1
|
Burke R, Nicotra D, Phelan J, Downey F, McCabe PF, Kacprzyk J. Spermine and spermidine inhibit or induce programmed cell death in Arabidopsis thaliana in vitro and in vivo in a dose-dependent manner. FEBS J 2024; 291:3665-3685. [PMID: 38808914 DOI: 10.1111/febs.17165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 04/19/2024] [Accepted: 05/17/2024] [Indexed: 05/30/2024]
Abstract
Polyamines are ubiquitous biomolecules with a number of established functions in eukaryotic cells. In plant cells, polyamines have previously been linked to abiotic and biotic stress tolerance, as well as to the modulation of programmed cell death (PCD), with contrasting reports on their pro-PCD and pro-survival effects. Here, we used two well-established platforms for the study of plant PCD, Arabidopsis thaliana suspension cultures cells and the root hair assay, to examine the roles of the polyamines spermine and spermidine in the regulation of PCD. Using these systems for precise quantification of cell death rates, we demonstrate that both polyamines can trigger PCD when applied exogenously at higher doses, whereas at lower concentrations they inhibit PCD induced by both biotic and abiotic stimuli. Furthermore, we show that concentrations of polyamines resulting in inhibition of PCD generated a transient ROS burst in our experimental system, and activated the expression of oxidative stress- and pathogen response-associated genes. Finally, we examined PCD responses in existing Arabidopsis polyamine synthesis mutants, and identified a subtle PCD phenotype in Arabidopsis seedlings deficient in thermo-spermine. The presented data show that polyamines can have a role in PCD regulation; however, that role is dose-dependent and consequently they may act as either inhibitors, or inducers, of PCD in Arabidopsis.
Collapse
Affiliation(s)
- Rory Burke
- School of Biology and Environmental Science, University College Dublin, Ireland
| | - Daniele Nicotra
- School of Biology and Environmental Science, University College Dublin, Ireland
- Department of Agriculture, Food and Environment, University of Catania, Italy
| | - Jim Phelan
- School of Biology and Environmental Science, University College Dublin, Ireland
| | - Frances Downey
- School of Biology and Environmental Science, University College Dublin, Ireland
| | - Paul F McCabe
- School of Biology and Environmental Science, University College Dublin, Ireland
| | - Joanna Kacprzyk
- School of Biology and Environmental Science, University College Dublin, Ireland
| |
Collapse
|
2
|
Serafini-Fracassini D, Del Duca S. Programmed Cell Death Reversal: Polyamines, Effectors of the U-Turn from the Program of Death in Helianthus tuberosus L. Int J Mol Sci 2024; 25:5386. [PMID: 38791426 PMCID: PMC11121942 DOI: 10.3390/ijms25105386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 03/22/2024] [Accepted: 04/08/2024] [Indexed: 05/26/2024] Open
Abstract
This review describes a 50-year-long research study on the characteristics of Helianthus tuberosus L. tuber dormancy, its natural release and programmed cell death (PCD), as well as on the ability to change the PCD so as to return the tuber to a life program. The experimentation on the tuber over the years is due to its particular properties of being naturally deficient in polyamines (PAs) during dormancy and of immediately reacting to transplants by growing and synthesizing PAs. This review summarizes the research conducted in a unicum body. As in nature, the tuber tissue has to furnish its storage substances to grow vegetative buds, whereby its destiny is PCD. The review's main objective concerns data on PCD, the link with free and conjugated PAs and their capacity to switch the destiny of the tuber from a program of death to one of new life. PCD reversibility is an important biological challenge that is verified here but not reported in other experimental models. Important aspects of PA features are their capacity to change the cell functions from storage to meristematic ones and their involvement in amitosis and differentiation. Other roles reported here have also been confirmed in other plants. PAs exert multiple diverse roles, suggesting that they are not simply growth substances, as also further described in other plants.
Collapse
Affiliation(s)
| | - Stefano Del Duca
- Department of Biological, Geological and Environmental Sciences, University of Bologna, 40126 Bologna, Italy;
- Interdepartmental Centre for Agri-Food Industrial Research, University of Bologna, 40126 Bologna, Italy
| |
Collapse
|
3
|
So SH, Lee JH, Kim HW, Rhee HI, Lee DC. Anti-inflammatory effect of pepper extract with high polyamine levels; inhibition of ERK/MAPK pathway in mice. Food Sci Biotechnol 2024; 33:677-687. [PMID: 38274190 PMCID: PMC10805694 DOI: 10.1007/s10068-023-01333-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 04/23/2023] [Accepted: 05/03/2023] [Indexed: 01/27/2024] Open
Abstract
Polyamines have been reported to have cell proliferative and anti-inflammatory effects on normal metabolism in the body. This study aimed to investigate polyamine content of AIG01 pepper and the anti-inflammatory effect of AIG01 pepper extract (PAE) in mice. Polyamine content was analyzed by HPLC after acid hydrolysis of peppers with different acidic solvents. AIG01 pepper has the highest total polyamine content at about 1.5 mg/g. In LPS-stimulated RAW264.7, PAE inhibits nitric oxide production in a concentration-dependent manner and decreased the levels of pro-inflammatory cytokines. PAE has been shown to inhibit phosphorylation of MAPK/ERK. In TPA-stimulated Balb/C, PAE treatment showed tissue-level reductions in pro-inflammatory cytokines, reductions in ear thickness, and inhibition of neutrophil invasion. The polyamine content, polyamine extraction efficiency and anti-inflammatory effect of AIG01 obtained in this study suggest that it is useful as a raw material for the treatment of inflammatory diseases. Supplementary Information The online version contains supplementary material available at 10.1007/s10068-023-01333-x.
Collapse
Affiliation(s)
- Sun Hyeon So
- Department of Biomedical Technology, Kangwon National University, Chuncheon, Republic of Korea
| | - Jae Hoon Lee
- Department of Environmental and Biomedical Convergence, Kangwon National University, Chuncheon, Republic of Korea
| | - Hee Woong Kim
- Department of Biomedical Technology, Kangwon National University, Chuncheon, Republic of Korea
| | - Hae Ik Rhee
- Department of Biomedical Technology, Kangwon National University, Chuncheon, Republic of Korea
| | - Deug Chan Lee
- Department of Biomedical Technology, Kangwon National University, Chuncheon, Republic of Korea
| |
Collapse
|
4
|
Xuan M, Gu X, Li J, Huang D, Xue C, He Y. Polyamines: their significance for maintaining health and contributing to diseases. Cell Commun Signal 2023; 21:348. [PMID: 38049863 PMCID: PMC10694995 DOI: 10.1186/s12964-023-01373-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Accepted: 10/29/2023] [Indexed: 12/06/2023] Open
Abstract
Polyamines are essential for the growth and proliferation of mammalian cells and are intimately involved in biological mechanisms such as DNA replication, RNA transcription, protein synthesis, and post-translational modification. These mechanisms regulate cellular proliferation, differentiation, programmed cell death, and the formation of tumors. Several studies have confirmed the positive effect of polyamines on the maintenance of health, while others have demonstrated that their activity may promote the occurrence and progression of diseases. This review examines a variety of topics, such as polyamine source and metabolism, including metabolism, transport, and the potential impact of polyamines on health and disease. In addition, a brief summary of the effects of oncogenes and signaling pathways on tumor polyamine metabolism is provided. Video Abstract.
Collapse
Affiliation(s)
- Mengjuan Xuan
- Department of Infectious Disease, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Erqi District, Zhengzhou, 450052, Henan, China
| | - Xinyu Gu
- Department of Oncology, College of Clinical Medicine, The First Affiliated Hospital, Henan University of Science and Technology, Luoyang, 471000, Henan, China
| | - Juan Li
- Department of Infectious Disease, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Erqi District, Zhengzhou, 450052, Henan, China
| | - Di Huang
- Department of Child Health Care, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, Henan, China
| | - Chen Xue
- Department of Infectious Disease, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Erqi District, Zhengzhou, 450052, Henan, China.
| | - Yuting He
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China.
| |
Collapse
|
5
|
Galasso L, Cappella A, Mulè A, Castelli L, Ciorciari A, Stacchiotti A, Montaruli A. Polyamines and Physical Activity in Musculoskeletal Diseases: A Potential Therapeutic Challenge. Int J Mol Sci 2023; 24:9798. [PMID: 37372945 DOI: 10.3390/ijms24129798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/02/2023] [Accepted: 06/04/2023] [Indexed: 06/29/2023] Open
Abstract
Autophagy dysregulation is commonplace in the pathogenesis of several invalidating diseases, such as musculoskeletal diseases. Polyamines, as spermidine and spermine, are small aliphatic cations essential for cell growth and differentiation, with multiple antioxidant, anti-inflammatory, and anti-apoptotic effects. Remarkably, they are emerging as natural autophagy regulators with strong anti-aging effects. Polyamine levels were significantly altered in the skeletal muscles of aged animals. Therefore, supplementation of spermine and spermidine may be important to prevent or treat muscle atrophy. Recent in vitro and in vivo experimental studies indicate that spermidine reverses dysfunctional autophagy and stimulates mitophagy in muscles and heart, preventing senescence. Physical exercise, as polyamines, regulates skeletal muscle mass inducing proper autophagy and mitophagy. This narrative review focuses on the latest evidence regarding the efficacy of polyamines and exercise as autophagy inducers, alone or coupled, in alleviating sarcopenia and aging-dependent musculoskeletal diseases. A comprehensive description of overall autophagic steps in muscle, polyamine metabolic pathways, and effects of the role of autophagy inducers played by both polyamines and exercise has been presented. Although literature shows few data in regard to this controversial topic, interesting effects on muscle atrophy in murine models have emerged when the two "autophagy-inducers" were combined. We hope these findings, with caution, can encourage researchers to continue investigating in this direction. In particular, if these novel insights could be confirmed in further in vivo and clinical studies, and the two synergic treatments could be optimized in terms of dose and duration, then polyamine supplementation and physical exercise might have a clinical potential in sarcopenia, and more importantly, implications for a healthy lifestyle in the elderly population.
Collapse
Affiliation(s)
- Letizia Galasso
- Department of Biomedical Sciences for Health, University of Milan, 20133 Milan, Italy
| | - Annalisa Cappella
- Department of Biomedical Sciences for Health, University of Milan, 20133 Milan, Italy
- U.O. Laboratorio di Morfologia Umana Applicata, I.R.C.C.S. Policlinico San Donato, San Donato Milanese, 20097 Milan, Italy
| | - Antonino Mulè
- Department of Biomedical Sciences for Health, University of Milan, 20133 Milan, Italy
| | - Lucia Castelli
- Department of Biomedical Sciences for Health, University of Milan, 20133 Milan, Italy
| | - Andrea Ciorciari
- Department of Biomedical Sciences for Health, University of Milan, 20133 Milan, Italy
| | - Alessandra Stacchiotti
- Department of Biomedical Sciences for Health, University of Milan, 20133 Milan, Italy
- U.O. Laboratorio di Morfologia Umana Applicata, I.R.C.C.S. Policlinico San Donato, San Donato Milanese, 20097 Milan, Italy
| | - Angela Montaruli
- Department of Biomedical Sciences for Health, University of Milan, 20133 Milan, Italy
- I.R.C.C.S. Ospedale Galeazzi-Sant'Ambrogio, 20157 Milan, Italy
| |
Collapse
|
6
|
Kang DE, An YB, Kim Y, Ahn S, Kim YJ, Lim JS, Ryu SH, Choi H, Yoo J, You WK, Lee DY, Park J, Hong M, Lee GM, Baik JY, Hong JK. Enhanced cell growth, production, and mAb quality produced in Chinese hamster ovary-K1 cells by supplementing polyamine in the media. Appl Microbiol Biotechnol 2023; 107:2855-2870. [PMID: 36947192 DOI: 10.1007/s00253-023-12459-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 02/22/2023] [Accepted: 02/26/2023] [Indexed: 03/23/2023]
Abstract
Polyamines such as putrescine (PUT), spermidine (SPD), and spermine (SPM) are amine group-containing biomolecules that regulate multiple intracellular functions such as proliferation, differentiation, and stress response in mammalian cells. Although these biomolecules can be generated intracellularly, lack of polyamine-synthesizing activity has occasionally been reported in a few mammalian cell lines such as Chinese hamster ovary (CHO)-K1; thus, polyamine supplementation in serum-free media is required to support cell growth and production. In the present study, the effects of biogenic polyamines PUT, SPD, and SPM in media on cell growth, production, metabolism, and antibody quality were explored in cultures of antibody-producing CHO-K1 cells. Polyamine withdrawal from media significantly suppressed cell growth and production. On the other hand, enhanced culture performance was achieved in polyamine-containing media conditions in a dose-dependent manner regardless of polyamine type. In addition, in polyamine-deprived medium, distinguishing metabolic features, such as enriched glycolysis and suppressed amino acid consumption, were observed and accompanied by higher heterogeneity of antibody quality compared with the optimal concentration of polyamines. Furthermore, an excessive concentration of polyamines negatively affected culture performance as well as antibody quality. Hence, the results suggest that polyamine-related metabolism needs to be further investigated and polyamines in cell growth media should be optimized as a controllable parameter in CHO cell culture bioprocessing. KEY POINTS: • Polyamine supplementation enhanced cell growth and production in a dose-dependent manner • Polyamine type and concentration in the media affected mAb quality • Optimizing polyamines in the media is suggested in CHO cell bioprocessing.
