1
|
The extracellular matrix of hematopoietic stem cell niches. Adv Drug Deliv Rev 2022; 181:114069. [PMID: 34838648 PMCID: PMC8860232 DOI: 10.1016/j.addr.2021.114069] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 11/18/2021] [Accepted: 11/21/2021] [Indexed: 12/21/2022]
Abstract
Comprehensive overview of different classes of ECM molecules in the HSC niche. Overview of current knowledge on role of biophysics of the HSC niche. Description of approaches to create artificial stem cell niches for several application. Importance of considering ECM in drug development and testing.
Hematopoietic stem cells (HSCs) are the life-long source of all types of blood cells. Their function is controlled by their direct microenvironment, the HSC niche in the bone marrow. Although the importance of the extracellular matrix (ECM) in the niche by orchestrating niche architecture and cellular function is widely acknowledged, it is still underexplored. In this review, we provide a comprehensive overview of the ECM in HSC niches. For this purpose, we first briefly outline HSC niche biology and then review the role of the different classes of ECM molecules in the niche one by one and how they are perceived by cells. Matrix remodeling and the emerging importance of biophysics in HSC niche function are discussed. Finally, the application of the current knowledge of ECM in the niche in form of artificial HSC niches for HSC expansion or targeted differentiation as well as drug testing is reviewed.
Collapse
|
2
|
Scuruchi M, D'Ascola A, Avenoso A, Mandraffino G G, Campo S S, Campo GM. Serglycin as part of IL-1β induced inflammation in human chondrocytes. Arch Biochem Biophys 2019; 669:80-86. [PMID: 31145901 DOI: 10.1016/j.abb.2019.05.021] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 05/17/2019] [Accepted: 05/26/2019] [Indexed: 02/07/2023]
Abstract
Serglycin (SRGN) is an intracellular proteoglycan produced and secreted by several cell types. The increased expression of SRGN was associated with greater aggressiveness in cancer and inflammation. In this study, we demonstrated that SRGN is increased in human chondrocytes after IL-β stimulation. Furthermore, we found that secreted SRGN was able to bind the CD44 receptor thus participating in the extension of the inflammatory response. Using SRGN knockdown cells we observed a significantly decrease in specific inflammatory markers and NF-kB activation. Similar results were observed by blocking the CD44 receptor. These data provide further evidences for a direct involvement of SRGN in the mechanisms regulating the non-infectious chondrocytes damage, and the consequent joint inflammation and cartilage destruction in arthritis.
Collapse
Affiliation(s)
- Michele Scuruchi
- Department of Clinical and Experimental Medicine, University of Messina, Italy.
| | - Angela D'Ascola
- Department of Clinical and Experimental Medicine, University of Messina, Italy
| | - Angela Avenoso
- Department of Biomedical and Dental Sciences and Morphofunctional Images, University of Messina, Italy
| | | | - Salvatore Campo S
- Department of Biomedical and Dental Sciences and Morphofunctional Images, University of Messina, Italy
| | - Giuseppe M Campo
- Department of Clinical and Experimental Medicine, University of Messina, Italy
| |
Collapse
|
3
|
Korpetinou A, Skandalis SS, Labropoulou VT, Smirlaki G, Noulas A, Karamanos NK, Theocharis AD. Serglycin: at the crossroad of inflammation and malignancy. Front Oncol 2014; 3:327. [PMID: 24455486 PMCID: PMC3888995 DOI: 10.3389/fonc.2013.00327] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Accepted: 12/20/2013] [Indexed: 12/14/2022] Open
Abstract
Serglycin has been initially characterized as an intracellular proteoglycan expressed by hematopoietic cells. All inflammatory cells highly synthesize serglycin and store it in granules, where it interacts with numerous inflammatory mediators, such as proteases, chemokines, cytokines, and growth factors. Serglycin is implicated in their storage into the granules and their protection since they are secreted as complexes and delivered to their targets after secretion. During the last decade, numerous studies have demonstrated that serglycin is also synthesized by various non-hematopoietic cell types. It has been shown that serglycin is highly expressed by tumor cells and promotes their aggressive phenotype and confers resistance against drugs and complement system attack. Apart from its direct beneficial role to tumor cells, serglycin may promote the inflammatory process in the tumor cell microenvironment thus enhancing tumor development. In the present review, we discuss the role of serglycin in inflammation and tumor progression.
