1
|
Williams FN, Travis KL, Haver HN, Umano AD, Guerra-Hernandez Y, Scaglione KM. Acute stress and multicellular development alter the solubility of the Dictyostelium Sup35 ortholog ERF3. Microbiol Spectr 2024; 12:e0160724. [PMID: 39345220 PMCID: PMC11537047 DOI: 10.1128/spectrum.01607-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 08/26/2024] [Indexed: 10/01/2024] Open
Abstract
Among sequenced organisms, the genome of Dictyostelium discoideum is unique in that it encodes for a massive amount of repeat-rich sequences in the coding region of genes. This results in the Dictyostelium proteome encoding for thousands of repeat-rich proteins, with nearly 24% of the Dictyostelium proteome encoding Q/N-rich regions that are predicted to be prion like in nature. To begin investigating the role of prion-like proteins in Dictyostelium, we decided to investigate ERF3, the Dictyostelium ortholog of the well-characterized yeast prion protein Sup35. ERF3 lacks the Q/N-rich region required for prion formation in yeast, raising the question of whether this protein aggregates and has prion-like properties in Dictyostelium. Here, we found that ERF3 formed aggregates in response to acute cellular stress. However, unlike bona fide prions, we were unable to detect transmission of aggregates to progeny. We further found that aggregation of this protein is driven by the ordered C-terminal domain independently of the disordered N-terminal domain. Finally, we also observed aggregation of ERF3 under conditions that induce multicellular development, suggesting that this phenomenon may play a role in Dictyostelium development. Together, these findings suggest a role for regulated protein aggregation in Dictyostelium cells under stress and during development.IMPORTANCEPrion-like proteins have both beneficial and deleterious effects on cellular health, and many organisms have evolved distinct mechanisms to regulate the behaviors of these proteins. The social amoeba Dictyostelium discoideum contains the highest proportion of proteins predicted to be prion like and has mechanisms to suppress their aggregation. However, the potential roles and regulation of these proteins remain largely unknown. Here, we demonstrate that aggregation of the Dictyostelium translation termination factor ERF3 is induced by both acute cellular stress and by multicellular development. These findings imply that protein aggregation may have a regulated and functional role in the Dictyostelium stress response and during multicellular development.
Collapse
Affiliation(s)
- Felicia N. Williams
- Department of Molecular Genetics and Microbiology, Duke University, Durham, North Carolina, USA
| | - Kanesha L. Travis
- Department of Molecular Genetics and Microbiology, Duke University, Durham, North Carolina, USA
| | - Holly N. Haver
- Department of Molecular Genetics and Microbiology, Duke University, Durham, North Carolina, USA
| | - Anna D. Umano
- Department of Molecular Genetics and Microbiology, Duke University, Durham, North Carolina, USA
| | - Yaneli Guerra-Hernandez
- Department of Molecular Genetics and Microbiology, Duke University, Durham, North Carolina, USA
| | - K. Matthew Scaglione
- Department of Molecular Genetics and Microbiology, Duke University, Durham, North Carolina, USA
- Center for Neurodegeneration and Neurotherapeutics, Duke University, Durham, North Carolina, USA
| |
Collapse
|
2
|
Yamasaki DT, Narita TB. Evidence that the StlA polyketide synthase is required for the transition of growth to development in Polysphondylium violaceum. Biosci Biotechnol Biochem 2024; 88:1362-1369. [PMID: 39089865 DOI: 10.1093/bbb/zbae108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Accepted: 07/29/2024] [Indexed: 08/04/2024]
Abstract
The social amoeba Polysphondylium violaceum uses chemoattractants different from those of Dictyoctelium discoideum for cell aggregation. However, the detailed mechanisms in P. violaceum remain unknown. We have previously reported that the polyketide synthase StlA is involved in inducing aggregation in this species. To elucidate the mechanism of StlA-induced aggregation in P. violaceum, we analyzed the phenotype of P. violaceum stlA- (Pv-stlA-) mutants in more detail. Unlike our previous results, the mutant cells did not exhibit proper chemotaxis toward glorin. Defective aggregation was not restored by glorin pulses, 8Br-cAMP, or deletion of the homologue of PufA that is a translational repressor of protein kinase A, whereas mutant cells grown in the presence of 4-methyl-5-pentylbenzene-1,3-diol (MPBD), the putative Pv-StlA product, aggregated normally without it after starvation. Furthermore, the early developmental marker gene, dscA, was downregulated in the mutant cells. Our data thus suggested that StlA is required for the transition from growth to development in P. violaceum.
Collapse
Affiliation(s)
- Daiki T Yamasaki
- Graduate School of Engineering, Chiba Institute of Technology, Chiba, Japan
| | - Takaaki B Narita
- Department of Life Science, Faculty of Advanced Engineering, Chiba Institute of Technology, Chiba, Japan
| |
Collapse
|
3
|
Ndinyanka Fabrice T, Bianda C, Zhang H, Jayachandran R, Ruer-Laventie J, Mori M, Moshous D, Fucile G, Schmidt A, Pieters J. An evolutionarily conserved coronin-dependent pathway defines cell population size. Sci Signal 2022; 15:eabo5363. [DOI: 10.1126/scisignal.abo5363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Maintenance of cell population size is fundamental to the proper functioning of multicellular organisms. Here, we describe a cell-intrinsic cell density–sensing pathway that enabled T cells to reach and maintain an appropriate population size. This pathway operated “kin-to-kin” or between identical or similar T cell populations occupying a niche within a tissue or organ, such as the lymph nodes, spleen, and blood. We showed that this pathway depended on the cell density–dependent abundance of the evolutionarily conserved protein coronin 1, which coordinated prosurvival signaling with the inhibition of cell death until the cell population reached threshold densities. At or above threshold densities, coronin 1 expression peaked and remained stable, thereby resulting in the initiation of apoptosis through kin-to-kin intercellular signaling to return the cell population to the appropriate cell density. This cell population size-controlling pathway was conserved from amoeba to humans, thus providing evidence for the existence of a coronin-regulated, evolutionarily conserved mechanism by which cells are informed of and coordinate their relative population size.
Collapse
Affiliation(s)
| | | | - Haiyan Zhang
- Biozentrum, University of Basel, 4056 Basel, Switzerland
| | | | | | - Mayumi Mori
- Biozentrum, University of Basel, 4056 Basel, Switzerland
| | - Despina Moshous
- Pediatric Immunology, Hematology and Rheumatology Unit, Necker-Enfants Malades University Hospital, Assistance Publique-Hôpitaux de Paris and Imagine Institute, INSERM UMR1163, Université de Paris, 75015 Paris, France
| | - Geoffrey Fucile
- SIB Swiss Institute of Bioinformatics, sciCORE Computing Center, University of Basel, 4056 Basel, Switzerland
| | | | - Jean Pieters
- Biozentrum, University of Basel, 4056 Basel, Switzerland
| |
Collapse
|
4
|
Nguyen LTS, Robinson DN. The lectin Discoidin I acts in the cytoplasm to help assemble the contractile machinery. J Cell Biol 2022; 221:213504. [PMID: 36165849 PMCID: PMC9523886 DOI: 10.1083/jcb.202202063] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 06/11/2022] [Accepted: 08/09/2022] [Indexed: 11/22/2022] Open
Abstract
Cellular functions, such as division and migration, require cells to undergo robust shape changes. Through their contractility machinery, cells also sense, respond, and adapt to their physical surroundings. In the cytoplasm, the contractility machinery organizes into higher order assemblies termed contractility kits (CKs). Using Dictyostelium discoideum, we previously identified Discoidin I (DscI), a classic secreted lectin, as a CK component through its physical interactions with the actin crosslinker Cortexillin I (CortI) and the scaffolding protein IQGAP2. Here, we find that DscI ensures robust cytokinesis through regulating intracellular components of the contractile machinery. Specifically, DscI is necessary for normal cytokinesis, cortical tension, membrane-cortex connections, and cortical distribution and mechanoresponsiveness of CortI. The dscI deletion mutants also have complex genetic epistatic relationships with CK components, acting as a genetic suppressor of cortI and iqgap1, but as an enhancer of iqgap2. This work underscores the fact that proteins like DiscI contribute in diverse ways to the activities necessary for optimal cell function.
Collapse
Affiliation(s)
- Ly T S Nguyen
- Department of Cell Biology, School of Medicine, Johns Hopkins University, Baltimore, MD
| | - Douglas N Robinson
- Department of Cell Biology, School of Medicine, Johns Hopkins University, Baltimore, MD
| |
Collapse
|
5
|
Kufs JE, Reimer C, Steyer E, Valiante V, Hillmann F, Regestein L. Scale-up of an amoeba-based process for the production of the cannabinoid precursor olivetolic acid. Microb Cell Fact 2022; 21:217. [PMID: 36266656 PMCID: PMC9585784 DOI: 10.1186/s12934-022-01943-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 10/07/2022] [Indexed: 11/30/2022] Open
Abstract
Background The availability of new biological platform organisms to get access to innovative products and processes is fundamental for the progress in biotechnology and bioeconomy. The amoeba Dictyostelium discoideum represents a novel host system that has recently been employed for both the discovery of new natural products and as a cell factory for the production of bioactive compounds such as phytochemicals. However, an essential parameter to evaluate the potential of a new host system is the demonstration of its scalability to allow industrial applicability. Here, we aimed to develop a bioprocess for the production of olivetolic acid, the main precursor of cannabinoids synthesized by a recently engineered D. discoideum strain. Results In this study, a sophisticated approach is described to scale-up an amoeba-based polyketide production process in stirred tank bioreactors. Due to the shear sensitivity of the cell wall lacking amoebae, the maximum local energy dissipation rate (εmax) was selected as a measure for the hydromechanical stress level among different scales. By performing 1.6-L scale batch fermentations with different stress conditions, we determined a maximum tolerable εmax of 3.9 W/kg for D. discoideum. Further, we used this parameter as scale-up criterion to develop a bioprocess for olivetolic acid production starting from a 7-L stirred tank reactor to the industrially relevant 300-L scale with a product concentration of 4.8 µg/L, a productivity of 0.04 µg/L/h and a yield of 0.56 µg/g glucose. Conclusion We developed a robust and reliable scale-up strategy for amoeba-based bioprocesses and evaluated its applicability for the production of the cannabinoid precursor olivetolic acid. By determining the maximum tolerable hydromechanical stress level for D. discoideum, we were able to scale-up the process from shake flasks to the 300-L stirred tank reactor without any yield reduction from cell shearing. Hence, we showed the scalability and biotechnological exploitation of amoeba-based processes that can provide a reasonable alternative to chemical syntheses or extractions of phytochemicals from plant biomass. Supplementary Information The online version contains supplementary material available at 10.1186/s12934-022-01943-w.
