1
|
Khan MW, Murali A. Normal mode analysis and comparative study of intrinsic dynamics of alcohol oxidase enzymes from GMC protein family. J Biomol Struct Dyn 2023; 42:10075-10090. [PMID: 37676256 DOI: 10.1080/07391102.2023.2255275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 08/30/2023] [Indexed: 09/08/2023]
Abstract
Glucose-Methanol-Choline (GMC) family enzymes are very important in catalyzing the oxidation of a wide range of structurally diverse substrates. Enzymes that constitute the GMC family, share a common tertiary fold but < 25% sequence identity. Cofactor FAD, FAD binding signature motif, and similar structural scaffold of the active site are common features of oxidoreductase enzymes of the GMC family. Protein functionality mainly depends on protein three-dimensional structures and dynamics. In this study, we used the normal mode analysis method to search the intrinsic dynamics of GMC family enzymes. We have explored the dynamical behavior of enzymes with unique substrate catabolism and active site characteristics from different classes of the GMC family. Analysis of individual enzymes and comparative ensemble analysis of enzymes from different classes has shown conserved dynamic motion at FAD binding sites. The present study revealed that GMC enzymes share a strong dynamic similarity (Bhattacharyya coefficient >90% and root mean squared inner product >52%) despite low sequence identity across the GMC family enzymes. The study predicts that local deformation energy between atoms of the enzyme may be responsible for the catalysis of different substrates. This study may help that intrinsic dynamics can be used to make meaningful classifications of proteins or enzymes from different organisms.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Mohammad Wahab Khan
- Department of Bioinformatics, School of Life Science, Pondicherry University, Puducherry, India
| | - Ayaluru Murali
- Department of Bioinformatics, School of Life Science, Pondicherry University, Puducherry, India
| |
Collapse
|
2
|
Islinger M, Manner A, Völkl A. The Craft of Peroxisome Purification-A Technical Survey Through the Decades. Subcell Biochem 2018; 89:85-122. [PMID: 30378020 DOI: 10.1007/978-981-13-2233-4_4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Purification technologies are one of the working horses in organelle proteomics studies as they guarantee the separation of organelle-specific proteins from the background contamination by other subcellular compartments. The development of methods for the separation of organelles was a major prerequisite for the initial detection and characterization of peroxisome as a discrete entity of the cell. Since then, isolated peroxisomes fractions have been used in numerous studies in order to characterize organelle-specific enzyme functions, to allocate the peroxisome-specific proteome or to unravel the organellar membrane composition. This review will give an overview of the fractionation methods used for the isolation of peroxisomes from animals, plants and fungi. In addition to "classic" centrifugation-based isolation methods, relying on the different densities of individual organelles, the review will also summarize work on alternative technologies like free-flow-electrophoresis or flow field fractionation which are based on distinct physicochemical parameters. A final chapter will further describe how different separation methods and quantitative mass spectrometry have been used in proteomics studies to assign the proteome of PO.
Collapse
Affiliation(s)
- Markus Islinger
- Institute for Neuroanatomy, Centre for Biomedicine and Medical Technology Mannheim, Medical Faculty Mannheim, University of Heidelberg, Heidelberg, Germany.