Collapse
Affiliation(s)
- Da Eun Kang
- Division of Biological Science and Technology, Yonsei University, 1 Yonseidae-Gil, Gangwon-Do, Wonju-Si, 26493, South Korea
| | - Yeong Bin An
- Division of Biological Science and Technology, Yonsei University, 1 Yonseidae-Gil, Gangwon-Do, Wonju-Si, 26493, South Korea
| | - Yeunju Kim
- R&D Center, ABL Bio Inc, 16 Daewangpangyo-Ro, 712 Beon-Gil, Bundang-GuGyeonggi-Do 13488, 2F, Seongnam-Si, South Korea
| | - Seawon Ahn
- R&D Center, ABL Bio Inc, 16 Daewangpangyo-Ro, 712 Beon-Gil, Bundang-GuGyeonggi-Do 13488, 2F, Seongnam-Si, South Korea
| | - Young Jin Kim
- Division of Biological Science and Technology, Yonsei University, 1 Yonseidae-Gil, Gangwon-Do, Wonju-Si, 26493, South Korea
| | - Jung Soo Lim
- Division of Biological Science and Technology, Yonsei University, 1 Yonseidae-Gil, Gangwon-Do, Wonju-Si, 26493, South Korea
| | - Soo Hyun Ryu
- Division of Biological Science and Technology, Yonsei University, 1 Yonseidae-Gil, Gangwon-Do, Wonju-Si, 26493, South Korea
| | - Hyoju Choi
- R&D Center, ABL Bio Inc, 16 Daewangpangyo-Ro, 712 Beon-Gil, Bundang-GuGyeonggi-Do 13488, 2F, Seongnam-Si, South Korea
| | - Jiseon Yoo
- R&D Center, ABL Bio Inc, 16 Daewangpangyo-Ro, 712 Beon-Gil, Bundang-GuGyeonggi-Do 13488, 2F, Seongnam-Si, South Korea
| | - Weon-Kyoo You
- R&D Center, ABL Bio Inc, 16 Daewangpangyo-Ro, 712 Beon-Gil, Bundang-GuGyeonggi-Do 13488, 2F, Seongnam-Si, South Korea
| | - Dong-Yup Lee
- School of Chemical Engineering, Sungkyunkwan University, 2066 Seobu-Ro, Jangan-Gu, Suwon, Gyeonggi-Do, 16419, South Korea
| | - Junsoo Park
- Division of Biological Science and Technology, Yonsei University, 1 Yonseidae-Gil, Gangwon-Do, Wonju-Si, 26493, South Korea
| | - Minsun Hong
- Division of Biological Science and Technology, Yonsei University, 1 Yonseidae-Gil, Gangwon-Do, Wonju-Si, 26493, South Korea
| | - Gyun Min Lee
- Department of Biological Sciences, KAIST, 291 Daehak-Ro, Yuseong-Gu, Daejeon, 34141, South Korea
| | - Jong Youn Baik
- Department of Biological Engineering, Inha University, Incheon, 22212, South Korea.
| | - Jong Kwang Hong
- Division of Biological Science and Technology, Yonsei University, 1 Yonseidae-Gil, Gangwon-Do, Wonju-Si, 26493, South Korea.
| |
Collapse
|
7
|
Holper S, Watson R, Churilov L, Yates P, Lim YY, Barnham KJ, Yassi N. Protocol of a Phase II Randomized, Multi-Center, Double-Blind, Placebo-Controlled Trial of S-Adenosyl Methionine in Participants with Mild Cognitive Impairment or Dementia Due to Alzheimer's Disease. J Prev Alzheimers Dis 2023; 10:800-809. [PMID: 37874102 PMCID: PMC10186290 DOI: 10.14283/jpad.2023.55] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 04/11/2023] [Indexed: 10/25/2023]
Abstract
BACKGROUND S-adenosyl methionine (SAMe) is a pivotal metabolite in multiple pathways required for neuronal homeostasis, several of which are compromised in Alzheimer's disease (AD). Correction of the SAMe deficiency that is characteristic of the AD brain may attenuate or prevent pathological processes driving AD-associated neurodegeneration including aberrant tau hyperphosphorylation and DNA hypomethylation. OBJECTIVES The primary aim is to test the hypothesis that daily treatment with 400 mg oral SAMe for 180 days will lead to a greater reduction from baseline in plasma levels of p-tau181 compared to placebo in patients with mild cognitive impairment or dementia due to AD. DESIGN, SETTING, PARTICIPANTS This is a phase II, randomized, multi-center, double-blind, placebo-controlled trial among 60 participants with mild cognitive impairment or dementia due to AD. Participants will be randomized in a 1:1 ratio to receive either SAMe or matching placebo, to be taken as an adjunct to their AD standard of care. MEASUREMENTS AND RESULTS The primary outcome is change in plasma p-tau181 concentration between baseline and following 180 days of treatment, which will be compared between the active and placebo group. Secondary outcomes are the safety of SAMe administration (incidence of serious adverse events), change from baseline in cognitive performance (as measured by the Repeatable Battery for the Assessment of Neuropsychological Status), and epigenetic changes in DNA methylation. CONCLUSION Demonstration of effective and safe lowering of plasma p-tau181 with SAMe in this phase II trial would pave the way for an exciting field of translational research and a larger phase III trial.
Collapse
Affiliation(s)
- S Holper
- Sarah Holper, Population Health and Immunity Division, The Walter and Eliza Hall Institute of Medical Research, 1G, Royal Parade, Parkville, VIC, 3052, Australia. . Telephone: +61 3 9345 2555. Fax: +61 3 9347 0852
| | | | | | | | | | | | | |
Collapse
|
8
|
Assessment of the Effects of Edible Microalgae in a Canine Gut Model. Animals (Basel) 2022; 12:ani12162100. [PMID: 36009689 PMCID: PMC9405368 DOI: 10.3390/ani12162100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/08/2022] [Accepted: 08/12/2022] [Indexed: 11/17/2022] Open
Abstract
Microalgae are a source of bioactive compounds having recently been studied for their possible application as health-promoting ingredients. The aim of the study was to evaluate in an in vitro canine gut model the effects of four microalgae, Arthrospira platensis (AP), Haematococcus pluvialis (HP), Phaeodactylum tricornutum (PT) and Chlorella vulgaris (CV), on some fecal microbial populations and metabolites. The four microalgae were subjected to an in vitro digestion procedure, and subsequently, the digested biomass underwent colonic in vitro fermentation. After 6 h of incubation, PT increased propionate (+36%) and butyrate (+24%), and decreased total BCFA (−47%), isobutyrate (−52%) and isovalerate (−43%) and C. hiranonis (−0.46 log10 copies/75 ng DNA). After 24 h, PT increased propionate (+21%) and isovalerate (+10%), and decreased the abundance of Turicibacter spp. (7.18 vs. 6.69 and 6.56 log10 copies/75 ng DNA for CTRL vs. PT, respectively); moreover, after 24 h, CV decreased C. coccoides (−1.12 log10 copies/75 ng DNA) and Enterococcus spp. (−0.37 log10 copies/75 ng DNA). In conclusion, the microbial saccharolytic activities and the shift in fecal bacterial composition were less pronounced than expected, based on current literature. This study should be considered as a preliminary assessment, and future investigations are required to better understand the role of microalgae in canine nutrition.
Collapse
|
9
|
Sah N, Stenhouse C, Halloran KM, Moses RM, Seo H, Burghardt RC, Johnson GA, Wu G, Bazer FW. Inhibition of SHMT2 mRNA translation increases embryonic mortality in sheep. Biol Reprod 2022; 107:1279-1295. [DOI: 10.1093/biolre/ioac152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 06/22/2022] [Accepted: 07/19/2022] [Indexed: 11/13/2022] Open
Abstract
Abstract
The one-carbon metabolism (OCM) pathway provides purines and thymidine for synthesis of nucleic acids required for cell division, and S-adenosyl methionine for polyamine and creatine syntheses and the epigenetic regulation of gene expression. This study aimed to determine if serine hydroxymethyltransferase 2 (SHMT2), a key enzyme in the OCM pathway, is critical for ovine trophectoderm (oTr) cell function and conceptus development by inhibiting translation of SHMT2 mRNA using a morpholino antisense oligonucleotide (MAO). In vitro treatment of oTr cells with MAO-SHMT2 decreased expression of SHMT2 protein, which was accompanied by reduced proliferation (P = 0.053) and migration (P < 0.05) of those cells. Intrauterine injection of MAO-SHMT2 in ewes on Day 11 post-breeding tended to decrease the overall pregnancy rate (on Days 16 and 18) compared to MAO-control (3/10 vs 7/10, P = 0.07). The three viable conceptuses (n = 2 on Day 16 and n = 1 on Day 18) recovered from MAO-SHMT2 ewes had only partial inhibition of SHMT2 mRNA translation. Conceptuses from the three pregnant MAO-SHMT2 ewes had similar levels of expression of mRNAs and proteins involved in OCM as compared to conceptuses from MAO-control ewes. These results indicate that knockdown of SHMT2 protein reduces proliferation and migration of oTr cells (in vitro) to decrease elongation of blastocysts from spherical to elongated forms. These in vitro effects suggest that increased embryonic deaths in ewes treated with MAO-SHMT2 are the result of decreased SHMT2-mediated trophectoderm cell proliferation and migration supporting a role for the OCM pathway in survival and development of ovine conceptuses.
Collapse
Affiliation(s)
- Nirvay Sah
- Department of Animal Science , Texas A&M University, College Station, TX, USA
| | - Claire Stenhouse
- Department of Animal Science , Texas A&M University, College Station, TX, USA
| | | | - Robyn M Moses
- Department of Animal Science , Texas A&M University, College Station, TX, USA
| | - Heewon Seo
- Department of Veterinary Integrative Biosciences , College of Veterinary Medicine and Biomedical Sciences, College Station, TX, USA
| | - Robert C Burghardt
- Department of Veterinary Integrative Biosciences , College of Veterinary Medicine and Biomedical Sciences, College Station, TX, USA
| | - Gregory A Johnson
- Department of Veterinary Integrative Biosciences , College of Veterinary Medicine and Biomedical Sciences, College Station, TX, USA
| | - Guoyao Wu
- Department of Animal Science , Texas A&M University, College Station, TX, USA
| | - Fuller W Bazer
- Department of Animal Science , Texas A&M University, College Station, TX, USA
| |
Collapse
|
10
|
Paredes GF, Viehboeck T, Markert S, Mausz MA, Sato Y, Liebeke M, König L, Bulgheresi S. Differential regulation of degradation and immune pathways underlies adaptation of the ectosymbiotic nematode Laxus oneistus to oxic-anoxic interfaces. Sci Rep 2022; 12:9725. [PMID: 35697683 PMCID: PMC9192688 DOI: 10.1038/s41598-022-13235-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 05/13/2022] [Indexed: 11/09/2022] Open
Abstract
Eukaryotes may experience oxygen deprivation under both physiological and pathological conditions. Because oxygen shortage leads to a reduction in cellular energy production, all eukaryotes studied so far conserve energy by suppressing their metabolism. However, the molecular physiology of animals that naturally and repeatedly experience anoxia is underexplored. One such animal is the marine nematode Laxus oneistus. It thrives, invariably coated by its sulfur-oxidizing symbiont Candidatus Thiosymbion oneisti, in anoxic sulfidic or hypoxic sand. Here, transcriptomics and proteomics showed that, whether in anoxia or not, L. oneistus mostly expressed genes involved in ubiquitination, energy generation, oxidative stress response, immune response, development, and translation. Importantly, ubiquitination genes were also highly expressed when the nematode was subjected to anoxic sulfidic conditions, together with genes involved in autophagy, detoxification and ribosome biogenesis. We hypothesize that these degradation pathways were induced to recycle damaged cellular components (mitochondria) and misfolded proteins into nutrients. Remarkably, when L. oneistus was subjected to anoxic sulfidic conditions, lectin and mucin genes were also upregulated, potentially to promote the attachment of its thiotrophic symbiont. Furthermore, the nematode appeared to survive oxygen deprivation by using an alternative electron carrier (rhodoquinone) and acceptor (fumarate), to rewire the electron transfer chain. On the other hand, under hypoxia, genes involved in costly processes (e.g., amino acid biosynthesis, development, feeding, mating) were upregulated, together with the worm's Toll-like innate immunity pathway and several immune effectors (e.g., bactericidal/permeability-increasing proteins, fungicides). In conclusion, we hypothesize that, in anoxic sulfidic sand, L. oneistus upregulates degradation processes, rewires the oxidative phosphorylation and reinforces its coat of bacterial sulfur-oxidizers. In upper sand layers, instead, it appears to produce broad-range antimicrobials and to exploit oxygen for biosynthesis and development.
