1
|
Morita M, Watanabe S, Nomura N, Takano-Matsuzaki K, Oyama M, Iwai T, Tanabe M. Sulfatide-selectin signaling in the spinal cord induces mechanical allodynia. J Neurochem 2023; 164:658-670. [PMID: 36528843 DOI: 10.1111/jnc.15743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 11/08/2022] [Accepted: 11/28/2022] [Indexed: 12/23/2022]
Abstract
Sulfatide is a sulfated glycosphingolipid that is present abundantly in myelin sheaths of the brain and spinal cord. It is synthesized by a cerebroside sulfotransferase encoded by Gal3st1, which catalyzes the transfer of sulfate from 3'-phosphoadenylylsulfate to galactosylceramide. We previously reported that Gal3st1 gene expression in the spinal cord is up-regulated 1 day after intraplantar injection of complete Freund's adjuvant (CFA), indicating that sulfatide is involved in inflammatory pain. In the present study, we found that intrathecal injection of sulfatide led to mechanical allodynia. Sulfatide caused levels of glial fibrillary acidic protein (GFAP) and nitric oxide in the spinal cord to increase. Mechanical allodynia induced by intrathecal injection of sulfatide was blocked by nitric oxide synthase inhibitors and by suppression of astrocyte activation by L-α-aminoadipate. These results suggest that sulfatide-induced mechanical allodynia involved glial activation and nitric oxide production. Blocking selectin, a sulfatide-binding protein, with bimosiamose attenuated sulfatide-induced allodynia and ameliorated CFA-induced mechanical allodynia during inflammatory pain. Finally, elevated levels of sulfatide concentration in the spinal cord were observed during CFA-induced inflammatory pain. The elevated sulfatide levels enhanced selectin activation in the spinal cord, resulting in mechanical allodynia. Our data suggest that sulfatide-selectin interaction plays a key role in inflammatory pain.
Collapse
Affiliation(s)
- Motoki Morita
- Laboratory of Pharmacology, School of Pharmaceutical Sciences, Kitasato University, Tokyo, Japan.,Medicinal Research Laboratories, School of Pharmacy, Kitasato University, Tokyo, Japan
| | - Shun Watanabe
- Laboratory of Pharmacology, School of Pharmaceutical Sciences, Kitasato University, Tokyo, Japan.,Medicinal Research Laboratories, School of Pharmacy, Kitasato University, Tokyo, Japan
| | - Natsumi Nomura
- Laboratory of Pharmacology, School of Pharmaceutical Sciences, Kitasato University, Tokyo, Japan.,Medicinal Research Laboratories, School of Pharmacy, Kitasato University, Tokyo, Japan
| | - Kanako Takano-Matsuzaki
- Laboratory of Pharmacology, School of Pharmaceutical Sciences, Kitasato University, Tokyo, Japan.,Medicinal Research Laboratories, School of Pharmacy, Kitasato University, Tokyo, Japan
| | - Misa Oyama
- Laboratory of Pharmacology, School of Pharmaceutical Sciences, Kitasato University, Tokyo, Japan.,Medicinal Research Laboratories, School of Pharmacy, Kitasato University, Tokyo, Japan
| | - Takashi Iwai
- Laboratory of Pharmacology, School of Pharmaceutical Sciences, Kitasato University, Tokyo, Japan.,Medicinal Research Laboratories, School of Pharmacy, Kitasato University, Tokyo, Japan
| | - Mitsuo Tanabe
- Laboratory of Pharmacology, School of Pharmaceutical Sciences, Kitasato University, Tokyo, Japan.,Medicinal Research Laboratories, School of Pharmacy, Kitasato University, Tokyo, Japan
| |
Collapse
|
2
|
Bombeiro AL, Hell RCR, Simões GF, Castro MVD, Oliveira ALRD. Importance of major histocompatibility complex of class I (MHC-I) expression for astroglial reactivity and stability of neural circuits in vitro. Neurosci Lett 2017; 647:97-103. [PMID: 28341478 DOI: 10.1016/j.neulet.2017.03.038] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2017] [Revised: 03/15/2017] [Accepted: 03/20/2017] [Indexed: 01/23/2023]
Abstract
MHC-I molecules are involved in the antigenic presentation of cytosol-derived peptides to CD8T lymphocytes. In the nervous system, MHC-I expression is low to absent, occurring only during certain phases of development and aging or after injuries. The involvement of MHC-I in synaptic plasticity has been reported and, following lesion, astrocytes become reactive, limiting tissue damage. Such cells also attempt to restore homeostasis by secreting cytokines and neurotrophic factors. Moreover, astrocytes modulate synapse function, by taking up and releasing neurotransmitters and by limiting the synaptic cleft. Thus, the aim of the present study was to evaluate if astrocyte activation and reactivity are related to MHC I expression and if astrogliosis can be downregulated by silencing MHC-I mRNA synthesis. Given that, we evaluated astrocyte reactivity and synaptogenesis in co-cultures of astrocytes and spinal neurons under MHC-I RNA interference. For that, the MHC-I β2-microglobulin subunit (β2m) was knocked-down by siRNA in co-cultures (β2m expression <60%, p<0.001). As measured by qRT-PCR, silencing of β2m decreased expression of the astrocytic marker GFAP (<60%, p<0.001), as well as neurotrophic factors (BDNF and GDNF) and pro-inflammatory cytokines (TNF-α, IL-1, IL-6, IL-12 and IL-17). No significant changes in synaptic stability indicate that neuron-neuron interaction was preserved after β2m silencing. Overall, the present data reinforce the importance of MHC-I expression for generation of astrogliosis, what may, in turn, become a target for future CNS/PNS therapies following injury.
