1
|
Faccioli LA, Dias ML, Martins-Santos R, Paredes BD, Takiya CM, dos Santos Goldenberg RC. Resident Liver Stem Cells. RESIDENT STEM CELLS AND REGENERATIVE THERAPY 2024:23-51. [DOI: 10.1016/b978-0-443-15289-4.00015-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
2
|
Hernandez C, Huebener P, Pradere JP, Antoine DJ, Friedman RA, Schwabe RF. HMGB1 links chronic liver injury to progenitor responses and hepatocarcinogenesis. J Clin Invest 2018; 128:2436-2451. [PMID: 29558367 DOI: 10.1172/jci91786] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Accepted: 03/13/2018] [Indexed: 12/15/2022] Open
Abstract
Cell death is a key driver of disease progression and carcinogenesis in chronic liver disease (CLD), highlighted by the well-established clinical correlation between hepatocellular death and risk for the development of cirrhosis and hepatocellular carcinoma (HCC). Moreover, hepatocellular death is sufficient to trigger fibrosis and HCC in mice. However, the pathways through which cell death drives CLD progression remain elusive. Here, we tested the hypothesis that high-mobility group box 1 (HMGB1), a damage-associated molecular pattern (DAMP) with key roles in acute liver injury, may link cell death to injury responses and hepatocarcinogenesis in CLD. While liver-specific HMGB1 deficiency did not significantly affect chronic injury responses such as fibrosis, regeneration, and inflammation, it inhibited ductular/progenitor cell expansion and hepatocyte metaplasia. HMGB1 promoted ductular expansion independently of active secretion in a nonautonomous fashion, consistent with its role as a DAMP. Liver-specific HMGB1 deficiency reduced HCC development in 3 mouse models of chronic injury but not in a model lacking chronic liver injury. As with CLD, HMGB1 ablation reduced the expression of progenitor and oncofetal markers, a key determinant of HCC aggressiveness, in tumors. In summary, HMGB1 links hepatocyte death to ductular reaction, progenitor signature, and hepatocarcinogenesis in CLD.
Collapse
Affiliation(s)
- Celine Hernandez
- Department of Medicine, Columbia University, New York, New York, USA
| | - Peter Huebener
- Department of Medicine, Columbia University, New York, New York, USA.,Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jean-Philippe Pradere
- Institut National de la Santé et de la Recherche Médicale (INSERM) U1048, Institute of Cardiovascular and Metabolic Disease, Toulouse, France
| | - Daniel J Antoine
- MRC Centre for Inflammation Research, University of Edinburgh, United Kingdom
| | - Richard A Friedman
- Biomedical Informatics Shared Resource, Herbert Irving Comprehensive Cancer Center and Department of Biomedical Informatics, Columbia University, New York, New York, USA
| | - Robert F Schwabe
- Department of Medicine, Columbia University, New York, New York, USA
| |
Collapse
|
3
|
Kovina MV, Krasheninnikov ME, Dyuzheva TG, Danilevsky MI, Klabukov ID, Balyasin MV, Chivilgina OK, Lyundup AV. Human endometrial stem cells: High-yield isolation and characterization. Cytotherapy 2018; 20:361-374. [PMID: 29397307 DOI: 10.1016/j.jcyt.2017.12.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Revised: 12/11/2017] [Accepted: 12/24/2017] [Indexed: 10/18/2022]
Abstract
BACKGROUND Menstrual blood is only recently and still poorly studied, but it is an abundant and noninvasive source of highly proliferative mesenchymal stromal cells (MSCs). However, no appropriate isolation method has been reported due to its high viscosity and high content of clots and desquamated epithelium. METHODS We studied three different isolation approaches and their combinations: ammonium-containing lysing buffer, distilled water and gradient-density centrifugation. We tested the proliferative capacity, morphology, surface markers and pluripotency of the resulting cells. RESULTS Our isolation method yields up to four million nucleated cells per milliliter of initial blood, of which about 0.2-0.3% are colony-forming cells expressing standard mesenchymal markers CD90, CD105 and CD73, but not expressing CD45, CD34, CD117, CD133 or HLA-G. The cells have high proliferative potential (doubling in 26 h) and the ability to differentiate into adipocytes and osteocytes. Early endometrial MSCs (eMSCs) express epithelial marker cytokeratin 7 (CK7). CK7 is easily induced in later passages in a prohepatic environment. We show for the first time that a satisfactory and stable yield of eMSCs is observed throughout the whole menstrual period (5 consecutive days) of a healthy woman. DISCUSSION The new cost/yield adequate method allows isolation from menstrual blood a relatively homogenous pool of highly proliferative MSCs, which seem to be the best candidates for internal organ therapy due to their proepithelial background (early expression of CK7 and its easy induction in later passages) and for mass cryobanking due to their high yield and availability.
Collapse
Affiliation(s)
- Marina V Kovina
- Sechenov First Moscow State Medical University, Institute for Regenerative Medicine, Moscow, Russia.
| | - Michael E Krasheninnikov
- Sechenov First Moscow State Medical University, Institute for Regenerative Medicine, Moscow, Russia
| | - Tatiana G Dyuzheva
- Sechenov First Moscow State Medical University, Institute for Regenerative Medicine, Moscow, Russia
| | - Michael I Danilevsky
- Sechenov First Moscow State Medical University, Department of Biological Chemistry, Moscow, Russia
| | - Ilya D Klabukov
- Sechenov First Moscow State Medical University, Institute for Regenerative Medicine, Moscow, Russia
| | - Maxim V Balyasin
- Sechenov First Moscow State Medical University, Institute for Regenerative Medicine, Moscow, Russia
| | - Olga K Chivilgina
- Sechenov First Moscow State Medical University, Institute for Regenerative Medicine, Moscow, Russia
| | - Alexey V Lyundup
- Sechenov First Moscow State Medical University, Institute for Regenerative Medicine, Moscow, Russia
| |
Collapse
|
4
|
Lugli N, Kamileri I, Keogh A, Malinka T, Sarris ME, Talianidis I, Schaad O, Candinas D, Stroka D, Halazonetis TD. R-spondin 1 and noggin facilitate expansion of resident stem cells from non-damaged gallbladders. EMBO Rep 2016; 17:769-79. [PMID: 26993089 PMCID: PMC5341509 DOI: 10.15252/embr.201642169] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Accepted: 02/26/2016] [Indexed: 12/16/2022] Open
Abstract
Pioneering studies within the last few years have allowed the in vitro expansion of tissue‐specific adult stem cells from a variety of endoderm‐derived organs, including the stomach, small intestine, and colon. Expansion of these cells requires activation of the receptor Lgr5 by its ligand R‐spondin 1 and is likely facilitated by the fact that in healthy adults the stem cells in these organs are highly proliferative. In many other adult organs, such as the liver, proliferating cells are normally not abundant in adulthood. However, upon injury, the liver has a strong regenerative potential that is accompanied by the emergence of Lgr5‐positive stem cells; these cells can be isolated and expanded in vitro as organoids. In an effort to isolate stem cells from non‐regenerating mouse livers, we discovered that healthy gallbladders are a rich source of stem/progenitor cells that can be propagated in culture as organoids for more than a year. Growth of these organoids was stimulated by R‐spondin 1 and noggin, whereas in the absence of these growth factors, the organoids differentiated partially toward the hepatocyte fate. When transplanted under the liver capsule, gallbladder‐derived organoids maintained their architecture for 2 weeks. Furthermore, single cells prepared from dissociated organoids and injected into the mesenteric vein populated the liver parenchyma of carbon tetrachloride‐treated mice. Human gallbladders were also a source of organoid‐forming stem cells. Thus, under specific growth conditions, stem cells can be isolated from healthy gallbladders, expanded almost indefinitely in vitro, and induced to differentiate toward the hepatocyte lineage.
Collapse
Affiliation(s)
- Natalia Lugli
- Department of Molecular Biology, University of Geneva, Geneva, Switzerland National Centre of Competence in Research "Frontiers in Genetics", Geneva, Switzerland
| | - Irene Kamileri
- Department of Molecular Biology, University of Geneva, Geneva, Switzerland
| | - Adrian Keogh
- Department of Clinical Research, Clinic of Visceral Surgery and Medicine, University of Bern, Bern, Switzerland
| | - Thomas Malinka
- Department of Clinical Research, Clinic of Visceral Surgery and Medicine, University of Bern, Bern, Switzerland
| | | | | | - Olivier Schaad
- Department of Biochemistry, University of Geneva, Geneva, Switzerland
| | - Daniel Candinas
- Department of Clinical Research, Clinic of Visceral Surgery and Medicine, University of Bern, Bern, Switzerland
| | - Deborah Stroka
- Department of Clinical Research, Clinic of Visceral Surgery and Medicine, University of Bern, Bern, Switzerland
| | | |
Collapse
|
5
|
Mu X, Español-Suñer R, Mederacke I, Affò S, Manco R, Sempoux C, Lemaigre FP, Adili A, Yuan D, Weber A, Unger K, Heikenwälder M, Leclercq IA, Schwabe RF. Hepatocellular carcinoma originates from hepatocytes and not from the progenitor/biliary compartment. J Clin Invest 2015; 125:3891-903. [PMID: 26348897 DOI: 10.1172/jci77995] [Citation(s) in RCA: 156] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Accepted: 07/23/2015] [Indexed: 12/19/2022] Open
Abstract
In many organs, including the intestine and skin, cancers originate from cells of the stem or progenitor compartment. Despite its nomenclature, the cellular origin of hepatocellular carcinoma (HCC) remains elusive. In contrast to most organs, the liver lacks a defined stem cell population for organ maintenance. Previous studies suggest that both hepatocytes and facultative progenitor cells within the biliary compartment are capable of generating HCC. As HCCs with a progenitor signature carry a worse prognosis, understanding the origin of HCC is of clinical relevance. Here, we used complementary fate-tracing approaches to label the progenitor/biliary compartment and hepatocytes in murine hepatocarcinogenesis. In genotoxic and genetic models, HCCs arose exclusively from hepatocytes but never from the progenitor/biliary compartment. Cytokeratin 19-, A6- and α-fetoprotein-positive cells within tumors were hepatocyte derived. In summary, hepatocytes represent the cell of origin for HCC in mice, and a progenitor signature does not reflect progenitor origin, but dedifferentiation of hepatocyte-derived tumor cells.
