1
|
Sharman P, Wilson AJ. Genetic improvement of speed across distance categories in thoroughbred racehorses in Great Britain. Heredity (Edinb) 2023; 131:79-85. [PMID: 37244934 PMCID: PMC10313675 DOI: 10.1038/s41437-023-00623-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 05/02/2023] [Accepted: 05/03/2023] [Indexed: 05/29/2023] Open
Abstract
Several studies over recent decades have reported a lack of contemporary improvement in thoroughbred racehorse speed, despite apparent additive genetic variance and putatively strong selection. More recently, it has been shown that some phenotypic improvement is ongoing, but rates are low in general and particularly so over longer distances. Here we used pedigree-based analysis of 692,534 records from 76,960 animals to determine whether these phenotypic trends are underpinned by genetic selection responses, and to evaluate the potential for more rapid improvement. We show that thoroughbred speed in Great Britain is only weakly heritable across sprint (h2 = 0.124), middle-distance (h2 = 0.122) and long-distance races (h2 = 0.074), but that mean predicted breeding values are nonetheless increasing across cohorts born between 1995 and 2012 (and racing from 1997 to 2014). For all three race distance categories, estimated rates of genetic improvement are statistically significant and also greater than can be explained by drift. Taken together our results show genetic improvement for thoroughbred speed is ongoing but slow, likely due to a combination of long generation times and low heritabilities. Additionally, estimates of realised selection intensities raises the possibility that the contemporary selection emerging from the collective actions of horse breeders is weaker than previously assumed, particularly over long distances. We suggest that unmodelled common environment effects may have upwardly biased estimates of heritability, and thus expected selection response, previously.
Collapse
Affiliation(s)
- Patrick Sharman
- Centre for Ecology and Conservation, University of Exeter (Penryn Campus), Cornwall, TR10 9FE, UK.
| | - Alastair J Wilson
- Centre for Ecology and Conservation, University of Exeter (Penryn Campus), Cornwall, TR10 9FE, UK
| |
Collapse
|
2
|
Berthelot G, Bar-Hen A, Marck A, Foulonneau V, Douady S, Noirez P, Zablocki-Thomas PB, da Silva Antero J, Carter PA, Di Meglio JM, Toussaint JF. An integrative modeling approach to the age-performance relationship in mammals at the cellular scale. Sci Rep 2019; 9:418. [PMID: 30674921 PMCID: PMC6344496 DOI: 10.1038/s41598-018-36707-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Accepted: 11/25/2018] [Indexed: 11/09/2022] Open
Abstract
Physical and cognitive performances change across lifespan. Studying cohorts of individuals in specific age ranges and athletic abilities remains essential in assessing the underlying physiological mechanisms that result in such a drop in performance. This decline is now viewed as a unique phenotypic biomarker and a hallmark of the aging process. The rates of decline are well documented for sets of traits such as running or swimming but only a limited number of studies have examined the developmental and senescent phases together. Moreover, the few attempts to do so are merely descriptive and do not include any meaningful biological features. Here we propose an averaged and deterministic model, based on cell population dynamics, replicative senescence and functionality loss. It describes the age-related change of performance in 17 time-series phenotypic traits, including human physical and cognitive skills, mouse lemur strength, greyhound and thoroughbred speed, and mouse activity. We demonstrate that the estimated age of peak performance occurs in the early part of life (20.5% ± 6.6% of the estimated lifespan) thus emphasizing the asymmetrical nature of the relationship. This model is an initial attempt to relate performance dynamics to cellular dynamics and will lead to more sophisticated models in the future.