Collapse
Affiliation(s)
- Gabriela F Paredes
- Department of Functional and Evolutionary Ecology, Environmental Cell Biology Group, University of Vienna, Vienna, Austria
| | - Tobias Viehboeck
- Department of Functional and Evolutionary Ecology, Environmental Cell Biology Group, University of Vienna, Vienna, Austria
- Vienna Doctoral School of Ecology and Evolution, Vienna, Austria
- Division of Microbial Ecology, Center for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
| | - Stephanie Markert
- Department of Pharmaceutical Biotechnology, Institute of Pharmacy, University of Greifswald, Greifswald, Germany
| | | | - Yui Sato
- Max Planck Institute for Marine Microbiology, Bremen, Germany
| | - Manuel Liebeke
- Max Planck Institute for Marine Microbiology, Bremen, Germany
| | - Lena König
- Department of Functional and Evolutionary Ecology, Environmental Cell Biology Group, University of Vienna, Vienna, Austria
| | - Silvia Bulgheresi
- Department of Functional and Evolutionary Ecology, Environmental Cell Biology Group, University of Vienna, Vienna, Austria.
| |
Collapse
|
11
|
Thongbhubate K, Irie K, Sakai Y, Itoh A, Suzuki H. Improvement of putrescine production through the arginine decarboxylase pathway in Escherichia coli K-12. AMB Express 2021; 11:168. [PMID: 34910273 PMCID: PMC8674398 DOI: 10.1186/s13568-021-01330-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 12/04/2021] [Indexed: 12/03/2022] Open
Abstract
In the bio-based polymer industry, putrescine is in the spotlight for use as a material. We constructed strains of Escherichia coli to assess its putrescine production capabilities through the arginine decarboxylase pathway in batch fermentation. N-Acetylglutamate (ArgA) synthase is subjected to feedback inhibition by arginine. Therefore, the 19th amino acid residue, Tyr, of argA was substituted with Cys to desensitize the feedback inhibition of arginine, resulting in improved putrescine production. The inefficient initiation codon GTG of argA was substituted with the effective ATG codon, but its replacement did not affect putrescine production. The essential genes for the putrescine production pathway, speA and speB, were cloned into the same plasmid with argAATG Y19C to form an operon. These genes were introduced under different promoters; lacIp, lacIqp, lacIq1p, and T5p. Among these, the T5 promoter demonstrated the best putrescine production. In addition, disruption of the puuA gene encoding enzyme of the first step of putrescine degradation pathway increased the putrescine production. Of note, putrescine production was not affected by the disruption of patA, which encodes putrescine aminotransferase, the initial enzyme of another putrescine utilization pathway. We also report that the strain KT160, which has a genomic mutation of YifEQ100TAG, had the greatest putrescine production. At 48 h of batch fermentation, strain KT160 grown in terrific broth with 0.01 mM IPTG produced 19.8 mM of putrescine.
Collapse
|
12
|
Long Noncoding RNA FENDRR Inhibits Lung Fibroblast Proliferation via a Reduction of β-Catenin. Int J Mol Sci 2021; 22:ijms22168536. [PMID: 34445242 PMCID: PMC8395204 DOI: 10.3390/ijms22168536] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 07/30/2021] [Accepted: 08/01/2021] [Indexed: 02/06/2023] Open
Abstract
Idiopathic Pulmonary Fibrosis (IPF) is a chronic, progressive, and usually lethal lung disease and it has been widely accepted that fibroblast proliferation is one of the key characteristics of IPF. Long noncoding RNAs (lncRNAs) play vital roles in the pathogenesis of many diseases. In this study, we investigated the role of lncRNA FENDRR on fibroblast proliferation. Human lung fibroblasts stably overexpressing FENDRR showed a reduced cell proliferation compared to those expressing the control vector. On the other hand, FENDRR silencing increased fibroblast proliferation. FENDRR bound serine-arginine rich splicing factor 9 (SRSF9) and inhibited the phosphorylation of p70 ribosomal S6 kinase 1 (PS6K), a downstream protein of the mammalian target of rapamycin (mTOR) signaling. Silencing SRSF9 reduced fibroblast proliferation. FENDRR reduced β-catenin protein, but not mRNA levels. The reduction of β-catenin protein levels in lung fibroblasts by gene silencing or chemical inhibitor decreased fibroblast proliferation. Adenovirus-mediated FENDRR transfer to the lungs of mice reduced asbestos-induced fibrotic lesions and collagen deposition. RNA sequencing of lung tissues identified 7 cell proliferation-related genes that were up-regulated by asbestos but reversed by FENDRR. In conclusion, FENDRR inhibits fibroblast proliferation and functions as an anti-fibrotic lncRNA.
Collapse
|
13
|
Effect of Spermidine on Biofilm Formation in Escherichia coli K-12. J Bacteriol 2021; 203:JB.00652-20. [PMID: 33685971 DOI: 10.1128/jb.00652-20] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 02/26/2021] [Indexed: 12/19/2022] Open
Abstract
Polyamines are essential for biofilm formation in Escherichia coli, but it is still unclear which polyamines are primarily responsible for this phenomenon. To address this issue, we constructed a series of E. coli K-12 strains with mutations in genes required for the synthesis and metabolism of polyamines. Disruption of the spermidine synthase gene (speE) caused a severe defect in biofilm formation. This defect was rescued by the addition of spermidine to the medium but not by putrescine or cadaverine. A multidrug/spermidine efflux pump membrane subunit (MdtJ)-deficient strain was anticipated to accumulate more spermidine and result in enhanced biofilm formation compared to the MdtJ+ strain. However, the mdtJ mutation did not affect intracellular spermidine or biofilm concentrations. E. coli has the spermidine acetyltransferase (SpeG) and glutathionylspermidine synthetase/amidase (Gss) to metabolize intracellular spermidine. Under biofilm-forming conditions, not Gss but SpeG plays a major role in decreasing the too-high intracellular spermidine concentrations. Additionally, PotFGHI can function as a compensatory importer of spermidine when PotABCD is absent under biofilm-forming conditions. Last, we report here that, in addition to intracellular spermidine, the periplasmic binding protein (PotD) of the spermidine preferential ABC transporter is essential for stimulating biofilm formation.IMPORTANCE Previous reports have speculated on the effect of polyamines on bacterial biofilm formation. However, the regulation of biofilm formation by polyamines in Escherichia coli has not yet been assessed. The identification of polyamines that stimulate biofilm formation is important for developing novel therapies for biofilm-forming pathogens. This study sheds light on biofilm regulation in E. coli Our findings provide conclusive evidence that only spermidine can stimulate biofilm formation in E. coli cells, not putrescine or cadaverine. Last, ΔpotD inhibits biofilm formation even though the spermidine is synthesized inside the cells from putrescine. Since PotD is significant for biofilm formation and there is no ortholog of the PotABCD transporter in humans, PotD could be a target for the development of biofilm inhibitors.
Collapse
|
14
|
Jeelani G, Nozaki T. Eukaryotic translation initiation factor 5A and its posttranslational modifications play an important role in proliferation and potentially in differentiation of the human enteric protozoan parasite Entamoeba histolytica. PLoS Pathog 2021; 17:e1008909. [PMID: 33592076 PMCID: PMC7909649 DOI: 10.1371/journal.ppat.1008909] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 02/26/2021] [Accepted: 01/19/2021] [Indexed: 11/19/2022] Open
Abstract
The eukaryotic translation initiation factor 5A (eIF5A) is a highly conserved protein and is essential in all eukaryotes. However, the specific roles of eIF5A in translation and in other biological processes remain elusive. In the present study, we described the role of eIF5A, its posttranslational modifications (PTM), and the biosynthetic pathway needed for the PTM in Entamoeba histolytica, the protozoan parasite responsible for amoebic dysentery and liver abscess in humans. E. histolytica encodes two isotypes of eIF5A and two isotypes of enzymes, deoxyhypusine synthase (DHS), responsible for their PTM. Both of the two eIF5A isotypes are functional, whereas only one DHS (EhDHS1, but not EhDHS2), is catalytically active. The DHS activity increased ~2000-fold when EhDHS1 was co-expressed with EhDHS2 in Escherichia coli, suggesting that the formation of a heteromeric complex is needed for full enzymatic activity. Both EhDHS1 and 2 genes were required for in vitro growth of E. histolytica trophozoites, indicated by small antisense RNA-mediated gene silencing. In trophozoites, only eIF5A2, but not eIF5A1, gene was actively transcribed. Gene silencing of eIF5A2 caused compensatory induction of expression of eIF5A1 gene, suggesting interchangeable role of the two eIF5A isotypes and also reinforcing the importance of eIF5As for parasite proliferation and survival. Furthermore, using a sibling species, Entamoeba invadens, we found that eIF5A1 gene was upregulated during excystation, while eIF5A2 was downregulated, suggesting that eIF5A1 gene plays an important role during differentiation. Taken together, these results have underscored the essentiality of eIF5A and DHS, for proliferation and potentially in the differentiation of this parasite, and suggest that the hypusination associated pathway represents a novel rational target for drug development against amebiasis.
Collapse
Affiliation(s)
- Ghulam Jeelani
- Department of Biomedical Chemistry, Graduate School of Medicine, The University of Tokyo, Japan
| | - Tomoyoshi Nozaki
- Department of Biomedical Chemistry, Graduate School of Medicine, The University of Tokyo, Japan
| |
Collapse
|
15
|
Lee YR, An KY, Jeon J, Kim NK, Lee JW, Hong J, Chung BC. Untargeted Metabolomics and Polyamine Profiling in Serum before and after Surgery in Colorectal Cancer Patients. Metabolites 2020; 10:metabo10120487. [PMID: 33260822 PMCID: PMC7760053 DOI: 10.3390/metabo10120487] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 11/25/2020] [Accepted: 11/26/2020] [Indexed: 12/12/2022] Open
Abstract
Colorectal cancer is one of the most prevalent cancers in Korea and globally. In this study, we aimed to characterize the differential serum metabolomic profiles between pre-operative and post-operative patients with colorectal cancer. To investigate the significant metabolites and metabolic pathways associated with colorectal cancer, we analyzed serum samples from 68 patients (aged 20–71, mean 57.57 years). Untargeted and targeted metabolomics profiling in patients with colorectal cancer were performed using liquid chromatography-mass spectrometry. Untargeted analysis identified differences in sphingolipid metabolism, steroid biosynthesis, and arginine and proline metabolism in pre- and post-operative patients with colorectal cancer. We then performed quantitative target profiling of polyamines, synthesized from arginine and proline metabolism, to identify potential polyamines that may serve as effective biomarkers for colorectal cancer. Results indicate a significantly reduced serum concentration of putrescine in post-operative patients compared to pre-operative patients. Our metabolomics approach provided insights into the physiological alterations in patients with colorectal cancer after surgery.