Collapse
|
6
|
Nikolaou KC, Moulos P, Chalepakis G, Hatzis P, Oda H, Reinberg D, Talianidis I. Spontaneous development of hepatocellular carcinoma with cancer stem cell properties in PR-SET7-deficient livers. EMBO J 2014; 34:430-47. [PMID: 25515659 PMCID: PMC4330999 DOI: 10.15252/embj.201489279] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
PR-SET7-mediated histone 4 lysine 20 methylation has been implicated in mitotic condensation, DNA damage response and replication licensing. Here, we show that PR-SET7 function in the liver is pivotal for maintaining genome integrity. Hepatocyte-specific deletion of PR-SET7 in mouse embryos resulted in G2 phase arrest followed by massive cell death and defect in liver organogenesis. Inactivation at postnatal stages caused cell duplication-dependent hepatocyte necrosis, accompanied by inflammation, fibrosis and compensatory growth induction of neighboring hepatocytes and resident ductal progenitor cells. Prolonged necrotic regenerative cycles coupled with oncogenic STAT3 activation led to the spontaneous development of hepatic tumors composed of cells with cancer stem cell characteristics. These include a capacity to self-renew in culture or in xenografts and the ability to differentiate to phenotypically distinct hepatic cells. Hepatocellular carcinoma in PR-SET7-deficient mice displays a cancer stem cell gene signature specified by the co-expression of ductal progenitor markers and oncofetal genes.
Collapse
Affiliation(s)
| | | | | | - Pantelis Hatzis
- Biomedical Sciences Research Center Al. Fleming, Vari, Greece
| | - Hisanobu Oda
- Medical Institute of Bioregulation Kyusyu University, Fukuoka, Japan Gastrointestinal and Oncology Division, National Kyusyu Cancer Center, Fukuoka, Japan
| | - Danny Reinberg
- HHMI, Department of Biochemistry, New York University School of Medicine, New York, NY USA
| | | |
Collapse
|
7
|
Hippo pathway activity influences liver cell fate. Cell 2014; 157:1324-1338. [PMID: 24906150 DOI: 10.1016/j.cell.2014.03.060] [Citation(s) in RCA: 661] [Impact Index Per Article: 60.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2013] [Revised: 02/04/2014] [Accepted: 03/19/2014] [Indexed: 12/15/2022]
Abstract
The Hippo-signaling pathway is an important regulator of cellular proliferation and organ size. However, little is known about the role of this cascade in the control of cell fate. Employing a combination of lineage tracing, clonal analysis, and organoid culture approaches, we demonstrate that Hippo pathway activity is essential for the maintenance of the differentiated hepatocyte state. Remarkably, acute inactivation of Hippo pathway signaling in vivo is sufficient to dedifferentiate, at very high efficiencies, adult hepatocytes into cells bearing progenitor characteristics. These hepatocyte-derived progenitor cells demonstrate self-renewal and engraftment capacity at the single-cell level. We also identify the NOTCH-signaling pathway as a functional important effector downstream of the Hippo transducer YAP. Our findings uncover a potent role for Hippo/YAP signaling in controlling liver cell fate and reveal an unprecedented level of phenotypic plasticity in mature hepatocytes, which has implications for the understanding and manipulation of liver regeneration.
Collapse
|
8
|
Abstract
Stem cells constitute a population of "primitive cells" with the ability to divide indefinitely and give rise to specialized cells under special conditions. Because of these two characteristics they have received particular attention in recent decades. These cells are the primarily responsible factors for the regeneration of tissues and organs and for the healing of lesions, a feature that makes them a central key in the development of cell-based medicine, called Regenerative Medicine. The idea of wound and organ repair and body regeneration is as old as the mankind, reflecting the human desire for inhibiting aging and immortality and it is first described in the ancient Greek myth of Prometheus. It is of interest that the myth refers to liver, an organ with remarkable regenerative ability after loss of mass and function caused by liver injury or surgical resection. Over the last decade there has been an important progress in understanding liver physiology and the mechanisms underlying hepatic development and regeneration. As liver transplantation, despite its difficulties, remains the only effective therapy for advanced liver disease so far, scientific interest has nowadays been orientated towards Regenerative Medicine and the use of stem cells to repair damaged liver. This review is focused on the available literature concerning the role of stem cells in liver regeneration. It summarizes the results of studies concerning endogenous liver regeneration and stem cell experimental protocols. Moreover, this review discusses the clinical studies that have been conducted in humans so far.
Collapse
|
9
|
Kong XY, Nesset CK, Damme M, Løberg EM, Lübke T, Mæhlen J, Andersson KB, Lorenzo PI, Roos N, Thoresen GH, Rustan AC, Kase ET, Eskild W. Loss of lysosomal membrane protein NCU-G1 in mice results in spontaneous liver fibrosis with accumulation of lipofuscin and iron in Kupffer cells. Dis Model Mech 2014; 7:351-62. [PMID: 24487409 PMCID: PMC3944495 DOI: 10.1242/dmm.014050] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Human kidney predominant protein, NCU-G1, is a highly conserved protein with an unknown biological function. Initially described as a nuclear protein, it was later shown to be a bona fide lysosomal integral membrane protein. To gain insight into the physiological function of NCU-G1, mice with no detectable expression of this gene were created using a gene-trap strategy, and Ncu-g1gt/gt mice were successfully characterized. Lysosomal disorders are mainly caused by lack of or malfunctioning of proteins in the endosomal-lysosomal pathway. The clinical symptoms vary, but often include liver dysfunction. Persistent liver damage activates fibrogenesis and, if unremedied, eventually leads to liver fibrosis/cirrhosis and death. We demonstrate that the disruption of Ncu-g1 results in spontaneous liver fibrosis in mice as the predominant phenotype. Evidence for an increased rate of hepatic cell death, oxidative stress and active fibrogenesis were detected in Ncu-g1gt/gt liver. In addition to collagen deposition, microscopic examination of liver sections revealed accumulation of autofluorescent lipofuscin and iron in Ncu-g1gt/gt Kupffer cells. Because only a few transgenic mouse models have been identified with chronic liver injury and spontaneous liver fibrosis development, we propose that the Ncu-g1gt/gt mouse could be a valuable new tool in the development of novel treatments for the attenuation of fibrosis due to chronic liver damage.
Collapse
Affiliation(s)
- Xiang Y Kong
- Department of Bioscience, University of Oslo, 0316 Oslo, Norway
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Liu WH, Ren LN, Chen T, You N, Liu LY, Wang T, Yan HT, Luo H, Tang LJ. Unbalanced distribution of materials: the art of giving rise to hepatocytes from liver stem/progenitor cells. J Cell Mol Med 2014; 18:1-14. [PMID: 24286303 PMCID: PMC3916112 DOI: 10.1111/jcmm.12183] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2013] [Accepted: 10/08/2013] [Indexed: 12/12/2022] Open
Abstract
Liver stem/progenitor cells (LSPCs) are able to duplicate themselves and differentiate into each type of cells in the liver, including mature hepatocytes and cholangiocytes. Understanding how to accurately control the hepatic differentiation of LSPCs is a challenge in many fields from preclinical to clinical treatments. This review summarizes the recent advances made to control the hepatic differentiation of LSPCs over the last few decades. The hepatic differentiation of LSPCs is a gradual process consisting of three main steps: initiation, progression and accomplishment. The unbalanced distribution of the affecting materials in each step results in the hepatic maturation of LSPCs. As the innovative and creative works for generating hepatocytes with full functions from LSPCs are gradually accumulated, LSPC therapies will soon be a new choice for treating liver diseases.