Collapse
Affiliation(s)
- Johann E Kufs
- Bio Pilot Plant, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute (Leibniz-HKI), Jena, Germany
| | - Christin Reimer
- Evolution of Microbial Interactions, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute (Leibniz-HKI), Jena, Germany.,Faculty of Biological Sciences, Friedrich Schiller University Jena, Jena, Germany
| | - Emily Steyer
- Bio Pilot Plant, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute (Leibniz-HKI), Jena, Germany
| | - Vito Valiante
- Biobricks of Microbial Natural Product Syntheses, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute (Leibniz-HKI), Jena, Germany
| | - Falk Hillmann
- Evolution of Microbial Interactions, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute (Leibniz-HKI), Jena, Germany.,Biochemistry/Biotechnology, Faculty of Engineering, Hochschule Wismar University of Applied Sciences Technology, Business and Design, Wismar, Germany
| | - Lars Regestein
- Bio Pilot Plant, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute (Leibniz-HKI), Jena, Germany.
| |
Collapse
|
6
|
Dinh C, Farinholt T, Hirose S, Zhuchenko O, Kuspa A. Lectins modulate the microbiota of social amoebae. Science 2018; 361:402-406. [DOI: 10.1126/science.aat2058] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2018] [Revised: 04/20/2018] [Accepted: 06/21/2018] [Indexed: 01/19/2023]
Abstract
The social amoebaDictyostelium discoideummaintains a microbiome during multicellular development; bacteria are carried in migrating slugs and as endosymbionts within amoebae and spores. Bacterial carriage and endosymbiosis are induced by the secreted lectin discoidin I that binds bacteria, protects them from extracellular killing, and alters their retention within amoebae. This altered handling of bacteria also occurs with bacteria coated by plant lectins and leads to DNA transfer from bacteria to amoebae. Thus, lectins alter the cellular response ofD. discoideumto bacteria to establish the amoebae’s microbiome. Mammalian cells can also maintain intracellular bacteria when presented with bacteria coated with lectins, so heterologous lectins may induce endosymbiosis in animals. Our results suggest that endogenous or environmental lectins may influence microbiome homeostasis across eukaryotic phylogeny.
Collapse
|
7
|
Schaap P. Evolution of developmental signalling in Dictyostelid social amoebas. Curr Opin Genet Dev 2016; 39:29-34. [PMID: 27318097 PMCID: PMC5113120 DOI: 10.1016/j.gde.2016.05.014] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2016] [Revised: 05/16/2016] [Accepted: 05/26/2016] [Indexed: 11/17/2022]
Abstract
Dictyostelia represent a tractable system to resolve the evolution of cell-type specialization, with some taxa differentiating into spores only, and other taxa with additionally one or up to four somatic cell types. One of the latter forms, Dictyostelium discoideum, is a popular model system for cell biology and developmental biology with key signalling pathways controlling cell-specialization being resolved recently. For the most dominant pathways, evolutionary origins were retraced to a stress response in the unicellular ancestor, while modifications in the ancestral pathway were associated with acquisition of multicellular complexity. This review summarizes our current understanding of developmental signalling in D. discoideum and its evolution.
Collapse
Affiliation(s)
- Pauline Schaap
- School of Life Sciences, University of Dundee, DD15EH Dundee, UK.
| |
Collapse
|
8
|
Du Q, Kawabe Y, Schilde C, Chen ZH, Schaap P. The Evolution of Aggregative Multicellularity and Cell-Cell Communication in the Dictyostelia. J Mol Biol 2015; 427:3722-33. [PMID: 26284972 PMCID: PMC5055082 DOI: 10.1016/j.jmb.2015.08.008] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Revised: 06/30/2015] [Accepted: 08/03/2015] [Indexed: 10/30/2022]
Abstract
Aggregative multicellularity, resulting in formation of a spore-bearing fruiting body, evolved at least six times independently amongst both eukaryotes and prokaryotes. Amongst eukaryotes, this form of multicellularity is mainly studied in the social amoeba Dictyostelium discoideum. In this review, we summarise trends in the evolution of cell-type specialisation and behavioural complexity in the four major groups of Dictyostelia. We describe the cell-cell communication systems that control the developmental programme of D. discoideum, highlighting the central role of cAMP in the regulation of cell movement and cell differentiation. Comparative genomic studies showed that the proteins involved in cAMP signalling are deeply conserved across Dictyostelia and their unicellular amoebozoan ancestors. Comparative functional analysis revealed that cAMP signalling in D. discoideum originated from a second messenger role in amoebozoan encystation. We highlight some molecular changes in cAMP signalling genes that were responsible for the novel roles of cAMP in multicellular development.
Collapse
Affiliation(s)
- Qingyou Du
- College of Life Sciences, University of Dundee, Dundee DD1 4HN, United Kingdom.
| | - Yoshinori Kawabe
- College of Life Sciences, University of Dundee, Dundee DD1 4HN, United Kingdom.
| | - Christina Schilde
- College of Life Sciences, University of Dundee, Dundee DD1 4HN, United Kingdom.
| | - Zhi-Hui Chen
- College of Life Sciences, University of Dundee, Dundee DD1 4HN, United Kingdom.
| | - Pauline Schaap
- College of Life Sciences, University of Dundee, Dundee DD1 4HN, United Kingdom.
| |
Collapse
|
9
|
Loomis WF. Cell signaling during development of Dictyostelium. Dev Biol 2014; 391:1-16. [PMID: 24726820 PMCID: PMC4075484 DOI: 10.1016/j.ydbio.2014.04.001] [Citation(s) in RCA: 117] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Revised: 03/31/2014] [Accepted: 04/01/2014] [Indexed: 12/24/2022]
Abstract
Continuous communication between cells is necessary for development of any multicellular organism and depends on the recognition of secreted signals. A wide range of molecules including proteins, peptides, amino acids, nucleic acids, steroids and polylketides are used as intercellular signals in plants and animals. They are also used for communication in the social ameba Dictyostelium discoideum when the solitary cells aggregate to form multicellular structures. Many of the signals are recognized by surface receptors that are seven-transmembrane proteins coupled to trimeric G proteins, which pass the signal on to components within the cytoplasm. Dictyostelium cells have to judge when sufficient cell density has been reached to warrant transition from growth to differentiation. They have to recognize when exogenous nutrients become limiting, and then synchronously initiate development. A few hours later they signal each other with pulses of cAMP that regulate gene expression as well as direct chemotactic aggregation. They then have to recognize kinship and only continue developing when they are surrounded by close kin. Thereafter, the cells diverge into two specialized cell types, prespore and prestalk cells, that continue to signal each other in complex ways to form well proportioned fruiting bodies. In this way they can proceed through the stages of a dependent sequence in an orderly manner without cells being left out or directed down the wrong path.
Collapse
Affiliation(s)
- William F Loomis
- Cell and Developmental Biology, University of California San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
10
|
Wu Y, Janetopoulos C. Systematic analysis of γ-aminobutyric acid (GABA) metabolism and function in the social amoeba Dictyostelium discoideum. J Biol Chem 2013; 288:15280-90. [PMID: 23548898 DOI: 10.1074/jbc.m112.427047] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
While GABA has been suggested to regulate spore encapsulation in the social amoeba Dictyostelium discoideum, the metabolic profile and other potential functions of GABA during development remain unclear. In this study, we investigated the homeostasis of GABA metabolism by disrupting genes related to GABA metabolism and signaling. Extracellular levels of GABA are tightly regulated during early development, and GABA is generated by the glutamate decarboxylase, GadB, during growth and in early development. However, overexpression of the prespore-specific homologue, GadA, in the presence of GadB reduces production of extracellular GABA. Perturbation of extracellular GABA levels delays the process of aggregation. Cytosolic GABA is degraded by the GABA transaminase, GabT, in the mitochondria. Disruption of a putative vesicular GABA transporter (vGAT) homologue DdvGAT reduces secreted GABA. We identified the GABAB receptor-like family member GrlB as the major GABA receptor during early development, and either disruption or overexpression of GrlB delays aggregation. This delay is likely the result of an abolished pre-starvation response and late expression of several "early" developmental genes. Distinct genes are employed for GABA generation during sporulation. During sporulation, GadA alone is required for generating GABA and DdvGAT is likely responsible for GABA secretion. GrlE but not GrlB is the GABA receptor during late development.
Collapse
Affiliation(s)
- Yuantai Wu
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee 37232, USA
| | | |
Collapse
|
11
|
Macro L, Jaiswal JK, Simon SM. Dynamics of clathrin-mediated endocytosis and its requirement for organelle biogenesis in Dictyostelium. J Cell Sci 2012; 125:5721-32. [PMID: 22992464 DOI: 10.1242/jcs.108837] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The protein clathrin mediates one of the major pathways of endocytosis from the extracellular milieu and plasma membrane. In single-cell eukaryotes, such as Saccharomyces cerevisiae, the gene encoding clathrin is not an essential gene, raising the question of whether clathrin conveys specific advantages for multicellularity. Furthermore, in contrast to mammalian cells, endocytosis in S. cerevisiae is not dependent on either clathrin or adaptor protein 2 (AP2), an endocytic adaptor molecule. In this study, we investigated the requirement for components of clathrin-mediated endocytosis (CME) in another unicellular organism, the amoeba Dictyostelium. We identified a heterotetrameric AP2 complex in Dictyostelium that is similar to that which is found in higher eukaryotes. By simultaneously imaging fluorescently tagged clathrin and AP2, we found that, similar to higher eukaryotes, these proteins colocalized to membrane puncta that move into the cell together. In addition, the contractile vacuole marker protein, dajumin-green fluorescent protein (GFP), is trafficked via the cell membrane and internalized by CME in a clathrin-dependent, AP2-independent mechanism. This pathway is distinct from other endocytic mechanisms in Dictyostelium. Our finding that CME is required for the internalization of contractile vacuole proteins from the cell membrane explains the contractile vacuole biogenesis defect in Dictyostelium cells lacking clathrin. Our results also suggest that the machinery for CME and its role in organelle maintenance appeared early during eukaryotic evolution. We hypothesize that dependence of endocytosis on specific components of the CME pathway evolved later, as demonstrated by internalization independent of AP2 function.