Collapse
Affiliation(s)
- Angeliki Korpetinou
- Laboratory of Biochemistry, Department of Chemistry, University of Patras , Patras , Greece
| | - Spyros S Skandalis
- Laboratory of Biochemistry, Department of Chemistry, University of Patras , Patras , Greece
| | | | - Gianna Smirlaki
- Laboratory of Biochemistry, Department of Chemistry, University of Patras , Patras , Greece
| | | | - Nikos K Karamanos
- Laboratory of Biochemistry, Department of Chemistry, University of Patras , Patras , Greece
| | - Achilleas D Theocharis
- Laboratory of Biochemistry, Department of Chemistry, University of Patras , Patras , Greece
| |
Collapse
|
4
|
Shao C, Shi X, White M, Huang Y, Hartshorn K, Zaia J. Comparative glycomics of leukocyte glycosaminoglycans. FEBS J 2013; 280:2447-61. [PMID: 23480678 DOI: 10.1111/febs.12231] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2012] [Revised: 02/13/2013] [Accepted: 02/27/2013] [Indexed: 01/11/2023]
Abstract
Glycosaminoglycans (GAGs) vary widely in disaccharide and oligosaccharide content in a tissue-specific manner. Nonetheless, there are common structural features, such as the presence of highly sulfated non-reducing end domains on heparan sulfate (HS) chains. Less clear are the patterns of expression of GAGs on specific cell types. Leukocytes are known to express GAGs primarily of the chondroitin sulfate (CS) type. However, little is known regarding the properties and structures of the GAG chains, their variability among normal subjects, and changes in structure associated with disease conditions. We isolated peripheral blood leukocyte populations from four human donors and extracted GAGs. We determined the relative and absolute disaccharide abundances for HS and CS GAGs classes using size exclusion chromatography-mass spectrometry (SEC-MS). We found that all leukocytes express HS chains with a level of sulfation that is more similar to heparin than to organ-derived HS. The levels of HS expression follows the trend T cells/B cells > monocytes/natural killer cells > polymorphonuclear leukocytes (PMNs). In addition, CS abundances were considerably higher than total HS but varied considerably in a leukocyte cell type-specific manner. Levels of CS were higher for myeloid lineage cells (PMNs and monocytes) than for lymphoid cells (B, T and natural killer (NK) cells). This information establishes the range of GAG structures expressed on normal leukocytes and is necessary for subsequent inquiry into disease conditions.
Collapse
Affiliation(s)
- Chun Shao
- Department of Biochemistry, Boston University School of Medicine, Boston University Medical Campus, MA 02118, USA
| | | | | | | | | | | |
Collapse
|
5
|
Scully OJ, Chua PJ, Harve KS, Bay BH, Yip GW. Serglycin in Health and Diseases. Anat Rec (Hoboken) 2012; 295:1415-20. [DOI: 10.1002/ar.22536] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2012] [Revised: 06/17/2012] [Accepted: 06/23/2012] [Indexed: 11/08/2022]
|
6
|
Kolset SO, Pejler G. Serglycin: a structural and functional chameleon with wide impact on immune cells. THE JOURNAL OF IMMUNOLOGY 2012; 187:4927-33. [PMID: 22049227 DOI: 10.4049/jimmunol.1100806] [Citation(s) in RCA: 119] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Among the different proteoglycans expressed by mammals, serglycin is in most immune cells the dominating species. A unique property of serglycin is its ability to adopt highly divergent structures, because of glycosylation with variable types of glycosaminoglycans when expressed by different cell types. Recent studies of serglycin-deficient animals have revealed crucial functions for serglycin in a diverse array of immunological processes. However, its exact function varies to a large extent depending on the cellular context of serglycin expression. Based on these findings, serglycin is emerging as a structural and functional chameleon, with radically different properties depending on its exact cellular and immunological context.
Collapse
Affiliation(s)
- Svein O Kolset
- Department of Nutrition, University of Oslo, 0316 Oslo, Norway.
| | | |
Collapse
|
7
|
Schick BP. Serglycin proteoglycan deletion in mouse platelets: physiological effects and their implications for platelet contributions to thrombosis, inflammation, atherosclerosis, and metastasis. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2010; 93:235-87. [PMID: 20807648 DOI: 10.1016/s1877-1173(10)93011-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Serglycin is found in all nucleated hematopoietic cells and platelets, blood vessels, various reproductive and developmental tissues, and in chondrocytes. The serglycin knockout mouse has demonstrated that this proteoglycan is required for proper generation and function of secretory granules in several hematopoietic cells. The effects on platelets are profound, and include diminishing platelet aggregation responses and formation of platelet thrombi. This chapter will review cell-specific aspects of serglycin structure, its gene regulation, cell and tissue localization, and the effects of serglycin deletion on hematopoietic cell granule structure and function. The effects of serglycin knockout on platelets are described and discussed in detail. Rationales for further investigations into the contribution of serglycin to the known roles of platelets in thrombosis, inflammation, atherosclerosis, and tumor metastasis are presented.