Collapse
Affiliation(s)
- Wei-Hui Liu
- General Surgery Center of PLA, Chengdu Military General HospitalChengdu, Sichuan Province, China
| | - Li-Na Ren
- General Surgery Center of PLA, Chengdu Military General HospitalChengdu, Sichuan Province, China
| | - Tao Chen
- General Surgery Center of PLA, Chengdu Military General HospitalChengdu, Sichuan Province, China
| | - Nan You
- Department of General Surgery Xinqiao Hospital, Third Military Medical UniversityChongqing, China
| | - Li-Ye Liu
- General Surgery Center of PLA, Chengdu Military General HospitalChengdu, Sichuan Province, China
| | - Tao Wang
- General Surgery Center of PLA, Chengdu Military General HospitalChengdu, Sichuan Province, China
| | - Hong-Tao Yan
- General Surgery Center of PLA, Chengdu Military General HospitalChengdu, Sichuan Province, China
| | - Hao Luo
- General Surgery Center of PLA, Chengdu Military General HospitalChengdu, Sichuan Province, China
| | - Li-Jun Tang
- General Surgery Center of PLA, Chengdu Military General HospitalChengdu, Sichuan Province, China
| |
Collapse
|
11
|
Li J, Xin J, Zhang L, Wu J, Jiang L, Zhou Q, Li J, Guo J, Cao H, Li L. Human hepatic progenitor cells express hematopoietic cell markers CD45 and CD109. Int J Med Sci 2013; 11:65-79. [PMID: 24396288 PMCID: PMC3880993 DOI: 10.7150/ijms.7426] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Accepted: 12/11/2013] [Indexed: 01/11/2023] Open
Abstract
OBJECTIVE To clarify the precise characteristics of human hepatic progenitor cells (HPCs) for future cytotherapy in liver diseases. METHODS Hepatic progenitor-like cells were isolated and cultured from the livers of patients who had undergone partial hepatectomy for various pathologies but displayed no sign of hepatic dysfunction. These cells were characterized by transcriptomic profiling, quantitative real-time PCR and immunocyto/histochemistry. RESULTS Cultured HPCs contained polygonal, high nucleus/cytoplasm ratio and exhibited a global gene expression profile similar (67.8%) to that of primary hepatocytes. Among the genes with more than 20-fold higher expression in HPCs were a progenitor marker (CD90), a pentraxin-related gene (PTX3), collagen proteins (COL5A2, COL1A1 and COL4A2), cytokines (EGF and PDGFD), metabolic enzymes (CYBRD1, BCAT1, TIMP2 and PAM), a secreted protein (SPARC) and an endothelial protein C receptor (PROCR). Moreover, eight markers (ALB, AFP, CK8, CK18, CK19, CD90, CD117 and Oval-6) previously described as HPC markers were validated by qRT-PCR and/or immunocyto/histochemistry. Interestingly, human HPCs were also positive for the hematopoietic cell markers CD45 and CD109. Finally, we characterized the localization of HPCs in the canals of Hering and periportal areas with six previously described markers (Oval-6, CK8, CK18, CK19, CD90 and CD117) and two potential markers (CD45 and CD109). CONCLUSION The human HPCs are highly similar to primary hepatocytes in their transcriptional profiles. The CD45 and CD109 markers could potentially be utilized to identify and isolate HPCs for further cytotherapy of liver diseases.
Collapse
Affiliation(s)
- Jun Li
- 1. State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University. 79 Qingchun Rd., Hangzhou, 310003. China
| | - Jiaojiao Xin
- 1. State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University. 79 Qingchun Rd., Hangzhou, 310003. China
| | - Liyuan Zhang
- 1. State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University. 79 Qingchun Rd., Hangzhou, 310003. China
| | - Jian Wu
- 2. Department of Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University. 79 Qingchun Rd., Hangzhou, 310003. China
| | - Longyan Jiang
- 1. State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University. 79 Qingchun Rd., Hangzhou, 310003. China
| | - Qian Zhou
- 1. State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University. 79 Qingchun Rd., Hangzhou, 310003. China
| | - Jun Li
- 3. Department of Pathology, The First Affiliated Hospital, School of Medicine, Zhejiang University. 79 Qingchun Rd., Hangzhou, China. 310003
| | - Jing Guo
- 1. State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University. 79 Qingchun Rd., Hangzhou, 310003. China
| | - Hongcui Cao
- 1. State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University. 79 Qingchun Rd., Hangzhou, 310003. China
| | - Lanjuan Li
- 1. State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University. 79 Qingchun Rd., Hangzhou, 310003. China
| |
Collapse
|
12
|
Characteristics of hepatic stem/progenitor cells in the fetal and adult liver. JOURNAL OF HEPATO-BILIARY-PANCREATIC SCIENCES 2013; 19:587-93. [PMID: 23010995 DOI: 10.1007/s00534-012-0544-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
BACKGROUND The liver is an essential organ that maintains vital activity through its numerous important functions. It has a unique capability of fully regenerating after injury. Regulating a balance between self-renewal and differentiation of hepatic stem cells that are resources for functional mature liver cells is required for maintenance of tissue homeostasis. METHODS This review describes the characteristics of hepatic stem/progenitor cells and the regulatory mechanism of their self-renewal and differentiation capacity. RESULTS In liver organogenesis, undifferentiated hepatic stem/progenitor cells expand their pool by repeated self-renewal in the early stage of liver development and then differentiate into two different types of cell lineage, namely hepatocytes and cholangiocytes. Liver development is regulated by expression of stem cell transcription factors in a complex multistep process. Recent studies suggest that stem cells are maintained by integrative regulation of gene expression patterns related to self-renewal and differentiation by epigenetic mechanisms such as histone modification and DNA methylation. CONCLUSIONS Analysis of the proper regulatory mechanism of hepatic stem/progenitor cells is important for regenerative medicine that utilizes hepatic stem cells and for preventing liver cancer through clarification of the carcinogenetic mechanism involved in stem cell system failure.
Collapse
|
13
|
Schievenbusch S, Sauer E, Curth HM, Schulte S, Demir M, Toex U, Goeser T, Nierhoff D. Neighbor of Punc E 11: Expression Pattern of the New Hepatic Stem/Progenitor Cell Marker During Murine Liver Development. Stem Cells Dev 2012; 21:2656-66. [DOI: 10.1089/scd.2011.0579] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Affiliation(s)
| | - Elisabeth Sauer
- Department of Gastroenterology and Hepatology, University of Cologne, Cologne, Germany
| | - Harald-Morten Curth
- Department of Gastroenterology and Hepatology, University of Cologne, Cologne, Germany
| | - Sigrid Schulte
- Department of Gastroenterology and Hepatology, University of Cologne, Cologne, Germany
| | - Münevver Demir
- Department of Gastroenterology and Hepatology, University of Cologne, Cologne, Germany
| | - Ulrich Toex
- Department of Gastroenterology and Hepatology, University of Cologne, Cologne, Germany
| | - Tobias Goeser
- Department of Gastroenterology and Hepatology, University of Cologne, Cologne, Germany
| | - Dirk Nierhoff
- Department of Gastroenterology and Hepatology, University of Cologne, Cologne, Germany
| |
Collapse
|
14
|
Endo Y, Zhang M, Yamaji S, Cang Y. Genetic abolishment of hepatocyte proliferation activates hepatic stem cells. PLoS One 2012; 7:e31846. [PMID: 22384083 PMCID: PMC3285627 DOI: 10.1371/journal.pone.0031846] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2011] [Accepted: 01/13/2012] [Indexed: 11/20/2022] Open
Abstract
Quiescent hepatic stem cells (HSCs) can be activated when hepatocyte proliferation is compromised. Chemical injury rodent models have been widely used to study the localization, biomarkers, and signaling pathways in HSCs, but these models usually exhibit severe promiscuous toxicity and fail to distinguish damaged and non-damaged cells. Our goal is to establish new animal models to overcome these limitations, thereby providing new insights into HSC biology and application. We generated mutant mice with constitutive or inducible deletion of Damaged DNA Binding protein 1 (DDB1), an E3 ubiquitin ligase, in hepatocytes. We characterized the molecular mechanism underlying the compensatory activation and the properties of oval cells (OCs) by methods of mouse genetics, immuno-staining, cell transplantation and gene expression profiling. We show that deletion of DDB1 abolishes self-renewal capacity of mouse hepatocytes in vivo, leading to compensatory activation and proliferation of DDB1-expressing OCs. Partially restoring proliferation of DDB1-deficient hepatocytes by ablation of p21, a substrate of DDB1 E3 ligase, alleviates OC proliferation. Purified OCs express both hepatocyte and cholangiocyte markers, form colonies in vitro, and differentiate to hepatocytes after transplantation. Importantly, the DDB1 mutant mice exhibit very minor liver damage, compared to a chemical injury model. Microarray analysis reveals several previously unrecognized markers, including Reelin, enriched in oval cells. Here we report a genetic model in which irreversible inhibition of hepatocyte duplication results in HSC-driven liver regeneration. The DDB1 mutant mice can be broadly applied to studies of HSC differentiation, HSC niche and HSCs as origin of liver cancer.