| | - Andreas Manner
- Institute for Neuroanatomy, Centre for Biomedicine and Medical Technology Mannheim, Medical Faculty Mannheim, University of Heidelberg, Heidelberg, Germany
| | - Alfred Völkl
- Department of Medical Cell Biology, Institute of Anatomy, University of Heidelberg, Heidelberg, Germany
| |
Collapse
|
3
|
Tereshina EV, Laskavy VN, Ivanenko SI. Four components of the conjugated redox system in organisms: Carbon, nitrogen, sulfur, oxygen. BIOCHEMISTRY (MOSCOW) 2015; 80:1186-200. [DOI: 10.1134/s0006297915090096] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
4
|
Production of carbon-13-labeled cadaverine by engineered Corynebacterium glutamicum using carbon-13-labeled methanol as co-substrate. Appl Microbiol Biotechnol 2015; 99:10163-76. [PMID: 26276544 DOI: 10.1007/s00253-015-6906-5] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2015] [Revised: 07/30/2015] [Accepted: 07/31/2015] [Indexed: 10/23/2022]
Abstract
Methanol, a one-carbon compound, can be utilized by a variety of bacteria and other organisms as carbon and energy source and is regarded as a promising substrate for biotechnological production. In this study, a strain of non-methylotrophic Corynebacterium glutamicum, which was able to produce the polyamide building block cadaverine as non-native product, was engineered for co-utilization of methanol. Expression of the gene encoding NAD+-dependent methanol dehydrogenase (Mdh) from the natural methylotroph Bacillus methanolicus increased methanol oxidation. Deletion of the endogenous aldehyde dehydrogenase genes ald and fadH prevented methanol oxidation to carbon dioxide and formaldehyde detoxification via the linear formaldehyde dissimilation pathway. Heterologous expression of genes for the key enzymes hexulose-6-phosphate synthase and 6-phospho-3-hexuloisomerase of the ribulose monophosphate (RuMP) pathway in this strain restored growth in the presence of methanol or formaldehyde, which suggested efficient formaldehyde detoxification involving RuMP key enzymes. While growth with methanol as sole carbon source was not observed, the fate of 13C-methanol added as co-substrate to sugars was followed and the isotopologue distribution indicated incorporation into central metabolites and in vivo activity of the RuMP pathway. In addition, 13C-label from methanol was traced to the secreted product cadaverine. Thus, this synthetic biology approach led to a C. glutamicum strain that converted the non-natural carbon substrate methanol at least partially to the non-native product cadaverine.
Collapse
|
5
|
Building carbon-carbon bonds using a biocatalytic methanol condensation cycle. Proc Natl Acad Sci U S A 2014; 111:15928-33. [PMID: 25355907 DOI: 10.1073/pnas.1413470111] [Citation(s) in RCA: 92] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Methanol is an important intermediate in the utilization of natural gas for synthesizing other feedstock chemicals. Typically, chemical approaches for building C-C bonds from methanol require high temperature and pressure. Biological conversion of methanol to longer carbon chain compounds is feasible; however, the natural biological pathways for methanol utilization involve carbon dioxide loss or ATP expenditure. Here we demonstrated a biocatalytic pathway, termed the methanol condensation cycle (MCC), by combining the nonoxidative glycolysis with the ribulose monophosphate pathway to convert methanol to higher-chain alcohols or other acetyl-CoA derivatives using enzymatic reactions in a carbon-conserved and ATP-independent system. We investigated the robustness of MCC and identified operational regions. We confirmed that the pathway forms a catalytic cycle through (13)C-carbon labeling. With a cell-free system, we demonstrated the conversion of methanol to ethanol or n-butanol. The high carbon efficiency and low operating temperature are attractive for transforming natural gas-derived methanol to longer-chain liquid fuels and other chemical derivatives.
Collapse
|
6
|
|
7
|
|
8
|
Titorenko VI, Chan H, Rachubinski RA. Fusion of small peroxisomal vesicles in vitro reconstructs an early step in the in vivo multistep peroxisome assembly pathway of Yarrowia lipolytica. J Cell Biol 2000; 148:29-44. [PMID: 10629216 PMCID: PMC2156211 DOI: 10.1083/jcb.148.1.29] [Citation(s) in RCA: 127] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We have identified and purified six subforms of peroxisomes, designated P1 to P6, from the yeast, Yarrowia lipolytica. An analysis of trafficking of peroxisomal proteins in vivo suggests the existence of a multistep peroxisome assembly pathway in Y. lipolytica. This pathway operates by conversion of peroxisomal subforms in the direction P1, P2-->P3-->P4-->P5-->P6 and involves the import of various peroxisomal proteins into distinct vesicular intermediates. We have also reconstituted in vitro the fusion of the earliest intermediates in the pathway, small peroxisomal vesicles P1 and P2. Their fusion leads to the formation of a larger and more dense peroxisomal vesicle, P3. Fusion of P1 and P2 in vitro requires cytosol and ATP hydrolysis and is inhibited by antibodies to two membrane-associated ATPases of the AAA family, Pex1p and Pex6p. We provide evidence that the fusion in vitro of P1 and P2 peroxisomes reconstructs an actual early step in the peroxisome assembly pathway operating in vivo in Y. lipolytica.