Collapse
Affiliation(s)
- André Luis Bombeiro
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas - UNICAMP, Rua Monteiro Lobato, 255, CEP: 13083-865, Campinas, SP, Brazil
| | - Rafaela Chitarra Rodrigues Hell
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas - UNICAMP, Rua Monteiro Lobato, 255, CEP: 13083-865, Campinas, SP, Brazil
| | - Gustavo Ferreira Simões
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas - UNICAMP, Rua Monteiro Lobato, 255, CEP: 13083-865, Campinas, SP, Brazil
| | - Mateus Vidigal de Castro
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas - UNICAMP, Rua Monteiro Lobato, 255, CEP: 13083-865, Campinas, SP, Brazil
| | - Alexandre Leite Rodrigues de Oliveira
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas - UNICAMP, Rua Monteiro Lobato, 255, CEP: 13083-865, Campinas, SP, Brazil.
| |
Collapse
|
3
|
Franco PG, Pasquini LA, Pérez MJ, Rosato-Siri MV, Silvestroff L, Pasquini JM. Paving the way for adequate myelination: The contribution of galectin-3, transferrin and iron. FEBS Lett 2015; 589:3388-95. [PMID: 26296311 DOI: 10.1016/j.febslet.2015.08.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Revised: 07/29/2015] [Accepted: 08/11/2015] [Indexed: 12/24/2022]
Abstract
Considering the worldwide incidence of well characterized demyelinating disorders such as Multiple Sclerosis (MS) and the increasing number of pathologies recently found to involve hypomyelinating factors such as micronutrient deficits, elucidating the molecular basis of central nervous system (CNS) demyelination, remyelination and hypomyelination becomes essential to the development of future neuroregenerative therapies. In this context, this review discusses novel findings on the contribution of galectin-3 (Gal-3), transferrin (Tf) and iron to the processes of myelination and remyelination and their potentially positive regulation of oligodendroglial precursor cell (OPC) differentiation. Studies were conducted in cuprizone (CPZ)-induced demyelination and iron deficiency (ID)-induced hypomyelination, and the participation of glial and neural stem cells (NSC) in the remyelination process was evaluated by means of both in vivo and in vitro assays on primary cell cultures.
Collapse
Affiliation(s)
- Paula G Franco
- Departamento de Química Biológica, Facultad de Farmacia y Bioquímica, IQUIFIB-CONICET, Universidad de Buenos Aires, Argentina
| | - Laura A Pasquini
- Departamento de Química Biológica, Facultad de Farmacia y Bioquímica, IQUIFIB-CONICET, Universidad de Buenos Aires, Argentina
| | - María J Pérez
- Departamento de Química Biológica, Facultad de Farmacia y Bioquímica, IQUIFIB-CONICET, Universidad de Buenos Aires, Argentina
| | - María V Rosato-Siri
- Departamento de Química Biológica, Facultad de Farmacia y Bioquímica, IQUIFIB-CONICET, Universidad de Buenos Aires, Argentina
| | - Lucas Silvestroff
- Departamento de Química Biológica, Facultad de Farmacia y Bioquímica, IQUIFIB-CONICET, Universidad de Buenos Aires, Argentina
| | - Juana M Pasquini
- Departamento de Química Biológica, Facultad de Farmacia y Bioquímica, IQUIFIB-CONICET, Universidad de Buenos Aires, Argentina.
| |
Collapse
|
4
|
Main H, Radenkovic J, Kosobrodova E, McKenzie D, Bilek M, Lendahl U. Cell surface antigen profiling using a novel type of antibody array immobilised to plasma ion-implanted polycarbonate. Cell Mol Life Sci 2014; 71:3841-57. [PMID: 24623559 PMCID: PMC11113427 DOI: 10.1007/s00018-014-1595-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Accepted: 02/21/2014] [Indexed: 01/13/2023]
Abstract
To identify and sort out subpopulations of cells from more complex and heterogeneous assemblies of cells is important for many biomedical applications, and the development of cost- and labour-efficient techniques to accomplish this is warranted. In this report, we have developed a novel array-based platform to discriminate cellular populations based on differences in cell surface antigen expressions. These cell capture microarrays were produced through covalent immobilisation of CD antibodies to plasma ion immersion implantation-treated polycarbonate (PIII-PC), which offers the advantage of a transparent matrix, allowing direct light microscopy visualisation of captured cells. The functionality of the PIII-PC array was validated using several cell types, resulting in unique surface antigen expression profiles. PIII-PC results were compatible with flow cytometry, nitrocellulose cell capture arrays and immunofluorescent staining, indicating that the technique is robust. We report on the use of this PIII-PC cluster of differentiation (CD) antibody array to gain new insights into neural differentiation of mouse embryonic stem (ES) cells and into the consequences of genetic targeting of the Notch signalling pathway, a key signalling mechanism for most cellular differentiation processes. Specifically, we identify CD98 as a novel marker for neural precursors and polarised expression of CD9 in the apical domain of ES cell-derived neural rosettes. We further identify expression of CD9 in hitherto uncharacterised non-neural cells and enrichment of CD49e- and CD117-positive cells in Notch signalling-deficient ES cell differentiations. In conclusion, this work demonstrates that covalent immobilisation of antibody arrays to the PIII-PC surface provides faithful cell surface antigen data in a cost- and labour-efficient manner. This may be used to facilitate high throughput identification and standardisation of more precise marker profiles during stem cell differentiation and in various genetic and disease contexts.