Collapse
Affiliation(s)
- Yoko Endo
- Signal Transduction Program, Sanford-Burnham Medical Research Institute, La Jolla, California, United States of America
| | - Mingjun Zhang
- Signal Transduction Program, Sanford-Burnham Medical Research Institute, La Jolla, California, United States of America
| | - Sachie Yamaji
- Signal Transduction Program, Sanford-Burnham Medical Research Institute, La Jolla, California, United States of America
| | - Yong Cang
- Signal Transduction Program, Sanford-Burnham Medical Research Institute, La Jolla, California, United States of America
- Life Sciences Institute, Zhejiang University, Hangzhou, China
- * E-mail:
| |
Collapse
|
15
|
Viatour P, Ehmer U, Saddic LA, Dorrell C, Andersen JB, Lin C, Zmoos AF, Mazur PK, Schaffer BE, Ostermeier A, Vogel H, Sylvester KG, Thorgeirsson SS, Grompe M, Sage J. Notch signaling inhibits hepatocellular carcinoma following inactivation of the RB pathway. ACTA ACUST UNITED AC 2011; 208:1963-76. [PMID: 21875955 PMCID: PMC3182062 DOI: 10.1084/jem.20110198] [Citation(s) in RCA: 171] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Mice lacking all three Rb genes in the liver develop tumors resembling specific subgroups of human hepatocellular carcinomas, and Notch activity appears to suppress the growth and progression of these tumors. Hepatocellular carcinoma (HCC) is the third cancer killer worldwide with >600,000 deaths every year. Although the major risk factors are known, therapeutic options in patients remain limited in part because of our incomplete understanding of the cellular and molecular mechanisms influencing HCC development. Evidence indicates that the retinoblastoma (RB) pathway is functionally inactivated in most cases of HCC by genetic, epigenetic, and/or viral mechanisms. To investigate the functional relevance of this observation, we inactivated the RB pathway in the liver of adult mice by deleting the three members of the Rb (Rb1) gene family: Rb, p107, and p130. Rb family triple knockout mice develop liver tumors with histopathological features and gene expression profiles similar to human HCC. In this mouse model, cancer initiation is associated with the specific expansion of populations of liver stem/progenitor cells, indicating that the RB pathway may prevent HCC development by maintaining the quiescence of adult liver progenitor cells. In addition, we show that during tumor progression, activation of the Notch pathway via E2F transcription factors serves as a negative feedback mechanism to slow HCC growth. The level of Notch activity is also able to predict survival of HCC patients, suggesting novel means to diagnose and treat HCC.
Collapse
Affiliation(s)
- Patrick Viatour
- Department of Genetics, Department of Pediatrics, Stanford University, Stanford, CA, USA; Department of Medical Chemistry, University of Liège, B-4000 Liège, Belgium
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Abstract
OBJECTIVES Homozygous ZZ α-1-antitrypsin (a1AT) deficiency is a common genetic liver disease that causes liver injury and hepatocellular carcinoma (HCC). The a1AT mutant Z gene encodes a mutant protein that accumulates within hepatocytes leading to hepatocellular death and a hepatic regenerative response. However, the mechanisms linking hepatocellular injury to these responses are poorly understood. In this study, we examined liver injury and response in human liver and in transgenic mice for involvement of hepatic progenitor cells. METHODS Liver biopsy specimens of low-grade, early-stage human ZZ liver exhibiting minimal inflammation and minimal fibrosis (grade 1 and stage 1) were examined for hepatic progenitor cell (HPC) proliferation using immunoreactivity for cytokeratin-7 (CK-7). Transgenic mouse model liver and other selected human biopsies were also examined. RESULTS Increased CK-7-positive HPC proliferation was seen in human ZZ liver compared to normal liver, but was 5-fold less HPC proliferation than in grade- and stage-matched disease control hepatitis C-infected liver. Livers from PiZ mice, a model transgenic for the human a1AT mutant Z gene, which recapitulates the human injury, also showed HPC proliferation. Human ZZ liver and PiZ mice develop dysplasia in the liver and HCC. HCC in PiZ mice was also characterized by HPC proliferation. Progressive hepatic fibrosis with age in the PiZ mice is demonstrated for the first time in the present study. CONCLUSIONS Chronic injury in both ZZ human and PiZ mouse liver is associated with hepatic fibrosis and a unique magnitude of HPC proliferation within the hepatic proliferative response.
Collapse
|
17
|
The Hippo-Salvador pathway restrains hepatic oval cell proliferation, liver size, and liver tumorigenesis. Proc Natl Acad Sci U S A 2010; 107:8248-53. [PMID: 20404163 DOI: 10.1073/pnas.0912203107] [Citation(s) in RCA: 398] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Loss of Hippo signaling in Drosophila leads to tissue overgrowth as a result of increased cell proliferation and decreased cell death. YAP (a homolog of Drosophila Yorkie and target of the Hippo pathway) was recently implicated in control of organ size, epithelial tissue development, and tumorigenesis in mammals. However, the role of the mammalian Hippo pathway in such regulation has remained unclear. We now show that mice with liver-specific ablation of WW45 (a homolog of Drosophila Salvador and adaptor for the Hippo kinase) manifest increased liver size and expansion of hepatic progenitor cells (oval cells) and eventually develop hepatomas. Moreover, ablation of WW45 increased the abundance of YAP and induced its localization to the nucleus in oval cells, likely accounting for their increased proliferative capacity, but not in hepatocytes. Liver tumors that developed in mice heterozygous for WW45 deletion or with liver-specific WW45 ablation showed a mixed pathology combining characteristics of hepatocellular carcinoma and cholangiocarcinoma and seemed to originate from oval cells. Together, our results suggest that the mammalian Hippo-Salvador pathway restricts the proliferation of hepatic oval cells and thereby controls liver size and prevents the development of oval cell-derived tumors.
Collapse
|
18
|
Abstract
The liver consists of many cell types with specialized functions. Hepatocytes are one of the main players in the organ and therefore are the most vulnerable cells to damage. Since they are not everlasting cells, they need to be replenished throughout life. Although the capacity of hepatocytes to contribute to their own maintenance has long been recognized, recent studies have indicated the presence of both intrahepatic and extrahepatic stem/progenitor cell populations that serve to maintain the normal organ and to regenerate damaged parenchyma in response to a variety of insults.The intrahepatic compartment most likely derives primarily from the biliary tree, particularly the most proximal branches, i.e. the canals of Hering and smallest ductules. The extrahepatic compartment is at least in part derived from diverse populations of cells from the bone marrow. Embryonic stem cells (ES's) are considered as a part of the extrahepatic compartment. Due to their pluripotent capabilities, ES cell-derived cells form a potential future source of hepatocytes, to replace or restore hepatic tissues that have been damaged by disease or injury. Progressing knowledge about stem cells in the liver would allow a better understanding of the mechanisms of hepatic homeostasis and regeneration. Although a human stem cell-derived cell type equivalent to primary hepatocytes does not yet exist, the promising results obtained with extrahepatic stem cells would open the way to cell-based therapy for liver diseases.
Collapse
Affiliation(s)
- Nalu Navarro-Alvarez
- Department of Surgery, Okayama University Graduate School of Medicine and Dentistry, Okayama, Japan
| | | | | |
Collapse
|
19
|
Okabe M, Tsukahara Y, Tanaka M, Suzuki K, Saito S, Kamiya Y, Tsujimura T, Nakamura K, Miyajima A. Potential hepatic stem cells reside in EpCAM+ cells of normal and injured mouse liver. Development 2009; 136:1951-60. [PMID: 19429791 DOI: 10.1242/dev.031369] [Citation(s) in RCA: 232] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Hepatic oval cells are considered to be facultative hepatic stem cells (HSCs) that differentiate into hepatocytes and cholangiocytes in severely injured liver. Hepatic oval cells have also been implicated in tumorigenesis. However, their nature and origin remain elusive. To isolate and characterize mouse oval cells, we searched for cell surface molecules expressed on oval cells and analyzed their nature at the single-cell level by flow cytometric analysis and in the in vitro colony formation assay. We demonstrate that epithelial cell adhesion molecule (EpCAM) is expressed in both mouse normal cholangiocytes and oval cells, whereas its related protein, TROP2, is expressed exclusively in oval cells, establishing TROP2 as a novel marker to distinguish oval cells from normal cholangiocytes. EpCAM(+) cells isolated from injured liver proliferate to form colonies in vitro, and the clonally expanded cells differentiate into hepatocytes and cholangiocytes, suggesting that the oval cell fraction contains potential HSCs. Interestingly, such cells with HSC characteristics exist among EpCAM(+) cells of normal liver. Intriguingly, comparison of the colony formation of EpCAM(+) cells in normal and injured liver reveals little difference in the number of potential HSCs, strongly suggesting that most proliferating mouse oval cells represent transit-amplifying cells rather than HSCs.
Collapse
Affiliation(s)
- Mayuko Okabe
- Laboratory of Cell Growth and Differentiation, Institute of Molecular and Cellular Biosciences, The University of Tokyo, Tokyo 113-0032, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Dong XJ, Zhang GR, Zhou QJ, Pan RL, Chen Y, Xiang LX, Shao JZ. Direct hepatic differentiation of mouse embryonic stem cells induced by valproic acid and cytokines. World J Gastroenterol 2009; 15:5165-75. [PMID: 19891015 PMCID: PMC2773895 DOI: 10.3748/wjg.15.5165] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To develop a protocol for direct hepatic lineage differentiation from early developmental progenitors to a population of mature hepatocytes.