Collapse
Affiliation(s)
- Barbara P Schick
- Department of Medicine, Cardeza Foundation for Hematologic Research, Thomas Jefferson University, Philadelphia, PA, USA
| |
Collapse
|
8
|
Niemann CU, Kjeldsen L, Ralfkiaer E, Jensen MK, Borregaard N. Serglycin proteoglycan in hematologic malignancies: a marker of acute myeloid leukemia. Leukemia 2007; 21:2406-10. [PMID: 17928883 DOI: 10.1038/sj.leu.2404975] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Serglycin is the major cell-associated proteoglycan of hematopoietic cells. Previous work has demonstrated that serglycin may be involved in targeting some proteins to granules of cytotoxic lymphocytes, mast cells and neutrophils. We characterized the expression of serglycin in various hematologic malignancies by immunohistochemistry and ELISA. Serglycin expression was found to distinguish acute myeloid leukemia (AML) from acute lymphoblastic leukemia. In contrast to myeloperoxidase, serglycin was found to be a selective marker for immature myeloid cells, distinguishing AML from Philadelphia chromosome-negative chronic myeloproliferative disorders.
Collapse
Affiliation(s)
- C U Niemann
- Department of Hematology, Rigshospitalet, Copenhagen, Denmark.
| | | | | | | | | |
Collapse
|
9
|
Colvin RA, Campanella GSV, Manice LA, Luster AD. CXCR3 requires tyrosine sulfation for ligand binding and a second extracellular loop arginine residue for ligand-induced chemotaxis. Mol Cell Biol 2006; 26:5838-49. [PMID: 16847335 PMCID: PMC1592751 DOI: 10.1128/mcb.00556-06] [Citation(s) in RCA: 106] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
CXCR3 is a G-protein-coupled seven-transmembrane domain chemokine receptor that plays an important role in effector T-cell and NK cell trafficking. Three gamma interferon-inducible chemokines activate CXCR3: CXCL9 (Mig), CXCL10 (IP-10), and CXCL11 (I-TAC). Here, we identify extracellular domains of CXCR3 that are required for ligand binding and activation. We found that CXCR3 is sulfated on its N terminus and that sulfation is required for binding and activation by all three ligands. We also found that the proximal 16 amino acid residues of the N terminus are required for CXCL10 and CXCL11 binding and activation but not CXCL9 activation. In addition, we found that residue R216 in the second extracellular loop is required for CXCR3-mediated chemotaxis and calcium mobilization but is not required for ligand binding or ligand-induced CXCR3 internalization. Finally, charged residues in the extracellular loops contribute to the receptor-ligand interaction. These findings demonstrate that chemokine activation of CXCR3 involves both high-affinity ligand-binding interactions with negatively charged residues in the extracellular domains of CXCR3 and a lower-affinity receptor-activating interaction in the second extracellular loop. This lower-affinity interaction is necessary to induce chemotaxis but not ligand-induced CXCR3 internalization, further suggesting that different domains of CXCR3 mediate distinct functions.
Collapse
Affiliation(s)
- Richard A Colvin
- Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, 149 Thirteenth Street, Room 8031, Charlestown, MA 02129, USA
| | | | | | | |
Collapse
|
10
|
Niemann CU, Cowland JB, Klausen P, Askaa J, Calafat J, Borregaard N. Localization of serglycin in human neutrophil granulocytes and their precursors. J Leukoc Biol 2004; 76:406-15. [PMID: 15136585 DOI: 10.1189/jlb.1003502] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Serglycin is a major proteoglycan of hematopoietic cells. It is thought to play a role in the packaging of granule proteins in human neutrophil granulocytes. The presence of serglycin in myeloid cells has been demonstrated only at the transcriptional level. We generated a polyclonal antibody against recombinant human serglycin. Here, we show the localization of serglycin in humans during neutrophil differentiation. Immunocytochemistry revealed serglycin immunoreactivity in the Golgi area of promyelocytes (PM) and myelocytes (MC), as well as in a few band cells and mature neutrophil granulocytes. Granular staining was detected near the Golgi apparatus in some of the PM, and the major part of the cytoplasm was negative. Immunoelectron microscopy showed serglycin immunoreactivity located to the Golgi apparatus and a few immature granules of PM and MC. The decreasing level of serglycin protein during myeloid differentiation coincided with a decrease of mRNA expression, as evaluated by Northern blotting. Subcellular fractions of neutrophil granulocytes were obtained. Serglycin immunoreactivity was detected in the fraction containing Golgi apparatus, plasma membrane, and secretory vesicles by Western blotting and enzyme-linked immunosorbent assay. Serglycin was not detected in subcellular fractions containing primary, secondary, or tertiary granules. Together, these findings indicate that serglycin is located to the Golgi apparatus and a few immature granules during neutrophil differentiation. This is consistent with a function for serglycin in formation of granules in neutrophil granulocytes. Our findings contrast the view that native serglycin is present in mature granules and plays a role in packaging and regulating the activity of proteolytic enzymes there.