Collapse
Affiliation(s)
- Heather Main
- Department of Cell and Molecular Biology, Karolinska Institutet, 171 77, Stockholm, Sweden,
| | | | | | | | | | | |
Collapse
|
5
|
Katare R, Stroemer P, Hicks C, Stevanato L, Patel S, Corteling R, Miljan E, Vishnubhatla I, Sinden J, Madeddu P. Clinical-Grade Human Neural Stem Cells Promote Reparative Neovascularization in Mouse Models of Hindlimb Ischemia. Arterioscler Thromb Vasc Biol 2014; 34:408-18. [DOI: 10.1161/atvbaha.113.302592] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Objective—
CTX0E03 (CTX) is a clinical-grade human neural stem cell (hNSC) line that promotes angiogenesis and neurogenesis in a preclinical model of stroke and is now under clinical development for stroke disability. We evaluated the therapeutic activity of intramuscular CTX hNSC implantation in murine models of hindlimb ischemia for potential translation to clinical studies in critical limb ischemia.
Approach and Results—
Immunodeficient (CD-1 Fox
nu/nu
) mice acutely treated with hNSCs had overall significantly increased rates and magnitude of recovery of surface blood flow (laser Doppler), limb muscle perfusion (fluorescent microspheres,
P
<0.001), and capillary and small arteriole densities in the ischemic limb (fluorescence immunohistochemistry, both
P
<0.001) when compared with the vehicle-treated group. Hemodynamic and anatomic improvements were dose related and optimal at a minimum dose of 3×10
5
cells. Dose-dependent improvements in blood flow and increased vessel densities by hNSC administration early after ischemia were confirmed in immunocompetent CD-1 and streptozotocin-induced diabetic mice, together with marked reductions in the incidence of necrotic toes (
P
<0.05). Delayed administration of hNSCs, 7 days after occlusion, produced restorative effects when comparable with acute treatment of 35 days after hindlimb ischemia. Histological studies in hindlimb ischemia immunocompetent mice for the first 7 days after treatment revealed short-term hNSC survival, transient elevation of early host muscle inflammatory, and angiogenic responses and acceleration of myogenesis.
Conclusions—
hNSC therapy represents a promising treatment option for critical limb ischemia.
Collapse
Affiliation(s)
- Rajesh Katare
- From the School of Clinical Sciences, Bristol Heart Institute, University of Bristol, Bristol, United Kingdom (R.K., P.M.); and ReNeuron Limited, Guildford, United Kingdom (P.S., C.H., L.S., S.P., R.C., E.M., I.V., J.S.)
| | - Paul Stroemer
- From the School of Clinical Sciences, Bristol Heart Institute, University of Bristol, Bristol, United Kingdom (R.K., P.M.); and ReNeuron Limited, Guildford, United Kingdom (P.S., C.H., L.S., S.P., R.C., E.M., I.V., J.S.)
| | - Caroline Hicks
- From the School of Clinical Sciences, Bristol Heart Institute, University of Bristol, Bristol, United Kingdom (R.K., P.M.); and ReNeuron Limited, Guildford, United Kingdom (P.S., C.H., L.S., S.P., R.C., E.M., I.V., J.S.)
| | - Lara Stevanato
- From the School of Clinical Sciences, Bristol Heart Institute, University of Bristol, Bristol, United Kingdom (R.K., P.M.); and ReNeuron Limited, Guildford, United Kingdom (P.S., C.H., L.S., S.P., R.C., E.M., I.V., J.S.)
| | - Sara Patel
- From the School of Clinical Sciences, Bristol Heart Institute, University of Bristol, Bristol, United Kingdom (R.K., P.M.); and ReNeuron Limited, Guildford, United Kingdom (P.S., C.H., L.S., S.P., R.C., E.M., I.V., J.S.)
| | - Randolph Corteling
- From the School of Clinical Sciences, Bristol Heart Institute, University of Bristol, Bristol, United Kingdom (R.K., P.M.); and ReNeuron Limited, Guildford, United Kingdom (P.S., C.H., L.S., S.P., R.C., E.M., I.V., J.S.)
| | - Erik Miljan
- From the School of Clinical Sciences, Bristol Heart Institute, University of Bristol, Bristol, United Kingdom (R.K., P.M.); and ReNeuron Limited, Guildford, United Kingdom (P.S., C.H., L.S., S.P., R.C., E.M., I.V., J.S.)
| | - Indira Vishnubhatla
- From the School of Clinical Sciences, Bristol Heart Institute, University of Bristol, Bristol, United Kingdom (R.K., P.M.); and ReNeuron Limited, Guildford, United Kingdom (P.S., C.H., L.S., S.P., R.C., E.M., I.V., J.S.)
| | - John Sinden
- From the School of Clinical Sciences, Bristol Heart Institute, University of Bristol, Bristol, United Kingdom (R.K., P.M.); and ReNeuron Limited, Guildford, United Kingdom (P.S., C.H., L.S., S.P., R.C., E.M., I.V., J.S.)
| | - Paolo Madeddu
- From the School of Clinical Sciences, Bristol Heart Institute, University of Bristol, Bristol, United Kingdom (R.K., P.M.); and ReNeuron Limited, Guildford, United Kingdom (P.S., C.H., L.S., S.P., R.C., E.M., I.V., J.S.)
