Kitano T, Yoshinaga N, Shiraishi E, Koyanagi T, Abe SI. Tamoxifen induces masculinization of genetic females and regulates P450 aromatase and müllerian inhibiting substance mRNA expression in Japanese flounder (Paralichthys olivaceus).
Mol Reprod Dev 2007;
74:1171-7. [PMID:
17595016 DOI:
10.1002/mrd.20603]
[Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Japanese flounder, Paralichthys olivaceus, provides an excellent model to elucidate the roles of sex steroid hormones in gonadal sex differentiation because the sex is easily altered by sex steroid treatments or water temperature control during the sex differentiation. We have previously shown that high water temperature, an aromatase inhibitor (fadrozole), or 17alpha-methyltestosterone treatment causes the sex-reversal from genetic females to phenotypic males and suppression of mRNA expression of ovary-type P450 aromatase (P450arom), which is a steroidogenic enzyme responsible for the conversion of androgens to estrogens, in Japanese flounder. In the present study, we demonstrate that treatment of the genetic females with anti-estrogen (tamoxifen) leads to their masculinization, suppresses P450arom mRNA expression, and induces mRNA expression of Müllerian inhibiting substance (MIS), a member of the transforming growth factor-beta (TGF-beta) superfamily, while it has no effect on mRNAs expression of estrogen receptor-alpha (ERalpha) and ERbeta. In contrast, 17beta-estradiol counteracted masculinization of the genetic females by tamoxifen or high water temperature treatment, up-regulated P450arom mRNA expression, and down-regulated MIS mRNA expression. These results strongly suggest that estrogen signaling through ERs dramatically influences the gonadal sex differentiation by regulating P450arom and MIS mRNA expression.
Collapse