Collapse
Affiliation(s)
- Geoffroy Berthelot
- Institut de Recherche bio-Médicale et d'Epidémiologie du Sport (IRMES), EA 7329, Institut National du Sport de l'Expertise et de la Performance (INSEP) and Université Paris Descartes, Sorbonne Paris Cité, Paris, France. .,REsearch LAboratory for Interdisciplinary Studies (RELAIS), Paris, France.
| | | | - Adrien Marck
- Institut de Recherche bio-Médicale et d'Epidémiologie du Sport (IRMES), EA 7329, Institut National du Sport de l'Expertise et de la Performance (INSEP) and Université Paris Descartes, Sorbonne Paris Cité, Paris, France.,Laboratoire Matière et Systèmes Complexes, UMR 7057, Université Paris Diderot and CNRS, Sorbonne Paris Cité, Paris, France
| | - Vincent Foulonneau
- Institut de Recherche bio-Médicale et d'Epidémiologie du Sport (IRMES), EA 7329, Institut National du Sport de l'Expertise et de la Performance (INSEP) and Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Stéphane Douady
- Laboratoire Matière et Systèmes Complexes, UMR 7057, Université Paris Diderot and CNRS, Sorbonne Paris Cité, Paris, France
| | - Philippe Noirez
- Institut de Recherche bio-Médicale et d'Epidémiologie du Sport (IRMES), EA 7329, Institut National du Sport de l'Expertise et de la Performance (INSEP) and Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Pauline B Zablocki-Thomas
- Département de Biologie, ENS de Lyon, Lyon, France.,Département d'écologie et de Gestion de la Biodiversité, UMR 7179 CNRS/MNHN, Paris, France
| | - Juliana da Silva Antero
- Institut de Recherche bio-Médicale et d'Epidémiologie du Sport (IRMES), EA 7329, Institut National du Sport de l'Expertise et de la Performance (INSEP) and Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Patrick A Carter
- School of Biological Sciences, Washington State University, Pullman, USA
| | - Jean-Marc Di Meglio
- Laboratoire Matière et Systèmes Complexes, UMR 7057, Université Paris Diderot and CNRS, Sorbonne Paris Cité, Paris, France
| | - Jean-François Toussaint
- Institut de Recherche bio-Médicale et d'Epidémiologie du Sport (IRMES), EA 7329, Institut National du Sport de l'Expertise et de la Performance (INSEP) and Université Paris Descartes, Sorbonne Paris Cité, Paris, France.,CIMS, Hôtel-Dieu, APHP, Paris, France
| |
Collapse
|
3
|
Berry DP. Symposium review: Breeding a better cow-Will she be adaptable? J Dairy Sci 2017; 101:3665-3685. [PMID: 29224864 DOI: 10.3168/jds.2017-13309] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Accepted: 10/12/2017] [Indexed: 12/12/2022]
Abstract
Adaption is a process that makes an individual or population more suited to their environment. Long-term adaptation is predicated on ample usable genetic variation. Evolutionary forces influencing the extent and dynamics of genetic variation in a population include random drift, mutation, recombination, selection, and migration; the relative importance of each differs by population (i.e., drift is likely to be more influential in smaller populations) and number of generations exposed to selection (i.e., mutation is expected to contribute substantially to genetic variability following many generations of selection). The infinitesimal model, which underpins most genetic and genomic evaluations, assumes that each quantitative trait is controlled by an infinitely large number of unlinked and non-epistatic loci, each with an infinitely small effect. Under the infinitesimal model, selection is not expected to noticeably alter the allele frequencies, despite a potential substantial change in the population mean; the exception is in the first few generations of selection when genetic variance is expected to decline, after which it stabilizes. Despite the common use of the heritability statistic in quantitative genetics as a descriptor of adaption or response to selection, it is arguably the coefficient of genetic variation that is more informative to gauge adaptation potential and should, therefore, always be cited in such studies; for example, the heritability of fertility traits in dairy cows is generally low, yet the coefficient of genetic variation for most traits is comparable to many other performance traits, thus supporting the observed rapid genetic gain in fertility performance in dairy populations. Empirical evidence from long-term selection studies, across a range of animal and plant species, fails to support the premise that selection will deplete genetic variability. Even after 100 yr (synonymous with 100 generations) of selection in corn for high protein or oil content, there appears to be no obvious plateauing in the response to selection. Although populations in several selection experiments did reach a selection limit after multiple generations of directional selection, this does not equate to an exhaustion of genetic variance; such a declaration is supported by the observed rapid responses to reverse selection once implemented in long-term selection studies. New technologies such as genome-wide enabled selection and genome editing, as well as having the potential to accelerate genetic gain, could also increase the genetic variation, or at least reduce the erosion of genetic variance over time. In conclusion, there is no evidence, either theoretical or empirical, to indicate that dairy cow breeding programs will be unable to adapt to evolving challenges and opportunities, at least not because of an absence of ample genetic variability.