METHODS: Hepatic progenitor cells and then mature hepatocytes from mouse embryonic stem (ES) cells were obtained in a sequential manner, induced by valproic acid (VPA) and cytokines (hepatocyte growth factor, epidermal growth factor and insulin). Morphological changes of the differentiated cells were examined by phase-contrast microscopy and electron microscopy. Reverse transcription polymerase chain reaction and immunocytochemical analyses were used to evaluate the gene expression profiles of the VPA-induced hepatic progenitors and the hepatic progenitor-derived hepatocytes. Glycogen storage, cytochrome P450 activity, transplantation assay, differentiation of bile duct-like structures and tumorigenic analyses were performed for the functional identification of the differentiated cells. Furthermore, FACS and electron microscopy were used for the analyses of cell cycle profile and apoptosis in VPA-induced hepatic differentiated cells.
RESULTS: Based on the combination of VPA and cytokines, mouse ES cells differentiated into a uniform and homogeneous cell population of hepatic progenitor cells and then matured into functional hepatocytes. The progenitor population shared several characteristics with ES cells and hepatic stem/progenitor cells, and represented a novel progenitor cell between ES and hepatic oval cells in embryonic development. The differentiated hepatocytes from progenitor cells shared typical characteristics with mature hepatocytes, including the patterns of gene expression, immunological markers, in vitro hepatocyte functions and in vivo capacity to restore acute-damaged liver function. In addition, the differentiation of hepatic progenitor cells from ES cells was accompanied by significant cell cycle arrest and selective survival of differentiating cells towards hepatic lineages.
CONCLUSION: Hepatic cells of different developmental stages from early progenitors to matured hepatocytes can be acquired in the appropriate order based on sequential induction with VPA and cytokines.
Collapse
|
21
|
Bird TG, Lorenzini S, Forbes SJ. Activation of stem cells in hepatic diseases. Cell Tissue Res 2008; 331:283-300. [PMID: 18046579 PMCID: PMC3034134 DOI: 10.1007/s00441-007-0542-z] [Citation(s) in RCA: 124] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2007] [Accepted: 10/23/2007] [Indexed: 02/06/2023]
Abstract
The liver has enormous regenerative capacity. Following acute liver injury, hepatocyte division regenerates the parenchyma but, if this capacity is overwhelmed during massive or chronic liver injury, the intrinsic hepatic progenitor cells (HPCs) termed oval cells are activated. These HPCs are bipotential and can regenerate both biliary epithelia and hepatocytes. Multiple signalling pathways contribute to the complex mechanism controlling the behaviour of the HPCs. These signals are delivered primarily by the surrounding microenvironment. During liver disease, stem cells extrinsic to the liver are activated and bone-marrow-derived cells play a role in the generation of fibrosis during liver injury and its resolution. Here, we review our current understanding of the role of stem cells during liver disease and their mechanisms of activation.
Collapse
Affiliation(s)
- T G Bird
- MRC/University of Edinburgh Centre for Inflammation Research, The Queen's Medical Research Institute, University of Edinburgh, 47 Little France Crescent, Edinburgh, EH16 4TJ, UK.
| | | | | |
Collapse
|
22
|
Wauthier E, Schmelzer E, Turner W, Zhang L, LeCluyse E, Ruiz J, Turner R, Furth M, Kubota H, Lozoya O, Barbier C, McClelland R, Yao H, Moss N, Bruce A, Ludlow J, Reid L. Hepatic Stem Cells and Hepatoblasts: Identification, Isolation, and Ex Vivo Maintenance. Methods Cell Biol 2008; 86:137-225. [DOI: 10.1016/s0091-679x(08)00008-3] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
23
|
Rountree CB, Barsky L, Ge S, Zhu J, Senadheera S, Crooks GM. A CD133-expressing murine liver oval cell population with bilineage potential. Stem Cells 2007; 25:2419-29. [PMID: 17585168 DOI: 10.1634/stemcells.2007-0176] [Citation(s) in RCA: 106] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Although oval cells are postulated to be adult liver stem cells, a well-defined phenotype of a bipotent liver stem cell remains elusive. The heterogeneity of cells within the oval cell fraction has hindered lineage potential studies. Our goal was to identify an enriched population of bipotent oval cells using a combination of flow cytometry and single cell gene expression in conjunction with lineage-specific liver injury models. Expression of cell surface markers on nonparenchymal, nonhematopoietic (CD45-) cells were characterized. Cell populations were isolated by flow cytometry for gene expression studies. 3,5-Diethoxycarbonyl-1,4-dihydrocollidine toxic injury induced cell cycling and expansion specifically in the subpopulation of oval cells in the periportal zone that express CD133. CD133+CD45- cells expressed hepatoblast and stem cell-associated genes, and single cells coexpressed both hepatocyte and cholangiocyte-associated genes, indicating bilineage potential. CD133+CD45- cells proliferated in response to liver injury. Following toxic hepatocyte damage, CD133+CD45- cells demonstrated upregulated expression of the hepatocyte gene Albumin. In contrast, toxic cholangiocyte injury resulted in upregulation of the cholangiocyte gene Ck19. After 21-28 days in culture, CD133+CD45- cells continued to generate cells of both hepatocyte and cholangiocyte lineages. Thus, CD133 expression identifies a population of oval cells in adult murine liver with the gene expression profile and function of primitive, bipotent liver stem cells. In response to lineage-specific injury, these cells demonstrate a lineage-appropriate genetic response. Disclosure of potential conflicts of interest is found at the end of this article.
Collapse
Affiliation(s)
- C Bart Rountree
- Division of Gastroenterology, Hepatology, and Nutrition, Childrens Hospital Los Angeles, Los Angeles, California, USA.
| | | | | | | | | | | |
Collapse
|
24
|
Heo J, Factor VM, Uren T, Takahama Y, Lee JS, Major M, Feinstone SM, Thorgeirsson SS. Hepatic precursors derived from murine embryonic stem cells contribute to regeneration of injured liver. Hepatology 2006; 44:1478-86. [PMID: 17133486 DOI: 10.1002/hep.21441] [Citation(s) in RCA: 122] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
Abstract
We established an efficient system for differentiation, expansion and isolation of hepatic progenitor cells from mouse embryonic stem (ES) cells and evaluated their capacity to repopulate injured liver. Using mouse ES cells transfected with the green fluorescent protein (GFP) reporter gene regulated by albumin (ALB) enhancer/promoter, we found that a serum-free chemically defined medium supports formation of embryoid bodies (EBs) and differentiation of hepatic lineage cells in the absence of exogenous growth factors or feeder cell layers. The first GFP+ cells expressing ALB were detected in close proximity to "beating" myocytes after 7 days of EB cultures. GFP+ cells increased in number, acquired hepatocyte-like morphology and hepatocyte-specific markers (i.e., ALB, AAT, TO, and G6P), and by 28 days represented more than 30% of cells isolated from EB outgrowths. The FACS-purified GFP+ cells developed into functional hepatocytes without evidence of cell fusion and participated in the repairing of diseased liver when transplanted into MUP-uPA/SCID mice. The ES cell-derived hepatocytes were responsive to normal growth regulation and proliferated at the same rate as the host hepatocytes after an additional growth stimulus from CCl(4)-induced liver injury. The transplanted GFP+ cells also differentiated into biliary epithelial cells. In conclusion, a highly enriched population of committed hepatocyte precursors can be generated from ES cells in vitro for effective cell replacement therapy.
Collapse
Affiliation(s)
- Jeonghoon Heo
- Laboratory of Experimental Carcinogenesis, Center for Cancer Research, National Cancer Institute (NCI), National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Abstract
The field of stem cell biology has exploded with the study of a wide range of cellular populations involving endodermal, mesenchymal, and ectodermal organs. One area of extensive study has included the identification of hepatic stem and progenitor cell subpopulations. Liver stem cells provide insights into the potential pathways involving liver regeneration that are independent of mature hepatocytes. Hepatic progenitor cells are either bipotent or multipotent and capable of multiple rounds of replication. They have been identified in fetal as well as adult liver. Various injury models have been used to expand this cellular compartment. The nomenclature, origin, and function of the hepatic progenitor cell populations are areas of ongoing debate. In this review, we will discuss the different definitions and functions of hepatic progenitor cells as well as the current research efforts examining their therapeutic potential.
Collapse
Affiliation(s)
- Maggie H Walkup
- Department of Surgery, University of North Carolina School of Medicine, Chapel Hill, 27599-7211, USA
| | | |
Collapse
|
26
|
Xu X, Kobayashi S, Qiao W, Li C, Xiao C, Radaeva S, Stiles B, Wang RH, Ohara N, Yoshino T, LeRoith D, Torbenson MS, Gores GJ, Wu H, Gao B, Deng CX. Induction of intrahepatic cholangiocellular carcinoma by liver-specific disruption of Smad4 and Pten in mice. J Clin Invest 2006; 116:1843-52. [PMID: 16767220 PMCID: PMC1474816 DOI: 10.1172/jci27282] [Citation(s) in RCA: 182] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2005] [Accepted: 04/11/2006] [Indexed: 01/03/2023] Open
Abstract
Cholangiocellular carcinoma (CC), the second most common primary liver cancer, is associated with a poor prognosis. It has been shown that CCs harbor alterations of a number of tumor-suppressor genes and oncogenes, yet key regulators for tumorigenesis remain unknown. Here we have generated a mouse model that develops CC with high penetrance using liver-specific targeted disruption of tumor suppressors SMAD4 and PTEN. In the absence of SMAD4 and PTEN, hyperplastic foci emerge exclusively from bile ducts of mutant mice at 2 months of age and continue to grow, leading to tumor formation in all animals at 4-7 months of age. We show that CC formation follows a multistep progression of histopathological changes that are associated with significant alterations, including increased levels of phosphorylated AKT, FOXO1, GSK-3beta, mTOR, and ERK and increased nuclear levels of cyclin D1. We further demonstrate that SMAD4 and PTEN regulate each other through a novel feedback mechanism to maintain an expression balance and synergistically repress CC formation. Finally, our analysis of human CC detected PTEN inactivation in a majority of p-AKT-positive CCs, while about half also lost SMAD4 expression. These findings elucidate the relationship between SMAD4 and PTEN and extend our understanding of CC formation.