Collapse
Affiliation(s)
- Yu Ra Lee
- Molecular Recognition Research Center, Korea Institute of Science and Technology, Seoul 02792, Korea;
- KHU-KIST Department of Converging Science and Technology, Kyung Hee University, Seoul 02447, Korea
| | - Ki-Yong An
- Faculty of Kinesiology, Sport and Recreation, University of Alberta, Edmonton, AB T6G 2R3, Canada;
| | - Justin Jeon
- Department of Sport Industry, Yonsei University, Seoul 03722, Korea;
- Exercise Medicine Center for Diabetes and Cancer Patients, ICONS, Yonsei University, Seoul 03722, Korea
| | - Nam Kyu Kim
- Department of Surgery, Yonsei University College of Medicine, Seoul 03722, Korea;
| | - Ji Won Lee
- Department of Family Medicine, Yonsei University College of Medicine, Seoul 06273, Korea;
| | - Jongki Hong
- KHU-KIST Department of Converging Science and Technology, Kyung Hee University, Seoul 02447, Korea
- College of Pharmacy, Kyung Hee University, Seoul 02447, Korea
- Correspondence: (J.H.); (B.C.C.); Tel.: +82-2-961-9255 (J.H.); +82-2-958-5067 (B.C.C.)
| | - Bong Chul Chung
- Molecular Recognition Research Center, Korea Institute of Science and Technology, Seoul 02792, Korea;
- KHU-KIST Department of Converging Science and Technology, Kyung Hee University, Seoul 02447, Korea
- Correspondence: (J.H.); (B.C.C.); Tel.: +82-2-961-9255 (J.H.); +82-2-958-5067 (B.C.C.)
| |
Collapse
|
16
|
Murata M, Noda K, Ishida S. Pathological Role of Unsaturated Aldehyde Acrolein in Diabetic Retinopathy. Front Immunol 2020; 11:589531. [PMID: 33193419 PMCID: PMC7642371 DOI: 10.3389/fimmu.2020.589531] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 10/01/2020] [Indexed: 12/12/2022] Open
Abstract
With increasing prevalence of diabetes and a progressively aging society, diabetic retinopathy is emerging as one of the global leading causes of blindness. Recent studies have shown that vascular endothelial growth factor (VEGF) plays a central role in the pathogenesis of diabetic retinopathy and anti-VEGF agents have become the first-line therapy for the vision-threatening disease. However, recent studies have also demonstrated that diabetic retinopathy is a multifactorial disease and that VEGF-independent mechanism(s) also underlie much of the pathological changes in diabetic retinopathy. Acrolein is a highly reactive unsaturated aldehyde and is implicated in protein dysfunction. As acrolein is common in air pollutants, previous studies have focused on it as an exogenous causative factor, for instance, in the development of respiratory diseases. However, it has been discovered that acrolein is also endogenously produced and induces cell toxicity and oxidative stress in the body. In addition, accumulating evidence suggests that acrolein and/or acrolein-conjugated proteins are associated with the molecular mechanisms in diabetic retinopathy. This review summarizes the pathological roles and mechanisms of endogenous acrolein production in the pathogenesis of diabetic retinopathy.
Collapse
Affiliation(s)
- Miyuki Murata
- Laboratory of Ocular Cell Biology & Visual Science, Hokkaido University, Sapporo, Japan.,Department of Ophthalmology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Kousuke Noda
- Laboratory of Ocular Cell Biology & Visual Science, Hokkaido University, Sapporo, Japan.,Department of Ophthalmology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Susumu Ishida
- Laboratory of Ocular Cell Biology & Visual Science, Hokkaido University, Sapporo, Japan.,Department of Ophthalmology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| |
Collapse
|
17
|
Nakamura A, Takahashi D, Nakamura Y, Yamada T, Matsumoto M, Hase K. Polyamines polarized Th2/Th9 cell-fate decision by regulating GATA3 expression. Arch Biochem Biophys 2020; 693:108587. [PMID: 32946839 DOI: 10.1016/j.abb.2020.108587] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 09/08/2020] [Accepted: 09/09/2020] [Indexed: 01/26/2023]
Abstract
Polyamines produced by both prokaryotes and eukaryotes are bioactive substances with pleiotropic effects. Accumulating evidence has demonstrated that polyamines contribute to anti-inflammatory responses by suppressing the expression of proinflammatory cytokines in mononuclear cells and macrophages. However, the effects of polyamines on CD4+ T cell responses remain to be elucidated. Here, we investigated the effect of polyamines on cell fate decisions of naïve CD4+ T cells in vitro. We found that endogenously generated polyamines are essential for the development of T helper 2 (Th2) cells. Treatment with DL-2-difluoromethylornithine (DFMO), an inhibitor of polyamine biosynthesis, diminished GATA3 expression in CD4+ T cells under Th2-skewed conditions. Supplementation of exogenous polyamines rescued GATA3 downregulation caused by DFMO treatment in CD4+ T cells. Transcriptome analysis revealed that deprivation of endogenous polyamines resulted in upregulated Th9-related genes, such as Il9, Irf4, and Batf3, even under the Th2-skewing conditions. Depletion of intracellular polyamines reduced GATA3 expression but increased IL-9-producing CD4+ T cells under both Th2 and Th9-skewing conditions. Furthermore, oral administration of DFMO increased IL-9-producing CD4+ T cells in small intestine in mice. Thus, our data indicate that polyamines play a critical role in the regulation of the Th2/Th9 balance.
Collapse
Affiliation(s)
- Atsuo Nakamura
- Division of Biochemistry, Faculty of Pharmacy and Graduate School of Pharmaceutical Science, Keio University, Minato-ku, Tokyo, Japan; Dairy Science and Technology Institute, Kyodo Milk Industry Co Ltd., Hinode-machi, Tokyo, Japan
| | - Daisuke Takahashi
- Division of Biochemistry, Faculty of Pharmacy and Graduate School of Pharmaceutical Science, Keio University, Minato-ku, Tokyo, Japan.
| | - Yutaka Nakamura
- Division of Biochemistry, Faculty of Pharmacy and Graduate School of Pharmaceutical Science, Keio University, Minato-ku, Tokyo, Japan
| | - Takahiro Yamada
- Division of Biochemistry, Faculty of Pharmacy and Graduate School of Pharmaceutical Science, Keio University, Minato-ku, Tokyo, Japan
| | - Mitsuharu Matsumoto
- Dairy Science and Technology Institute, Kyodo Milk Industry Co Ltd., Hinode-machi, Tokyo, Japan.
| | - Koji Hase
- Division of Biochemistry, Faculty of Pharmacy and Graduate School of Pharmaceutical Science, Keio University, Minato-ku, Tokyo, Japan; International Research and Development Center for Mucosal Vaccines, The Institute of Medical Science, The University of Tokyo (IMSUT), Bunkyo-ku, Tokyo, Japan
| |
Collapse
|
18
|
Zhang Z, Li H, Li W, Feng Y, Hu Z, Zhou S, Zhang N, Peng Y, Zheng J. Evidence for Polyamine, Biogenic Amine, and Amino Acid Adduction Resulting from Metabolic Activation of Diosbulbin B. Chem Res Toxicol 2020; 33:1761-1769. [PMID: 32515193 DOI: 10.1021/acs.chemrestox.0c00017] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Dioscorea bulbifera L. (DBL), a traditional Chinese medicine, is a well-known herb with hepatotoxicity, and the biochemical mechanisms of the toxic action remain unknown. Diosbulbin B (DSB), a major component of DBL, can induce severer liver injury which requires cytochrome P450-catalyzed oxidation of the furan ring. It is reported that a cis-enedial reactive intermediate resulting from metabolic activation of DSB can react with thiols and amines to form pyrrole or pyrroline derivatives. In this study, we investigated the interaction of the reactive intermediate with polyamines, biogenic amines, and amino acids involved in the polyamine metabolic pathway, including putrescine, spermidine, spermine, histamine, arginine, ornithine, lysine, glutamine, and asparagine. Seven DSB-derived amine adducts were detected in microsomal incubations supplemented with DSB and individual amines. Six adducts were observed in cultured rat primary hepatocytes after exposure to DSB. DSB was found to induce apoptosis and cell death in time- and concentration-dependent manners. Apparently, the observed apoptosis was associated with the detected amine adduction. The findings facilitate the understanding of the mechanisms of toxic action of DSB.
Collapse
Affiliation(s)
- Zhengyu Zhang
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Hui Li
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Wei Li
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Yukun Feng
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Zixia Hu
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Shenzhi Zhou
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Na Zhang
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Ying Peng
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Jiang Zheng
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China.,State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, Guiyang, Guizhou 550004, P. R. China.,Key Laboratory of Environmental Pollution, Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang 550025, P. R. China
| |
Collapse
|
19
|
Wu D, Noda K, Murata M, Liu Y, Kanda A, Ishida S. Regulation of Spermine Oxidase through Hypoxia-Inducible Factor-1α Signaling in Retinal Glial Cells under Hypoxic Conditions. Invest Ophthalmol Vis Sci 2020; 61:52. [PMID: 32579679 PMCID: PMC7415903 DOI: 10.1167/iovs.61.6.52] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 05/09/2020] [Indexed: 02/07/2023] Open
Abstract
Purpose Acrolein, a highly reactive unsaturated aldehyde, is known to facilitate glial cell migration, one of the pathological hallmarks in diabetic retinopathy. However, cellular mechanisms of acrolein generation in retinal glial cells remains elusive. In the present study, we investigated the role and regulation of spermine oxidase (SMOX), one of the enzymes related to acrolein generation, in retinal glial cells under hypoxic condition. Methods Immunofluorescence staining for SMOX was performed using sections of fibrovascular tissues obtained from patients with proliferative diabetic retinopathy. Expression levels of polyamine oxidation enzymes including SMOX were analyzed in rat retinal Müller cell line 5 (TR-MUL5) cells under either normoxic or hypoxic conditions. The transcriptional activity of Smox in TR-MUL5 cells was evaluated using the luciferase assay. Levels of acrolein-conjugated protein, Nε-(3-formyl-3,4-dehydropiperidino) lysine adduct (FDP-Lys), and hydrogen peroxide were measured. Results SMOX was localized in glial cells in fibrovascular tissues. Hypoxia induced SMOX production in TR-MUL5 cells, which was suppressed by silencing of hypoxia-inducible factor-1α (Hif1a), but not Hif2a. Transcriptional activity of Smox was regulated through HIF-1 binding to hypoxia response elements 2, 3, and 4 sites in the promoter region of Smox. Generation of FDP-Lys and hydrogen peroxide increased in TR-MUL5 cells under hypoxic condition, which was abrogated by SMOX inhibitor MDL72527. Conclusions The current data demonstrated that hypoxia regulates production of SMOX, which plays a role in the generation of oxidative stress inducers, through HIF-1α signaling in Müller glial cells under hypoxic condition.
Collapse
Affiliation(s)
- Di Wu
- Laboratory of Ocular Cell Biology and Visual Science, Department of Ophthalmology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Kousuke Noda
- Laboratory of Ocular Cell Biology and Visual Science, Department of Ophthalmology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Miyuki Murata
- Laboratory of Ocular Cell Biology and Visual Science, Department of Ophthalmology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Ye Liu
- Laboratory of Ocular Cell Biology and Visual Science, Department of Ophthalmology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Atsuhiro Kanda
- Laboratory of Ocular Cell Biology and Visual Science, Department of Ophthalmology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Susumu Ishida
- Laboratory of Ocular Cell Biology and Visual Science, Department of Ophthalmology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| |
Collapse
|
20
|
Kabir A, Jash C, Payghan PV, Ghoshal N, Kumar GS. Polyamines and its analogue modulates amyloid fibrillation in lysozyme: A comparative investigation. Biochim Biophys Acta Gen Subj 2020; 1864:129557. [PMID: 32045632 DOI: 10.1016/j.bbagen.2020.129557] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 01/03/2020] [Accepted: 02/07/2020] [Indexed: 12/16/2022]
Abstract
BACKGROUND Polyamines can induce protein aggregation that can be related to the physiology of the cellular function. Polyamines have been implicated in protein aggregation which may lead to neuropathic and non neuropathic amyloidosis. SCOPE OF REVIEW Change in the level of polyamine concentration has been associated with ageing and neurodegeneration such as Parkinson's disease, Alzheimer's disease. Lysozyme aggregation in the presence of polyamines leads to non neuropathic amyloidosis. Polyamine analogues can suppress or inhibit protein aggregation suggesting their efficacy against amyloidogenic protein aggregates. MAJOR CONCLUSIONS In this study we report the comparative interactions of lysozyme with the polyamine analogue, 1-naphthyl acetyl spermine in comparison with the biogenic polyamines through spectroscopy, calorimetry, imaging and docking techniques. The findings revealed that the affinity of binding varied as spermidine > 1-naphthyl acetyl spermine > spermine. The biogenic polyamines accelerated the rate of fibrillation significantly, whereas the analogue inhibited the rate of fibrillation to a considerable extent. The polyamines bind near the catalytic diad residues viz. Glu35 and Asp52, and in close proximity of Trp62 residue. However, the analogue showed dual nature of interaction where its alkyl amine region bind in same way as the biogenic polyamines bind to the catalytic site, while the naphthyl group makes hydrophobic contacts with Trp62 and Trp63, thereby suggesting its direct influence on fibrillation. GENERAL SIGNIFICANCE This study, thus, potentiates, the development of a polyamine analogue that can perform as an effective inhibitor targeted towards aggregation of amyloidogenic proteins.