| |
Collapse
|
6
|
Bonnamain V, Thinard R, Sergent-Tanguy S, Huet P, Bienvenu G, Naveilhan P, Farges JC, Alliot-Licht B. Human dental pulp stem cells cultured in serum-free supplemented medium. Front Physiol 2013; 4:357. [PMID: 24376422 PMCID: PMC3858652 DOI: 10.3389/fphys.2013.00357] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Accepted: 11/20/2013] [Indexed: 01/09/2023] Open
Abstract
Growing evidence show that human dental pulp stem cells (DPSCs) could provide a source of adult stem cells for the treatment of neurodegenerative pathologies. In this study, DPSCs were expanded and cultured with a protocol generally used for the culture of neural stem/progenitor cells. Methodology: DPSC cultures were established from third molars. The pulp tissue was enzymatically digested and cultured in serum-supplemented basal medium for 12 h. Adherent (ADH) and non-adherent (non-ADH) cell populations were separated according to their differential adhesion to plastic and then cultured in serum-free defined N2 medium with epidermal growth factor (EGF) and basic fibroblast growth factor (bFGF). Both ADH and non-ADH populations were analyzed by FACS and/or PCR. Results: FACS analysis of ADH-DPSCs revealed the expression of the mesenchymal cell marker CD90, the neuronal marker CD56, the transferrin receptor CD71, and the chemokine receptor CXCR3, whereas hematopoietic stem cells markers CD45, CD133, and CD34 were not expressed. ADH-DPSCs expressed transcripts coding for the Nestin gene, whereas expression levels of genes coding for the neuronal markers β-III tubulin and NF-M, and the oligodendrocyte marker PLP-1 were donor dependent. ADH-DPSCs did not express the transcripts for GFAP, an astrocyte marker. Cells of the non-ADH population that grew as spheroids expressed Nestin, β-III tubulin, NF-M and PLP-1 transcripts. DPSCs that migrated out of the spheroids exhibited an odontoblast-like morphology and expressed a higher level of DSPP and osteocalcin transcripts than ADH-DPSCs. Conclusion: Collectively, these data indicate that human DPSCs can be expanded and cultured in serum-free supplemented medium with EGF and bFGF. ADH-DPSCs and non-ADH populations contained neuronal and/or oligodendrocyte progenitors at different stages of commitment and, interestingly, cells from spheroid structures seem to be more engaged into the odontoblastic lineage than the ADH-DPSCs.
Collapse
Affiliation(s)
- Virginie Bonnamain
- INSERM, UMR1064 ITERT, Institut de Transplantation et de Recherche en Transplantation Nantes, France
| | - Reynald Thinard
- INSERM, UMR1064 ITERT, Institut de Transplantation et de Recherche en Transplantation Nantes, France
| | - Solène Sergent-Tanguy
- INSERM, UMR1064 ITERT, Institut de Transplantation et de Recherche en Transplantation Nantes, France
| | - Pascal Huet
- Service Chirurgie Maxillo-Faciale et Stomatologie, CHU de Nantes, University of Nantes Nantes, France
| | | | - Philippe Naveilhan
- INSERM, UMR1064 ITERT, Institut de Transplantation et de Recherche en Transplantation Nantes, France
| | | | - Brigitte Alliot-Licht
- INSERM, UMR1064 ITERT, Institut de Transplantation et de Recherche en Transplantation Nantes, France ; Faculty of Odontology, University of Nantes Nantes, France
| |
Collapse
|
7
|
Weinger JG, Weist BM, Plaisted WC, Klaus SM, Walsh CM, Lane TE. MHC mismatch results in neural progenitor cell rejection following spinal cord transplantation in a model of viral-induced demyelination. Stem Cells 2013; 30:2584-95. [PMID: 22969049 DOI: 10.1002/stem.1234] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Transplantation of syngeneic neural progenitor cells (NPCs) into mice persistently infected with the JHM strain of mouse hepatitis virus (JHMV) results in enhanced differentiation into oligodendrocyte progenitor cells that is associated with remyelination, axonal sparing, and clinical improvement. Whether allogeneic NPCs are tolerated or induce immune-mediated rejection is controversial and poorly defined under neuroinflammatory demyelinating conditions. We have used the JHMV-induced demyelination model to evaluate the antigenicity of transplanted allogeneic NPCs within the central nervous system (CNS) of mice with established immune-mediated demyelination. Cultured NPCs constitutively expressed the costimulatory molecules CD80/CD86, and IFN-γ treatment induced expression of MHC class I and II antigens. Injection of allogeneic C57BL/6 NPCs (H-2b background) led to a delayed type hypersensitivity response in BALB/c (H-2d background) mice associated with T-cell proliferation and IFN-γ secretion following coculture with allogeneic NPCs. Transplantation of MHC-mismatched NPCs into JHMV-infected mice resulted in increased transcripts encoding the T-cell chemoattractant chemokines CXCL9 and CXCL10 that correlated with increased T-cell infiltration that was associated with NPC rejection. Treatment of MHC-mismatched mice with T-cell subset-specific depleting antibodies increased survival of allogeneic NPCs without affecting commitment to an oligodendrocyte lineage. Collectively, these results show that allogeneic NPCs are antigenic, and T-cells contribute to rejection following transplantation into an inflamed CNS suggesting that immunomodulatory treatments may be necessary to prolong survival of allogeneic cells.