Collapse
Affiliation(s)
- Xiaoling Xu
- Genetics of Development and Disease Branch, NIDDK, NIH, Bethesda, Maryland, USA.
Division of Gastroenterology and Hepatology, Mayo Clinic College of Medicine, Rochester, Minnesota, USA.
Section on Liver Biology, Laboratory of Physiologic Studies, National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, Maryland, USA.
Department of Molecular and Medical Pharmacology, UCLA David Geffen School of Medicine, Los Angeles, California, USA.
Department of Pathology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Science, Okayama, Japan.
Diabetes Branch, NIDDK, NIH, Bethesda, Maryland, USA.
Department of Pathology, The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Shogo Kobayashi
- Genetics of Development and Disease Branch, NIDDK, NIH, Bethesda, Maryland, USA.
Division of Gastroenterology and Hepatology, Mayo Clinic College of Medicine, Rochester, Minnesota, USA.
Section on Liver Biology, Laboratory of Physiologic Studies, National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, Maryland, USA.
Department of Molecular and Medical Pharmacology, UCLA David Geffen School of Medicine, Los Angeles, California, USA.
Department of Pathology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Science, Okayama, Japan.
Diabetes Branch, NIDDK, NIH, Bethesda, Maryland, USA.
Department of Pathology, The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Wenhui Qiao
- Genetics of Development and Disease Branch, NIDDK, NIH, Bethesda, Maryland, USA.
Division of Gastroenterology and Hepatology, Mayo Clinic College of Medicine, Rochester, Minnesota, USA.
Section on Liver Biology, Laboratory of Physiologic Studies, National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, Maryland, USA.
Department of Molecular and Medical Pharmacology, UCLA David Geffen School of Medicine, Los Angeles, California, USA.
Department of Pathology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Science, Okayama, Japan.
Diabetes Branch, NIDDK, NIH, Bethesda, Maryland, USA.
Department of Pathology, The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Cuiling Li
- Genetics of Development and Disease Branch, NIDDK, NIH, Bethesda, Maryland, USA.
Division of Gastroenterology and Hepatology, Mayo Clinic College of Medicine, Rochester, Minnesota, USA.
Section on Liver Biology, Laboratory of Physiologic Studies, National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, Maryland, USA.
Department of Molecular and Medical Pharmacology, UCLA David Geffen School of Medicine, Los Angeles, California, USA.
Department of Pathology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Science, Okayama, Japan.
Diabetes Branch, NIDDK, NIH, Bethesda, Maryland, USA.
Department of Pathology, The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Cuiying Xiao
- Genetics of Development and Disease Branch, NIDDK, NIH, Bethesda, Maryland, USA.
Division of Gastroenterology and Hepatology, Mayo Clinic College of Medicine, Rochester, Minnesota, USA.
Section on Liver Biology, Laboratory of Physiologic Studies, National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, Maryland, USA.
Department of Molecular and Medical Pharmacology, UCLA David Geffen School of Medicine, Los Angeles, California, USA.
Department of Pathology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Science, Okayama, Japan.
Diabetes Branch, NIDDK, NIH, Bethesda, Maryland, USA.
Department of Pathology, The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Svetlana Radaeva
- Genetics of Development and Disease Branch, NIDDK, NIH, Bethesda, Maryland, USA.
Division of Gastroenterology and Hepatology, Mayo Clinic College of Medicine, Rochester, Minnesota, USA.
Section on Liver Biology, Laboratory of Physiologic Studies, National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, Maryland, USA.
Department of Molecular and Medical Pharmacology, UCLA David Geffen School of Medicine, Los Angeles, California, USA.
Department of Pathology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Science, Okayama, Japan.
Diabetes Branch, NIDDK, NIH, Bethesda, Maryland, USA.
Department of Pathology, The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Bangyan Stiles
- Genetics of Development and Disease Branch, NIDDK, NIH, Bethesda, Maryland, USA.
Division of Gastroenterology and Hepatology, Mayo Clinic College of Medicine, Rochester, Minnesota, USA.
Section on Liver Biology, Laboratory of Physiologic Studies, National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, Maryland, USA.
Department of Molecular and Medical Pharmacology, UCLA David Geffen School of Medicine, Los Angeles, California, USA.
Department of Pathology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Science, Okayama, Japan.
Diabetes Branch, NIDDK, NIH, Bethesda, Maryland, USA.
Department of Pathology, The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Rui-Hong Wang
- Genetics of Development and Disease Branch, NIDDK, NIH, Bethesda, Maryland, USA.
Division of Gastroenterology and Hepatology, Mayo Clinic College of Medicine, Rochester, Minnesota, USA.
Section on Liver Biology, Laboratory of Physiologic Studies, National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, Maryland, USA.
Department of Molecular and Medical Pharmacology, UCLA David Geffen School of Medicine, Los Angeles, California, USA.
Department of Pathology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Science, Okayama, Japan.
Diabetes Branch, NIDDK, NIH, Bethesda, Maryland, USA.
Department of Pathology, The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Nobuya Ohara
- Genetics of Development and Disease Branch, NIDDK, NIH, Bethesda, Maryland, USA.
Division of Gastroenterology and Hepatology, Mayo Clinic College of Medicine, Rochester, Minnesota, USA.
Section on Liver Biology, Laboratory of Physiologic Studies, National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, Maryland, USA.
Department of Molecular and Medical Pharmacology, UCLA David Geffen School of Medicine, Los Angeles, California, USA.
Department of Pathology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Science, Okayama, Japan.
Diabetes Branch, NIDDK, NIH, Bethesda, Maryland, USA.
Department of Pathology, The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Tadashi Yoshino
- Genetics of Development and Disease Branch, NIDDK, NIH, Bethesda, Maryland, USA.
Division of Gastroenterology and Hepatology, Mayo Clinic College of Medicine, Rochester, Minnesota, USA.
Section on Liver Biology, Laboratory of Physiologic Studies, National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, Maryland, USA.
Department of Molecular and Medical Pharmacology, UCLA David Geffen School of Medicine, Los Angeles, California, USA.
Department of Pathology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Science, Okayama, Japan.
Diabetes Branch, NIDDK, NIH, Bethesda, Maryland, USA.
Department of Pathology, The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Derek LeRoith
- Genetics of Development and Disease Branch, NIDDK, NIH, Bethesda, Maryland, USA.
Division of Gastroenterology and Hepatology, Mayo Clinic College of Medicine, Rochester, Minnesota, USA.
Section on Liver Biology, Laboratory of Physiologic Studies, National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, Maryland, USA.
Department of Molecular and Medical Pharmacology, UCLA David Geffen School of Medicine, Los Angeles, California, USA.
Department of Pathology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Science, Okayama, Japan.
Diabetes Branch, NIDDK, NIH, Bethesda, Maryland, USA.
Department of Pathology, The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Michael S. Torbenson
- Genetics of Development and Disease Branch, NIDDK, NIH, Bethesda, Maryland, USA.
Division of Gastroenterology and Hepatology, Mayo Clinic College of Medicine, Rochester, Minnesota, USA.
Section on Liver Biology, Laboratory of Physiologic Studies, National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, Maryland, USA.
Department of Molecular and Medical Pharmacology, UCLA David Geffen School of Medicine, Los Angeles, California, USA.
Department of Pathology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Science, Okayama, Japan.
Diabetes Branch, NIDDK, NIH, Bethesda, Maryland, USA.
Department of Pathology, The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Gregory J. Gores
- Genetics of Development and Disease Branch, NIDDK, NIH, Bethesda, Maryland, USA.
Division of Gastroenterology and Hepatology, Mayo Clinic College of Medicine, Rochester, Minnesota, USA.
Section on Liver Biology, Laboratory of Physiologic Studies, National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, Maryland, USA.
Department of Molecular and Medical Pharmacology, UCLA David Geffen School of Medicine, Los Angeles, California, USA.
Department of Pathology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Science, Okayama, Japan.
Diabetes Branch, NIDDK, NIH, Bethesda, Maryland, USA.
Department of Pathology, The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Hong Wu
- Genetics of Development and Disease Branch, NIDDK, NIH, Bethesda, Maryland, USA.
Division of Gastroenterology and Hepatology, Mayo Clinic College of Medicine, Rochester, Minnesota, USA.
Section on Liver Biology, Laboratory of Physiologic Studies, National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, Maryland, USA.
Department of Molecular and Medical Pharmacology, UCLA David Geffen School of Medicine, Los Angeles, California, USA.