Collapse
Affiliation(s)
- D P Berry
- Teagasc, Animal & Grassland Research and Innovation Centre, Moorepark, Fermoy, Co. Cork, Ireland.
| |
Collapse
|
4
|
Marck A, Antero J, Berthelot G, Saulière G, Jancovici JM, Masson-Delmotte V, Boeuf G, Spedding M, Le Bourg É, Toussaint JF. Are We Reaching the Limits of Homo sapiens? Front Physiol 2017; 8:812. [PMID: 29123486 PMCID: PMC5662890 DOI: 10.3389/fphys.2017.00812] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Accepted: 10/02/2017] [Indexed: 02/06/2023] Open
Abstract
Echoing scientific and industrial progress, the Twentieth century was an unprecedented period of improvement for human capabilities and performances, with a significant increase in lifespan, adult height, and maximal physiological performance. Analyses of historical data show a major slow down occurring in the most recent years. This triggered large and passionate debates in the academic scene within multiple disciplines; as such an observation could be interpreted as our upper biological limits. Such a new phase of human history may be related to structural and functional limits determined by long term evolutionary constraints, and the interaction between complex systems and their environment. In this interdisciplinary approach, we call into question the validity of subsequent forecasts and projections through innovative and related biomarkers such as sport, lifespan, and height indicators. We set a theoretical framework based on biological and environmental relevance rather than using a typical single-variable forecasting approach. As demonstrated within the article, these new views will have major social, economical, and political implications.
Collapse
Affiliation(s)
- Adrien Marck
- Institut de Recherche bio-Médicale et d'Epidémiologie du Sport (IRMES) EA 7329, Institut National du Sport, de l'Expertise et de la Performance, Université Paris Descartes, Université Sorbonne Paris Cité, Paris, France.,Laboratoire Matière et Systèmes Complexes, UMR 7057 Université Paris Diderot, Centre National de la Recherche Scientifique, Université Sorbonne Paris Cité, Paris, France
| | - Juliana Antero
- Institut de Recherche bio-Médicale et d'Epidémiologie du Sport (IRMES) EA 7329, Institut National du Sport, de l'Expertise et de la Performance, Université Paris Descartes, Université Sorbonne Paris Cité, Paris, France
| | - Geoffroy Berthelot
- Institut de Recherche bio-Médicale et d'Epidémiologie du Sport (IRMES) EA 7329, Institut National du Sport, de l'Expertise et de la Performance, Université Paris Descartes, Université Sorbonne Paris Cité, Paris, France.,Group Adaptation and Prospective, High Council of Public Health, Paris, France.,Research Laboratory for Interdisciplinary Studies, Paris, France
| | - Guillaume Saulière
- Institut de Recherche bio-Médicale et d'Epidémiologie du Sport (IRMES) EA 7329, Institut National du Sport, de l'Expertise et de la Performance, Université Paris Descartes, Université Sorbonne Paris Cité, Paris, France
| | | | - Valérie Masson-Delmotte
- Laboratoire des Sciences du Climat et l'Environnement, Institut Pierre Simon Laplace, CEA-Centre National de la Recherche Scientifique, Université de Versailles Saint-Quentin en Yvelines, Gif-sur-Yvette, France
| | - Gilles Boeuf
- Muséum National d'Histoire Naturelle, Université Pierre et Marie Curie, Sorbonne Universités, Paris, France
| | | | - Éric Le Bourg
- Centre de Recherches sur la Cognition Animale, Centre de Biologie Intégrative, Université de Toulouse, Centre National de la Recherche Scientifique, Université Toulouse III Paul Sabatier, Toulouse, France
| | - Jean-François Toussaint
- Institut de Recherche bio-Médicale et d'Epidémiologie du Sport (IRMES) EA 7329, Institut National du Sport, de l'Expertise et de la Performance, Université Paris Descartes, Université Sorbonne Paris Cité, Paris, France.,Group Adaptation and Prospective, High Council of Public Health, Paris, France.,Centre d'Investigations en Médecine du Sport (CIMS), Hôtel-Dieu de Paris, Assistance Publique - Hôpitaux de Paris, Paris, France
| |
Collapse
|
5
|