Collapse
Affiliation(s)
- Jason G Weinger
- Department of Molecular Biology and BiochemistryUniversity of California, Irvine, California 92697-3900, USA
| | | | | | | | | | | |
Collapse
|
8
|
Silvestroff L, Franco P, Pasquini J. Neural and oligodendrocyte progenitor cells: transferrin effects on cell proliferation. ASN Neuro 2013; 5:e00107. [PMID: 23368675 PMCID: PMC3592559 DOI: 10.1042/an20120075] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2012] [Revised: 01/08/2013] [Accepted: 01/10/2013] [Indexed: 12/14/2022] Open
Abstract
NSC (neural stem cells)/NPC (neural progenitor cells) are multipotent and self-renew throughout adulthood in the SVZ (subventricular zone) of the mammalian CNS (central nervous system). These cells are considered interesting targets for CNS neurodegenerative disorder cell therapies, and understanding their behaviour in vitro is crucial if they are to be cultured prior to transplantation. We cultured the SVZ tissue belonging to newborn rats under the form of NS (neurospheres) to evaluate the effects of Tf (transferrin) on cell proliferation. The NS were heterogeneous in terms of the NSC/NPC markers GFAP (glial fibrillary acidic protein), Nestin and Sox2 and the OL (oligodendrocyte) progenitor markers NG2 (nerve/glia antigen 2) and PDGFRα (platelet-derived growth factor receptor α). The results of this study indicate that aTf (apoTransferrin) is able to increase cell proliferation of SVZ-derived cells in vitro, and that these effects were mediated at least in part by the TfRc1 (Tf receptor 1). Since OPCs (oligodendrocyte progenitor cells) represent a significant proportion of the proliferating cells in the SVZ-derived primary cultures, we used the immature OL cell line N20.1 to show that Tf was able to augment the proliferation rate of OPC, either by adding aTf to the culture medium or by overexpressing rat Tf in situ. The culture medium supplemented with ferric iron, together with aTf, increased the DNA content, while ferrous iron did not. The present work provides data that could have a potential application in human cell replacement therapies for neurodegenerative disease and/or CNS injury that require the use of in vitro amplified NPCs.
Collapse
Key Words
- nerve/glia antigen 2 (ng2)
- oligodendrocyte
- platelet-derived growth factor receptor α (pdgfrα)
- progenitor
- proliferation
- transferrin
- atf, apotransferrin
- bfgf, basic fibroblast growth factor
- brdu, bromodeoxyuridine
- cns, central nervous system
- csf, cerebrospinal fluid
- dmem, dulbecco’s modified eagle’s medium
- egf, epidermal growth factor
- fcs, fetal calf serum
- gfap, glial fibrillary acidic protein
- icc, immunocytochemistry
- ng2, nerve/glia antigen 2
- npc, neural progenitor cell
- ns, neurosphere
- nsc, neural stem cell
- ol, oligodendrocyte
- opc, oligodendrocyte progenitor cell
- os, oligosphere
- pdgfrα, platelet-derived growth factor receptor α
- pexptf, pexpresstf
- pfa, paraformaldehyde
- po, polyornithine
- rt–pcr, reverse transcription–pcr
- svz, subventricular zone
- tf, transferrin
- tfrc, tf receptor
- tf-tr, texas red-labelled tf
- wb, western blotting
Collapse
Affiliation(s)
- Lucas Silvestroff
- Cátedra de Química Biológica Patológica, Departamento de Química Biológica, Facultad de Farmacia y Bioquímica (FFyB), Universidad de Buenos Aires (UBA), Buenos Aires, Argentina
| | - Paula Gabriela Franco
- Cátedra de Química Biológica Patológica, Departamento de Química Biológica, Facultad de Farmacia y Bioquímica (FFyB), Universidad de Buenos Aires (UBA), Buenos Aires, Argentina
| | - Juana María Pasquini
- Cátedra de Química Biológica Patológica, Departamento de Química Biológica, Facultad de Farmacia y Bioquímica (FFyB), Universidad de Buenos Aires (UBA), Buenos Aires, Argentina
| |
Collapse
|
9
|
Bonnamain V, Mathieux E, Thinard R, Thébault P, Nerrière-Daguin V, Lévêque X, Anegon I, Vanhove B, Neveu I, Naveilhan P. Expression of heme oxygenase-1 in neural stem/progenitor cells as a potential mechanism to evade host immune response. Stem Cells 2013; 30:2342-53. [PMID: 22888011 DOI: 10.1002/stem.1199] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Besides their therapeutic benefit as cell source, neural stem/progenitor cells (NSPCs) exhibit immunosuppressive properties of great interest for modulating immune response in the central nervous system. To decipher the mechanisms of NSPC-mediated immunosuppression, activated T cells were exposed to NSPCs isolated from fetal rat brains. Analyses revealed that NSPCs inhibited T-cell proliferation and interferon-gamma production in a dose-dependent manner. A higher proportion of helper T cells (CD4+ T cells) was found in the presence of NSPCs, but analyses of FoxP3 population indicated that T-cell suppression was not secondary to an induction of suppressive regulatory T cells (FoxP3+ CD4+ CD25+). Conversely, induction of the high affinity interleukin-2 (IL-2) receptor (CD25) and the inability of IL-2 to rescue T-cell proliferation suggest that NSPCs display immunosuppressive activity without affecting T-cell activation. Cultures in Transwell chambers or addition of NSPC-conditioned medium to activated T cells indicated that part of the suppressive activity was not contact dependent. We therefore searched for soluble factors that mediate NSPC immunosuppression. We found that NSPCs express several immunosuppressive molecules, but the ability of these cells to inhibit T-cell proliferation was only counteracted by heme oxygenase (HO) inhibitors in association or not with nitric oxide synthase inhibitors. Taken together, our findings highlight a dynamic crosstalk between NSPCs and T lymphocytes and provide the first evidence of an implication of HO-1 in mediating the immunosuppressive effects of the NSPCs.