Collapse
Affiliation(s)
- Laura Macro
- Laboratory of Cellular Biophysics, The Rockefeller University, New York, NY 10065, USA
| | | | | |
Collapse
|
12
|
Yan S, Liang Y, Zhang J, Liu CM. Aspergillus flavus grown in peptone as the carbon source exhibits spore density- and peptone concentration-dependent aflatoxin biosynthesis. BMC Microbiol 2012; 12:106. [PMID: 22694821 PMCID: PMC3412747 DOI: 10.1186/1471-2180-12-106] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2011] [Accepted: 06/13/2012] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND Aflatoxins (AFs) are highly carcinogenic compounds produced by Aspergillus species in seeds with high lipid and protein contents. It has been known for over 30 years that peptone is not conducive for AF productions, although reasons for this remain unknown. RESULTS In this study, we showed that when Aspergillus flavus was grown in peptone-containing media, higher initial spore densities inhibited AF biosynthesis, but promoted mycelial growth; while in glucose-containing media, more AFs were produced when initial spore densities were increased. This phenomenon was also observed in other AF-producing strains including A. parasiticus and A. nomius. Higher peptone concentrations led to inhibited AF production, even in culture with a low spore density. High peptone concentrations did however promote mycelial growth. Spent medium experiments showed that the inhibited AF production in peptone media was regulated in a cell-autonomous manner. mRNA expression analyses showed that both regulatory and AF biosynthesis genes were repressed in mycelia cultured with high initial spore densities. Metabolomic studies revealed that, in addition to inhibited AF biosynthesis, mycelia grown in peptone media with a high initial spore density showed suppressed fatty acid biosynthesis, reduced tricarboxylic acid (TCA) cycle intermediates, and increased pentose phosphate pathway products. Additions of TCA cycle intermediates had no effect on AF biosynthesis, suggesting the inhibited AF biosynthesis was not caused by depleted TCA cycle intermediates. CONCLUSIONS We here demonstrate that Aspergillus species grown in media with peptone as the sole carbon source are able to sense their own population densities and peptone concentrations to switch between rapid growth and AF production. This switching ability may offer Aspergillus species a competition advantage in natural ecosystems, producing AFs only when self-population is low and food is scarce.
Collapse
Affiliation(s)
- Shijuan Yan
- Practaculture College, Gansu Agricultural University, Lanzhou, 730070, China
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, 20 Nanxincun, Fragrant Hill, Beijing,, 100093, China
| | - Yating Liang
- Practaculture College, Gansu Agricultural University, Lanzhou, 730070, China
- School of Biology and Basic Medical Sciences, Soochow University, Suzhou, 215000, China
| | - Jindan Zhang
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, 20 Nanxincun, Fragrant Hill, Beijing,, 100093, China
| | - Chun-Ming Liu
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, 20 Nanxincun, Fragrant Hill, Beijing,, 100093, China
| |
Collapse
|
13
|
Abstract
In general, growth and differentiation are mutually exclusive, but they are cooperatively regulated during the course of development. Thus, the process of a cell's transition from growth to differentiation is of general importance for the development of organisms, and terminally differentiated cells such as nerve cells never divide. Meanwhile, the growth rate speeds up when cells turn malignant. The cellular slime mold Dictyostelium discoideum grows and multiplies as long as nutrients are supplied, and its differentiation is triggered by starvation. A critical checkpoint (growth/differentiation transition or GDT point), from which cells start differentiating in response to starvation, has been precisely specified in the cell cycle of D. discoideum Ax-2 cells. Accordingly, integration of GDT point-specific events with starvation-induced events is needed to understand the mechanism regulating GDTs. A variety of intercellular and intracellular signals are involved positively or negatively in the initiation of differentiation, making a series of cross-talks. As was expected from the presence of the GDT point, the cell's positioning in cell masses and subsequent cell-type choices occur depending on the cell's phase in the cell cycle at the onset of starvation. Since novel and multiple functions of mitochondria in various respects of development including the initiation of differentiation have been directly realized in Dictyostelium cells, they are also reviewed in this article.
Collapse
Affiliation(s)
- Yasuo Maeda
- Department of Developmental Biology and Neurosciences, Graduate School of Life Sciences, Tohoku University, Aoba, Sendai 980-8578, Japan.
| |
Collapse
|
14
|
Abstract
The social amoeba Dictyostelium discoideum is one of the leading model systems used to study how cells count themselves to determine the number and/or density of cells. In this review, we describe work on three different cell-density sensing systems used by Dictyostelium. The first involves a negative feedback loop in which two secreted signals inhibit cell proliferation during the growth phase. As the cell density increases, the concentrations of the secreted factors concomitantly increase, allowing the cells to sense their density. The two signals act as message authenticators for each other, and the existence of two different signals that require each other for activity may explain why previous efforts to identify autocrine proliferation-inhibiting signals in higher eukaryotes have generally failed. The second system involves a signal made by growing cells that is secreted only when they starve. This then allows cells to sense the density of just the starving cells, and is an example of a mechanism that allows cells in a tissue to sense the density of one specific cell type. The third cell density counting system involves cells in aggregation streams secreting a signal that limits the size of fruiting bodies. Computer simulations predicted, and experiments then showed, that the factor increases random cell motility and decreases cell-cell adhesion to cause streams to break up if there are too many cells in the stream. Together, studies on Dictyostelium cell density counting systems will help elucidate how higher eukaryotes regulate the size and composition of tissues.
Collapse
Affiliation(s)
- Richard H Gomer
- Department of Biology, ILSB MS 3474, Texas A&M University, College Station, Texas 77843-3474, USA.
| | | | | |
Collapse
|
15
|
Mantzouranis L, Bagattini R, Souza GM. KeaA, a Dictyostelium Kelch-domain protein that regulates the response to stress and development. BMC DEVELOPMENTAL BIOLOGY 2010; 10:79. [PMID: 20670432 PMCID: PMC2920877 DOI: 10.1186/1471-213x-10-79] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/21/2009] [Accepted: 07/29/2010] [Indexed: 11/25/2022]
Abstract
Background The protein kinase YakA is responsible for the growth arrest and induction of developmental processes that occur upon starvation of Dictyostelium cells. yakA- cells are aggregation deficient, have a faster cell cycle and are hypersensitive to oxidative and nitrosoative stress. With the aim of isolating members of the YakA pathway, suppressors of the death induced by nitrosoative stress in the yakA- cells were identified. One of the suppressor mutations occurred in keaA, a gene identical to DG1106 and similar to Keap1 from mice and the Kelch protein from Drosophila, among others that contain Kelch domains. Results A mutation in keaA suppresses the hypersensitivity to oxidative and nitrosoative stresses but not the faster growth phenotype of yakA- cells. The growth profile of keaA deficient cells indicates that this gene is necessary for growth. keaA deficient cells are more resistant to nitrosoative and oxidative stress and keaA is necessary for the production and detection of cAMP. A morphological analysis of keaA deficient cells during multicellular development indicated that, although the mutant is not absolutely deficient in aggregation, cells do not efficiently participate in the process. Gene expression analysis using cDNA microarrays of wild-type and keaA deficient cells indicated a role for KeaA in the regulation of the cell cycle and pre-starvation responses. Conclusions KeaA is required for cAMP signaling following stress. Our studies indicate a role for kelch proteins in the signaling that regulates the cell cycle and development in response to changes in the environmental conditions.
Collapse
Affiliation(s)
- Luciana Mantzouranis
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, 05508-000 São Paulo, Brasil.
| | | | | |
Collapse
|
16
|
Beshay U, Friehs K, Flaschel E. Growth of myxamoebae of the cellular slime mold Dictyostelium discoideum in suspension and immobilized form on living bacteria. Process Biochem 2008. [DOI: 10.1016/j.procbio.2008.07.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
17
|
Salger K, Wetterauer B. Aberrant folate response and premature development in a mutant of Dictyostelium discoideum. Differentiation 2008. [DOI: 10.1111/j.1432-0436.2000.660406.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
18
|
Chen J, Reyes M, Clarke M, Shuman HA. Host cell-dependent secretion and translocation of the LepA and LepB effectors of Legionella pneumophila. Cell Microbiol 2007; 9:1660-71. [PMID: 17371403 DOI: 10.1111/j.1462-5822.2007.00899.x] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Legionella pneumophila is the Gram-negative bacterial agent of Legionnaires' disease, an acute, often fatal pneumonia. L. pneumophila infects alveolar macrophages, evading the antimicrobial defences of the phagocyte by preventing fusion of the phagosome with lysosomes and avoiding phagosome acidification. The bacteria then modulate the composition of the vacuole so that it takes on the characteristics of the endoplasmic reticulum. Similar events occur when the bacteria infect unicellular protozoa. It is thought that replication in fresh water protozoa provides an environmental reservoir for the organism. Several effector proteins are delivered to the host by the Icm/Dot type IV secretion system (TFSS). Some of these have been shown to participate in the trafficking of the Legionella phagosome. Here we describe the ability of the Icm/Dot TFSS to translocate two effectors, LepA and LepB, that play a role in the non-lytic release of Legionella from protozoa. We report that translocation of the Lep proteins is inhibited by agents that depolymerize actin filaments and that effectors may be secreted into the extracellular medium upon cell contact. Depletion of the Lep proteins by deletion of their genes results in increased ability to lyse red blood cells. In contrast, overexpression of Lep-containing hybrid proteins appears to specifically inhibit the activity of the Icm/Dot TFSS and may prevent the delivery of other effectors that are critical for intracellular multiplication.
Collapse
Affiliation(s)
- John Chen
- Department of Microbiology, Columbia University Medical Center, New York, NY 10032, USA
| | | | | | | |
Collapse
|
19
|
Brock DA, van Egmond WN, Shamoo Y, Hatton RD, Gomer RH. A 60-kilodalton protein component of the counting factor complex regulates group size in Dictyostelium discoideum. EUKARYOTIC CELL 2006; 5:1532-8. [PMID: 16963635 PMCID: PMC1563584 DOI: 10.1128/ec.00169-06] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Much remains to be understood about how a group of cells or a tissue senses and regulates its size. Dictyostelium discoideum cells sense and regulate the size of groups and fruiting bodies using a secreted 450-kDa complex of proteins called counting factor (CF). Low levels of CF result in large groups, and high levels of CF result in small groups. We previously found three components of CF (D. A. Brock and R. H. Gomer, Genes Dev. 13:1960-1969, 1999; D. A. Brock, R. D. Hatton, D.-V. Giurgiutiu, B. Scott, R. Ammann, and R. H. Gomer, Development 129:3657-3668, 2002; and D. A. Brock, R. D. Hatton, D.-V. Giurgiutiu, B. Scott, W. Jang, R. Ammann, and R. H. Gomer, Eukaryot. Cell 2:788-797, 2003). We describe here a fourth component, CF60. CF60 has similarity to acid phosphatases, although it has very little, if any, acid phosphatase activity. CF60 is secreted by starving cells and is lost from the 450-kDa CF when a different CF component, CF50, is absent. Although we were unable to obtain cells lacking CF60, decreasing CF60 levels by antisense resulted in large groups, and overexpressing CF60 resulted in small groups. When added to wild-type cells, conditioned starvation medium from CF60 overexpressor cells as well as recombinant CF60 caused the formation of small groups. The ability of recombinant CF60 to decrease group size did not require the presence of the CF component CF45-1 or countin but did require the presence of CF50. Recombinant CF60 does not have acid phosphatase activity, indicating that the CF60 bioactivity is not due to a phosphatase activity. Together, the data suggest that CF60 is a component of CF, and thus this secreted signal has four different protein components.