Collapse
Affiliation(s)
- Carsten Utoft Niemann
- Rigshospitalet, Department of Haematology, Granulocytlaboratoriet, Building 9322, Blegdamsvej 9, DK-2100, Copenhagen, Denmark.
| | | | | | | | | | | |
Collapse
|
11
|
Castronuevo P, Thornton MA, McCarthy LE, Klimas J, Schick BP. DNase I hypersensitivity patterns of the serglycin proteoglycan gene in resting and phorbol 12-myristate 13-acetate-stimulated human erythroleukemia (HEL), CHRF 288-11, and HL-60 cells compared with neutrophils and human umbilical vein endothelial cells. J Biol Chem 2003; 278:48704-12. [PMID: 14506241 DOI: 10.1074/jbc.m310220200] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We mapped the DNase I-hypersensitive sites (DHSS) of the serglycin gene in resting and phorbol 12-myristate 13-acetate (PMA)-stimulated human erythroleukemia (HEL) and CHRF 288-11 cells, which have megakaryocytic characteristics, and HL-60 promyelocytic leukemia cells. We compared these DHSS with those of normal primary neutrophils and human umbilical vein endothelial cells. Several DHSS appear to be involved in regulating the level of endogenous expression and in the PMA response of hematopoietic cell lines. A DHSS unique to resting HL-60 cells and induced in CHRF 288-11 by PMA may explain the high degree of endogenous expression in HL-60 relative to HEL and CHRF (Schick, B. P., Petrushina, I., Brodbeck, K. C., and Castronuevo, P. (2001) J. Biol. Chem. 276, 24726-24735). A total of 4 DHSS in intron 1 and 6 in intron 2 are associated with the PMA response in a cell-specific manner. A DHSS in the 5'-flanking region and another in intron 1 lie in areas that have high homology with the orthologous murine serglycin locus and are rich in potential transcription factor binding sites. One DHSS in intron 1 and one in intron 2 are located within Alu repeats. Two DHSS found in DNA of normal primary neutrophils were different from those of the cell lines. One DHSS in exon 2 unique to neutrophils correlated with a previously unrecognized alternative splicing that removes exon 2. Human umbilical vein endothelial cells had a DHSS in intron 1 that was common with the cell lines. The different patterns of DHSS exhibited by the cells studied suggest that cell- and differentiation-specific alterations in chromatin structure may control serglycin gene expression.
Collapse
Affiliation(s)
- Patria Castronuevo
- Department of Medicine, Jefferson Medical College of Thomas Jefferson University, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19107, USA
| | | | | | | | | |
Collapse
|
12
|
Schick BP, Petrushina I, Brodbeck KC, Castronuevo P. Promoter regulatory elements and DNase I-hypersensitive sites involved in serglycin proteoglycan gene expression in human erythroleukemia, CHRF 288-11, and HL-60 cells. J Biol Chem 2001; 276:24726-35. [PMID: 11333275 DOI: 10.1074/jbc.m102958200] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have compared regulation of the serglycin gene in human erythroleukemia (HEL) and CHRF 288-11 cells, which have megakaryocytic characteristics, with promyelocytic HL-60 cells. Deletion constructs were prepared from the region -1123/+42 to -20/+42, and putative regulatory sites were mutated. In all three cell lines, the two major regulatory elements for constitutive expression were the (-80)ets site and the cyclic AMP response element (CRE) half-site at -70. A protein from HEL and CHRF, but not HL60, nuclear extracts bound to the (-80)ets site. Another protein from all three cell lines bound to the (-70)CRE. Phorbol 12-myristate 13-acetate (PMA) and dibutyryl cyclic AMP (dbcAMP) increased expression of the reporter in HEL cells 2.5-3- and 4.5-fold, respectively, from all constructs except those with (-70)CRE mutations. PMA virtually eliminated expression of serglycin mRNA and promoter constructs, but dbcAMP increased expression in HL-60 cells. The effects of PMA and dbcAMP on promoter expression correlated with mRNA expression. The strengths of two DNase I-hypersensitive sites in the 5'-flanking region and the first intron in all three cells correlated with relative endogenous serglycin mRNA expression. An additional DNase I-hypersensitive site in HL60 DNA in the first intron may be related to the high serglycin expression in HL60 relative to HEL or CHRF cells.