Marck A, Berthelot G, Foulonneau V, Marc A, Antero-Jacquemin J, Noirez P, Bronikowski AM, Morgan TJ, Garland T, Carter PA, Hersen P, Di Meglio JM, Toussaint JF. Age-Related Changes in Locomotor Performance Reveal a Similar Pattern for Caenorhabditis elegans, Mus domesticus, Canis familiaris, Equus caballus, and Homo sapiens. J Gerontol A Biol Sci Med Sci 2017; 72:455-463. [PMID: 27522057 DOI: 10.1093/gerona/glw136] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Accepted: 07/06/2016] [Indexed: 02/06/2023] Open
Abstract
Locomotion is one of the major physiological functions for most animals. Previous studies have described aging mechanisms linked to locomotor performance among different species. However, the precise dynamics of these age-related changes, and their interactions with development and senescence, are largely unknown. Here, we use the same conceptual framework to describe locomotor performances in Caenorhabditis elegans, Mus domesticus, Canis familiaris, Equus caballus, and Homo sapiens. We show that locomotion is a consistent biomarker of age-related changes, with an asymmetrical pattern throughout life, regardless of the type of effort or its duration. However, there is variation (i) among species for the same mode of locomotion, (ii) within species for different modes of locomotion, and (iii) among individuals of the same species for the same mode of locomotion. Age-related patterns are modulated by genetic (such as selective breeding) as well as environmental conditions (such as temperature). However, in all cases, the intersection of the rising developmental phase and the declining senescent phase reveals neither a sharp transition nor a plateau, but a smooth transition, emphasizing a crucial moment: the age at peak performance. This transition may define a specific target for future investigations on the dynamics of such biological interactions.
Collapse
Affiliation(s)
- Adrien Marck
- Institut de Recherche bio-Médicale et d'Epidémiologie du Sport (IRMES), EA 7329, Institut National du Sport, de l'Expertise et de la Performance (INSEP) and Université Paris Descartes, Sorbonne Paris Cité, Paris, France.,Laboratoire Matière et Systèmes Complexes, UMR 7057, Université Paris Diderot and CNRS, Sorbonne Paris Cité, Paris, France
| | - Geoffroy Berthelot
- Institut de Recherche bio-Médicale et d'Epidémiologie du Sport (IRMES), EA 7329, Institut National du Sport, de l'Expertise et de la Performance (INSEP) and Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Vincent Foulonneau
- Institut de Recherche bio-Médicale et d'Epidémiologie du Sport (IRMES), EA 7329, Institut National du Sport, de l'Expertise et de la Performance (INSEP) and Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Andy Marc
- Institut de Recherche bio-Médicale et d'Epidémiologie du Sport (IRMES), EA 7329, Institut National du Sport, de l'Expertise et de la Performance (INSEP) and Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Juliana Antero-Jacquemin
- Institut de Recherche bio-Médicale et d'Epidémiologie du Sport (IRMES), EA 7329, Institut National du Sport, de l'Expertise et de la Performance (INSEP) and Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Philippe Noirez
- Institut de Recherche bio-Médicale et d'Epidémiologie du Sport (IRMES), EA 7329, Institut National du Sport, de l'Expertise et de la Performance (INSEP) and Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Anne M Bronikowski
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames
| | | | | | - Patrick A Carter
- School of Biological Sciences, Washington State University, Pullman
| | - Pascal Hersen
- Laboratoire Matière et Systèmes Complexes, UMR 7057, Université Paris Diderot and CNRS, Sorbonne Paris Cité, Paris, France
| | - Jean-Marc Di Meglio
- Laboratoire Matière et Systèmes Complexes, UMR 7057, Université Paris Diderot and CNRS, Sorbonne Paris Cité, Paris, France
| | - Jean-François Toussaint
- Institut de Recherche bio-Médicale et d'Epidémiologie du Sport (IRMES), EA 7329, Institut National du Sport, de l'Expertise et de la Performance (INSEP) and Université Paris Descartes, Sorbonne Paris Cité, Paris, France.,Centre d'Investigations en Médecine du Sport, Hôtel-Dieu, Assistance Publique-Hôpitaux de Paris, France
| |
Collapse
|
6
|