Collapse
Affiliation(s)
- Debra A Brock
- Howard Hughes Medical Institute, Rice University, 6100 S. Main Street, Houston, Texas 77005-1892, USA
| | | | | | | | | |
Collapse
|
20
|
Jaiswal JK, Mujumdar N, Macwilliams HK, Nanjundiah V. Trishanku, a novel regulator of cell-type stability and morphogenesis in Dictyostelium discoideum. Differentiation 2006; 74:596-607. [PMID: 17177856 DOI: 10.1111/j.1432-0436.2006.00086.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We have identified a novel gene, trishanku (triA), by random insertional mutagenesis of Dictyostelium discoideum. TriA is a Broad complex Tramtrack bric-a-brac domain-containing protein that is expressed strongly during the late G2 phase of cell cycle and in presumptive spore (prespore (psp)) cells. Disrupting triA destabilizes cell fate and reduces aggregate size; the fruiting body has a thick stalk, a lowered spore: stalk ratio, a sub-terminal spore mass and small, rounded spores. These changes revert when the wild-type triA gene is re-expressed under a constitutive or a psp-specific promoter. By using short- and long-lived reporter proteins, we show that in triA(-) slugs the prestalk (pst)/psp proportion is normal, but that there is inappropriate transdifferentiation between the two cell types. During culmination, regardless of their current fate, all cells with a history of pst gene expression contribute to the stalk, which could account for the altered cell-type proportion in the mutant.
Collapse
Affiliation(s)
- Jyoti K Jaiswal
- Department of Molecular Reproduction Development and Genetics, Indian Institute of Science, Bangalore 560012, India.
| | | | | | | |
Collapse
|
21
|
Cherix N, Froquet R, Charette SJ, Blanc C, Letourneur F, Cosson P. A Phg2-Adrm1 pathway participates in the nutrient-controlled developmental response in Dictyostelium. Mol Biol Cell 2006; 17:4982-7. [PMID: 16987957 PMCID: PMC1679667 DOI: 10.1091/mbc.e06-07-0619] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Dictyostelium amoebae grow as single cells but upon starvation they initiate multicellular development. Phg2 was characterized previously as a kinase controlling cellular adhesion and the organization of the actin cytoskeleton. Here we report that Phg2 also plays a role during the transition between growth and multicellular development, as evidenced by the fact that phg2 mutant cells can initiate development even in the presence of nutrients. Even at low cell density and in rich medium, phg2 mutant cells express discoidin, one of the earliest predevelopmental markers. Complementation studies indicate that, in addition to the kinase domain, the core region of Phg2 is involved in the initiation of development. In this region, a small domain contiguous with a previously described ras-binding domain was found to interact with the Dictyostelium ortholog of the mammalian adhesion-regulating molecule (ADRM1). In addition, adrm1 knockout cells also exhibit abnormal initiation of development. These results suggest that a Phg2-Adrm1 signaling pathway is involved in the control of the transition from growth to differentiation in Dictyostelium. Phg2 thus plays a dual role in the control of cellular adhesion and initiation of development.
Collapse
Affiliation(s)
- Nathalie Cherix
- *Département de Physiologie et Métabolisme Cellulaire, Centre Médical Universitaire, Université de Genève, CH-1211 Genève 4, Switzerland; and
| | - Romain Froquet
- *Département de Physiologie et Métabolisme Cellulaire, Centre Médical Universitaire, Université de Genève, CH-1211 Genève 4, Switzerland; and
| | - Steve J. Charette
- *Département de Physiologie et Métabolisme Cellulaire, Centre Médical Universitaire, Université de Genève, CH-1211 Genève 4, Switzerland; and
| | - Cédric Blanc
- Institut de Biologie et Chimie des Protéines, UMR 5086, CNRS/Université Lyon I, IFR 128 BioSciences Lyon-Gerland, F-69367 Lyon Cedex 07, France
| | - François Letourneur
- Institut de Biologie et Chimie des Protéines, UMR 5086, CNRS/Université Lyon I, IFR 128 BioSciences Lyon-Gerland, F-69367 Lyon Cedex 07, France
| | - Pierre Cosson
- *Département de Physiologie et Métabolisme Cellulaire, Centre Médical Universitaire, Université de Genève, CH-1211 Genève 4, Switzerland; and
| |
Collapse
|
22
|
Chubb JR, Trcek T, Shenoy SM, Singer RH. Transcriptional pulsing of a developmental gene. Curr Biol 2006; 16:1018-25. [PMID: 16713960 PMCID: PMC4764056 DOI: 10.1016/j.cub.2006.03.092] [Citation(s) in RCA: 521] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2006] [Revised: 03/30/2006] [Accepted: 03/30/2006] [Indexed: 12/01/2022]
Abstract
It has not been possible to view the transcriptional activity of a single gene within a living eukaryotic cell. It is therefore unclear how long and how frequently a gene is actively transcribed, how this is modulated during differentiation, and how transcriptional events are dynamically coordinated in cell populations. By means of an in vivo RNA detection technique , we have directly visualized transcription of an endogenous developmental gene. We found discrete "pulses" of gene activity that turn on and off at irregular intervals. Surprisingly, the length and height of these pulses were consistent throughout development. However, there was strong developmental variation in the proportion of cells recruited to the expressing pool. Cells were more likely to re-express than to initiate new expression, indicating that we directly observe a transcriptional memory. In addition, we used a clustering algorithm to reveal synchronous transcription initiation in neighboring cells. This study represents the first direct visualization of transcriptional pulsing in eukaryotes. Discontinuity of transcription may allow greater flexibility in the gene-expression decisions of a cell.
Collapse
Affiliation(s)
- Jonathan R Chubb
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, The Bronx, New York 10461, USA.
| | | | | | | |
Collapse
|
23
|
Chubb JR, Bloomfield G, Xu Q, Kaller M, Ivens A, Skelton J, Turner BM, Nellen W, Shaulsky G, Kay RR, Bickmore WA, Singer RH. Developmental timing in Dictyostelium is regulated by the Set1 histone methyltransferase. Dev Biol 2006; 292:519-32. [PMID: 16469305 DOI: 10.1016/j.ydbio.2005.12.054] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2005] [Accepted: 12/30/2005] [Indexed: 10/25/2022]
Abstract
Histone-modifying enzymes have enormous potential as regulators of the large-scale changes in gene expression occurring during differentiation. It is unclear how different combinations of histone modification coordinate regimes of transcription during development. We show that different methylation states of lysine 4 of histone H3 (H3K4) mark distinct developmental phases of the simple eukaryote, Dictyostelium. We demonstrate that the enzyme responsible for all mono, di and tri-methylation of H3K4 is the Dictyostelium homolog of the Set1 histone methyltransferase. In the absence of Set1, cells display unusually rapid development, characterized by precocious aggregation of amoebae into multicellular aggregates. Early differentiation markers are abundantly expressed in growing set1 cells, indicating the differentiation program is ectopically activated during growth. This phenotype is caused specifically by the loss of Set1 catalytic activity. Set1 mutants induce premature differentiation in wild-type cells, indicating Set1 regulates production of an extra-cellular factor required for the correct perception of growth conditions. Microarray analysis of the set1 mutants reveals genomic clustering of mis-expressed genes, suggesting a requirement for Set1 in the regulation of chromatin-mediated events at gene clusters.
Collapse
Affiliation(s)
- Jonathan R Chubb
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, The Bronx, NY 10461, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Kolbinger A, Gao T, Brock D, Ammann R, Kisters A, Kellermann J, Hatton D, Gomer RH, Wetterauer B. A cysteine-rich extracellular protein containing a PA14 domain mediates quorum sensing in Dictyostelium discoideum. EUKARYOTIC CELL 2005; 4:991-8. [PMID: 15947191 PMCID: PMC1151990 DOI: 10.1128/ec.4.6.991-998.2005] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Much remains to be understood about quorum-sensing factors that allow cells to sense their local density. Dictyostelium discoideum is a simple eukaryote that grows as single-celled amoebae and switches to multicellular development when food becomes limited. As the growing cells reach a high density, they begin expressing discoidin genes. The cells secrete an unknown factor, and at high cell densities the concomitant high levels of the factor induce discoidin expression. We report here the enrichment of discoidin-inducing complex (DIC), an approximately 400-kDa protein complex that induces discoidin expression during growth and development. Two proteins in the DIC preparation, DicA1 and DicB, were identified by sequencing proteolytic digests. DicA1 and DicB were expressed in Escherichia coli and tested for their ability to induce discoidin during growth and development. Recombinant DicB was unable to induce discoidin expression, while recombinant DicA1 was able to induce discoidin expression. This suggests that DicA1 is an active component of DIC and indicates that posttranslational modification is dispensable for activity. DicA1 mRNA is expressed in vegetative and developing cells. The mature secreted form of DicA1 has a molecular mass of 80 kDa and has a 24-amino-acid cysteine-rich repeat that is similar to repeats in Dictyostelium proteins, such as the extracellular matrix protein ecmB/PstA, the prespore cell-inducing factor PSI, and the cyclic AMP phosphodiesterase inhibitor PDI. Together, the data suggest that DicA1 is a component of a secreted quorum-sensing signal regulating discoidin gene expression during Dictyostelium growth and development.
Collapse
Affiliation(s)
- Alexandra Kolbinger
- Howard Hughes Medical Institute and Department of Biochemistry and Cell Biology, MS-140, Rice University, 6100 S. Main Street, Houston, TX 77005-1892, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Chia CP, Gomathinayagam S, Schmaltz RJ, Smoyer LK. Glycoprotein gp130 of dictyostelium discoideum influences macropinocytosis and adhesion. Mol Biol Cell 2005; 16:2681-93. [PMID: 15788570 PMCID: PMC1142416 DOI: 10.1091/mbc.e04-06-0483] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2004] [Revised: 03/02/2005] [Accepted: 03/15/2005] [Indexed: 11/11/2022] Open
Abstract
Glycoprotein gp130, found on the plasma membrane of Dictyostelium discoideum amoebae, was postulated previously to play a role in phagocytosis. The gene for gp130 was cloned and when translated, yielded a 768 amino acid preproprotein of 85.3 kDa. It had nearly 40% similarity to the 138 kDa family of glycoproteins implicated in sexual cell fusion during macrocyst formation in D. discoideum. The difference between the calculated size and observed M(r) of 130 kDa on protein gels likely was due to N-glycosylation that was confirmed by lectin blots. Consistent with its surface-exposure, an antibody raised against recombinant protein stained the plasma membrane of D. discoideum amoebae. Gp130 and its transcripts were high during axenic growth of cells, but relatively low during growth on bacteria. The gene for gp130 was disrupted and cell lines lacking the glycoprotein were efficient phagocytes, indicating that gp130 was dispensable for phagocytosis. Gp130-null cells were similar in size to parent DH1 cells, had enhanced macropinocytosis and grew faster to higher densities. They also exhibited weaker cell-substrate adhesion but displayed greater cell-cell cohesion. Collectively, the data indicated that gp130 influenced macropinocytosis and played a role in adhesion during vegetative growth.