Department of Pathology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Science, Okayama, Japan.
Diabetes Branch, NIDDK, NIH, Bethesda, Maryland, USA.
Department of Pathology, The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Bin Gao
- Genetics of Development and Disease Branch, NIDDK, NIH, Bethesda, Maryland, USA.
Division of Gastroenterology and Hepatology, Mayo Clinic College of Medicine, Rochester, Minnesota, USA.
Section on Liver Biology, Laboratory of Physiologic Studies, National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, Maryland, USA.
Department of Molecular and Medical Pharmacology, UCLA David Geffen School of Medicine, Los Angeles, California, USA.
Department of Pathology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Science, Okayama, Japan.
Diabetes Branch, NIDDK, NIH, Bethesda, Maryland, USA.
Department of Pathology, The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Chu-Xia Deng
- Genetics of Development and Disease Branch, NIDDK, NIH, Bethesda, Maryland, USA.
Division of Gastroenterology and Hepatology, Mayo Clinic College of Medicine, Rochester, Minnesota, USA.
Section on Liver Biology, Laboratory of Physiologic Studies, National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, Maryland, USA.
Department of Molecular and Medical Pharmacology, UCLA David Geffen School of Medicine, Los Angeles, California, USA.
Department of Pathology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Science, Okayama, Japan.
Diabetes Branch, NIDDK, NIH, Bethesda, Maryland, USA.
Department of Pathology, The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
27
|
Santoni-Rugiu E, Jelnes P, Thorgeirsson SS, Bisgaard HC. Progenitor cells in liver regeneration: molecular responses controlling their activation and expansion. APMIS 2006; 113:876-902. [PMID: 16480456 DOI: 10.1111/j.1600-0463.2005.apm_386.x] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Although normally quiescent, the adult mammalian liver possesses a great capacity to regenerate after different types of injuries in order to restore the lost liver mass and ensure maintenance of the multiple liver functions. Major players in the regeneration process are mature residual cells, including hepatocytes, cholangiocytes and stromal cells. However, if the regenerative capacity of mature cells is impaired by liver-damaging agents, hepatic progenitor cells are activated and expand into the liver parenchyma. Upon transit amplification, the progenitor cells may generate new hepatocytes and biliary cells to restore liver homeostasis. In recent years, hepatic progenitor cells have been the subject of increasing interest due to their therapeutic potential in numerous liver diseases as alternative or supportive/complementary tools to liver transplantation. While the first investigations on hepatic progenitor cells have focused on their origin and phenotypic characterization, recent attention has focused on the influence of the hepatic microenvironment on their activation and proliferation. This microenvironment comprises the extracellular matrix, epithelial and non-epithelial resident liver cells, and recruited inflammatory cells as well as the variety of growth-modulating molecules produced and/or harboured by these elements. The cellular and molecular responses to different regenerative stimuli seem to depend on the injury inflicted and consequently on the molecular microenvironment created in the liver by a certain insult. This review will focus on molecular responses controlling activation and expansion of the hepatic progenitor cell niche, emphasizing similarities and differences in the microenvironments orchestrating regeneration by recruitment of progenitor cell populations or by replication of mature cells.
Collapse
|
28
|
Warskulat U, Borsch E, Reinehr R, Heller-Stilb B, Mönnighoff I, Buchczyk D, Donner M, Flögel U, Kappert G, Soboll S, Beer S, Pfeffer K, Marschall HU, Gabrielsen M, Amiry-Moghaddam M, Ottersen OP, Dienes HP, Häussinger D. Chronic liver disease is triggered by taurine transporter knockout in the mouse. FASEB J 2006; 20:574-6. [PMID: 16421246 DOI: 10.1096/fj.05-5016fje] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Taurine is an abundant organic osmolyte with antioxidant and immunomodulatory properties. Its role in the pathogenesis of chronic liver disease is unknown. The liver phenotype was studied in taurine transporter knockout (taut-/-) mice. Hepatic taurine levels were ~21, 15 and 6 mumol/g liver wet weight in adult wild-type, heterozygous (taut+/-) and homozygous (taut-/-) mice, respectively. Immunoelectronmicroscopy revealed an almost complete depletion of taurine in Kupffer and sinusoidal endothelial cells, but not in parenchymal cells of (taut-/-) mice. Compared with wild-type mice, (taut-/-) and (taut+/-) mice developed moderate unspecific hepatitis and liver fibrosis with increased frequency of neoplastic lesions beyond 1 year of age. Liver disease in (taut-/-) mice was characterized by hepatocyte apoptosis, activation of the CD95 system, elevated plasma TNF-alpha levels, hepatic stellate cell and oval cell proliferation, and severe mitochondrial abnormalities in liver parenchymal cells. Mitochondrial dysfunction was suggested by a significantly lower respiratory control ratio in isolated mitochondria from (taut-/-) mice. Taut knockout had no effect on taurine-conjugated bile acids in bile; however, the relative amount of cholate-conjugates acid was decreased at the expense of 7-keto-cholate-conjugates. In conclusion, taurine deficiency due to defective taurine transport triggers chronic liver disease, which may involve mitochondrial dysfunction.
Collapse
Affiliation(s)
- Ulrich Warskulat
- Clinic for Gastroenterology, Hepatology, and Infectiology, Heinrich Heine University, Düsseldorf, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Gleiberman AS, Encinas JM, Mignone JL, Michurina T, Rosenfeld MG, Enikolopov G. Expression of nestin-green fluorescent protein transgene marks oval cells in the adult liver. Dev Dyn 2005; 234:413-21. [PMID: 16127706 PMCID: PMC2751636 DOI: 10.1002/dvdy.20536] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Oval cells, which become apparent in the liver after chronic injury, serve as bipotent progenitors for differentiated hepatocytes and cholangiocytes. We found that, in the liver of adult transgenic mice in which expression of green fluorescent protein (GFP) is driven by regulatory elements of the nestin gene, the GFP signal marks a subpopulation of small epithelial cells that meet the criteria for oval cells, including morphology, localization, antigenic profile, and reactivity in response to injury. In the regenerating and developing liver, we also found nestin-GFP-positive cells that express hepatocyte markers; such cells may correspond to transiently appearing differentiating progeny of oval cells. During development, GFP-expressing cells in the liver emerge relatively late, after the appearance of differentiated hepatocytes and cholangiocytes. Our results suggest that nestin-GFP cells in the liver correspond to a specialized cell type whose primary function may be to serve as a reserve for adult liver epithelial cell types.
Collapse
Affiliation(s)
- Anatoli S Gleiberman
- Department of Medicine, University of California San Diego, La Jolla, CA 92093-0648, USA.
| | | | | | | | | | | |
Collapse
|
30
|
Jakubowski A, Ambrose C, Parr M, Lincecum JM, Wang MZ, Zheng TS, Browning B, Michaelson JS, Baetscher M, Baestcher M, Wang B, Bissell DM, Burkly LC. TWEAK induces liver progenitor cell proliferation. J Clin Invest 2005; 115:2330-40. [PMID: 16110324 PMCID: PMC1187931 DOI: 10.1172/jci23486] [Citation(s) in RCA: 324] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2004] [Accepted: 05/31/2005] [Indexed: 12/13/2022] Open
Abstract
Progenitor ("oval") cell expansion accompanies many forms of liver injury, including alcohol toxicity and submassive parenchymal necrosis as well as experimental injury models featuring blocked hepatocyte replication. Oval cells can potentially become either hepatocytes or biliary epithelial cells and may be critical to liver regeneration, particularly when hepatocyte replication is impaired. The regulation of oval cell proliferation is incompletely understood. Herein we present evidence that a TNF family member called TWEAK (TNF-like weak inducer of apoptosis) stimulates oval cell proliferation in mouse liver through its receptor Fn14. TWEAK has no effect on mature hepatocytes and thus appears to be selective for oval cells. Transgenic mice overexpressing TWEAK in hepatocytes exhibit periportal oval cell hyperplasia. A similar phenotype was obtained in adult wild-type mice, but not Fn14-null mice, by administering TWEAK-expressing adenovirus. Oval cell expansion induced by 3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC) was significantly reduced in Fn14-null mice as well as in adult wild-type mice with a blocking anti-TWEAK mAb. Importantly, TWEAK stimulated the proliferation of an oval cell culture model. Finally, we show increased Fn14 expression in chronic hepatitis C and other human liver diseases relative to its expression in normal liver, which suggests a role for the TWEAK/Fn14 pathway in human liver injury. We conclude that TWEAK has a selective mitogenic effect for liver oval cells that distinguishes it from other previously described growth factors.