Collapse
|
10
|
Bonnamain V, Neveu I, Naveilhan P. Neural stem/progenitor cells as a promising candidate for regenerative therapy of the central nervous system. Front Cell Neurosci 2012; 6:17. [PMID: 22514520 PMCID: PMC3323829 DOI: 10.3389/fncel.2012.00017] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2012] [Accepted: 03/26/2012] [Indexed: 01/18/2023] Open
Abstract
Neural transplantation is a promising therapeutic strategy for neurodegenerative diseases and other disorders of the central nervous system (CNS) such as Parkinson and Huntington diseases, multiple sclerosis or stroke. Although cell replacement therapy already went through clinical trials for some of these diseases using fetal human neuroblasts, several significant limitations led to the search for alternative cell sources that would be more suitable for intracerebral transplantation.Taking into account logistical and ethical issues linked to the use of tissue derived from human fetuses, and the immunologically special status of the CNS allowing the occurrence of deleterious immune reactions, neural stem/progenitor cells (NSPCs) appear to be an interesting cell source candidate. In addition to their ability for replacing cell populations lost during the pathological events, NSPCs also display surprising therapeutic effects of neuroprotection and immunomodulation. A better knowledge of the mechanisms involved in these specific characteristics will hopefully lead in the future to a successful use of NSPCs in regenerative medicine for CNS disorders.
Collapse
|
11
|
Angibaud J, Louveau A, Baudouin SJ, Nerrière-Daguin V, Evain S, Bonnamain V, Hulin P, Csaba Z, Dournaud P, Thinard R, Naveilhan P, Noraz N, Pellier-Monnin V, Boudin H. The immune molecule CD3zeta and its downstream effectors ZAP-70/Syk mediate ephrin signaling in neurons to regulate early neuritogenesis. J Neurochem 2011; 119:708-22. [PMID: 21895656 DOI: 10.1111/j.1471-4159.2011.07469.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Recent studies have highlighted the key role of the immune protein CD3ζ in the maturation of neuronal circuits in the CNS. Yet, the upstream signals that might recruit and activate CD3ζ in neurons are still unknown. In this study, we show that CD3ζ functions early in neuronal development and we identify ephrinA1-dependent EphA4 receptor activation as an upstream regulator of CD3ζ. When newly born neurons are still spherical, before neurite extension, we found a transient CD3ζ aggregation at the cell periphery matching the initiation site of the future neurite. This accumulation of CD3ζ correlated with a stimulatory effect on filopodia extension via a Rho-GEF Vav2 pathway and a repression of neurite outgrowth. Conversely, cultured neurons lacking CD3ζ isolated from CD3ζ(-/-) mice showed a decreased number of filopodia and an enhanced neurite number. Stimulation with ephrinA1 induces the translocation of both CD3ζ and its activated effector molecules, ZAP-70/Syk tyrosine kinases, to EphA4 receptor clusters. EphrinA1-induced growth cone collapse was abrogated in CD3ζ(-/-) neurons and was markedly reduced by ZAP-70/Syk inhibition. Moreover, ephrinA1-induced ZAP-70/Syk activation was inhibited in CD3ζ(-/-) neurons. Altogether, our data suggest that CD3ζ mediates the ZAP-70/Syk kinase activation triggered by ephrinA-activated pathway to regulate early neuronal morphogenesis.
Collapse
|
12
|
Angibaud J, Baudouin SJ, Louveau A, Nerrière-Daguin V, Bonnamain V, Csaba Z, Dournaud P, Naveilhan P, Noraz N, Pellier-Monnin V, Boudin H. Ectopic expression of the immune adaptor protein CD3zeta in neural stem/progenitor cells disrupts cell-fate specification. J Mol Neurosci 2011; 46:431-41. [PMID: 21809042 DOI: 10.1007/s12031-011-9607-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2011] [Accepted: 07/20/2011] [Indexed: 12/17/2022]
Abstract
Immune signaling and neuroinflammatory mediators have recently emerged as influential variables that regulate neural precursor/stem cell (NPC) behavior and function. In this study, we investigated whether the signaling adaptor protein CD3ζ, a transmembrane protein involved in T cell differentiation and function and recently shown to regulate neuronal development in the central nervous system (CNS), may have a role in NPC differentiation. We analyzed the expression profile of CD3ζ in embryonic rat brain during neurogenic periods and in neurosphere-derived neural cells, and we investigated the action of CD3ζ on cell differentiation. We found that CD3ζ expression coincided with neuronal commitment, but its forced expression in NPCs prevented the production of neurons and oligodendrocytes, but not astroglial cells. This blockade of neuronal differentiation was operated through an ITAM-independent mechanism, but required the Asp36 of the CD3ζ transmembrane domain involved in membrane receptor interaction. Together, our findings show that ectopic CD3ζ expression in NPCs impaired their normal cell-fate specification and suggest that variations of CD3ζ expression in the developing CNS might result in neurodevelopmental anomalies.