Collapse
Affiliation(s)
- Ayesha Kabir
- Organic and Medicinal Chemistry Division, CSIR-Indian Institute of Chemical Biology, 4, Raja SC Mullick Road, Kolkata 700 032, India
| | - Chandrima Jash
- Organic and Medicinal Chemistry Division, CSIR-Indian Institute of Chemical Biology, 4, Raja SC Mullick Road, Kolkata 700 032, India
| | - Pavan V Payghan
- Structural Biology and Bioinformatics Division, CSIR-Indian Institute of Chemical Biology, 4, Raja SC Mullick Road, Kolkata 700 032, India
| | - Nanda Ghoshal
- Structural Biology and Bioinformatics Division, CSIR-Indian Institute of Chemical Biology, 4, Raja SC Mullick Road, Kolkata 700 032, India
| | - Gopinatha Suresh Kumar
- Organic and Medicinal Chemistry Division, CSIR-Indian Institute of Chemical Biology, 4, Raja SC Mullick Road, Kolkata 700 032, India.
| |
Collapse
|
21
|
Cecco L, Antoniello S, Auletta M, Cerra M, Bonelli P. Pattern and concentration of free and acetylated polyamines in urine of cirrhotic patients. Int J Biol Markers 2020; 7:52-8. [PMID: 1583348 DOI: 10.1177/172460089200700108] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The pattern and concentration of urinary, free, monoacetylated and total polyamines were determined in 31 cirrhotic patients, divided into three classes according to Child's classification, and in 28 healthy subjects. Cirrhotic patients had increased levels of free, monoacetylated and total polyamines. They also showed a significant increase in N1-acetylspermidine to N8-acetylspermidine molar ratio. Urinary polyamine excretion was not related to the severity of liver disease nor to the values of laboratory liver function tests. Furthermore, polyamine excretion was not significantly different in cirrhotics with or without diabetes or IGT, while plasma insulin and glucagon levels were increased in all cirrhotic patients. The results suggest that enhanced polyamine biosynthesis and catabolism, particularly N1-acetylation, occur in cirrhotic patients, probably due to hepatic regeneration and/or increased levels of insulin and glucagon.
Collapse
Affiliation(s)
- L Cecco
- Biochemistry Department, National Cancer Institute Fondazione G. Pascale, Napoli, Italy
| | | | | | | | | |
Collapse
|
22
|
Capella Roca B, Lao N, Barron N, Doolan P, Clynes M. An arginase-based system for selection of transfected CHO cells without the use of toxic chemicals. J Biol Chem 2019; 294:18756-18768. [PMID: 31666335 DOI: 10.1074/jbc.ra119.011162] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 10/29/2019] [Indexed: 11/06/2022] Open
Abstract
Polyamines have essential roles in cell proliferation, DNA replication, transcription, and translation processes, with intracellular depletion of putrescine, spermidine, and spermine resulting in cellular growth arrest and eventual death. Serum-free media for CHO-K1 cells require putrescine supplementation, because these cells lack the first enzyme of the polyamine production pathway, arginase. On the basis of this phenotype, we developed an arginase-based selection system. We transfected CHO-K1 cells with a bicistronic vector co-expressing GFP and arginase and selected cells in media devoid of l-ornithine and putrescine, resulting in mixed populations stably expressing GFP. Moreover, single clones in these selective media stably expressed GFP for a total of 42 generations. Using this polyamine starvation method, we next generated recombinant CHO-K1 cells co-expressing arginase and human erythropoietin (hEPO), which also displayed stable expression and healthy growth. The hEPO-expressing clones grew in commercial media, such as BalanCD and CHO-S serum-free media (SFM)-II, as well as in a defined serum-free, putrescine-containing medium for at least 9 passages (27 generations), with a minimal decrease in hEPO titer by the end of the culture. We observed a lack of arginase activity also in several CHO cell strains (CHO-DP12, CHO-S, and DUXB11) and other mammalian cell lines, including BHK21, suggesting broader utility of this selection system. In conclusion, we have established an easy-to-apply alternative selection system that effectively generates mammalian cell clones expressing biopharmaceutically relevant or other recombinant proteins without the need for any toxic selective agents. We propose that this system is applicable to mammalian cell lines that lack arginase activity.
Collapse
Affiliation(s)
- Berta Capella Roca
- National Institute for Cellular Biotechnology, Dublin City University, Dublin 9, Ireland; SSPC-SFI, Centre for Pharmaceuticals, Dublin City University, Dublin 9, Ireland.
| | - Nga Lao
- National Institute for Bioprocessing Research & Training, A94 X099 Dublin, Ireland
| | - Niall Barron
- National Institute for Bioprocessing Research & Training, A94 X099 Dublin, Ireland; School of Chemical & Bioprocessing Engineering, University College Dublin, Belfield, Dublin 4, D04V1W8, Ireland
| | - Padraig Doolan
- National Institute for Cellular Biotechnology, Dublin City University, Dublin 9, Ireland
| | - Martin Clynes
- National Institute for Cellular Biotechnology, Dublin City University, Dublin 9, Ireland; SSPC-SFI, Centre for Pharmaceuticals, Dublin City University, Dublin 9, Ireland
| |
Collapse
|
23
|
Malik A, Dalal V, Ankri S, Tomar S. Structural insights into
Entamoeba histolytica
arginase and structure‐based identification of novel non‐amino acid based inhibitors as potential antiamoebic molecules. FEBS J 2019; 286:4135-4155. [DOI: 10.1111/febs.14960] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Revised: 04/27/2019] [Accepted: 06/11/2019] [Indexed: 12/17/2022]
Affiliation(s)
- Anjali Malik
- Department of Biotechnology Indian Institute of Technology Roorkee India
| | - Vikram Dalal
- Department of Biotechnology Indian Institute of Technology Roorkee India
| | - Serge Ankri
- Department of Molecular Microbiology Bruce Rappaport Faculty of Medicine Technion‐Israel Institute of Technology Haifa Israel
| | - Shailly Tomar
- Department of Biotechnology Indian Institute of Technology Roorkee India
| |
Collapse
|
24
|
Crystal structure of dimeric Synechococcus spermidine synthase with bound polyamine substrate and product. Biochem J 2019; 476:1009-1020. [DOI: 10.1042/bcj20180811] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 03/05/2019] [Accepted: 03/14/2019] [Indexed: 11/17/2022]
Abstract
AbstractSpermidine is a ubiquitous polyamine synthesized by spermidine synthase (SPDS) from the substrates, putrescine and decarboxylated S-adenosylmethionine (dcAdoMet). SPDS is generally active as homodimer, but higher oligomerization states have been reported in SPDS from thermophiles, which are less specific to putrescine as the aminoacceptor substrate. Several crystal structures of SPDS have been solved with and without bound substrates and/or products as well as inhibitors. Here, we determined the crystal structure of SPDS from the cyanobacterium Synechococcus (SySPDS) that is a homodimer, which we also observed in solution. Unlike crystal structures reported for bacterial and eukaryotic SPDS with bound ligands, SySPDS structure has not only bound putrescine substrate taken from the expression host, but also spermidine product most probably as a result of an enzymatic reaction. Hence, to the best of our knowledge, this is the first structure reported with both amino ligands in the same structure. Interestingly, the gate-keeping loop is disordered in the putrescine-bound monomer while it is stabilized in the spermidine-bound monomer of the SySPDS dimer. This confirms the gate-keeping loop as the key structural element that prepares the active site upon binding of dcAdoMet for the catalytic reaction of the amine donor and putrescine.
Collapse
|
25
|
Polyamines in Microalgae: Something Borrowed, Something New. Mar Drugs 2018; 17:md17010001. [PMID: 30577419 PMCID: PMC6356823 DOI: 10.3390/md17010001] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 12/14/2018] [Accepted: 12/17/2018] [Indexed: 01/13/2023] Open
Abstract
Microalgae of different evolutionary origins are typically found in rivers, lakes, and oceans, providing more than 45% of global primary production. They provide not only a food source for animals, but also affect microbial ecosystems through symbioses with microorganisms or secretion of some metabolites. Derived from amino acids, polyamines are present in almost all types of organisms, where they play important roles in maintaining physiological functions or against stress. Microalgae can produce a variety of distinct polyamines, and the polyamine content is important to meet the physiological needs of microalgae and may also affect other species in the environment. In addition, some polyamines produced by microalgae have medical or nanotechnological applications. Previous studies on several types of microalgae have indicated that the putative polyamine metabolic pathways may be as complicated as the genomes of these organisms, which contain genes originating from plants, animals, and even bacteria. There are also several novel polyamine synthetic routes in microalgae. Understanding the nature of polyamines in microalgae will not only improve our knowledge of microalgal physiology and ecological function, but also provide valuable information for biotechnological applications.
Collapse
|
26
|
Russo R, Haange SB, Rolle-Kampczyk U, von Bergen M, Becker JM, Liess M. Identification of pesticide exposure-induced metabolic changes in mosquito larvae. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 643:1533-1541. [PMID: 30189569 DOI: 10.1016/j.scitotenv.2018.06.282] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 06/22/2018] [Accepted: 06/22/2018] [Indexed: 06/08/2023]
Abstract
The European regulatory framework for pesticides generally applies an assessment factor of up to 100 below the acute median lethal concentration (LC50) in laboratory tests to predict the regulatory acceptable concentrations (RACs). However, long-term detrimental effects of pesticides in the environment occur far below the RACs. Here, we explored the metabolic changes induced by exposure to the neonicotinoid insecticide clothianidin in larvae of the mosquito Culex pipiens. We exposed the test organisms to the insecticide for 24 h and then measured the levels of 184 metabolites immediately and 48 h after the pulse contamination. We established a link between the exposure to clothianidin and changes in the level of three specific classes of metabolites involved in energy metabolism, namely, glycerophospholipids, acylcarnitines and biogenic amines. Remarkably, exposure to concentrations considered to be safe according to the regulatory framework (2-4 orders of magnitude lower than the acute LC50), induced longer-term effects than exposure to the highest concentration. These results suggest that a specific detoxification mechanism was only triggered by the highest concentration. We conclude that even very low insecticide concentrations increase the energy demands of exposed organisms, which potentially translates into a decline in sensitive species in the field.
Collapse
Affiliation(s)
- Renato Russo
- UFZ, Helmholtz Centre for Environmental Research, Department of System-Ecotoxicology, Permoserstraße 15, 04318 Leipzig, Germany; RWTH Aachen University, Institute for Environmental Research (Biology V), Worringerweg 1, 52074 Aachen, Germany
| | - Sven-Bastiaan Haange
- UFZ, Helmholtz Centre for Environmental Research, Department of Molecular System Biology, Permoserstraße 15, 04318 Leipzig, Germany; University of Leipzig, Institute of Biochemistry, Leipzig, Germany
| | - Ulrike Rolle-Kampczyk
- UFZ, Helmholtz Centre for Environmental Research, Department of Molecular System Biology, Permoserstraße 15, 04318 Leipzig, Germany
| | - Martin von Bergen
- UFZ, Helmholtz Centre for Environmental Research, Department of Molecular System Biology, Permoserstraße 15, 04318 Leipzig, Germany
| | - Jeremias Martin Becker
- UFZ, Helmholtz Centre for Environmental Research, Department of System-Ecotoxicology, Permoserstraße 15, 04318 Leipzig, Germany; RWTH Aachen University, Institute for Environmental Research (Biology V), Worringerweg 1, 52074 Aachen, Germany
| | - Matthias Liess
- UFZ, Helmholtz Centre for Environmental Research, Department of System-Ecotoxicology, Permoserstraße 15, 04318 Leipzig, Germany; RWTH Aachen University, Institute for Environmental Research (Biology V), Worringerweg 1, 52074 Aachen, Germany.
| |
Collapse
|
27
|
Roh C. Metabolomics in Radiation-Induced Biological Dosimetry: A Mini-Review and a Polyamine Study. Biomolecules 2018; 8:biom8020034. [PMID: 29844258 PMCID: PMC6023017 DOI: 10.3390/biom8020034] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 05/18/2018] [Accepted: 05/25/2018] [Indexed: 01/09/2023] Open
Abstract
In this study, we elucidate that polyamine metabolite is a powerful biomarker to study post-radiation changes. Metabolomics in radiation biodosimetry, the application of a metabolomics analysis to the field of radiobiology, promises to increase the understanding of biological responses by ionizing radiation (IR). Radiation exposure triggers a complex network of molecular and cellular responses that impacts metabolic processes and alters the levels of metabolites. Such metabolites have potential as biomarkers for radiation dosimetry. Among metabolites, polyamine is one of many potential biomarkers to estimate radiation response. In addition, this review provides an opportunity for the understanding of a radiation metabolomics in biodosimetry and a polyamine case study.
Collapse
Affiliation(s)
- Changhyun Roh
- Biotechnology Research Division, Advanced Radiation Technology Institute (ARTI), Korea Atomic Energy Research Institute (KAERI), 29, Geumgu-gil, Jeongeup-si, Jeonbuk 56212, Korea.