Collapse
Affiliation(s)
- Catherine P Chia
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE 68588-0118, USA
| | | | | | | |
Collapse
|
26
|
Winckler T, Iranfar N, Beck P, Jennes I, Siol O, Baik U, Loomis WF, Dingermann T. CbfA, the C-module DNA-binding factor, plays an essential role in the initiation of Dictyostelium discoideum development. EUKARYOTIC CELL 2005; 3:1349-58. [PMID: 15470262 PMCID: PMC522599 DOI: 10.1128/ec.3.5.1349-1358.2004] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We recently isolated from Dictyostelium discoideum cells a DNA-binding protein, CbfA, that interacts in vitro with a regulatory element in retrotransposon TRE5-A. We have generated a mutant strain that expresses CbfA at <5% of the wild-type level to characterize the consequences for D. discoideum cell physiology. We found that the multicellular development program leading to fruiting body formation is highly compromised in the mutant. The cells cannot aggregate and stay as a monolayer almost indefinitely. The cells respond properly to prestarvation conditions by expressing discoidin in a cell density-dependent manner. A genomewide microarray-assisted expression analysis combined with Northern blot analyses revealed a failure of CbfA-depleted cells to induce the gene encoding aggregation-specific adenylyl cyclase ACA and other genes required for cyclic AMP (cAMP) signal relay, which is necessary for aggregation and subsequent multicellular development. However, the cbfA mutant aggregated efficiently when mixed with as few as 5% wild-type cells. Moreover, pulsing cbfA mutant cells developing in suspension with nanomolar levels of cAMP resulted in induction of acaA and other early developmental genes. Although the response was less efficient and slower than in wild-type cells, it showed that cells depleted of CbfA are able to initiate development if given exogenous cAMP signals. Ectopic expression of the gene encoding the catalytic subunit of protein kinase A restored multicellular development of the mutant. We conclude that sensing of cell density and starvation are independent of CbfA, whereas CbfA is essential for the pattern of gene expression which establishes the genetic network leading to aggregation and multicellular development of D. discoideum.
Collapse
Affiliation(s)
- Thomas Winckler
- Institut für Pharmazeutische Biologie, Universität Frankfurt (Biozentrum), Marie-Curie-Strasse 9, D-60439 Frankfurt, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Maeda Y. Regulation of growth and differentiation in Dictyostelium. INTERNATIONAL REVIEW OF CYTOLOGY 2005; 244:287-332. [PMID: 16157183 DOI: 10.1016/s0074-7696(05)44007-3] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
In general, growth and differentiation are mutually exclusive, but they are cooperatively regulated during the course of development. Thus, the process of a cell's transition from growth to differentiation is of general importance not only for the development of organisms but also for the initiation of malignant transformation, in which this process is reversed. The cellular slime mold Dictyostelium, a wonderful model organism, grows and multiplies as long as nutrients are supplied, and its differentiation is triggered by starvation. A strict checkpoint (growth/differentiation transition or GDT point), from which cells start differentiating in response to starvation, has been specified in the cell cycle of D. discoideum Ax-2 cells. Accordingly, integration of GDT point-specific events with starvation-induced events is needed to understand the mechanism regulating GDTs. A variety of intercellular and intracellular signals are involved positively or negatively in the initiation of differentiation, making a series of cross-talks. As was expected from the presence of GDT points, the cell's positioning in cell masses and subsequent cell-type choices occur depending on the cell's phase in the cell cycle at the onset of starvation. Since novel and somewhat unexpected multiple functions of mitochondria in cell movement, differentiation, and pattern formation have been well realized in Dictyostelium cells, they are reviewed in this article.
Collapse
Affiliation(s)
- Yasuo Maeda
- Department of Developmental Biology and Neurosciences, Graduate School of Life Sciences, Tohoku University, Sendai 980-8578, Japan
| |
Collapse
|
28
|
Morita T, Amagai A, Maeda Y. Translocation of the Dictyostelium TRAP1 homologue to mitochondria induces a novel prestarvation response. J Cell Sci 2004; 117:5759-70. [PMID: 15507488 DOI: 10.1242/jcs.01499] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Dd-TRAP1 is a Dictyostelium homologue of tumor necrosis factor receptor-associated protein 1 (TRAP-1). Dd-TRAP1 is located in the cortex of cells growing at a low density, but was found to be translocated to mitochondria with the help of a novel prestarvation factor that was accumulated in growth medium along with increased cell densities. The knockdown mutant of Dd-TRAP1 (TRAP1-RNAi cells) exhibited a significant defect in prestarvation response. Although TRAP1-RNAi cells showed normal expressions of classical prestarvation genes [dscA (discoidin I) and car1 (carA; cAMP receptor)], the expression of differentiation-associated genes (dia1 and dia3) induced by the prestarvation response were markedly repressed. By contrast, transformants overexpressing Dd-TRAP1 showed an early prestarvation response and also increased expression of dia1 and dia3 in a cell-density-dependent manner. Importantly, introduction of Dd-TRAP1 antibody into D. discoideum Ax-2 cells by electroporation inhibited the translocation of Dd-TRAP1 from the cortex to mitochondria and greatly inhibited the initiation of differentiation. Taken together, these results indicate that Dd-TRAP1 is translocated to mitochondria by sensing the cell density in growth medium and enhances the early developmental program through a novel prestarvation response.
Collapse
Affiliation(s)
- Tsuyoshi Morita
- Department of Developmental Biology and Neurosciences, Graduate School of Life Sciences, Tohoku University, Aoba, Sendai 980-8578, Japan
| | | | | |
Collapse
|
29
|
Kawata T, Nakagawa M, Shimada N, Fujii S, Oohata AA. A gene encoding, prespore-cell-inducing factor in Dictyostelium discoideum. Dev Growth Differ 2004; 46:383-92. [PMID: 15367206 DOI: 10.1111/j.1440-169x.2004.00749.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Two factors that exist in conditioned medium (CM) of Dictyostelium discoideum induce amoebae to differentiate into prespore cells when they are incubated at a very low cell density in submerged monolayer culture. Previously, we purified one of them, a glycoprotein factor with an apparent molecular mass of 106 kDa, and we named it psi factor (psi, prespore-inducing factor). Based on the partial amino acid sequence of the purified psi factor, we have isolated the corresponding cDNA clone, which is expressed maximally at the loose mound stage. The cDNA encodes a novel protein and the predicted molecular mass of the mature secreted protein is 60 kDa. Knockout mutant strains of the psi factor gene, psiA(-), were created by targeted integration. Although these mutant strains appear to develop normally, CM from these mutants showed reduced prespore-cell-inducing activity. Rescuing the mutant strains by expression of psi factor under control of a constitutive promoter causes overproduction of psi factor protein and CM from such cells showed a 20-fold higher level of prespore-cell-inducing activity than that from wild-type cells. Further, CM from parental cells induced prespore cell division, while that from psiA null strains showed no cell division inducing activity. Our results indicate that psi factor protein is a novel type of growth factor that does not belong to any of the families of growth factor so far identified in animals.
Collapse
Affiliation(s)
- Takefumi Kawata
- Department of Biology, Faculty of Science, Toho University, 2-2-1 Miyama, Funabashi, Chiba 274-8510, Japan
| | | | | | | | | |
Collapse
|
30
|
Chibalina MV, Anjard C, Insall RH. Gdt2 regulates the transition of Dictyostelium cells from growth to differentiation. BMC DEVELOPMENTAL BIOLOGY 2004; 4:8. [PMID: 15236669 PMCID: PMC471546 DOI: 10.1186/1471-213x-4-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2004] [Accepted: 07/05/2004] [Indexed: 11/17/2022]
Abstract
Background Dictyostelium life cycle consists of two distinct phases – growth and development. The control of growth-differentiation transition in Dictyostelium is not completely understood, and only few genes involved in this process are known. Results We have isolated a REMI (restriction enzyme-mediated integration) mutant, which prematurely initiates multicellular development. When grown on a bacterial lawn, these cells aggregate before the bacteria are completely cleared. In bacterial suspension, mutant cells express the developmental marker discoidin Iγ even at low cell densities and high concentrations of bacteria. In the absence of nutrients, mutant cells aggregate more rapidly than wild type, but the rest of development is unaffected and normal fruiting bodies are formed. The disrupted gene shows substantial homology to the recently described gdt1 gene, and therefore was named gdt2. While GDT1 and GDT2 are similar in many ways, there are intriguing differences. GDT2 contains a well conserved protein kinase domain, unlike GDT1, whose kinase domain is probably non-functional. The gdt2 and gdt1 mRNAs are regulated differently, with gdt2 but not gdt1 expressed throughout development. The phenotypes of gdt2- and gdt1- mutants are related but not identical. While both initiate development early, gdt2- cells grow at a normal rate, unlike gdt1- mutants. Protein kinase A levels and activity are essentially normal in growing gdt2- mutants, implying that GDT2 regulates a pathway that acts separately from PKA. Gdt1 and gdt2 are the first identified members of a family containing at least eight closely related genes. Conclusions We have isolated and characterised a new gene, gdt2, which acts to restrain development until conditions are appropriate. We also described a family of related genes in the Dictyostelium genome. We hypothesise that different family members might control similar cellular processes, but respond to different environmental cues.
Collapse
Affiliation(s)
- Margarita V Chibalina
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
- Cambridge Institute for Medical Research, University of Cambridge, Wellcome Trust/MRC Building, Addenbrooke's Hospital, Hills Road, Cambridge CB2 2XY, UK
| | - Christophe Anjard
- Department of Biology, University of California San Diego, 9500 Gilman Drive, La Jolla CA 92 093-0368, USA
| | - Robert H Insall
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| |
Collapse
|
31
|
Fields SD, Arana Q, Heuser J, Clarke M. Mitochondrial membrane dynamics are altered in cluA- mutants of Dictyostelium. J Muscle Res Cell Motil 2003; 23:829-38. [PMID: 12952081 DOI: 10.1023/a:1024492031696] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
In cluA- mutants of Dictyostelium, mitochondria are clustered near the cell center rather than being dispersed throughout the cytoplasm. We have examined two possible mechanisms that could account for this phenotype. First, we sought evidence that the cytoskeleton or a presumptive mitochondrion-cytoskeleton linkage was altered in mutant cells. We found that cytoskeletal structures in cluA- cells appeared normal by immunostaining, and that the distribution of peroxisomes in mutant cells was indistinguishable from that in wild type cells. Treatment of wild type cells with drugs that disrupted microtubules or actin filaments did not mimic the cluA- phenotype. Thus, cytoskeletal defects seemed unlikely to account for the mitochondrial clustering in cluA- cells. Observation of the movement of GFP-tagged mitochondria in wild type cells suggested that mitochondria are transported along microtubules, as in mammalian cells, rather than along actin filaments, as in budding yeast. Therefore, the similar phenotypes of cluA- Dictyostelium cells and clu1delta yeast cells argued against CluA/Clu1p acting as a mitochondrion-cytoskeleton linker. We next examined the ultrastructure of mitochondria in freeze-substituted, thin-sectioned cells. We found that the clustered mitochondria in cluA- cells are interconnected. Often, adjacent mitochondria are linked by narrow membranous strands, although sometimes the mitochondria are partially merged. The presence of narrow constrictions at presumptive division sites argues that the constriction step of division proceeds normally. Our data suggest that cluA- cells may be blocked at a very late step in fission of the outer mitochondrial membrane.