Knechtle B, Nikolaidis PT. The age of the best ultramarathon performance - the case of the "Comrades Marathon". Res Sports Med 2017; 25:132-143. [PMID: 28114817 DOI: 10.1080/15438627.2017.1282357] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
The aim of the present study was to determine the age of the fastest running speed in 202,370 runners (34,090 women and 168,280 men) competing in the "Comrades Marathon" between 1994 and 2015 using non-linear regression analysis (second order polynomial function). When all runners were considered in 1-year age intervals, the fastest running speed (9.61 ± 1.65 km/h) was achieved at the age of 29.89 years in men, whereas women achieved it at the age of 35.96 years 8.60 ± 1.10 km/h. When the fastest runners were considered in 1-year intervals, the fastest running speed (16.65 km/h) was achieved in men at the age of 36.38 years. For the fastest women, the age of the fastest running speed (13.89 km/h) was 32.75 years. To summarize, for all runners, men achieved the best ultramarathon performance ~6 years earlier than women. When the fastest runners were considered, however, men achieved the best performance ~4 years later than women.
Collapse
Affiliation(s)
- Beat Knechtle
- a Gesundheitszentrum St. Gallen , St. Gallen , Switzerland.,b Institute of Primary Care , University of Zurich , Zurich , Switzerland
| | | |
Collapse
|
7
|
Early JB, Arnott ER, Wade CM, McGreevy PD. Interval dogs: Results and evaluation of Global Positioning System units in measuring athletic performance in stock-herding dogs. J Vet Behav 2016. [DOI: 10.1016/j.jveb.2016.06.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
8
|
Abstract
Limits to athletic performance have long been a topic of myth and debate. However, sport performance appears to have reached a state of stagnation in recent years, suggesting that the physical capabilities of humans and other athletic species, such as greyhounds and thoroughbreds, cannot progress indefinitely. Although the ultimate capabilities may be predictable, the exact path for the absolute maximal performance values remains difficult to assess and relies on technical innovations, sport regulation, and other parameters that depend on current societal and economic conditions. The aim of this literature review was to assess the possible plateau of top physical capabilities in various events and detail the historical backgrounds and sociocultural, anthropometrical, and physiological factors influencing the progress and regression of athletic performance. Time series of performances in Olympic disciplines, such as track and field and swimming events, from 1896 to 2012 reveal a major decrease in performance development. Such a saturation effect is simultaneous in greyhound, thoroughbred, and frog performances. The genetic condition, exhaustion of phenotypic pools, economic context, and the depletion of optimal morphological traits contribute to the observed limitation of physical capabilities. Present conditions prevailing, we approach absolute physical limits and endure a continued period of world record scarcity. Optional scenarios for further improvements will mostly depend on sport technology and modification competition rules.
Collapse
|
9
|
Abstract
Previous studies have concluded that thoroughbred racehorse speed is improving very slowly, if at all, despite heritable variation for performance and putatively intensive selective breeding. This has led to the suggestion that racehorses have reached a selection limit. However, previous studies have been limited, focusing only on the winning times of a few elite races run over middle and long distances, and failing to account for potentially confounding factors. Using a much larger dataset covering the full range of race distances and accounting for variation in factors such as ground softness, we show that improvement is, in fact, ongoing for the population as a whole, but driven largely by increasing speed in sprint races. In contrast, speed over middle and long distances, at least at the elite level, appears to be reaching an asymptote. Whether this reflects a selection limit to speed over middle and long distances or a shift in breeding practices to target sprint performances remains to be determined.