- Radiation Biotechnology and Applied Radioisotope Science, University of Science Technology (UST), 217 Gajeong-ro, Daejeon 34113, Korea.
| |
Collapse
|
28
|
Joly F, Deret S, Gamboa B, Menigot C, Fogel P, Mounier C, Reiniche P, Sidou F, Aubert J, Lear J, Fryer AA, Zolezzi F, Voegel JJ. Photodynamic therapy corrects abnormal cancer-associated gene expression observed in actinic keratosis lesions and induces a remodeling effect in photodamaged skin. J Dermatol Sci 2018; 91:S0923-1811(17)30775-2. [PMID: 29779986 DOI: 10.1016/j.jdermsci.2018.05.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 04/13/2018] [Accepted: 05/07/2018] [Indexed: 10/16/2022]
Abstract
BACKGROUND Actinic keratoses (AK) are proliferations of neoplastic keratinocytes in the epidermis resulting from cumulative exposure to ultraviolet radiation (UVR), which are liable to transform into squamous cell carcinoma (SCC). Organ Transplant Recipients (OTR) have an increased risk of developing SCC as a consequence of long-term immunosuppressive therapy. The aim of this study was to determine the molecular signature of AKs from OTR prior to treatment with methyl aminolevulinate-photodynamic therapy (MAL-PDT), and to assess what impact the treatment has on promoting remodeling of the photo-damaged skin. METHODS Seven patients were enrolled on a clinical trial to assess the effect of MAL-PDT with biopsies taken at screening prior to the first treatment session (week 1), and six weeks after completion of final treatment (week 18). Whole-genome gene expression analysis was carried out on skin biopsies isolated from an AK lesion, an area surrounding the lesion, and a non-sun exposed region of the body. Quantitative PCR was utilized to confirm the differential expression of key genes. RESULTS MAL-PDT treatment corrected abnormal proliferation-related gene profiles, corrected aberrantly expressed cancer-associated genes and induced expression of dermal extracellular matrix genes in photo-exposed skin. CONCLUSION The efficacy of the MAL-PDT on AK lesions was confirmed at whole-genome gene expression level. A transcriptional signature of remodeling, identified through assessing the effect of MAL-PDT on photodamaged skin, supports the use of MAL-PDT for treating photodamaged skin and field cancerized areas.
Collapse
Affiliation(s)
| | - Sophie Deret
- GALDERMA R&D, 06902 Sophia Antipolis Cedex, France
| | | | | | - Paul Fogel
- Independent Consultant, Paris 75006, France
| | | | | | | | | | - John Lear
- Manchester Academic Health Science Centre, MAHSC, Manchester University and Salford Royal NHS Trust, Manchester, UK
| | - Anthony A Fryer
- Institute for Applied Clinical Sciences, Keele University, Guy Hilton Research Centre, Thornburrow Drive, Hartshill, Stoke-on-Trent Staffordshire, ST4 7QB, UK
| | | | | |
Collapse
|
29
|
Shapla UM, Raihan J, Islam A, Alam F, Solayman N, Gan SH, Hossen S, Khalil I. Propolis: The future therapy against Helicobacter pylori-mediated gastrointestinal diseases. J Appl Biomed 2018. [DOI: 10.1016/j.jab.2017.10.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
30
|
Vanhoutte R, Kahler JP, Martin S, van Veen S, Verhelst SHL. Clickable Polyamine Derivatives as Chemical Probes for the Polyamine Transport System. Chembiochem 2018; 19:907-911. [DOI: 10.1002/cbic.201800043] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Indexed: 01/08/2023]
Affiliation(s)
- Roeland Vanhoutte
- Laboratory of Chemical Biology; Department of Cellular and Molecular Medicine; KU Leuven; Herestraat 49 Box 802 3000 Leuven Belgium
| | - Jan Pascal Kahler
- Laboratory of Chemical Biology; Department of Cellular and Molecular Medicine; KU Leuven; Herestraat 49 Box 802 3000 Leuven Belgium
| | - Shaun Martin
- Laboratory of Cellular Transport Systems; Department of Cellular and Molecular Medicine; KU Leuven; Herestraat 49 Box 802 3000 Leuven Belgium
| | - Sarah van Veen
- Laboratory of Cellular Transport Systems; Department of Cellular and Molecular Medicine; KU Leuven; Herestraat 49 Box 802 3000 Leuven Belgium
| | - Steven H. L. Verhelst
- Laboratory of Chemical Biology; Department of Cellular and Molecular Medicine; KU Leuven; Herestraat 49 Box 802 3000 Leuven Belgium
- Leibniz Institute for Analytical Sciences ISAS; Otto-Hahn-Strasse 6b 44227 Dortmund Germany
| |
Collapse
|
31
|
Moré MI, Vandenplas Y. Saccharomyces boulardii CNCM I-745 Improves Intestinal Enzyme Function: A Trophic Effects Review. CLINICAL MEDICINE INSIGHTS. GASTROENTEROLOGY 2018; 11:1179552217752679. [PMID: 29449779 PMCID: PMC5808955 DOI: 10.1177/1179552217752679] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Accepted: 12/17/2017] [Indexed: 12/15/2022]
Abstract
Several properties of the probiotic medicinal yeast Saccharomyces boulardii CNCM I-745 contribute to its efficacy to prevent or treat diarrhoea. Besides immunologic effects, pathogen-binding and anti-toxin effects, as well as positive effects on the microbiota, S boulardii CNCM I-745 also has pronounced effects on digestive enzymes of the brush border membrane, known as trophic effects. The latter are the focus of this review. Literature has been reviewed after searching Medline and PMC databases. All relevant non-clinical and clinical studies are summarized. S. boulardii CNCM I-745 synthesizes and secretes polyamines, which have a role in cell proliferation and differentiation. The administration of polyamines or S. boulardii CNCM I-745 enhances the expression of intestinal digestive enzymes as well as nutrient uptake transporters. The signalling mechanisms leading to enzyme activation are not fully understood. However, polyamines have direct nucleic acid–binding capacity with regulatory impact. S. boulardii CNCM I-745 induces signalling via the mitogen-activated protein kinase pathway. In addition, effects on the phosphatidylinositol-3 kinase (PI3K) pathway have been reported. As an additional direct effect, S. boulardii CNCM I-745 secretes certain enzymes, which enhance nutrient acquisition for the yeast and the host. The increased availability of digestive enzymes seems to be one of the mechanisms by which S. boulardii CNCM I-745 counteracts diarrhoea; however, also people with certain enzyme deficiencies may profit from its administration. More studies are needed to fully understand the mechanisms of trophic activation by the probiotic yeast.
Collapse
Affiliation(s)
- Margret I Moré
- analyze & realize GmbH, Department of Consulting and Strategic Innovation, Berlin, Germany
| | - Yvan Vandenplas
- Department of Pediatrics, Vrije Universiteit Brussel, Brussels, Belgium
| |
Collapse
|
32
|
Enjoji M, Nakamuta M, Arimura E, Morizono S, Kuniyoshi M, Fukushima M, Kotoh K, Nawata H. Clinical Significance of Urinary N1,N12-Diacetylspermine Levels in Patients with Hepatocellular Carcinoma. Int J Biol Markers 2018; 19:322-7. [PMID: 15646840 DOI: 10.1177/172460080401900411] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Background/aim N1,N12-diacetylspermine (DiAcSpm), a diacetylpolyamine which was recently identified in urine, appeared to be a useful tumor marker for urogenital cancers. Here we examined the clinical significance of urinary DiAcSpm as a tumor marker for hepatocellular carcinoma (HCC). Methods Urine samples were collected from patients with HCC and benign liver diseases. Urinary levels of DiAcSpm were measured by ELISA, which was newly developed in order to analyze large numbers of samples. Results The appropriate threshold value was set at 325 nM/g·creatinine. The sensitivity of the DiAcSpm assay for HCC was 65.5% and the specificity calculated between HCC and liver cirrhosis was 76.0%. The percentage of DiAcSpm-positive HCC patients was similar to that for AFP or PIVKA-II. At more advanced clinical stages, the positive percentage of these three markers increased but the DiAcSpm levels appeared to move independently of AFP and PIVKA-II. In HCC patients, the DiAcSpm levels reflected the progression of disease or the effect of treatment. Conclusions DiAcSpm levels were found to reflect the severity, activity or viability of HCC. Urinary DiAcSpm can therefore be considered one of the useful indexes for patients with HCC.
Collapse
Affiliation(s)
- M Enjoji
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Murata M, Noda K, Kawasaki A, Yoshida S, Dong Y, Saito M, Dong Z, Ando R, Mori S, Saito W, Kanda A, Ishida S. Soluble Vascular Adhesion Protein-1 Mediates Spermine Oxidation as Semicarbazide-Sensitive Amine Oxidase: Possible Role in Proliferative Diabetic Retinopathy. Curr Eye Res 2017; 42:1674-1683. [PMID: 28937866 DOI: 10.1080/02713683.2017.1359847] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Purpose/Aim of the study: To explore the possible role of vascular adhesion protein-1 (VAP-1) via its enzymatic function as a semicarbazide-sensitive amine oxidase (SSAO) in the pathogenesis of proliferative diabetic retinopathy (PDR). MATERIALS AND METHODS The levels of soluble VAP-1/SSAO and the unsaturated aldehyde acrolein (ACR)-conjugated protein, Nε-(3-formyl-3, 4-dehydropiperidino) lysine adduct (FDP-Lys), were measured in vitreous fluid samples of PDR and non-diabetic patients using ELISA. Recombinant human VAP-1/SSAO (rhVAP-1/SSAO) was incubated with spermine, with or without semicarbazide or RTU-1096 (a specific inhibitor for VAP-1/SSAO). Immunofluorescence assays were performed to assess the localization of VAP-1/SSAO and FDP-Lys in fibrovascular tissues from patients with PDR. The impact of ACR on cultured retinal capillary endothelial cells was assessed using a cell viability assay and total glutathione (GSH) measurements. RESULTS The levels of sVAP-1/SSAO and FDP-Lys were elevated in the vitreous fluid of patients with PDR. Incubation of rhVAP-1 with spermine resulted in the generation of hydrogen peroxide and FDP-Lys and the production was inhibited by semicarbazide and RTU-1096. In fibrovascular tissues, FDP-Lys and VAP-1/SSAO were present in endothelial cells. ACR stimulation reduced GSH levels in the cultured endothelial cells in a dose-dependent manner and caused cellular toxicity. CONCLUSIONS Our results indicate the pathological role of sVAP-1/SSAO to generate hydrogen peroxide and toxic aldehyde ACR, both of which are associated with oxidative stress, as a consequence of spermine oxidation in eyes with PDR.
Collapse
Affiliation(s)
- Miyuki Murata
- a Department of Ophthalmology, Faculty of Medicine and Graduate School of Medicine , Hokkaido University , Sapporo , Japan.,b Laboratory of Ocular Cell Biology & Visual Science, Faculty of Medicine and Graduate School of Medicine , Hokkaido University , Sapporo , Japan
| | - Kousuke Noda
- a Department of Ophthalmology, Faculty of Medicine and Graduate School of Medicine , Hokkaido University , Sapporo , Japan.,b Laboratory of Ocular Cell Biology & Visual Science, Faculty of Medicine and Graduate School of Medicine , Hokkaido University , Sapporo , Japan
| | | | - Shiho Yoshida
- a Department of Ophthalmology, Faculty of Medicine and Graduate School of Medicine , Hokkaido University , Sapporo , Japan.,b Laboratory of Ocular Cell Biology & Visual Science, Faculty of Medicine and Graduate School of Medicine , Hokkaido University , Sapporo , Japan
| | - Yoko Dong
- a Department of Ophthalmology, Faculty of Medicine and Graduate School of Medicine , Hokkaido University , Sapporo , Japan
| | - Michiyuki Saito
- a Department of Ophthalmology, Faculty of Medicine and Graduate School of Medicine , Hokkaido University , Sapporo , Japan
| | - Zhenyu Dong
- a Department of Ophthalmology, Faculty of Medicine and Graduate School of Medicine , Hokkaido University , Sapporo , Japan
| | - Ryo Ando
- a Department of Ophthalmology, Faculty of Medicine and Graduate School of Medicine , Hokkaido University , Sapporo , Japan
| | - Shohei Mori
- a Department of Ophthalmology, Faculty of Medicine and Graduate School of Medicine , Hokkaido University , Sapporo , Japan
| | - Wataru Saito
- a Department of Ophthalmology, Faculty of Medicine and Graduate School of Medicine , Hokkaido University , Sapporo , Japan
| | - Atsuhiro Kanda
- a Department of Ophthalmology, Faculty of Medicine and Graduate School of Medicine , Hokkaido University , Sapporo , Japan.,b Laboratory of Ocular Cell Biology & Visual Science, Faculty of Medicine and Graduate School of Medicine , Hokkaido University , Sapporo , Japan
| | - Susumu Ishida
- a Department of Ophthalmology, Faculty of Medicine and Graduate School of Medicine , Hokkaido University , Sapporo , Japan.,b Laboratory of Ocular Cell Biology & Visual Science, Faculty of Medicine and Graduate School of Medicine , Hokkaido University , Sapporo , Japan
| |
Collapse
|
34
|
Oguro A, Yanagida A, Fujieda Y, Amano R, Otsu M, Sakamoto T, Kawai G, Matsufuji S. Two stems with different characteristics and an internal loop in an RNA aptamer contribute to spermine-binding. J Biochem 2017; 161:197-206. [PMID: 28173167 DOI: 10.1093/jb/mvw062] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2016] [Accepted: 08/30/2016] [Indexed: 11/14/2022] Open
Abstract
Though polyamines (putrescine, spermidine, and spermine) bind to the specific position in RNA molecules, interaction mechanisms are poorly understood. SELEX procedure has been used to isolate high-affinity oligoribonucleotides (aptamers) from randomized RNA libraries. Selected aptamers are useful in exploring sequences and/or structures in RNAs for binding molecules. In this study, to analyze the interaction mechanism of polyamine to RNA, we selected RNA aptamers targeted for spermine. Two spermine-binding aptamers (#5 and #24) were obtained and both of them had two stem-loop structures. The 3′ stem-loop of #5 (SL_2) bound to spermine more effectively than the 5′ stem-loop of #5 did. A thermodynamic analysis by an isothermal titration calorimetry revealed that the dissociation constant of SL_2 for spermine was 27.2 μM and binding ratio was nearly 1:1. Binding assay with base-pair replaced variants showed that two stem regions and an internal loop in SL_2 were important for their spermine-binding activities. NMR analyses proposed that a terminal-side and a loop-side stem in SL_2 take a loose and a stable structure, respectively and a conformational change of SL_2 is induced by spermine. It is conclusive that two stems with different characteristics and an internal loop in SL_2 contribute to the specific spermine-binding.