Collapse
Affiliation(s)
- Vladimir I. Titorenko
- Department of Cell Biology, University of Alberta, Edmonton, Alberta T6G 2H7, Canada
| | - Honey Chan
- Department of Cell Biology, University of Alberta, Edmonton, Alberta T6G 2H7, Canada
| | | |
Collapse
|
9
|
Aggelis G, Fakas S, Melissis S, Clonis Y. Growth of Candida boidinii in a methanol-limited continuous culture and the formation of methanol-degrading enzymes. J Biotechnol 1999. [DOI: 10.1016/s0168-1656(99)00102-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
10
|
Erdmann R, Blobel G. Giant peroxisomes in oleic acid-induced Saccharomyces cerevisiae lacking the peroxisomal membrane protein Pmp27p. J Biophys Biochem Cytol 1995; 128:509-23. [PMID: 7860627 PMCID: PMC2199900 DOI: 10.1083/jcb.128.4.509] [Citation(s) in RCA: 240] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
We have purified peroxisomal membranes from Saccharomyces cerevisiae after induction of peroxisomes in oleic acid-containing media. About 30 distinct proteins could be discerned among the HPLC- and SDS-PAGE-separated proteins of the high salt-extracted peroxisomal membranes. The most abundant of these, Pmp27p, was purified and the corresponding gene PMP27 was cloned and sequenced. Its primary structure is 32% identical to PMP31 and PMP32 of the yeast Candida biodinii (Moreno, M., R. Lark, K. L. Campbell, and M. J. Goodman. 1994. Yeast. 10:1447-1457). Immunoelectron microscopic localization of Pmp27p showed labeling of the peroxisomal membrane, but also of matrix-less and matrix containing tubular membranes nearby. Electronmicroscopical data suggest that some of these tubular extensions might interconnect peroxisomes to form a peroxisomal reticulum. Cells with a disrupted PMP27 gene (delta pmp27) still grew well on glucose or ethanol, but they failed to grow on oleate although peroxisomes were still induced by transfer to oleate-containing media. The induced peroxisomes of delta pmp27 cells were fewer but considerably larger than those of wild-type cells, suggesting that Pmp27p may be involved in parceling of peroxisomes into regular quanta. delta pmp27 cells cultured in oleate-containing media form multiple buds, of which virtually all are peroxisome deficient. The growth defect of delta pmp27 cells on oleic acid appears to result from the inability to segregate the giant peroxisomes to daughter cells.
Collapse
Affiliation(s)
- R Erdmann
- Laboratory of Cell Biology, Howard Hughes Medical Institute, Rockefeller University, New York 10021
| | | |
Collapse
|
11
|
Moreno M, Lark R, Campbell KL, Goodman JM. The peroxisomal membrane proteins of Candida boidinii: gene isolation and expression. Yeast 1994; 10:1447-57. [PMID: 7871884 DOI: 10.1002/yea.320101108] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Candida boidinii is a methylotrophic yeast in which several growth substrates can cause vigorous peroxisomal proliferation. While such diverse substrates as methanol, oleic acid and D-alanine induce different peroxisomal metabolic pathways, membranes seem to contain common abundant peroxisomal membrane proteins (PMPs). These proteins have been termed PMP31, PMP32 and PMP47. The gene encoding PMP47 has been previously cloned and analysed. We now report the isolation of a second PMP47 gene (or allele) as well as PMP31 and PMP32. PMP47A and PMP47B share 95% sequence identity at the amino acid level. PMP31 and PMP32 each contain 256 amino acids and are highly similar (97% identity) in protein sequence. Both PMP31 and PMP32 are predicted to span the membrane once or twice. All abundant PMPs of C. boidinii are basic in charge; they all have predicted isoelectric points above 10. RNAs corresponding to the PMP47s and to PMPs31-32 are strongly induced by methanol, oleic acid and D-alanine. While the PMP47s probably encode substrate carriers, the functions of PMP31 and PMP32 from C. boidinii are still unknown.