Collapse
Affiliation(s)
- Patrick Sharman
- Centre for Ecology and Conservation, University of Exeter, Penryn Campus, Cornwall TR10 9FE, UK
| | - Alastair J Wilson
- Centre for Ecology and Conservation, University of Exeter, Penryn Campus, Cornwall TR10 9FE, UK
| |
Collapse
|
10
|
Knechtle B, Nikolaidis PT, Onywera VO, Zingg MA, Rosemann T, Rüst CA. Male and female Ethiopian and Kenyan runners are the fastest and the youngest in both half and full marathon. SPRINGERPLUS 2016; 5:223. [PMID: 27026917 PMCID: PMC4771648 DOI: 10.1186/s40064-016-1915-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/29/2015] [Accepted: 02/17/2016] [Indexed: 11/10/2022]
Abstract
In major marathon races such as the 'World Marathon Majors', female and male East African runners particularly from Ethiopia and Kenya are the fastest. However, whether this trend appears for female and male Ethiopians and Kenyans at recreational level runners (i.e. races at national level) and in shorter road races (e.g. in half-marathon races) has not been studied yet. Thus, the aim of the present study was to examine differences in the performance and the age of female and male runners from East Africa (i.e. Ethiopians and Kenyans) between half- and full marathons. Data from 508,108 athletes (125,894 female and 328,430 male half-marathoners and 10,205 female and 43,489 male marathoners) originating from 126 countries and competing between 1999 and 2014 in all road-based half-marathons and marathons held in one country (Switzerland) were analysed using Chi square (χ(2)) tests, mixed-effects regression analyses and one-way analyses of variance. In half-marathons, 48 women (0.038 %) and 63 men (0.019 %) were from Ethiopia and 80 women (0.063 %) and 134 men (0.040 %) from Kenya. In marathons, three women (0.029 %) and 15 men (0.034 %) were from Ethiopia and two women (0.019 %) and 33 men (0.075 %) from Kenya. There was no statistically significant association between the nationality of East Africans and the format of a race. In both women and men, the fastest race times in half-marathons and marathons were achieved by East African runners (p < 0.001). Ethiopian and Kenyan runners were the youngest in both sexes and formats of race (p < 0.001). In summary, women and men from Ethiopia and Kenya, despite they accounted for <0.1 % in half-marathons and marathons, achieved the fastest race times and were the youngest in both half-marathons and marathons. These findings confirmed in the case of half-marathon the trend previously observed in marathon races for a better performance and a younger age in East African runners from Ethiopia and Kenya.
Collapse
Affiliation(s)
- Beat Knechtle
- Facharzt FMH für Allgemeinmedizin, Gesundheitszentrum St. Gallen, Vadianstrasse 26, St. Gallen, 9001 Switzerland ; Institute of Primary Care, University of Zurich, Zurich, Switzerland
| | - Pantelis T Nikolaidis
- Department of Physical and Cultural Education, Hellenic Army Academy, Athens, Greece
| | - Vincent O Onywera
- Department of Recreation Management and Exercise Science, Kenyatta University, Nairobi, Kenya
| | - Matthias A Zingg
- Institute of Primary Care, University of Zurich, Zurich, Switzerland
| | - Thomas Rosemann
- Institute of Primary Care, University of Zurich, Zurich, Switzerland
| | - Christoph A Rüst
- Institute of Primary Care, University of Zurich, Zurich, Switzerland
| |
Collapse
|
11
|
Astley HC, Abbott EM, Azizi E, Marsh RL, Roberts TJ. Chasing maximal performance: a cautionary tale from the celebrated jumping frogs of Calaveras County. ACTA ACUST UNITED AC 2014; 216:3947-53. [PMID: 24133149 DOI: 10.1242/jeb.090357] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Maximal performance is an essential metric for understanding many aspects of an organism's biology, but it can be difficult to determine because a measured maximum may reflect only a peak level of effort, not a physiological limit. We used a unique opportunity provided by a frog jumping contest to evaluate the validity of existing laboratory estimates of maximum jumping performance in bullfrogs (Rana catesbeiana). We recorded video of 3124 bullfrog jumps over the course of the 4-day contest at the Calaveras County Jumping Frog Jubilee, and determined jump distance from these images and a calibration of the jump arena. Frogs were divided into two groups: 'rental' frogs collected by fair organizers and jumped by the general public, and frogs collected and jumped by experienced, 'professional' teams. A total of 58% of recorded jumps surpassed the maximum jump distance in the literature (1.295 m), and the longest jump was 2.2 m. Compared with rental frogs, professionally jumped frogs jumped farther, and the distribution of jump distances for this group was skewed towards long jumps. Calculated muscular work, historical records and the skewed distribution of jump distances all suggest that the longest jumps represent the true performance limit for this species. Using resampling, we estimated the probability of observing a given jump distance for various sample sizes, showing that large sample sizes are required to detect rare maximal jumps. These results show the importance of sample size, animal motivation and physiological conditions for accurate maximal performance estimates.