Collapse
Affiliation(s)
- Akihiro Oguro
- Department of Molecular Biology, The Jikei University School of Medicine, 3-25-8 Nishi-Shinbashi, Minato-ku, Tokyo 105-8461, Japan
| | - Asumi Yanagida
- Department of Life and Environmental Sciences, Faculty of Engineering, Chiba Institute of Technology, 2-17-1 Tsudanuma, Narashino, Chiba 275-0016, Japan
| | - Yuta Fujieda
- Department of Life and Environmental Sciences, Faculty of Engineering, Chiba Institute of Technology, 2-17-1 Tsudanuma, Narashino, Chiba 275-0016, Japan
| | - Ryo Amano
- Department of Life and Environmental Sciences, Faculty of Engineering, Chiba Institute of Technology, 2-17-1 Tsudanuma, Narashino, Chiba 275-0016, Japan
| | - Maina Otsu
- Department of Life and Environmental Sciences, Faculty of Engineering, Chiba Institute of Technology, 2-17-1 Tsudanuma, Narashino, Chiba 275-0016, Japan
| | - Taiichi Sakamoto
- Department of Life and Environmental Sciences, Faculty of Engineering, Chiba Institute of Technology, 2-17-1 Tsudanuma, Narashino, Chiba 275-0016, Japan
| | - Gota Kawai
- Department of Life and Environmental Sciences, Faculty of Engineering, Chiba Institute of Technology, 2-17-1 Tsudanuma, Narashino, Chiba 275-0016, Japan
| | - Senya Matsufuji
- Department of Molecular Biology, The Jikei University School of Medicine, 3-25-8 Nishi-Shinbashi, Minato-ku, Tokyo 105-8461, Japan
| |
Collapse
|
35
|
Krysenko S, Okoniewski N, Kulik A, Matthews A, Grimpo J, Wohlleben W, Bera A. Gamma-Glutamylpolyamine Synthetase GlnA3 Is Involved in the First Step of Polyamine Degradation Pathway in Streptomyces coelicolor M145. Front Microbiol 2017; 8:726. [PMID: 28487688 PMCID: PMC5403932 DOI: 10.3389/fmicb.2017.00726] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Accepted: 04/07/2017] [Indexed: 12/26/2022] Open
Abstract
Streptomyces coelicolor M145 was shown to be able to grow in the presence of high concentrations of polyamines, such as putrescine, cadaverine, spermidine, or spermine, as a sole nitrogen source. However, hardly anything is known about polyamine utilization and its regulation in streptomycetes. In this study, we demonstrated that only one of the three proteins annotated as glutamine synthetase-like protein, GlnA3 (SCO6962), was involved in the catabolism of polyamines. Transcriptional analysis revealed that the expression of glnA3 was strongly induced by exogenous polyamines and repressed in the presence of ammonium. The ΔglnA3 mutant was shown to be unable to grow on defined Evans agar supplemented with putrescine, cadaverine, spermidine, and spermine as sole nitrogen source. HPLC analysis demonstrated that the ΔglnA3 mutant accumulated polyamines intracellularly, but was unable to degrade them. In a rich complex medium supplemented with a mixture of the four different polyamines, the ΔglnA3 mutant grew poorly showing abnormal mycelium morphology and decreased life span in comparison to the parental strain. These observations indicated that the accumulation of polyamines was toxic for the cell. An in silico analysis of the GlnA3 protein model suggested that it might act as a gamma-glutamylpolyamine synthetase catalyzing the first step of polyamine degradation. GlnA3-catalyzed glutamylation of putrescine was confirmed in an enzymatic in vitro assay and the GlnA3 reaction product, gamma-glutamylputrescine, was detected by HPLC/ESI-MS. In this work, the first step of polyamine utilization in S. coelicolor has been elucidated and the putative polyamine utilization pathway has been deduced based on the sequence similarity and transcriptional analysis of homologous genes expressed in the presence of polyamines.
Collapse
Affiliation(s)
- Sergii Krysenko
- Interfaculty Institute of Microbiology and Infection Medicine Tübingen, Department of Microbiology and Biotechnology, University of TübingenTübingen, Germany
| | - Nicole Okoniewski
- Interfaculty Institute of Microbiology and Infection Medicine Tübingen, Department of Microbiology and Biotechnology, University of TübingenTübingen, Germany
| | - Andreas Kulik
- Interfaculty Institute of Microbiology and Infection Medicine Tübingen, Department of Microbiology and Biotechnology, University of TübingenTübingen, Germany
| | - Arne Matthews
- Interfaculty Institute of Microbiology and Infection Medicine Tübingen, Department of Microbiology and Biotechnology, University of TübingenTübingen, Germany
| | - Jan Grimpo
- Interfaculty Institute of Microbiology and Infection Medicine Tübingen, Department of Microbiology and Biotechnology, University of TübingenTübingen, Germany
| | - Wolfgang Wohlleben
- Interfaculty Institute of Microbiology and Infection Medicine Tübingen, Department of Microbiology and Biotechnology, University of TübingenTübingen, Germany
| | - Agnieszka Bera
- Interfaculty Institute of Microbiology and Infection Medicine Tübingen, Department of Microbiology and Biotechnology, University of TübingenTübingen, Germany
| |
Collapse
|
36
|
Gillis JD, Price GW, Prasher S. Lethal and sub-lethal effects of triclosan toxicity to the earthworm Eisenia fetida assessed through GC-MS metabolomics. JOURNAL OF HAZARDOUS MATERIALS 2017; 323:203-211. [PMID: 27468629 DOI: 10.1016/j.jhazmat.2016.07.022] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2016] [Revised: 07/06/2016] [Accepted: 07/07/2016] [Indexed: 06/06/2023]
Abstract
Triclosan (TCS) is a ubiquitous contaminant in municipal biosolids, which has also been detected in soils and earthworms sampled from agricultural fields amended with biosolids. The goal of this study was to evaluate the toxicity of TCS to earthworms using a metabolomics-based approach for an improved interpretation of toxicity. Toxicity of TCS was assessed using the OECD Method 207 filter paper contact test measuring the endpoints of weight loss, mortality, and ten metabolites determined by GC-MS. Eight earthworms were exposed as individual replicates to six concentrations of triclosan (0, 0.0001, 0.001, 0.01, 0.1, and 1mg TCS cm-2) on filter paper, with mortality assessed after 6, 24 and 48h. Mortalities were first observed at 24h, with 100% mortality in the 1 and 0.1mgcm-2 treatments. Worms at 1mgcm-2 lost most of their coelomic fluid before they could be sampled. The 48h LC50 for triclosan was estimated to be 0.006 and 0.008mgcm-2 by a linear and logistic model, respectively. Based on the LC50, triclosan is relatively more toxic to earthworms than a number of other emerging contaminants, but is less toxic than other chlorophenols and many pesticides. Alanine, valine, leucine, serine, phenylalanine, putrescine, spermidine, mannitol, and inositol were significantly different between treatments, although changes were most often associated with mortality rather than triclosan exposure. An increase in putrescine and decrease in amino acids, polyols, and spermidine were associated with mortality, suggesting decomposition had begun. Principal components analysis did not reveal evidence of metabolic impacts at sub-lethal concentrations. However, there were changes in the pattern of correlations between metabolite pairs in surviving worms at both 0.0001 and 0.001mgcm-2 exposure compared to the control.
Collapse
Affiliation(s)
- J Daniel Gillis
- Department of Bioresource Engineering, McGill University, Faculty of Agricultural and Environmental Sciences, Macdonald-Stewart Building MS1-027, 21111 Lakeshore Road, Sainte-Anne-de-Bellevue, Quebec, H9X 3V9, Canada.
| | - Gordon W Price
- Department of Engineering, Dalhousie University, Faculty of Agriculture, 39 Cox Road, PO Box 550, Truro, Nova Scotia, B2N 5E3, Canada
| | - Shiv Prasher
- Department of Bioresource Engineering, McGill University, Faculty of Agricultural and Environmental Sciences, Macdonald-Stewart Building MS1-027, 21111 Lakeshore Road, Sainte-Anne-de-Bellevue, Quebec, H9X 3V9, Canada
| |
Collapse
|
37
|
Chanphai P, Tajmir-Riahi H. Conjugation of chitosan nanoparticles with biogenic and synthetic polyamines: A delivery tool for antitumor polyamine analogues. Carbohydr Polym 2016; 152:665-671. [DOI: 10.1016/j.carbpol.2016.06.113] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Revised: 06/26/2016] [Accepted: 06/29/2016] [Indexed: 12/20/2022]
|
38
|
Kabir A, Dutta D, Mandal C, Suresh Kumar G. Molecular Recognition of tRNA with 1-Naphthyl Acetyl Spermine, Spermine, and Spermidine: A Thermodynamic, Biophysical, and Molecular Docking Investigative Approach. J Phys Chem B 2016; 120:10871-10884. [PMID: 27690446 DOI: 10.1021/acs.jpcb.6b05391] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The role of tRNA in protein translational machinery and the influence of polyamines on the interaction of acylated and deacylated tRNA with ribosomes make polyamine-tRNA interaction conspicuous. We studied the interaction of two biogenic polyamines, spermine (SPM) and spermidine (SPD), with tRNAPhe and compared the results to those of the analogue 1-naphthyl acetyl spermine (NASPM). The binding affinity of SPM was comparable to that of NASPM; both were higher than that of SPD. The interactions led to significant thermal stabilization of tRNAPhe and an increase in the enthalpy of transition. All the interactions were exothermic in nature and displayed prominent enthalpy-entropy compensation behavior. The entropy-driven nature of the interaction, the structural perturbations observed, and docking results proved that the polyamines were bound in the groove of the anticodon arm of tRNAPhe. The amine groups of polyamines were involved in extensive electrostatic, H-bonding, and van der Waals interactions with tRNAPhe. The naphthyl group of NASPM showed an additional stacking interaction with G24 and G26 of tRNAPhe, which was absent in others. The results demonstrate that 1-naphthyl acetyl spermine can target the same binding sites as the biogenic polyamines without substituting for the functions played by them, which may lead to exhibition of selective anticancer cytotoxicity.
Collapse
Affiliation(s)
| | | | - Chhabinath Mandal
- National Institute of Pharmaceutical and Educational Research , Kolkata 700032, India
| | | |
Collapse
|
39
|
Corbin JM, Ruiz-Echevarría MJ. One-Carbon Metabolism in Prostate Cancer: The Role of Androgen Signaling. Int J Mol Sci 2016; 17:E1208. [PMID: 27472325 PMCID: PMC5000606 DOI: 10.3390/ijms17081208] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Revised: 07/16/2016] [Accepted: 07/18/2016] [Indexed: 01/06/2023] Open
Abstract
Cancer cell metabolism differs significantly from the metabolism of non-transformed cells. This altered metabolic reprogramming mediates changes in the uptake and use of nutrients that permit high rates of proliferation, growth, and survival. The androgen receptor (AR) plays an essential role in the establishment and progression of prostate cancer (PCa), and in the metabolic adaptation that takes place during this progression. In its role as a transcription factor, the AR directly affects the expression of several effectors and regulators of essential catabolic and biosynthetic pathways. Indirectly, as a modulator of the one-carbon metabolism, the AR can affect epigenetic processes, DNA metabolism, and redox balance, all of which are important factors in tumorigenesis. In this review, we focus on the role of AR-signaling on one-carbon metabolism in tumorigenesis. Clinical implications of one-carbon metabolism and AR-targeted therapies for PCa are discussed in this context.