Collapse
Affiliation(s)
- Stephen D Fields
- Program in Molecular and Cell Biology, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
| | | | | | | |
Collapse
|
32
|
Fang R, Xiong Y, Singleton CK. IfkA, a presumptive eIF2 alpha kinase of Dictyostelium, is required for proper timing of aggregation and regulation of mound size. BMC DEVELOPMENTAL BIOLOGY 2003; 3:3. [PMID: 12697064 PMCID: PMC154100 DOI: 10.1186/1471-213x-3-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2003] [Accepted: 04/09/2003] [Indexed: 11/23/2022]
Abstract
BACKGROUND The transition from growth to development in Dictyostelium is initiated by amino acid starvation of growing amobae. In other eukaryotes, a key sensor of amino acid starvation and mediator of the resulting physiological responses is the GCN2 protein, an eIF2alpha kinase. GCN2 downregulates the initiation of translation of bulk mRNA and enhances translation of specific mRNAs by phosphorylating the translation initiation factor eIF2alpha. Two eIF2alpha kinases were identified in Dictyostelium and studied herein. RESULTS Neither of the eIF2alpha kinases appeared to be involved in sensing amino acid starvation to initiate development. However, one of the kinases, IfkA, was shown to phosphorylate eIF2alpha from 1 to 7 hours after the onset of development, resulting in a shift from polysomes to free ribosomes for bulk mRNA. In the absence of the eIF2alpha phosphorylation, ifkA null cells aggregated earlier than normal and formed mounds and ultimately fruiting bodies that were larger than normal. The early aggregation phenotype in ifkA null cells reflected an apparent, earlier than normal establishment of the cAMP pulsing system. The large mound phenotype resulted from a reduced extracellular level of Countin, a component of the counting factor that regulates mound size. In wild type cells, phosphorylation of eIF2alpha by IfkA resulted in a specific stabilization and enhanced translational efficiency of countin mRNA even though reduced translation resulted for bulk mRNA. CONCLUSIONS IfkA is an eIF2alpha kinase of Dictyostelium that normally phosphorylates eIF2alpha from 1 to 7 hours after the onset of development, or during the preaggregation phase. This results in an overall reduction in the initiation of protein synthesis during this time frame and a concomitant reduction in the number of ribosomes associated with most mRNAs. For some mRNAs, however, initiation of protein synthesis is enhanced or stabilized under the conditions of increased eIF2alpha phosphorylation. This includes countin mRNA.
Collapse
Affiliation(s)
- Rui Fang
- Department of Biological Sciences, Vanderbilt University, VU Station B 351634, Nashville TN 37235-1634, USA
| | - Yanhua Xiong
- Department of Biological Sciences, Vanderbilt University, VU Station B 351634, Nashville TN 37235-1634, USA
| | - Charles K Singleton
- Department of Biological Sciences, Vanderbilt University, VU Station B 351634, Nashville TN 37235-1634, USA
| |
Collapse
|
33
|
Zhang N, Long Y, Devreotes PN. Ege A, a novel C2 domain containing protein, is essential for GPCR-mediated gene expression in dictyostelium. Dev Biol 2002; 248:1-12. [PMID: 12142016 DOI: 10.1006/dbio.2002.0715] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
During early stages of development, expression of aggregative genes in Dictyostelium is regulated by G protein-linked signaling pathways. We have isolated an aggregation-deficient mutant from a restriction enzyme-mediated insertional mutagenesis screen and have obtained its cDNA. Since the mutant expresses prestarvation genes but fails to express early genes, such as cAR1 and GP80, during development, we designated it early gene expression A (ege A). Ege A, encoding a cytosolic protein of 26 kDa, along with Ege B, belongs to a novel C2 domain-containing gene family. While Ege A mRNA is expressed during the first 2 h of development, Ege B is expressed at later stages. Ege A is not directly required for either G protein-mediated actin polymerization or activation of adenylyl cyclase. Ege A overexpressing and ege A(-) cells display similar phenotypes, suggesting that an optimal level of Ege A is required for proper function. Constitutive expression of a fully functional cAR1-YFP enables ege A(-) cells to form loose aggregates, but cAR1-YFP/ege A(-) cells are still unable to express GP80, suggesting that losses of gene expression were not solely due to a lack of cAR1. Overexpression of PKAcat, the constitutively active subunit of PKA, does not rescue the ege A(-) phenotype, suggesting that PKA is not located downstream from Ege A in the signaling pathway. We propose that Ege A is a novel cytosolic component required by early gene expression.
Collapse
MESH Headings
- Adenylyl Cyclases/metabolism
- Amino Acid Motifs
- Amino Acid Sequence
- Animals
- Blotting, Northern
- Blotting, Southern
- Blotting, Western
- Cyclic AMP/metabolism
- Cyclic AMP-Dependent Protein Kinases/metabolism
- Cytosol/metabolism
- DNA, Complementary/metabolism
- Dictyostelium/metabolism
- GTP-Binding Proteins/metabolism
- Gene Expression Regulation
- Genes, Dominant
- Microscopy, Confocal
- Microscopy, Fluorescence
- Molecular Sequence Data
- Mutation
- Phenotype
- Plasmids/metabolism
- Protein Structure, Tertiary
- Receptors, Cell Surface/metabolism
- Sequence Homology, Amino Acid
- Signal Transduction
- Time Factors
Collapse
Affiliation(s)
- Ning Zhang
- Department of Cell Biology and Anatomy, Johns Hopkins University of Medicine, 725 North Wolfe Street, Baltimore, MD 21205, USA
| | | | | |
Collapse
|
34
|
Clarke M, Köhler J, Arana Q, Liu T, Heuser J, Gerisch G. Dynamics of the vacuolar H+-ATPase in the contractile vacuole complex and the endosomal pathway ofDictyosteliumcells. J Cell Sci 2002; 115:2893-905. [PMID: 12082150 DOI: 10.1242/jcs.115.14.2893] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The vacuolar H+-ATPase (V-ATPase) is a multi-subunit enzyme that plays important roles in eukaryotic cells. In Dictyostelium, it is found primarily in membranes of the contractile vacuole complex, where it energizes fluid accumulation by this osmoregulatory organelle and also in membranes of endolysosomes, where it serves to acidify the endosomal lumen. In the present study, a fusion was created between vatM, the gene encoding the 100 kDa transmembrane subunit of the V-ATPase, and the gene encoding Green Fluorescent Protein (GFP). When expressed in Dictyostelium cells, this fusion protein, VatM-GFP, was correctly targeted to contractile vacuole and endolysosomal membranes and was competent to direct assembly of the V-ATPase enzyme complex. Protease treatment of isolated endosomes indicated that the GFP moiety, located on the C-terminus of VatM, was exposed to the cytoplasmic side of the endosomal membrane rather than to the lumenal side. VatM-GFP labeling of the contractile vacuole complex revealed clearly the dynamics of this pleiomorphic vesiculotubular organelle. VatM-GFP labeling of endosomes allowed direct visualization of the trafficking of vacuolar proton pumps in this pathway, which appeared to be entirely independent from the contractile vacuole membrane system. In cells whose endosomes were pre-labeled with TRITC-dextran and then fed yeast particles,VatM-GFP was delivered to newly formed yeast phagosomes with the same time course as TRITC-dextran, consistent with transfer via a direct fusion of endosomes with phagosomes. Several minutes were required before the intensity of the VatM-GFP labeling of new phagosomes reached the level observed in older phagosomes, suggesting that this fusion process was progressive and continuous. VatM-GFP was retrieved from the phagosome membrane prior to exocytosis of the indigestible remnants of the yeast particle. These data suggest that vacuolar proton pumps are recycled by fusion of advanced with newly formed endosomes.
Collapse
|
35
|
Liu T, Mirschberger C, Chooback L, Arana Q, Dal Sacco Z, MacWilliams H, Clarke M. Altered expression of the 100 kDa subunit of the Dictyosteliumvacuolar proton pump impairs enzyme assembly, endocytic function and cytosolic pH regulation. J Cell Sci 2002; 115:1907-18. [PMID: 11956322 DOI: 10.1242/jcs.115.9.1907] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The vacuolar proton pump (V-ATPase) appears to be essential for viability of Dictyostelium cells. To investigate the function of VatM, the 100 kDa transmembrane V-ATPase subunit, we altered its level. By means of homologous recombination, the promoter for the chromosomal vatM gene was replaced with the promoter for the act6 gene, yielding the mutant strain VatMpr. The act6 promoter is much more active in cells growing axenically than on bacteria. Thus, transformants were selected under axenic growth conditions, then shifted to bacteria to determine the consequences of reduced vatM expression. When VatMpr cells were grown on bacteria,the level of the 100 kDa V-ATPase subunit dropped, cell growth slowed, and the A subunit, a component of the peripheral catalytic domain of the V-ATPase,became mislocalized. These defects were complemented by transformation of the mutant cells with a plasmid expressing vatM under the control of its own promoter. Although the principal locus of vacuolar proton pumps in Dictyostelium is membranes of the contractile vacuole system, mutant cells did not manifest osmoregulatory defects. However, bacterially grown VatMpr cells did exhibit substantially reduced rates of phagocytosis and a prolonged endosomal transit time. In addition, mutant cells manifested alterations in the dynamic regulation of cytosolic pH that are characteristic of normal cells grown in acid media, which suggested that the V-ATPase also plays a role in cytosolic pH regulation.
Collapse
Affiliation(s)
- Tongyao Liu
- Program in Molecular and Cell Biology, Oklahoma Medical Research Foundation, 825 N.E. 13th Street, Oklahoma City, OK 73104, USA
| | | | | | | | | | | | | |
Collapse
|
36
|
Takaoka N, Fukuzawa M, Kato A, Saito T, Ochiai H. Element analysis of the Polysphondylium pallidum gp64 promoter. BIOCHIMICA ET BIOPHYSICA ACTA 2002; 1574:304-10. [PMID: 11997096 DOI: 10.1016/s0167-4781(02)00227-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
gp64 mRNA in Polysphondylium pallidum is expressed extensively during vegetative growth, and begins to rapidly decrease at the onset of development. To examine this unique regulation, 5' deletion analysis of the gp64 promoter was undertaken, and two growth-phase activated elements have been found: a food-dependent, upstream regulatory region (FUR, -222 to -170) and a vegetatively activated, downstream region (VAD, -110 to -63). Here we concentrate our analysis on an A1 and A2 sequences in the FUR region: A1 consists of a GATTTTTTTA sequence called a corresponding sequence and A2 consists of the direct repeat TTTGTTGTG. The cells carrying a combined construct of A1 and A2 acted synergistically in a reporter activity. A point mutation analysis in A1 indicates that a G residue is required for the activation of A1. From analyses of promoter regulation in a liquid or a solid medium, the promoter activity of the cells fed on bacteria in A-medium (axenic medium for Polysphondylium) or grown in A-medium alone was only one fourth of that of the cells fed on bacteria. By the gel retardation, we detected a protein bound to the A1 sequence.