Collapse
Affiliation(s)
- M Moreno
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas 75235-9041
| | | | | | | |
Collapse
|
12
|
Dijksterhuis J, Harder W, Veenhuis M. Proliferation and function of microbodies in the nematophagous fungus Arthrobotrys oligosporaduring growth on oleic acid or d-alanine as the sole carbon source. FEMS Microbiol Lett 1993. [DOI: 10.1111/j.1574-6968.1993.tb06436.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
13
|
Volfová O, Zizka Z, Andĕrová M. Effect of increasing methanol concentrations on physiology and cytology of Candida boidinii. Folia Microbiol (Praha) 1992; 37:413-20. [PMID: 1296925 DOI: 10.1007/bf02899899] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Concentration of methanol in the medium strongly affected not only the physiology but also the cytology of Candida boidinii strain 2 cells in a methanol-limited chemostat at a constant dilution rate D 0.1/h and at low pH 3.0. The formation of large cubic peroxisomes with high alcohol oxidase (AO) activity observed at low methanol concentration (S0 3 g/L) disappeared on increasing the methanol concentration in the inflow medium. The AO activity in the cells sharply decreased, followed by accumulation of riboflavin phosphate and residual methanol in the medium. The activity of catalase was relatively stable. At methanol concentration S0 > KI (KI equal to 12 g methanol per L), which included a substantial increase in methanol dissimilation, documented by higher formaldehyde and formate dehydrogenase activities and by lower yield coefficient on methanol, the yeast cells contained large lobe-shaped peroxisomes and a smaller number of larger mitochondria. The cells formed pseudomycelium with a thick septum between the mother and daughter cells.
Collapse
Affiliation(s)
- O Volfová
- Laboratory of Physiology of Microorganisms and Biotransformation, Czechoslovak Academy of Sciences, Prague
| | | | | |
Collapse
|
14
|
Hansen H, Didion T, Thiemann A, Veenhuis M, Roggenkamp R. Targeting sequences of the two major peroxisomal proteins in the methylotrophic yeast Hansenula polymorpha. MOLECULAR & GENERAL GENETICS : MGG 1992; 235:269-78. [PMID: 1465101 DOI: 10.1007/bf00279370] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Dihydroxyacetone synthase (DAS) and methanol oxidase (MOX) are the major enzyme constituents of the peroxisomal matrix in the methylotrophic yeast Hansenula polymorpha when grown on methanol as a sole carbon source. In order to characterize their topogenic signals the localization of truncated polypeptides and hybrid proteins was analysed in transformed yeast cells by subcellular fractionation and electron microscopy. The C-terminal part of DAS, when fused to the bacterial beta-lactamase or mouse dihydrofolate reductase, directed these hybrid polypeptides to the peroxisome compartment. The targeting signal was further delimited to the extreme C-terminus, comprising the sequence N-K-L-COOH, similar to the recently identified and widely distributed peroxisomal targeting signal (PTS) S-K-L-COOH in firefly luciferase. By an identical approach, the extreme C-terminus of MOX, comprising the tripeptide A-R-F-COOH, was shown to be the PTS of this protein. Furthermore, on fusion of a C-terminal sequence from firefly luciferase including the PTS, beta-lactamase was also imported into the peroxisomes of H. polymorpha. We conclude that, besides the conserved PTS (or described variants), other amino acid sequences with this function have evolved in nature.