Collapse
Affiliation(s)
- Aniela Jakubowski
- Department of Exploratory Science, Biogen Idec Inc., Cambridge, Massachusetts 02142, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Kofman AV, Morgan G, Kirschenbaum A, Osbeck J, Hussain M, Swenson S, Theise ND. Dose- and time-dependent oval cell reaction in acetaminophen-induced murine liver injury. Hepatology 2005; 41:1252-61. [PMID: 15880565 DOI: 10.1002/hep.20696] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
We examined the response of murine oval cells, that is, the putative liver progenitor cells, to acetaminophen. Female C57BL/6J mice were injected intraperitoneally with varying doses of N-acetyl-paraaminophen (APAP) (250, 500, 750, and 1,000 mg/kg of weight) and sacrificed at 3, 6, 9, 24, and 48 hours. In preliminary studies, we showed that anticytokeratin antibodies detected A6-positive cells with a sensitivity and specificity of greater than 99%. The oval cell reaction was quantified, on immunostaining for biliary-type cytokeratins, as both number and density of oval cells per portal tract, analyzed by size of portal tract. Acetaminophen injury was followed by periportal oval cell accumulation displaying a moderate degree of morphological homogeneity. Oval cell response was biphasic, not temporally correlating with the single wave of injury seen histologically. Increases in oval cells were largely confined to the smallest portal tracts, in keeping with their primary derivation from the canals of Hering, and increased in a dose-dependent fashion. The timing of the two peaks of the oval cell reaction also changed with increasing dose, the first becoming earlier and the second later. In conclusion, our studies indicate a marked oval cell activation during the height of hepatic injury. Oval cells appear to be resistant to acetaminophen injury. The close fidelity of mechanism and histology of acetaminophen injury between mouse and human livers makes it a useful model for investigating liver regeneration and the participation of stem/progenitor cells in that process.
Collapse
Affiliation(s)
- Alexander V Kofman
- Department of Medicine, Division of Digestive Diseases, Liver & Stem Cell Research Laboratory, Beth Israel Medical Center, New York, NY 10003, USA
| | | | | | | | | | | | | |
Collapse
|
32
|
Petersen BE, Grossbard B, Hatch H, Pi L, Deng J, Scott EW. Mouse A6-positive hepatic oval cells also express several hematopoietic stem cell markers. Hepatology 2003; 37:632-640. [PMID: 12601361 DOI: 10.1053/jhep.2003.50104] [Citation(s) in RCA: 177] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Hepatic oval cells (HOC) are thought to be a type of facultative stem cell that arises as a result of certain forms of hepatic injury. A new and more efficient model has been established to activate the oval cell compartment in mice by incorporating 3,5-diethoxycarbonyl-1,4-dihydro-collidine (DDC) in a standard chow at a concentration of 0.1%. At the present time, very few markers exist for the mouse oval cells. One accepted marker is A6, an uncharacterized epitope recognized by mouse hepatic oval cells and it is accepted to be an oval cell marker. Sca-1 is a cell surface marker used to identify hematopoietic stem cells in conjunction with Thy-1+, CD34+, and lineage-specific markers. Both the CD34 and Sca-1 antigens are not normally expressed in adult liver, but are expressed in fetal liver, presumably on the hematopoietic cells. We report herein that mouse oval cells express high levels of Sca-1 and CD34, as well as CD45 surface proteins. Immunohistochemistry revealed that the cells expressing Sca-1/CD34/CD45 were indeed oval cells because they co-expressed the oval cell-specific marker A6 (94.57% +/- 0.033%), as well as alpha-fetoprotein (AFP) (75.92% +/- 0.071%). By using Sca-1 antibody in conjunction with magnetic activated cell sorting (MACS), followed with a flow cytometric cell sorting (FACS) method for CD34 and CD45, we have developed a rapid oval cell isolation protocol with high yields of greater than 90%. In conclusion, we have an efficient murine model for the production and isolation of large numbers of highly purified oval cells. Our system works with most strains of mouse, which will facilitate both in vivo and in vitro studies of mouse hepatic oval cells.
Collapse
Affiliation(s)
- Bryon E Petersen
- Department of Pathology, Immunology and Laboratory Medicine, College of Medical, University of Florida, Gainesville, FL 32610, USA.
| | | | | | | | | | | |
Collapse
|
33
|
Lowes KN, Croager EJ, Olynyk JK, Abraham LJ, Yeoh GCT. Oval cell-mediated liver regeneration: Role of cytokines and growth factors. J Gastroenterol Hepatol 2003; 18:4-12. [PMID: 12519217 DOI: 10.1046/j.1440-1746.2003.02906.x] [Citation(s) in RCA: 119] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
In experimental models, which induce liver damage and simultaneously block hepatocyte proliferation, the recruitment of a hepatic progenitor cell population comprised of oval cells is invariably observed. There is a substantial body of evidence to suggest that oval cells are involved in liver regeneration, as they differentiate into hepatocytes and biliary cells. Recently, bone marrow cells were shown to be a source of a stem cells with the capacity to repopulate the liver. Presently, the relationship between bone marrow cells and oval cells is unclear. Investigations will be greatly assisted by the availability of in vitro models based on a knowledge of cytokines that affect oval cells. While the cytokines, which regulate the different hematopoietic lineages, are well characterized, there is relatively little information regarding those that influence oval cells. This review outlines recent developments in the field of oval cell research and focuses on cytokines and growth factors that have been implicated in regulating oval cell proliferation and differentiation.
Collapse
Affiliation(s)
- Kym N Lowes
- Western Australian Institute for Medical Research, School of Biomedical and Chemical Sciences, The University of Western Australia, Crawley, Australia
| | | | | | | | | |
Collapse
|
34
|
Abstract
The cellular basis of AFP synthesis in normal development, liver regeneration, hepatocarcinogenesis and in tumors is discussed in the review. The attempt is made to interpret the production of AFP by germ cell and liver tumors as a consequence of their origin from the cell types producing AFP in normal conditions. Thus, AFP in germ cell tumors is explained by the development of the yolk sac visceral endoderm (YSVE) in teratocarcinomas, since YSVE is the first site of AFP synthesis in the embryo. The next site of AFP production is embryonal hepatoblast and just hepatoblastomas are the maximal producers of AFP among liver cancers. The reason for AFP resumption in hepatocellular carcinomas (HCC) is not yet clear. This problem is discussed in the light of possible role of oval cells in the HCC origin and the concept of the two states of the mature hepatocyte, associated and non-associated with AFP production. The crucial role of extracellular matrix in the control of AFP-producing state of hepatocyte is emphasized.
Collapse
Affiliation(s)
- G I Abelev
- Laboratory of Immunochemistry, N.N. Blokhin Cancer Research Center of the Russian Academy of Medical Sciences, Moscow, Russia
| | | |
Collapse
|
35
|
Tomizawa M, Garfield S, Factor V, Xanthopoulos KG. Hepatocytes deficient in CCAAT/enhancer binding protein alpha (C/EBP alpha) exhibit both hepatocyte and biliary epithelial cell character. Biochem Biophys Res Commun 1998; 249:1-5. [PMID: 9705820 DOI: 10.1006/bbrc.1998.8999] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
To further elucidate the role of CCAAT/Enhancer Binding Protein alpha (C/EBP alpha) in hepatocyte differentiation, we investigated fetal and newborn C/EBP alpha-deficient (C/EBP alpha -/-) mice using confocal microscopy and markers specific for hepatocyte (AFP) and biliary epithelial cell (A6) differentiation. Histologically, in fetal liver of C/EBP alpha -/- mice, pseudoglandular structures appeared starting at 16.5 days of gestation. In newborn livers, the diameters of these structures greatly increased. They were randomly distributed between portal and central veins and interfered with the establishment of normal hepatic plates. However, the portal bile ducts developed normally. The pseudoglandular structures were lined with small hepatocytes with round nuclei and were positive for both AFP and A6 antigens. These data show that C/EBP alpha -/- hepatocytes exhibit biliary epithelial cell characters and suggest an involvement of C/EBP alpha in the control of the switch in the differentiation of bi-potential hepatoblasts along the hepatocyte lineage.
Collapse
Affiliation(s)
- M Tomizawa
- National Human Genome Research Institute, CGTB, NIH, Bethesda, Maryland 20892-1852, USA
| | | | | | | |
Collapse
|
36
|
Abstract
The development and differentiation of bile ducts in the human and rodent liver are reviewed. The liver primordium develops as a ventral diverticulum in the anterior intestinal portal region, which consists of endodermal and mesodermal components. The endodermal cells differentiate into hepatocytes and all epithelial cells of the bile ducts in the adult liver. The gallbladder and extrahepatic bile ducts also start to develop from hepatic endodermal cells and hepatoblasts just after liver primordium formation. The gallbladder and cystic duct do not develop through hepatic development in the rat. Intrahepatic bile ducts are formed from periportal hepatoblasts forming the "ductal plate" and expressing alpha-fetoprotein, and albumin and bile duct-specific cytokeratin and develop independently of extrahepatic bile duct formation. The first sign of intrahepatic bile duct differentiation is the increased expression of bile duct-specific cytokeratin and large lumina formation in periportal hepatoblasts, and then deposition of basal laminar components occurs on the basal side. Their development takes place discontinuously along portal veins at the early stage of development, and they then become confluent through development. Periportal connective tissue, glucocorticoid hormones, and basal laminar components may play important roles in the differentiation of bile ducts.
Collapse
Affiliation(s)
- N Shiojiri
- Department of Biology, Faculty of Science, Shizuoka University, Japan
| |
Collapse
|
37
|
Grisham J, Thorgeirsson SS. Liver stem cells**The colour plate section for this chapter appears between pages 274 and 275. Stem Cells 1997. [DOI: 10.1016/b978-012563455-7/50009-x] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|