Collapse
Affiliation(s)
- B P Schick
- Cardeza Foundation for Hematologic Research, Jefferson Medical College of Thomas Jefferson University, 1015 Walnut Street, Philadelphia, PA 19107, USA.
| | | | | | | |
Collapse
|
13
|
Abstract
The existence of proteoglycans in hematopoietic cells has been recognized for many years. However, elucidation of the structure and function of these molecules has only begun to be explored in recent years. This paper reviews the current status of knowledge of the structure, function and metabolism of the serglycin proteoglycan in megakaryocytes and megakaryocytic tumor cells. We have identified complex metabolic patterns of the serglycin proteoglycan in terms of regulation of overall hydrodynamic size, glycosaminoglycan chain length and disaccharide composition, and processing of the core protein in control cells or in the presence of phorbol 12-myristate 13-acetate or dimethylsulfoxide. We are currently studying the regulation of synthesis of this protein by analysis of promoter constructs in megakaryocytic and non-megakaryocytic hematopoietic cells. We have also tentatively identified a second proteoglycan, betaglycan, which is known also as the Type III transforming growth factor beta receptor. We have identified this molecule in human erythroleukemia and CHRF 288-11 cells by the presence of characteristic core proteins between 92-120 kDa, by its ability to adhere to Octyl Sepharose and by detection of mRNA. We hope to apply studies of proteoglycan metabolism in these cells to understanding the development of alpha granules and membrane elements in megakaryocytes.
Collapse
Affiliation(s)
- B P Schick
- Cardeza Foundation for Hematologic Research, Jefferson Medical College of Thomas Jefferson University, Philadelphia, Pennsylvania 19107, USA
| |
Collapse
|
14
|
Schick BP, Gradowski JF, San Antonio JD. Synthesis, secretion, and subcellular localization of serglycin proteoglycan in human endothelial cells. Blood 2001; 97:449-58. [PMID: 11154222 DOI: 10.1182/blood.v97.2.449] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
The serglycin proteoglycan is best known as a hematopoietic cell granule proteoglycan. It has been found that serglycin is synthesized by endothelial cells, is localized to cytoplasmic vesicles, and is constitutively secreted. Serglycin messenger RNA in human umbilical vein endothelial cells (HUVECs) and cultured human aortic endothelial cells was detected by reverse transcription-polymerase chain reaction. (35)S-sulfate-labeled secreted and intracellular proteoglycans were analyzed. It was found that 85% of the proteoglycans synthesized during culture were secreted. A core protein of the appropriate size for serglycin was detected by analysis of the chondroitinase-digested (35)S-sulfate-labeled HUVEC proteoglycans. This was the major core protein of the secreted chondroitin sulfate proteoglycans. Recombinant serglycin core protein was used to generate an antibody in chickens. A core protein identified by Western blotting of chondroitinase digests of HUVEC proteoglycans corresponded to the major (35)S-sulfate- labeled core protein. Identical results were obtained with 2 hematopoietic cell lines. Cyto-immunofluorescence showed cytoplasmic vesicular and perinuclear labeling in hematopoietic cells and HUVECs. The serglycin-containing vesicles in HUVECs are distinct from the Weibel-Palade bodies, which contain von Willebrand factor. Confocal microscopy showed that tissue plasminogen activator was distributed similarly to serglycin. Serglycin may be important for the function of these vesicles and, once secreted, for the modulation of the activity of their constituents.
Collapse
Affiliation(s)
- B P Schick
- Cardeza Foundation for Hematologic Research, Department of Medicine, Jefferson Medical College of Thomas Jefferson University, Philadelphia, PA 19107, USA.
| | | | | |
Collapse
|
15
|
Kulseth MA, Kolset SO, Ranheim T. Stimulation of serglycin and CD44 mRNA expression in endothelial cells exposed to TNF-alpha and IL-1alpha. BIOCHIMICA ET BIOPHYSICA ACTA 1999; 1428:225-32. [PMID: 10434040 DOI: 10.1016/s0304-4165(99)00096-3] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Serglycin is a widely distributed proteoglycan, previously assumed to be hematopoietic cell specific. However, the results presented show that serglycin mRNA is expressed outside the hematopoietic cell system. High levels of serglycin mRNA were detected in endothelial cells and smooth muscle cells, whereas low levels were detected in skin fibroblasts. To further analyze the importance of serglycin in endothelial cells, the expression of serglycin mRNA was measured following activation of an endothelial cell line derived from human umbilical cord vein (HUV-EC-C), by the proinflammatory cytokines TNF-alpha and IL-1alpha. The level of serglycin mRNA increased in a time- and dose-dependent way. TNF-alpha (7 ng/ml) was the most potent inducer, increasing the level of serglycin mRNA 2.5 times after 24 h of stimulation. Serglycin has been shown to be a ligand for CD44, a membrane protein expressed in endothelial cells. Following stimulation of the endothelial cells, the level of CD44 mRNA also increased. Again, TNF-alpha (7 ng/ml) turned out to be the most potent inducer, increasing the level of CD44 mRNA 5.5 times after 24 h of stimulation. Both TNF-alpha and IL-1alpha stimulation of the endothelial cells resulted in an increase in the total incorporation of [(35)S]sulfate into macromolecules, which probably indicates an increase in the total production of proteoglycans. A stimulation of endothelial cells by proinflammatory agents resulted in an increase in both serglycin and CD44 mRNA expression, indicating that serglycin, as well as CD44, may participate in the inflammatory process of leukocyte migration.