Collapse
|
13
|
Michel-Monigadon D, Bonnamain V, Nerrière-Daguin V, Dugast AS, Lévèque X, Plat M, Venturi E, Brachet P, Anegon I, Vanhove B, Neveu I, Naveilhan P. Trophic and immunoregulatory properties of neural precursor cells: benefit for intracerebral transplantation. Exp Neurol 2010; 230:35-47. [PMID: 20470774 DOI: 10.1016/j.expneurol.2010.04.021] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2009] [Revised: 04/27/2010] [Accepted: 04/30/2010] [Indexed: 12/20/2022]
Abstract
Intracerebral xenotransplantation of porcine fetal neuroblasts (pNB) is considered as an alternative to human neuroblasts for the treatment of neurodegenerative diseases. However, pNB are systematically rejected, even in an immunoprivileged site such as the brain. Within this context, neural stem/precursor cells (NSPC), which were suggested as exhibiting low immunogenicity, appeared as a useful source of xenogeneic cells. To determine the advantage of using porcine NSPC (pNSPC) in xenotransplantation, pNB and pNSPC were grafted into the striatum of rats without immunosuppression. At day 63, all the pNB were rejected while 40% of the rats transplanted with pNSPC exhibited large and healthy grafts with numerous pNF70-positive cells. The absence of inflammation at day 63 and the occasional presence of T cells in pNSPC grafts evoked a weak host immune response which might be partly due to the immunosuppressive properties of the transplanted cells. T cell proliferation assays confirmed such a hypothesis by revealing an inhibitory effect of pNSPC on T cells through a soluble factor. In addition to their immunosuppressive effect, in contrast to pNB, very few pNSPC differentiated into tyrosine hydroxylase-positive neurons but the cells triggered an intense innervation of the striatum by rat dopaminergic fibers coming from the substantia nigra. Further experiments will be required to optimize the use of pNSPC in regenerative medicine but here we show that their immunomodulatory and trophic activities might be of great interest for restorative strategies. This article is part of a Special Issue entitled "Interaction between repair, disease, & inflammation."
Collapse
|
14
|
Remy S, Tesson L, Usal C, Menoret S, Bonnamain V, Nerriere-Daguin V, Rossignol J, Boyer C, Nguyen TH, Naveilhan P, Lescaudron L, Anegon I. New lines of GFP transgenic rats relevant for regenerative medicine and gene therapy. Transgenic Res 2010; 19:745-63. [PMID: 20094912 DOI: 10.1007/s11248-009-9352-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2009] [Accepted: 12/08/2009] [Indexed: 02/07/2023]
Abstract
Adoptive cell transfer studies in regenerative research and identification of genetically modified cells after gene therapy in vivo require unequivocally identifying and tracking the donor cells in the host tissues, ideally over several days or for up to several months. The use of reporter genes allows identifying the transferred cells but unfortunately most are immunogenic to wild-type hosts and thus trigger rejection in few days. The availability of transgenic animals from the same strain that would express either high levels of the transgene to identify the cells or low levels but that would be tolerant to the transgene would allow performing long-term analysis of labelled cells. Herein, using lentiviral vectors we develop two new lines of GFP-expressing transgenic rats displaying different levels and patterns of GFP-expression. The "high-expresser" line (GFP(high)) displayed high expression in most tissues, including adult neurons and neural precursors, mesenchymal stem cells and in all leukocytes subtypes analysed, including myeloid and plasmacytoid dendritic cells, cells that have not or only poorly characterized in previous GFP-transgenic rats. These GFP(high)-transgenic rats could be useful for transplantation and immunological studies using GFP-positive cells/tissue. The "low-expresser" line expressed very low levels of GFP only in the liver and in less than 5% of lymphoid cells. We demonstrate these animals did not develop detectable humoral and cellular immune responses against both transferred GFP-positive splenocytes and lentivirus-mediated GFP gene transfer. Thus, these GFP-transgenic rats represent useful tools for regenerative medicine and gene therapy.
Collapse
Affiliation(s)
- S Remy
- INSERM, U643, 30 Bd Jean Monnet, 44093, Nantes cedex 01, Nantes, France.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
In vitro analyses of the immunosuppressive properties of neural stem/progenitor cells using anti-CD3/CD28-activated T cells. Methods Mol Biol 2010; 677:233-43. [PMID: 20941615 DOI: 10.1007/978-1-60761-869-0_17] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Neural stem/progenitor cells (NSPCs) are multi-potent cells defined by their ability to self-renew and differentiate into cells of glial and neuronal lineage. Because of these properties, NSPCs have been proposed as therapeutic tools to replace lost neurons. Recent observations in animal models of immune-related diseases indicate that NSPCs display immunomodulatory properties that might be a great interest for cell therapy. In particular, transplantation of NSPCs might be very useful as local immunosuppressive agent to promote the long-term survival of neuronal xenotransplant in the brain. To study this possibility, we have analysed the impact of NSPCs on anti-CD3/CD28-activated T cells. In vitro analyses clearly show that porcine, rat, and mouse NSPCs inhibit the proliferation of activated T cells. This result raises new perspectives concerning the use of NSPCs in cell therapy.