Collapse
Affiliation(s)
- Joshua M Corbin
- Department of Pathology, Oklahoma University Health Sciences Center, Oklahoma City, OK 73104, USA.
| | - Maria J Ruiz-Echevarría
- Department of Pathology, Oklahoma University Health Sciences Center and Stephenson Cancer Center, Oklahoma City, OK 73104, USA.
| |
Collapse
|
40
|
Chanphai P, Thomas TJ, Tajmir-Riahi HA. Conjugation of biogenic and synthetic polyamines with serum proteins: A comprehensive review. Int J Biol Macromol 2016; 92:515-522. [PMID: 27431795 DOI: 10.1016/j.ijbiomac.2016.07.049] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Revised: 07/13/2016] [Accepted: 07/14/2016] [Indexed: 10/21/2022]
Abstract
We have reviewed the conjugation of biogenic polyamines spermine (spm), spermidine (spmd) and synthetic polyamines 3,7,11,15-tetrazaheptadecane.4HCl (BE-333) and 3,7,11,15,19-pentazahenicosane.5HCl (BE-3333) with human serum albumin (HSA), bovine serum albumin (BSA) and milk beta-lactoglobulin (b-LG) in aqueous solution at physiological pH. The results of multiple spectroscopic methods and molecular modeling were analysed here and correlations between polyamine binding mode and protein structural changes were estabilished. Polyamine-protein bindings are mainly via hydrophilic and H-bonding contacts. BSA forms more stable conjugates than HSA and b-LG. Biogenic polyamines form more stable complexes than synthetic polyamines except in the case of b-LG, where the protein shows more hydrophobic character than HSA and BSA. The loading efficacies were 40-52%. Modeling showed the presence of several H-bonding systems, which stabilized polyamine-protein conjugates. Polyamine conjugation induced major alterations of serum protein conformations. The potential application of serum proteins in delivery of polyamines is evaluated here.
Collapse
Affiliation(s)
- P Chanphai
- Department of Chemistry, Biochemistry and Physics, University of Québec at Trois-Rivières, C. P. 500, Trois-Rivières, Québec G9A 5H7,Canada
| | - T J Thomas
- Department of Medicine, Rutgers Robert Wood Johnson Medical School, Rutgers Cancer Institute of New Jersey, New Brunswick, NJ 08901, USA
| | - H A Tajmir-Riahi
- Department of Chemistry, Biochemistry and Physics, University of Québec at Trois-Rivières, C. P. 500, Trois-Rivières, Québec G9A 5H7,Canada.
| |
Collapse
|
41
|
Skatchkov SN, Antonov SM, Eaton MJ. Glia and glial polyamines. Role in brain function in health and disease. BIOCHEMISTRY MOSCOW SUPPLEMENT SERIES A-MEMBRANE AND CELL BIOLOGY 2016. [DOI: 10.1134/s1990747816010116] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
42
|
Intracellular sources of ornithine for polyamine synthesis in endothelial cells. Amino Acids 2016; 48:2401-10. [DOI: 10.1007/s00726-016-2256-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2016] [Accepted: 05/06/2016] [Indexed: 01/26/2023]
|
43
|
Hamon L, Savarin P, Pastré D. Polyamine signal through gap junctions: A key regulator of proliferation and gap-junction organization in mammalian tissues? Bioessays 2016; 38:498-507. [DOI: 10.1002/bies.201500195] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Loic Hamon
- Laboratoire Structure-Activité des Biomolécules Normales et Pathologiques; INSERM U1204 and Université Evry-Val d'Essonne; Evry France
| | - Philippe Savarin
- Centre National de Recherche Scientifique (CNRS), Equipe Spectroscopie des Biomolécules et des Milieux Biologiques (SBMB); Université Paris 13, Sorbonne Paris Cité, Laboratoire Chimie, Structures, Propriétés de Biomatériaux et d'Agents Thérapeutiques (CSPBAT), Unité Mixte de Recherche (UMR) 7244; Bobigny France
| | - David Pastré
- Laboratoire Structure-Activité des Biomolécules Normales et Pathologiques; INSERM U1204 and Université Evry-Val d'Essonne; Evry France
| |
Collapse
|
44
|
Chanphai P, Tajmir-Riahi H. Thermodynamic analysis of biogenic and synthetic polyamines conjugation with PAMAM-G4 nanoparticles. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2016; 155:13-9. [DOI: 10.1016/j.jphotobiol.2015.12.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Revised: 12/02/2015] [Accepted: 12/14/2015] [Indexed: 01/12/2023]
|
45
|
Chanphai P, Thomas TJ, Tajmir-Riahi HA. Conjugation of biogenic and synthetic polyamines with trypsin and trypsin inhibitor. RSC Adv 2016. [DOI: 10.1039/c6ra09492a] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Polyamine–protein conjugates can be used as delivery tools to transport antitumor polyamine analogues.
Collapse
Affiliation(s)
- P. Chanphai
- Department of Chemistry-Biochemistry and Physics
- University of Québec at Trois-Rivières
- Trois-Rivières
- Canada
| | - T. J. Thomas
- Department of Medicine
- Rutgers Robert Wood Johnson Medical School
- Rutgers Cancer Institute of New Jersey
- New Brunswick
- USA
| | - H. A. Tajmir-Riahi
- Department of Chemistry-Biochemistry and Physics
- University of Québec at Trois-Rivières
- Trois-Rivières
- Canada
| |
Collapse
|
46
|
Schweikert K, Burritt DJ. Polyamines in macroalgae: advances and future perspectives. JOURNAL OF PHYCOLOGY 2015; 51:838-849. [PMID: 26986881 DOI: 10.1111/jpy.12325] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Accepted: 06/04/2015] [Indexed: 06/05/2023]
Abstract
Polyamines (PA) are ubiquitous, small, aliphatic cations found in all living cells. In recent years the importance of these molecules for macroalgae has become evident and a substantial body of knowledge has been accumulated over the last three decades. This review summarizes research on the PAs found in macroalgae, their transport and metabolism, and their biological significance in processes such as cell division, chloroplast development, and reproduction. The involvement of PAs in environmental stress responses in macroalgae is also addressed. The discussion of PAs in this review not only demonstrates that PAs play an important role in physiological processes in macroalgae, but also clearly demonstrates the similarities and differences between PA metabolism in macroalgae and higher plants. Key areas for future research are also discussed.
Collapse
Affiliation(s)
- Katja Schweikert
- Department of Botany, University of Otago, P.O. Box 56, Dunedin, 9054, New Zealand
| | - David J Burritt
- Department of Botany, University of Otago, P.O. Box 56, Dunedin, 9054, New Zealand
| |
Collapse
|
47
|
Tsai YH, Lin KL, Huang YP, Hsu YC, Chen CH, Chen Y, Sie MH, Wang GJ, Lee MJ. Suppression of ornithine decarboxylase promotes osteogenic differentiation of human bone marrow-derived mesenchymal stem cells. FEBS Lett 2015; 589:2058-65. [DOI: 10.1016/j.febslet.2015.06.023] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2015] [Revised: 06/08/2015] [Accepted: 06/15/2015] [Indexed: 11/24/2022]
|
48
|
LeMoine CMR, Walsh PJ. Evolution of urea transporters in vertebrates: adaptation to urea's multiple roles and metabolic sources. J Exp Biol 2015; 218:1936-45. [PMID: 26085670 DOI: 10.1242/jeb.114223] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
In the two decades since the first cloning of the mammalian kidney urea transporter (UT-A), UT genes have been identified in a plethora of organisms, ranging from single-celled bacteria to metazoans. In this review, focusing mainly on vertebrates, we first reiterate the multiple catabolic and anabolic pathways that produce urea, then we reconstruct the phylogenetic history of UTs, and finally we examine the tissue distribution of UTs in selected vertebrate species. Our analysis reveals that from an ancestral UT, three homologues evolved in piscine lineages (UT-A, UT-C and UT-D), followed by a subsequent reduction to a single UT-A in lobe-finned fish and amphibians. A later internal tandem duplication of UT-A occurred in the amniote lineage (UT-A1), followed by a second tandem duplication in mammals to give rise to UT-B. While the expected UT expression is evident in excretory and osmoregulatory tissues in ureotelic taxa, UTs are also expressed ubiquitously in non-ureotelic taxa, and in tissues without a complete ornithine-urea cycle (OUC). We posit that non-OUC production of urea from arginine by arginase, an important pathway to generate ornithine for synthesis of molecules such as polyamines for highly proliferative tissues (e.g. testis, embryos), and neurotransmitters such as glutamate for neural tissues, is an important evolutionary driving force for the expression of UTs in these taxa and tissues.
Collapse
Affiliation(s)
- Christophe M R LeMoine
- Department of Biology, Centre for Advanced Research in Environmental Genomics, University of Ottawa, 30 Marie Curie, Ottawa, ON, Canada, K1N 6N5
| | - Patrick J Walsh
- Department of Biology, Centre for Advanced Research in Environmental Genomics, University of Ottawa, 30 Marie Curie, Ottawa, ON, Canada, K1N 6N5
| |
Collapse
|
49
|
A novel inhibitor of Plasmodium falciparum spermidine synthase: a twist in the tail. Malar J 2015; 14:54. [PMID: 25651815 PMCID: PMC4342090 DOI: 10.1186/s12936-015-0572-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Accepted: 01/18/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Plasmodium falciparum is the most pathogenic of the human malaria parasite species and a major cause of death in Africa. It's resistance to most of the current drugs accentuates the pressing need for new chemotherapies. Polyamine metabolism of the parasite is distinct from the human pathway making it an attractive target for chemotherapeutic development. Plasmodium falciparum spermidine synthase (PfSpdS) catalyzes the synthesis of spermidine and spermine. It is a major polyamine flux-determining enzyme and spermidine is a prerequisite for the post-translational activation of P. falciparum eukaryotic translation initiation factor 5A (elF5A). The most potent inhibitors of eukaryotic SpdS's are not specific for PfSpdS. METHODS 'Dynamic' receptor-based pharmacophore models were generated from published crystal structures of SpdS with different ligands. This approach takes into account the inherent flexibility of the active site, which reduces the entropic penalties associated with ligand binding. Four dynamic pharmacophore models were developed and two inhibitors, (1R,4R)-(N1-(3-aminopropyl)-trans-cyclohexane-1,4-diamine (compound 8) and an analogue, N-(3-aminopropyl)-cyclohexylamine (compound 9), were identified. RESULTS A crystal structure containing compound 8 was solved and confirmed the in silico prediction that its aminopropyl chain traverses the catalytic centre in the presence of the byproduct of catalysis, 5'-methylthioadenosine. The IC50 value of compound 9 is in the same range as that of the most potent inhibitors of PfSpdS, S-adenosyl-1,8-diamino-3-thio-octane (AdoDATO) and 4MCHA and 100-fold lower than that of compound 8. Compound 9 was originally identified as a mammalian spermine synthase inhibitor and does not inhibit mammalian SpdS. This implied that these two compounds bind in an orientation where their aminopropyl chains face the putrescine binding site in the presence of the substrate, decarboxylated S-adenosylmethionine. The higher binding affinity and lower receptor strain energy of compound 9 compared to compound 8 in the reversed orientation explained their different IC50 values. CONCLUSION The specific inhibition of PfSpdS by compound 9 is enabled by its binding in the additional cavity normally occupied by spermidine when spermine is synthesized. This is the first time that a spermine synthase inhibitor is shown to inhibit PfSpdS, which provides new avenues to explore for the development of novel inhibitors of PfSpdS.
Collapse
|
50
|
Abstract
This review focuses on the roles of glia and polyamines (PAs) in brain function and dysfunction, highlighting how PAs are one of the principal differences between glia and neurons. The novel role of PAs, such as putrescine, spermidine, and spermine and their precursors and derivatives, is discussed. However, PAs have not yet been a focus of much glial research. They affect many neuronal and glial receptors, channels, and transporters. They are therefore key elements in the development of many diseases and syndromes, thus forming the rationale for PA-focused and glia-focused therapy for these conditions.
Collapse
Affiliation(s)
- Serguei N Skatchkov
- Department of Biochemistry, School of Medicine, Universidad, Central del Caribe, PO Box 60-327, Bayamón, PR 00960-6032, USA; Department of Physiology, School of Medicine, Universidad, Central del Caribe, PO Box 60-327, Bayamón, PR 00960-6032, USA.
| | - Michel A Woodbury-Fariña
- Department of Psychiatry, University of Puerto Rico School of Medicine, 307 Calle Eleonor Roosevelt, San Juan, PR 00918-2720, USA
| | - Misty Eaton
- Department of Biochemistry, School of Medicine, Universidad, Central del Caribe, PO Box 60-327, Bayamón, PR 00960-6032, USA
| |
Collapse
|