Collapse
Affiliation(s)
- M A Kulseth
- Institute for Nutrition Research, Faculty of Medicine, University of Oslo, P.O. Box 1046, Blindern, N-0316, Oslo, Norway
| | | | | |
Collapse
|
16
|
Heparan Sulfate Proteoglycan Expression Is Induced During Early Erythroid Differentiation of Multipotent Hematopoietic Stem Cells. Blood 1999. [DOI: 10.1182/blood.v93.9.2884] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
AbstractHeparan sulfate (HS) proteoglycans of bone marrow (BM) stromal cells and their extracellular matrix are important components of the microenvironment of hematopoietic tissues and are involved in the interaction of hematopoietic stem and stromal cells. Although previous studies have emphasized the role of HS proteoglycan synthesis by BM stromal cells, we have recently shown that the human hematopoietic progenitor cell line TF-1 also expressed an HS proteoglycan. Immunochemical, reverse transcriptase-polymerase chain reaction (RT-PCR), and Northern blot analysis of this HS proteoglycan showed that it was not related to the syndecan family of HS proteoglycans or to glypican. To answer the question of whether the expression of HS proteoglycans is associated with the differentiation state of hematopoietic progenitor cells, we have analyzed the proteoglycan synthesis of several murine and human hematopoietic progenitor cell lines. Proteoglycans were isolated from metabolically labeled cells and purified by several chromatographic steps. Isolation and characterization of proteoglycans from the cell lines HEL and ELM-D, which like TF-1 cells have an immature erythroid phenotype, showed that these cells synthesize the same HS proteoglycan, previously detected in TF-1 cells, as a major proteoglycan. In contrast, cell lines of the myeloid lineage, like the myeloblastic/promyelocytic cell lines B1 and B2, do not express HS proteoglycans. Taken together, our data strongly suggest that expression of this HS proteoglycan in hematopoietic progenitor cell lines is associated with the erythroid lineage. To prove this association we have analyzed the proteoglycan expression in the nonleukemic multipotent stem cell line FDCP-Mix-A4 after induction of erythroid or granulocytic differentiation. Our data show that HS proteoglycan expression is induced during early erythroid differentiation of multipotent hematopoietic stem cells. In contrast, during granulocytic differentiation, no expression of HS proteoglycans was observed.
Collapse
|
17
|
Heparan Sulfate Proteoglycan Expression Is Induced During Early Erythroid Differentiation of Multipotent Hematopoietic Stem Cells. Blood 1999. [DOI: 10.1182/blood.v93.9.2884.409k38_2884_2897] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Heparan sulfate (HS) proteoglycans of bone marrow (BM) stromal cells and their extracellular matrix are important components of the microenvironment of hematopoietic tissues and are involved in the interaction of hematopoietic stem and stromal cells. Although previous studies have emphasized the role of HS proteoglycan synthesis by BM stromal cells, we have recently shown that the human hematopoietic progenitor cell line TF-1 also expressed an HS proteoglycan. Immunochemical, reverse transcriptase-polymerase chain reaction (RT-PCR), and Northern blot analysis of this HS proteoglycan showed that it was not related to the syndecan family of HS proteoglycans or to glypican. To answer the question of whether the expression of HS proteoglycans is associated with the differentiation state of hematopoietic progenitor cells, we have analyzed the proteoglycan synthesis of several murine and human hematopoietic progenitor cell lines. Proteoglycans were isolated from metabolically labeled cells and purified by several chromatographic steps. Isolation and characterization of proteoglycans from the cell lines HEL and ELM-D, which like TF-1 cells have an immature erythroid phenotype, showed that these cells synthesize the same HS proteoglycan, previously detected in TF-1 cells, as a major proteoglycan. In contrast, cell lines of the myeloid lineage, like the myeloblastic/promyelocytic cell lines B1 and B2, do not express HS proteoglycans. Taken together, our data strongly suggest that expression of this HS proteoglycan in hematopoietic progenitor cell lines is associated with the erythroid lineage. To prove this association we have analyzed the proteoglycan expression in the nonleukemic multipotent stem cell line FDCP-Mix-A4 after induction of erythroid or granulocytic differentiation. Our data show that HS proteoglycan expression is induced during early erythroid differentiation of multipotent hematopoietic stem cells. In contrast, during granulocytic differentiation, no expression of HS proteoglycans was observed.