Collapse
|
16
|
Obayashi S, Tabunoki H, Kim SU, Satoh JI. Gene expression profiling of human neural progenitor cells following the serum-induced astrocyte differentiation. Cell Mol Neurobiol 2009; 29:423-38. [PMID: 19130216 DOI: 10.1007/s10571-008-9338-2] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2008] [Accepted: 12/10/2008] [Indexed: 12/17/2022]
Abstract
Neural stem cells (NSC) with self-renewal and multipotent properties could provide an ideal cell source for transplantation to treat spinal cord injury, stroke, and neurodegenerative diseases. However, the majority of transplanted NSC and neural progenitor cells (NPC) differentiate into astrocytes in vivo under pathological environments in the central nervous system, which potentially cause reactive gliosis. Because the serum is a potent inducer of astrocyte differentiation of rodent NPC in culture, we studied the effect of the serum on gene expression profile of cultured human NPC to identify the gene signature of astrocyte differentiation of human NPC. Human NPC spheres maintained in the serum-free culture medium were exposed to 10% fetal bovine serum (FBS) for 72 h, and processed for analyzing on a Whole Human Genome Microarray of 41,000 genes, and the microarray data were validated by real-time RT-PCR. The serum elevated the levels of expression of 45 genes, including ID1, ID2, ID3, CTGF, TGFA, METRN, GFAP, CRYAB and CSPG3, whereas it reduced the expression of 23 genes, such as DLL1, DLL3, PDGFRA, SOX4, CSPG4, GAS1 and HES5. Thus, the serum-induced astrocyte differentiation of human NPC is characterized by a counteraction of ID family genes on Delta family genes. Coimmunoprecipitation analysis identified ID1 as a direct binding partner of a proneural basic helix-loop-helix (bHLH) transcription factor MASH1. Luciferase assay indicated that activation of the DLL1 promoter by MASH1 was counteracted by ID1. Bone morphogenetic protein 4 (BMP4) elevated the levels of ID1 and GFAP expression in NPC under the serum-free culture conditions. Because the serum contains BMP4, these results suggest that the serum factor(s), most probably BMP4, induces astrocyte differentiation by upregulating the expression of ID family genes that repress the proneural bHLH protein-mediated Delta expression in human NPC.
Collapse
Affiliation(s)
- Shinya Obayashi
- Department of Bioinformatics and Molecular Neuropathology, Meiji Pharmaceutical University, 2-522-1 Noshio, Kiyose, Tokyo, 204-8588, Japan
| | | | | | | |
Collapse
|
17
|
Baudouin SJ, Angibaud J, Loussouarn G, Bonnamain V, Matsuura A, Kinebuchi M, Naveilhan P, Boudin H. The signaling adaptor protein CD3zeta is a negative regulator of dendrite development in young neurons. Mol Biol Cell 2008; 19:2444-56. [PMID: 18367546 DOI: 10.1091/mbc.e07-09-0947] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
A novel idea is emergxsing that a large molecular repertoire is common to the nervous and immune systems, which might reflect the existence of novel neuronal functions for immune molecules in the brain. Here, we show that the transmembrane adaptor signaling protein CD3zeta, first described in the immune system, has a previously uncharacterized role in regulating neuronal development. Biochemical and immunohistochemical analyses of the rat brain and cultured neurons showed that CD3zeta is mainly expressed in neurons. Distribution of CD3zeta in developing cultured hippocampal neurons, as determined by immunofluorescence, indicates that CD3zeta is preferentially associated with the somatodendritic compartment as soon as the dendrites initiate their differentiation. At this stage, CD3zeta was selectively concentrated at dendritic filopodia and growth cones, actin-rich structures involved in neurite growth and patterning. siRNA-mediated knockdown of CD3zeta in cultured neurons or overexpression of a loss-of-function CD3zeta mutant lacking the tyrosine phosphorylation sites in the immunoreceptor tyrosine-based activation motifs (ITAMs) increased dendritic arborization. Conversely, activation of endogenous CD3zeta by a CD3zeta antibody reduced the size of the dendritic arbor. Altogether, our findings reveal a novel role for CD3zeta in the nervous system, suggesting its contribution to dendrite development through ITAM-based mechanisms.
Collapse
|
18
|
Griffiths M, Neal JW, Gasque P. Innate immunity and protective neuroinflammation: new emphasis on the role of neuroimmune regulatory proteins. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2007; 82:29-55. [PMID: 17678954 DOI: 10.1016/s0074-7742(07)82002-2] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Brain inflammation due to infection, hemorrhage, and aging is associated with activation of the local innate immune system as expressed by infiltrating cells, resident glial cells, and neurons. The innate immune response relies on the detection of "nonself" and "danger-self" ligands behaving as "eat me signals" by a plethora of pattern recognition receptors (PRRs) expressed by professional and amateur phagocytes to promote the clearance of pathogens, toxic cell debris (amyloid fibrils, aggregated synucleins, prions), and apoptotic cells accumulating within the brain parenchyma and the cerebrospinal fluid (CSF). These PRRs (e.g., complement, TLR, CD14, scavenger receptors) are highly conserved between vertebrates and invertebrates and may represent the most ancestral innate scavenging system involved in tissue homeostasis. However, in some diseases, these protective mechanisms lead to neurodegeneration on the ground that several innate immune molecules have neurocytotoxic activities. The response is a "double-edged sword" representing a fine balance between protective and detrimental effects. Several key regulatory mechanisms have now been evidenced in the control of CNS innate immunity, and these could be harnessed to explore novel therapeutic avenues. We will herein provide new emphasis on the role of neuroimmune regulatory proteins (NIRegs), such as CD95L, TNF, CD200, CD47, sialic acids, CD55, CD46, fH, C3a, HMGB1, which are involved in silencing innate immunity at the cellular and molecular levels and suppression of inflammation. For instance, NIRegs may play an important role in controlling lymphocyte/macrophage/microglia hyperinflammatory responses, while sparing host defense and repair mechanisms. Moreover, NIRegs have direct beneficial effects on neurogenesis and contributing to brain tissue remodeling.
Collapse
Affiliation(s)
- M Griffiths
- Brain Inflammation and Immunity Group (BIIG), Department of Medical Biochemistry, School of Medicine, Cardiff University, CF144XN Cardiff, United Kingdom
| | | | | |
Collapse
|