maternal environment influences all measured aspects of the within-host infection process and how host-parasite interactions following the penetration of the parasite into the host have a distinct temporal component.
Collapse
Affiliation(s)
- Matthew D Hall
- Zoologisches Institut, Evolutionsbiologie, University of Basel, Basel 4051, Switzerland.
| | | |
Collapse
|
10
|
Kerstes NAG, Bérénos C, Schmid-Hempel P, Wegner KM. Antagonistic experimental coevolution with a parasite increases host recombination frequency. BMC Evol Biol 2012; 12:18. [PMID: 22330615 PMCID: PMC3293731 DOI: 10.1186/1471-2148-12-18] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2011] [Accepted: 02/13/2012] [Indexed: 11/10/2022] Open
Abstract
Background One of the big remaining challenges in evolutionary biology is to understand the evolution and maintenance of meiotic recombination. As recombination breaks down successful genotypes, it should be selected for only under very limited conditions. Yet, recombination is very common and phylogenetically widespread. The Red Queen Hypothesis is one of the most prominent hypotheses for the adaptive value of recombination and sexual reproduction. The Red Queen Hypothesis predicts an advantage of recombination for hosts that are coevolving with their parasites. We tested predictions of the hypothesis with experimental coevolution using the red flour beetle, Tribolium castaneum, and its microsporidian parasite, Nosema whitei. Results By measuring recombination directly in the individuals under selection, we found that recombination in the host population was increased after 11 generations of coevolution. Detailed insights into genotypic and phenotypic changes occurring during the coevolution experiment furthermore helped us to reconstruct the coevolutionary dynamics that were associated with this increase in recombination frequency. As coevolved lines maintained higher genetic diversity than control lines, and because there was no evidence for heterozygote advantage or for a plastic response of recombination to infection, the observed increase in recombination most likely represented an adaptive host response under Red Queen dynamics. Conclusions This study provides direct, experimental evidence for an increase in recombination frequency under host-parasite coevolution in an obligatory outcrossing species. Combined with earlier results, the Red Queen process is the most likely explanation for this observation.
Collapse
Affiliation(s)
- Niels A G Kerstes
- ETH Zürich, Institute of Integrative Biology, Experimental Ecology, CH-8092 Zürich, Switzerland.
| | | | | | | |
Collapse
|
11
|
Bérénos C, Schmid-Hempel P, Wegner KM. Complex adaptive responses during antagonistic coevolution between Tribolium castaneum and its natural parasite Nosema whitei revealed by multiple fitness components. BMC Evol Biol 2012; 12:11. [PMID: 22280468 PMCID: PMC3305629 DOI: 10.1186/1471-2148-12-11] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2011] [Accepted: 01/26/2012] [Indexed: 11/15/2022] Open
Abstract
Background Host-parasite coevolution can lead to local adaptation of either parasite or host if there is specificity (GxG interactions) and asymmetric evolutionary potential between host and parasite. This has been demonstrated both experimentally and in field studies, but a substantial proportion of studies fail to detect such clear-cut patterns. One explanation for this is that adaptation can be masked by counter-adaptation by the antagonist. Additionally, genetic architecture underlying the interaction is often highly complex thus preventing specific adaptive responses. Here, we have employed a reciprocal cross-infection experiment to unravel the adaptive responses of two components of fitness affecting both parties with different complexities of the underlying genetic architecture (i.e. mortality and spore load). Furthermore, our experimental coevolution of hosts (Tribolium castaneum) and parasites (Nosema whitei) included paired replicates of naive hosts from identical genetic backgrounds to allow separation between host- and parasite-specific responses. Results In hosts, coevolution led to higher resistance and altered resistance profiles compared to paired control lines. Host genotype × parasite genotype interactions (GH × GP) were observed for spore load (the trait of lower genetic complexity), but not for mortality. Overall parasite performance correlated with resistance of its matching host coevolution background reflecting a directional and unspecific response to strength of selection during coevolution. Despite high selective pressures exerted by the obligatory killing parasite, and host- and parasite-specific mortality profiles, no general pattern of local adaptation was observed, but one case of parasite maladaptation was consistently observed on both coevolved and control host populations. In addition, the use of replicate control host populations in the assay revealed one case of host maladaptation and one case of parasite adaptation that was masked by host counter-adaptation, suggesting the presence of complex and probably dynamically changing fitness landscapes. Conclusions Our results demonstrate that the use of replicate naive populations can be a useful tool to differentiate between host and parasite adaptation in complex and dynamic fitness landscapes. The absence of clear local adaptation patterns during coevolution with a sexual host showing a complex genetic architecture for resistance suggests that directional selection for generality may be more important attributes of host-parasite coevolution than commonly assumed.