Collapse
|
18
|
Iozzo RV, Danielson KG. Transcriptional and posttranscriptional regulation of proteoglycan gene expression. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 1999; 62:19-53. [PMID: 9932451 DOI: 10.1016/s0079-6603(08)60504-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
Proteoglycans are among the most complex and sophisticated molecules of mammalian systems in terms of their protein and carbohydrate moieties. These macromolecules are in a continuous interplay with each other and the cell surface signal-transducing pathways, some of which are beginning to be elucidated. Because of their domain structure, catalytic potential, and diversity, these molecules appear to be designed for integrating numerous signaling events. For example, some proteoglycans interact with hyaluronan and lectins, thereby linking cell surfaces and distant matrix molecules. Some interact with collagen during the complex process of fibrillogenesis and regulate this biological process fundamental to animal life. Others interact with growth factors and serve as depot available during growth or tissue remodeling. In this review, we center on the most recent developments of proteoglycan biology, focusing primarily on genomic organization and transcriptional and posttranscriptional control. We discuss only those proteoglycans whose gene and promoter elements have been characterized and proved to be functional. When possible, we correlate the effects of growth factors and cytokines on proteoglycan gene expression with the topology of cis-acting elements in their genomic control regions. The analysis leads to a comprehensive critical appraisal of the principles that underlie the regulation of proteoglycan gene expression and to the delineation of common regulatory mechanisms.
Collapse
Affiliation(s)
- R V Iozzo
- Department of Pathology, Anatomy, and Cell Biology, Jefferson Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, USA
| | | |
Collapse
|
19
|
Kulseth MA, Mustorp SL, Uhlin-Hansen L, Oberg F, Kolset SO. Serglycin expression during monocytic differentiation of U937-1 cells. Glycobiology 1998; 8:747-53. [PMID: 9639535 DOI: 10.1093/glycob/8.8.747] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Serglycin is the major proteoglycan in most hematopoietic cells, including monocytes and macrophages. The monoblastic cell line U937-1 was used to study the expression of serglycin during proliferation and differentiation. In unstimulated proliferating U937-1 cells serglycin mRNA is nonconstitutively expressed. The level of serglycin mRNA was found to correlate with the synthesis of chondroitin sulfate proteoglycan (CSPG). The U937-1 cells were induced to differentiate into different types of macrophage-like cells by exposing the cells to PMA, RA, or VitD3. These inducers of differentiation affected the expression of serglycin mRNA in three different ways. The initial upregulation seen in the normally proliferating cells was not observed in PMA treated cells. In contrast, RA increased the initial upregulation, giving a reproducible six times increase in serglycin mRNA level from 4 to 24 h of incubation, compared to a four times increase in the control cells. VitD3 had no effect on the expression of serglycin mRNA. The incorporation of (35S)sulfate into CSPG decreased approximately 50% in all three differentiated cell types. Further, the (35S)CSPGs expressed were of larger size in PMA treated cells than controls, but smaller after RA treatment. This was due to the expression of CSPGs, with CS-chains of 25 and 5 kDa in PMA and RA treated cells, respectively, compared to 11 kDa in the controls. VitD3 had no significant effect on the size of CSPG produced. PMA treated cells secreted 75% of the (35S)PGs expressed, but the major portion was retained in cells treated with VitD3 or RA. The differences seen in serglycin mRNA levels, the macromolecular properties of serglycin and in the PG secretion patterns, suggest that serglycin may have different functions in different types of macrophages.
Collapse
Affiliation(s)
- M A Kulseth
- Institute for Nutrition Research, University of Oslo, Oslo, Norway, Institute for Nutrition Research, University of Oslo, Norway
| | | | | | | | | |
Collapse
|
20
|
Toyama-Sorimachi N, Kitamura F, Habuchi H, Tobita Y, Kimata K, Miyasaka M. Widespread expression of chondroitin sulfate-type serglycins with CD44 binding ability in hematopoietic cells. J Biol Chem 1997; 272:26714-9. [PMID: 9334256 DOI: 10.1074/jbc.272.42.26714] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Serglycin is a family of small proteoglycans with Ser-Gly dipeptide repeats and is modified with various types of glycosaminoglycan side chains. We previously demonstrated that chondroitin sulfate-modified serglycin is a novel ligand for CD44 involved in the adherence and activation of lymphoid cells. In this study, we investigated the production and distribution of CD44 binding serglycins in various hematopoietic cells and characterized their carbohydrate side chains. Immunoprecipitation analysis using CD44-IgG and polyclonal antibody against the serglycin core peptide demonstrated that various serglycin species capable of binding CD44 are produced by a variety of hematopoietic cells including lymphoid cells, myeloid cells, and a few tumor cell lines. Glycosaminoglycans on these serglycins, which are essential for CD44 binding, are composed of chondroitin 4-sulfate or a mixture of chondroitin 4-sulfate and chondroitin 6-sulfate, but no heparin or heparan sulfate side chain was detected. The serglycins are also secreted by normal splenocytes, lymph node lymphocytes, and bone marrow cells, whereas they are secreted in very small amounts by normal thymocytes. Secretion of serglycins is greatly enhanced by mitogenic stimulation with concanavalin A or lipopolysaccharide. Our results showed that serglycin, unlike hyaluronate, is produced and secreted in a functional (CD44 binding) form by many members of the hematopoietic system including various lymphocyte subsets. Our data suggest that serglycin may serve as a major ligand for CD44 in various events in the lymphohematopoietic system.