Collapse
Affiliation(s)
- Naohisa Takaoka
- Division of Biological Sciences, Graduate School of Science, Hokkaido University, 060-0810, Sapporo, Japan
| | | | | | | | | |
Collapse
|
37
|
Yuan A, Siu CH, Chia CP. Calcium requirement for efficient phagocytosis by Dictyostelium discoideum. Cell Calcium 2001; 29:229-38. [PMID: 11243931 DOI: 10.1054/ceca.2000.0184] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Extracellular EDTA suppressed in a dose-dependent manner the phagocytosis of yeast particles by Dictyostelium discoideum cells. Activity was restored fully by the addition of Ca(2+), and partially by the addition of Mn(2+)or Zn(2+), but Mg(2+)was ineffective. The pH-sensitive, Ca(2+)-specific chelator EGTA also inhibited phagocytosis at pH 7.5, but not at pH 5, and Ca(2+)restored the inhibited phagocytosis. In contrast, pinocytosis was unaffected by EDTA. Consistent with the idea that Ca(2+)was required for phagocytosis, D. discoideum growth on bacteria was inhibited by EDTA, which was then restored by the addition of Ca(2+). It is concluded that Ca(2+)was needed for efficient phagocytosis by D. discoideum amoebae. A search for Ca(2+)-dependent membrane proteins enriched in phagosomes revealed the presence of p24, a Ca(2+)-dependent cell-cell adhesion molecule-1 (DdCAD-1) that could be the target of the observed EDTA and EGTA inhibition. DdCAD-1-minus cells, however, had normal phagocytic activity. Furthermore, phagocytosis was inhibited by EDTA and rescued by Ca(2+)in the mutant just as in wild type. Thus, DdCAD-1 was not responsible for the observed Ca(2+)-dependence of phagocytosis, indicating that one or more different Ca(2+)-dependent molecule(s) was involved in the process.
Collapse
Affiliation(s)
- A Yuan
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE 68588-0118, USA.
| | | | | |
Collapse
|
38
|
Colosimo ME, Katz ER. Altered prestarvation response in a nystatin resistant Dictyostelium discoideum mutant. Differentiation 2001; 67:1-11. [PMID: 11270118 DOI: 10.1046/j.1432-0436.2001.067001001.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Wild-type Dictyostelium amoebae secrete an autocrine, prestarvation factor (PSF) that allows them to measure the amount of food bacteria compared to their cell density. When the ratio of PSF to bacteria reaches a threshold, the cells are signaled to prepare for eventual starvation. This prestarvation response (PSR) usually starts three to four generations before the end of exponential growth, leading to the accumulation of several aggregation specific genes during growth. We characterize a nystatin-resistant mutant, HK19, that expresses the PSR genes three generations earlier than wild type but has an otherwise wild-type PSR. Although HK19 has a full PSR during growth, HK19 continues to grow at the wild-type rate and reaches normal cell densities. Because HK19 temporally separates the PSR from starvation, it became possible to test whether starvation is required for development. Since HK19 growing at low density can be induced to clump with either cAMP or folate, it appears that the PSR and an external signal are sufficient for entry into development. These data suggest that the PSR is a complex genetic pathway that induces genes involved in the exit from growth and the entry into development.
Collapse
Affiliation(s)
- M E Colosimo
- Department of Molecular Genetics and Microbiology, State University of New York at Stony Brook, Stony Brook, NY 11794, USA
| | | |
Collapse
|
39
|
Yuan A, Chia CP. Role of esterase gp70 and its influence on growth and development of Dictyostelium discoideum. Exp Cell Res 2000; 261:336-47. [PMID: 11112340 DOI: 10.1006/excr.2000.5055] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Gp70 is an esterase originally called crystal protein because of its presence in crystalline structures in aggregation-competent Dictyostelium discoideum cells. Although postulated to break down spore coats, the function of gp70 in vivo was incompletely investigated. Our immunolocalization and biochemical studies of vegetative D. discoideum amoebae show that gp70 was recruited to phagosomes and found in lysosomes. Purified gp70 was effective at hydrolyzing naphthyl substrates with acyl chains typical of lipids and lipopolysaccharides, indicating that the gp70 was involved in digesting endocytosed molecules. The activity of purified gp70 was inhibited by reductants that retarded its electrophoretic mobility and verified the presence of intramolecular disulfide bonds predicted by its amino acid sequence. Compared to wild-type cells, cells overexpressing gp70 were more phagocytically active, had shorter generation times, and produced more fruiting bodies per unit area, while cells lacking gp70 were phagocytically less active with longer doubling times, developed more slowly, and had significantly fewer fruiting bodies per unit area. Consistent with the phenotype of a disrupted metabolism, one-third of the gp70-minus cells were large and multinucleated. Together, these results indicated that despite its crystalline appearance, gp70 was an active esterase involved in both the growth and the development of D. discoideum.
Collapse
Affiliation(s)
- A Yuan
- School of Biological Sciences, University of Nebraska, Lincoln, Nebraska 68588-0118, USA.
| | | |
Collapse
|
40
|
Abstract
A key step in the development of all multicellular organisms is the differentiation of specialized cell types. The eukaryotic microorganism Dictyostelium discoideum provides a unique experimental system for studying cell-type determination and spatial patterning in a developing multicellular organism. Unlike metazoans, which become multicellular by undergoing many rounds of cell division after fertilization of an egg, the social amoeba Dictyostelium achieves multicellularity by the aggregation of approximately 10(5) cells in response to nutrient depletion. Following aggregation, cell-type differentiation and morphogenesis result in a multicellular organism with only a few cell types that exhibit a defined patterning along the anterior-posterior axis of the organism. Analysis of the mechanisms that control these processes is facilitated by the relative simplicity of Dictyostelium development and the availability of molecular, genetic, and cell biological tools. Interestingly, analysis has shown that many molecules that play integral roles in the development of higher eukaryotes, such as PKA, STATs, and GSK-3, are also essential for cell-type differentiation and patterning in Dictyostelium. The role of these and other signaling pathways in the induction, maintenance, and patterning of cell types during Dictyostelium development is discussed.
Collapse
Affiliation(s)
- J M Brown
- Center for Molecular Genetics, Department of Biology, University of California at San Diego, La Jolla 92093-0634, USA
| | | |
Collapse
|
41
|
Chia CP, Bomblies L, Taylor KK. Cytoskeletal association of an esterase in Dictyostelium discoideum. Exp Cell Res 1998; 244:340-8. [PMID: 9770377 DOI: 10.1006/excr.1998.4190] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A 70-kDa glycoprotein, gp70, was found enriched in the detergent-insoluble cytoskeletal fraction of axenically grown Dictyostelium discoideum cells. Its N-terminal amino acid sequence identified it as 'crystal protein' (L. Bomblies et al., 1990, J. Cell Biol. 110, 669-679). This finding was corroborated when antibody to crystal protein cross-reacted with gp70 and its deglycosylated form. The postulated esterase activity of gp70/crystal protein was verified through comparative enzyme assays of extracts derived from cells that either overexpressed or lacked gp70. Gp70 cosedimented with cytoskeletons on sucrose gradients, suggesting an interaction with the cytoskeleton. Coisolation of gp70 with detergent-extracted cells, observed by immunofluorescence microscopy, also implied a gp70-cytoskeletal association. These data supported the idea that the localization or secretion of gp70, or both, was cytoskeletally mediated. Although axenically grown cells contained high levels of gp70, the same cell lines had reduced levels of gp70 when grown in bacterial suspension or in nutrient media containing bacteria. Bacterially grown cells, compared to axenically grown cells, had lower fluid-phase uptake rates even when nutrient media was present, indicating that phagocytosis was a preferred mode of feeding. Thus, bacteria inhibited gp70 expression, which suggested a role for prestarvation factor, in regulating its synthesis.
Collapse
Affiliation(s)
- C P Chia
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska, 68588-0118, USA.
| | | | | |
Collapse
|
42
|
Abstract
The cyclic AMP (cAMP)-dependent protein kinase, PKA, is dispensable for growth of Dictyostelium cells but plays a variety of crucial roles in development. The catalytic subunit of PKA is inhibited when associated with its regulatory subunit but is activated when cAMP binds to the regulatory subunit. Deletion of pkaR or overexpression of the gene encoding the catalytic subunit, pkaC, results in constitutive activity. Development is independent of cAMP in strains carrying these genetic alterations and proceeds rapidly to the formation of both spores and stalk cells. However, morphogenesis is aberrant in these mutants. In the wild type, PKA activity functions in a circuit that can spontaneously generate pulses of cAMP necessary for long-range aggregation. It is also essential for transcriptional activation of both prespore and prestalk genes during the slug stage. During culmination, PKA functions in both prespore and prestalk cells to regulate the relative timing of terminal differentiation. A positive feedback loop results in the rapid release of a signal peptide, SDF-2, when prestalk cells are exposed to low levels of SDF-2. The signal transduction pathway that mediates the response to SDF-2 in both prestalk and prespore cells involves the two-component system of DhkA and RegA. When the cAMP phosphodiesterase RegA is inhibited, cAMP accumulates and activates PKA, leading to vacuolation of stalk cells and encapsulation of spores. These studies indicate that multiple inputs regulate PKA activity to control the relative timing of differentiations in Dictyostelium.
Collapse
Affiliation(s)
- W F Loomis
- Center for Molecular Genetics, Department of Biology, University of California San Diego, La Jolla, California 92093, USA.
| |
Collapse
|
43
|
Jenne N, Rauchenberger R, Hacker U, Kast T, Maniak M. Targeted gene disruption reveals a role for vacuolin B in the late endocytic pathway and exocytosis. J Cell Sci 1998; 111 ( Pt 1):61-70. [PMID: 9394012 DOI: 10.1242/jcs.111.1.61] [Citation(s) in RCA: 76] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cells of Dictyostelium discoideum take up fluid by macropinocytosis. The contents of macropinosomes are acidified and digested by lysosomal enzymes. Thereafter, an endocytic marker progresses in an F-actin dependent mechanism from the acidic lysosomal phase to a neutral post-lysosomal phase. From the post-lysosomal compartment indigestible remnants are released by exocytosis. This compartment is characterised by two isoforms of vacuolin, A and B, which are encoded by different genes. Fusions of the vacuolin isoforms to the green fluorescent protein associate with the cytoplasmic side of post-lysosomal vacuoles in vivo. Vacuolin isoforms also localise to patches at the plasma membrane. Since vacuolins have no homologies to known proteins and do not contain domains of obvious function, we investigated their role by knocking out the genes separately. Although the sequences of vacuolins A and B are about 80% identical, only deletion of the vacuolin B gene results in a defect in the endocytic pathway; the vacuolin A knock-out appeared to be phenotypically normal. In vacuolin B- mutants endocytosis is normal, but the progression of fluid-phase marker from acidic to neutral pH is impaired. Furthermore, in the mutants post-lysosomal vacuoles are dramatically increased in size and accumulate endocytic marker, suggesting a role for vacuolin B in targeting the vacuole for exocytosis.