Collapse
Affiliation(s)
- Camillo Bérénos
- Institute of Integrative Biology, Experimental Ecology, ETH Zürich Universitätstrasse 16, CHN K 12,2, 8092 Zürich, Switzerland.
| | | | | |
Collapse
|
12
|
Lemoine M, Doligez B, Richner H. On the equivalence of host local adaptation and parasite maladaptation: an experimental test. Am Nat 2011; 179:270-81. [PMID: 22218315 DOI: 10.1086/663699] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
In spatiotemporally varying environments, host-parasite coevolution may lead to either host or parasite local adaptation. Using reciprocal infestations over 11 pairs of plots, we tested local adaptation in the hen flea and its main host, the great tit. Flea reproductive success (number of adults at host fledging) was lower on host individuals from the same plot compared with foreign hosts (from another plot), revealing flea local maladaptation. Host reproductive success (number of fledged young) for nests infested by foreign fleas was lower compared with the reproductive success of controls, with an intermediate success for nests infested by local fleas. This suggests host local adaptation although the absence of local adaptation could not be excluded. However, fledglings were heavier and larger when reared with foreign fleas than when reared with local fleas, which could also indicate host local maladaptation if the fitness gain in offspring size offsets the potential cost in offspring number. Our results therefore challenge the traditional view that parasite local maladaptation is equivalent to host local adaptation. The differences in fledgling morphology between nests infested with local fleas and those with foreign fleas suggest that flea origin affects host resource allocation strategy between nestling growth and defense against parasites. Therefore, determining the mechanisms that underlie these local adaptation patterns requires the identification of the relevant fitness measures and life-history trade-offs in both species.
Collapse
Affiliation(s)
- Mélissa Lemoine
- Evolutionary Ecology Laboratory, Institute of Ecology and Evolution, University of Bern, Baltzerstrasse 6, 3012 Bern, Switzerland.
| | | | | |
Collapse
|
13
|
BÉRÉNOS C, SCHMID-HEMPEL P, WEGNER KM. Experimental coevolution leads to a decrease in parasite-induced host mortality. J Evol Biol 2011; 24:1777-82. [DOI: 10.1111/j.1420-9101.2011.02306.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
14
|
Fellous S, Lazzaro BP. Potential for evolutionary coupling and decoupling of larval and adult immune gene expression. Mol Ecol 2011; 20:1558-67. [PMID: 21299661 DOI: 10.1111/j.1365-294x.2011.05006.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Almost all studies of the immune system of animals with metamorphosis have focused on either larval or on adult immunity, implicitly assuming that these traits are either perfectly correlated or evolutionarily independent. In this study, we use 80 crosses among 21 Drosophila melanogaster lines to investigate the degree and constancy of genetic correlation in immune system activity between larvae and adults. The constitutive transcription of Diptericin, a gene encoding a defensive antimicrobial peptide, was controlled by the same genetic factors in larvae and adults, with variation in expression determined exclusively by nonadditive genetic effects. This contrasted with another peptide-encoding gene, Drosomycin, in which larval transcription was highly variable and determined by additive effects but adult transcription genetically invariant. We found no evidence for a fitness cost to the transcription of these genes in our study. The shared genetic control of larval and adult Diptericin transcription stands in contrast to predictions of the adaptive decoupling hypothesis, which states that distinct life-stages should permit the independent evolution of larval and adult phenotypes. Importantly, genetic correlations between larval and adult immunities imply that parasite pressure on one life-stage can drive the evolution of immunity (and resistance) in the other life-stage.
Collapse
Affiliation(s)
- Simon Fellous
- Department of Entomology, Cornell University, Ithaca, NY 14853, USA
| | | |
Collapse
|
15
|
|
16
|
Bérénos C, Schmid-Hempel P, Wegner KM. Evolution of host resistance and trade-offs between virulence and transmission potential in an obligately killing parasite. J Evol Biol 2009; 22:2049-56. [PMID: 19732263 DOI: 10.1111/j.1420-9101.2009.01821.x] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Standard epidemiological theory predicts that parasites, which continuously release propagules during infection, face a trade-off between virulence and transmission. However, little is known how host resistance and parasite virulence change during coevolution with obligate killers. To address this question we have set up a coevolution experiment evolving Nosema whitei on eight distinct lines of Tribolium castaneum. After 11 generations we conducted a time-shift experiment infecting both the coevolved and the replicate control host lines with the original parasite source, and coevolved parasites from generation 8 and 11. We found higher survival in the coevolved host lines than in the matching control lines. In the parasite populations, virulence measured as host mortality decreased during coevolution, while sporeload stayed constant. Both patterns are compatible with adaptive evolution by selection for resistance in the host and by trade-offs between virulence and transmission potential in the parasite.
Collapse
Affiliation(s)
- C Bérénos
- Experimental Ecology, Institute of Integrative Biology, ETH Zürich, 8092 Zürich, Switzerland.
| | | | | |
Collapse
|