Collapse
Affiliation(s)
- H C Astley
- Brown University, Department of Ecology and Evolutionary Biology, Providence, RI 02912, USA
| | | | | | | | | |
Collapse
|
12
|
Sedeaud A, Marc A, Marck A, Dor F, Schipman J, Dorsey M, Haida A, Berthelot G, Toussaint JF. BMI, a performance parameter for speed improvement. PLoS One 2014; 9:e90183. [PMID: 24587266 PMCID: PMC3934974 DOI: 10.1371/journal.pone.0090183] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Accepted: 01/20/2014] [Indexed: 11/19/2022] Open
Abstract
The purpose of this study is to investigate the association between anthropometric characteristics and performance in all track and field running events and assess Body Mass Index (BMI) as a relevant performance indicator. Data of mass, height, BMI and speed were collected for the top 100 international men athletes in track events from 100 m to marathon for the 1996-2011 seasons, and analyzed by decile of performance. Speed is significantly associated with mass (r = 0.71) and BMI (r = 0.71) in world-class runners and moderately with height (r = 0.39). Athletes, on average were continuously lighter and smaller with distance increments. In track and field, speed continuously increases with BMI. In each event, performances are organized through physique gradients. « Lighter and smaller is better » in endurance events but « heavier and taller is better » for sprints. When performance increases, BMI variability progressively tightens, but it is always centered around a distance-specific optimum. Running speed is organized through biometric gradients, which both drives and are driven by performance optimization. The highest performance level is associated with narrower biometric intervals. Through BMI indicators, diversity is possible for sprints whereas for long distance events, there is a more restrictive aspect in terms of physique. BMI is a relevant indicator, which allows for a clear differentiation of athletes' capacities between each discipline and level of performance in the fields of human possibilities.
Collapse
Affiliation(s)
- Adrien Sedeaud
- IRMES (Institut de Recherche bioMédicale et d'Epidémiologie du Sport), INSEP, Paris, France
- Université Paris-Descartes, Sorbonne Paris Cité, Paris, France
- * E-mail:
| | - Andy Marc
- IRMES (Institut de Recherche bioMédicale et d'Epidémiologie du Sport), INSEP, Paris, France
| | - Adrien Marck
- IRMES (Institut de Recherche bioMédicale et d'Epidémiologie du Sport), INSEP, Paris, France
| | - Frédéric Dor
- IRMES (Institut de Recherche bioMédicale et d'Epidémiologie du Sport), INSEP, Paris, France
| | - Julien Schipman
- IRMES (Institut de Recherche bioMédicale et d'Epidémiologie du Sport), INSEP, Paris, France
| | - Maya Dorsey
- IRMES (Institut de Recherche bioMédicale et d'Epidémiologie du Sport), INSEP, Paris, France
| | - Amal Haida
- IRMES (Institut de Recherche bioMédicale et d'Epidémiologie du Sport), INSEP, Paris, France
- Université de Rouen, CETAPS EA 3832, Mont Saint Aignan, France
| | - Geoffroy Berthelot
- IRMES (Institut de Recherche bioMédicale et d'Epidémiologie du Sport), INSEP, Paris, France
- Université Paris-Descartes, Sorbonne Paris Cité, Paris, France
| | - Jean-François Toussaint
- IRMES (Institut de Recherche bioMédicale et d'Epidémiologie du Sport), INSEP, Paris, France
- Université Paris-Descartes, Sorbonne Paris Cité, Paris, France
- CIMS, Hôtel-Dieu, Assistance Publique des Hôpitaux de Paris, Paris, France
| |
Collapse
|