Collapse
Affiliation(s)
- N Jenne
- Abt. Zellbiologie, Max-Planck-Institut fur Biochemie, Martinsried, Germany
| | | | | | | | | |
Collapse
|
44
|
Lee SK, Li G, Yu SL, Alexander H, Alexander S. The Dictyostelium discoideum beta-1,4-mannosyltransferase gene, mntA, has two periods of developmental expression. Gene 1997; 204:251-8. [PMID: 9434191 DOI: 10.1016/s0378-1119(97)00553-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The precise roles of protein glycosylation in multicellular development are poorly understood. We have characterized the mntA gene from Dictyostelium discoideum which encodes the beta-1,4-mannosyltransferase enzyme that catalyzes the reaction: GDP-Man + dolichol-PP-GlcNAc2 --> dolichol-PP-GlcNAc2-Man + GDP. This gene has a central role in the synthesis of the lipid-linked oligosaccharide precursor which becomes the core of all asparagine-linked (N-linked) glycans. The mntA gene contains a single small intron and encodes a 493 aa protein with a predicted molecular size of 56 kDa. It is located 5' to the repE gene on chromosome IV and is transcribed in the opposite orientation to repE with which it shares a 585 bp of upstream intergenic region. The predicted mntA gene product shares 38% homology with the S. cerevisiae ALG1 gene product. The MntA protein has a region homologous to the putative dolichol-binding region in the yeast ALG1 protein, but it is located in a different part of the molecule. Northern analysis revealed that the expression of the mntA gene is regulated during multicellular development with two periods of mRNA accumulation. The mntA gene product has a classical endoplasmic reticulum retention motif, and is the first Dictyostelium gene encoding a protein that is active in this organelle. The identification of this gene will allow expanded studies of the role of N-linked glycans in multicellular development.
Collapse
Affiliation(s)
- S K Lee
- Division of Biological Sciences, University of Missouri, Columbia 65211, USA
| | | | | | | | | |
Collapse
|
45
|
Christensen ST, Leick V, Rasmussen L, Wheatley DN. Signaling in unicellular eukaryotes. INTERNATIONAL REVIEW OF CYTOLOGY 1997; 177:181-253. [PMID: 9378617 DOI: 10.1016/s0074-7696(08)62233-0] [Citation(s) in RCA: 54] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Aspects of intercellular and intracellular signaling systems in cell survival, proliferation, differentiation, chemosensory behavior, and programmed cell death in free-living unicellular eukaryotes have been reviewed. Comparisons have been made with both bacteria and metazoa. The central organisms were flagellates (Trypanosoma, Leishmania, and Crithidia), slime molds (Dictyostelium), yeast cells (Saccharomyces cerevisiae), and ciliates (Paramecium, Euplotes, and Tetrahymena). There are two novel aspects in this review. First, cellular responses are viewed in an evolutionary perspective, rather than from the more prevailing one, in which the unicellular eukaryotes are seen by the mammalian organisms. Second, results obtained with cell cultures in minimal, chemically defined nutrient media at low cell densities where intercellular signaling is strongly reduced are discussed. These results shed light on control mechanisms and their cooperation inside the living cell. Intracellular systems have many common features in unicellular and multicellular organisms.
Collapse
Affiliation(s)
- S T Christensen
- Department of Medical Biochemistry and Genetics, Panum Institute, University of Copenhagen, Denmark
| | | | | | | |
Collapse
|
46
|
Lee SK, Yu SL, Garcia MX, Alexander H, Alexander S. Differential developmental expression of the rep B and rep D xeroderma pigmentosum related DNA helicase genes from Dictyostelium discoideum. Nucleic Acids Res 1997; 25:2365-74. [PMID: 9171087 PMCID: PMC146774 DOI: 10.1093/nar/25.12.2365] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
DNA helicases are essential to many cellular processes including recombination, replication and transcription, and some helicases function in multiple processes. The helicases encoded by the Xeroderma pigmentosum (XP) B and D genes function in both nucleotide excision repair and transcription initiation. Mutations that affect the repair function of these proteins result in XP while mutations affecting transcription result in neurological and developmental abnormalities, although the underlying molecular and cellular basis for these phenotypes is not well understood. To better understand the developmental roles of these genes, we have now identified and characterized the rep B and rep D genes from the cellular slime mold Dictyostelium discoideum . Both genes encode DNA helicases of the SF2 superfamily of helicases. The rep D gene contains no introns and the rep B gene contains only one intron, which makes their genomic structures dramatically different from the corresponding genes in mammals and fish. However the predicted Dictyostelium proteins share high homology with the human XPB and XPD proteins. The single copy of the rep B and D genes map to chromosomes 3 and 1, respectively. The expression of rep B and D (and the previously isolated rep E) genes during multicellular development was examined, and it was determined that each rep gene has a unique pattern of expression, consistent with the idea that they have specific roles in development. The pattern and extent of expression of these genes was not affected by the growth history of the cells, implying that the expression of these genes is tightly regulated by the developmental program. The expression of the rep genes is a very early step in development and may well represent a key event in the initiation of development in this organism.
Collapse
Affiliation(s)
- S K Lee
- Division of Biological Sciences, 403 Tucker Hall, University of Missouri, Columbia, MO 65211, USA
| | | | | | | | | |
Collapse
|
47
|
|
48
|
Xie Y, Coukell MB, Gombos Z. Antisense RNA inhibition of the putative vacuolar H(+)-ATPase proteolipid of Dictyostelium reduces intracellular Ca2+ transport and cell viability. J Cell Sci 1996; 109 ( Pt 2):489-97. [PMID: 8838672 DOI: 10.1242/jcs.109.2.489] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Transport of Ca2+ via a P-type pump into the contractile vacuole of Dictyostelium discoideum appears to be facilitated by vacuolar proton (V-H+) ATPase activity. To investigate the involvement of the V-H(+)-ATPase in this process using molecular techniques, we cloned a cDNA (vatP) encoding the putative proteolipid subunit of this enzyme. The deduced protein product of this cDNA is composed of 196 amino acids with a calculated M(r) of 20,148 and the primary structure exhibits high amino acid sequence identity with V-H(+)-ATPase proteolipids from other organisms. vatP is a single-copy gene and it produces one approximately 900 nt transcript at relatively constant levels during growth and development. Attempts to disrupt the endogenous gene using vatP cDNA were unsuccessful. But, expression of vatP antisense RNA reduced the levels of vatP message and V-H(+)-ATPase activity by 50% or more. These antisense strains grew and developed slowly, especially under acidic conditions, and the cells seemed to have difficulty forming acidic vesicles. During prolonged cultivation, all of the antisense strains either reverted to a wild-type phenotype or died. Thus in Dictyostelium, unlike yeast, the V-H(+)-ATPase seems to be indispensable for cell viability. When different antisense strains were analyzed for Ca2+ uptake by the contractile vacuole, they all accumulated less Ca2+ than control transformants. These results are consistent with earlier pharmacological studies which suggested that the V-H(+)-ATPase functions in intracellular Ca2+ transport in this organism.
Collapse
Affiliation(s)
- Y Xie
- Department of Biology, York University, North York, Ontario, Canada
| | | | | |
Collapse
|
49
|
Endl I, Konzok A, Nellen W. Antagonistic effects of signal transduction by intracellular and extracellular cAMP on gene regulation in Dictyostelium. Mol Biol Cell 1996; 7:17-24. [PMID: 8741836 PMCID: PMC278609 DOI: 10.1091/mbc.7.1.17] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
In Dictyostelium, cAMP plays a role as an intracellular second messenger and in addition, as an extracellular first messenger. Both functions are thought to be tightly linked because adenylyl cyclase is coupled via G-proteins to the cell surface cAMP receptor cAR 1. Using the discoidin I gene family as a molecular marker for the first stages of development, we show here that induction of transcription requires the G-protein subunit alpha 2 and thus an as yet unidentified surface receptor, CRAC (cytosolic regulator of adenylyl cyclase), and PKA. Induction can be conferred by an increase in intracellular cAMP. In contrast, transcriptional down-regulation occurs by stimulation of cAR 1 with extracellular cAMP and a subsequent, G-protein-independent Ca2+ influx. In a G alpha 2 gene disruption mutant, discoidin I expression can be efficiently modulated by analogues simulating intracellular cAMP (discoidin induction) and extracellular cAMP (discoidin down-regulation). We thus demonstrate possible antagonistic functions of intra- and extracellular cAMP.
Collapse
Affiliation(s)
- I Endl
- Max-Planck-Institut f. Biochemie, Martinsried, Germany
| | | | | |
Collapse
|
50
|
Clarke M, Gomer RH. PSF and CMF, autocrine factors that regulate gene expression during growth and early development of Dictyostelium. EXPERIENTIA 1995; 51:1124-34. [PMID: 8536800 DOI: 10.1007/bf01944730] [Citation(s) in RCA: 80] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Throughout growth and development, Dictyostelium cells secrete autocrine factors that accumulate in proportion to cell density. At sufficient concentration, these factors cause changes in gene expression. Vegetative Dictyostelium cells continuously secrete prestarvation factor (PSF). The bacteria upon which the cells feed inhibit their response to PSF, allowing the cells to monitor their own density in relation to that of their food supply. At high PSF/bacteria ratios, which occur during late exponential growth, PSF induces the expression of several genes whose products are needed for cell aggregation. When the food supply has been depleted, PSF production declines, and a second density-sensing pathway is activated. Starving cells secrete conditioned medium factor (CMF), a glycoprotein of Mr 80 kDa that is essential for the development of differentiated cell types. Antisense mutagenesis has shown that cells lacking CMF cannot aggregate, and preliminary data suggest that CMF regulates cAMP signal transduction. Calculations indicate that a mechanism of simultaneously secreting and recognizing a signal molecule, as used by Dictyostelium to monitor cell density, could also be used to determine the total number of cells in a tissue.
Collapse
Affiliation(s)
- M Clarke
- Oklahoma Medical Research Foundation, Program in Molecular and Cell Biology, Oklahoma City 73104, USA
| | | |
Collapse
|