Collapse
Affiliation(s)
- N Toyama-Sorimachi
- Department of Immunology, The Tokyo Metropolitan Institute of Medical Science, 3-18-22, Hon-Komagome, Bunkyo-ku, Tokyo, Japan.
| | | | | | | | | | | |
Collapse
|
21
|
Mislick KA, Baldeschwieler JD. Evidence for the role of proteoglycans in cation-mediated gene transfer. Proc Natl Acad Sci U S A 1996; 93:12349-54. [PMID: 8901584 PMCID: PMC37994 DOI: 10.1073/pnas.93.22.12349] [Citation(s) in RCA: 554] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
We report evidence that gene complexes, consisting of polycations and plasmid DNA enter cells via binding to membrane-associated proteoglycans. Treatment of HeLa cells with sodium chlorate, a potent inhibitor of proteoglycan sulfation, reduced luciferase expression by 69%. Cellular treatment with heparinase and chondroitinase ABC inhibited expression by 78% and 20% with respect to control cells. Transfection was dramatically inhibited by heparin and heparan sulfate and to a smaller extent by chondroitan sulfate B. Transfection of mutant, proteoglycan deficient Chinese hamster ovary cells was 53 x lower than of wild-type cells. For each of these assays, the intracellular uptake of DNA at 37 degrees C and the binding of DNA to the cell membrane at 4 degrees C was impaired. Preliminary transfection experiments conducted in mutant and wild-type Chinese hamster ovary cells suggest that transfection by some cationic lipids is also proteoglycan dependent. The variable distribution of proteoglycans among tissues may explain why some cell types are more susceptible to transfection than others.
Collapse
Affiliation(s)
- K A Mislick
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena 91125, USA
| | | |
Collapse
|
22
|
Schick BP, Eras JL, Mintz PS. Phosphorothioate oligonucleotides cause degradation of secretory but not intracellular serglycin proteoglycan core protein in a sequence-independent manner in human megakaryocytic tumor cells. ANTISENSE RESEARCH AND DEVELOPMENT 1995; 5:59-65. [PMID: 7613073 DOI: 10.1089/ard.1995.5.59] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Human megakaryocytic tumor cell lines CHRF-288-11 and HEL (human erythroleukemia) were incubated with antisense phosphodiester (PDE) and phosphorothioate (PS) oligodeoxynucleotides directed against the first six codons of the human serglycin proteoglycan gene. As controls, PDE scrambled and PS sense and scrambled sequences and a probe antisense to a 3' portion of the coding sequence were used. Treatment with PDE-ODNs did not alter the core protein content of cell or culture medium proteoglycans. Treatment with all the PS-ODNs resulted in loss of the 31 kD serglycin core protein in the medium, but not the cell-associated proteoglycans, and concomitant appearance of a heavily labeled core protein band at the dye front. This band appears to arise from truncation of the core protein, which leaves the glycosaminoglycan attachment region intact. The higher molecular weight core proteins, which appear to be derived from a betaglycan-like proteoglycan, were not affected by the PDE or PS-ODN treatment. The same effect was seen with or without electroporation, which was used to enhance uptake of the ODNs. Thus treatment of megakaryocytic tumor cells with PS-ODNs appeared to cause a selective degradation of the serglycin core protein in a sequence-independent manner. Degradation most likely occurred intracellularly, because culture supernatants did not degrade exogenously added serglycin proteoglycan, and the presence of superoxide dismutase and catalase in the culture medium during exposure of the cells to the PS-ODNs did not prevent the degradation.
Collapse
Affiliation(s)
- B P Schick
- Thomas Jefferson University, Philadelphia 19107, USA
| | | | | |
Collapse
|
23
|
Stellrecht C, Fraizer G, Selvanayagam C, Chao L, Lee A, Saunders G. Transcriptional regulation of a hematopoietic proteoglycan core protein gene during hematopoiesis. J Biol Chem 1993. [DOI: 10.1016/s0021-9258(18)53582-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
24
|
|