Collapse
Affiliation(s)
- H Hansen
- Institut für Mikrobiologie, Heinrich-Heine-Universität Düsseldorf, FRG
| | | | | | | | | |
Collapse
|
15
|
Walton PA, Gould SJ, Rachubinski RA, Subramani S, Feramisco JR. Transport of microinjected alcohol oxidase from Pichia pastoris into vesicles in mammalian cells: involvement of the peroxisomal targeting signal. J Cell Biol 1992; 118:499-508. [PMID: 1639840 PMCID: PMC2289536 DOI: 10.1083/jcb.118.3.499] [Citation(s) in RCA: 29] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
This report describes the microinjection of a purified peroxisomal protein, alcohol oxidase, from Pichia pastoris into mammalian tissue culture cells and the subsequent transport of this protein into vesicular structures. Transport was into membrane-enclosed vesicles as judged by digitonin-permeabilization experiments. The transport was time and temperature dependent. Vesicles containing alcohol oxidase could be detected as long as 6 d after injection. Coinjection of synthetic peptides containing a consensus carboxyterminal tripeptide peroxisomal targeting signal resulted in abolition of alcohol oxidase transport into vesicles in all cell lines examined. Double-label experiments indicated that, although some of the alcohol oxidase was transported into vesicles that contained other peroxisomal proteins, the bulk of the alcohol oxidase did not appear to be transported to preexisting peroxisomes. While the inhibition of transport of alcohol oxidase by peptides containing the peroxisomal targeting signal suggests a competition for some limiting component of the machinery involved in the sorting of proteins into peroxisomes, the organelles into which the majority of the protein is targeted appear to be unusual and distinct from endogenous peroxisomes by several criteria. Microinjected alcohol oxidase was transported into vesicles in normal fibroblasts and also in cell lines derived from patients with Zellweger syndrome, which are unable to transport proteins containing the ser-lys-leu-COOH peroxisomal targeting signal into peroxisomes (Walton et al., 1992). The implications of this result for the mechanism of peroxisomal protein transport are discussed.
Collapse
|
16
|
|
17
|
Keizer I, Roggenkamp R, Harder W, Veenhuis M. Location of catalase in crystalline peroxisomes of methanol-grownHansenula polymorpha. FEMS Microbiol Lett 1992. [DOI: 10.1111/j.1574-6968.1992.tb05032.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
|
18
|
van der Klei IJ, Harder W, Veenhuis M. Biosynthesis and assembly of alcohol oxidase, a peroxisomal matrix protein in methylotrophic yeasts: a review. Yeast 1991; 7:195-209. [PMID: 1882546 DOI: 10.1002/yea.320070302] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Alcohol oxidase (AO) catalyses the first step of methanol metabolism in yeasts. In vivo the enzyme is compartmentalized in special cell compartments, called peroxisomes. The enzyme along with the organelles are induced during growth of methylotrophic yeasts on methanol as the sole carbon source. Like all other peroxisomal matrix proteins, AO is encoded by a nuclear gene. Expression of the protein is regulated by a repression/derepression mechanism, but also by induction. Inactive monomeric precursor protein is synthesized in the cytosol and subsequently imported post-translationally into peroxisomes without further processing. Assembly into the active homo-octameric enzyme and binding of the prosthetic group flavin adenine dinucleotide occurs inside the organelle. When enhanced concentration of octameric alcohol oxidase are present in the organelles, the enzyme may form a crystalloid. Oligomerization is not dependent on translocation of AO precursors into their target organelle since octameric, active AO is detected in the cytosol and nucleus of peroxisome-deficient mutants of Hansenula polymorpha: at high expression rates large cytosolic AO crystalloids are formed, which occasionally are also encountered inside the nucleus of such mutants. This paper summarizes recent findings and views on the mechanisms involved in synthesis, import, assembly and crystallization of this important peroxisomal enzyme.
Collapse
Affiliation(s)
- I J van der Klei
- Department of Microbiology, Biological Center, Kerklaan, The Netherlands
| | | | | |
Collapse
|
19
|
Didion T, Roggenkamp R. Deficiency of peroxisome assembly in a mutant of the methylotrophic yeast Hansenula polymorpha. Curr Genet 1990. [DOI: 10.1007/bf00312854] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
20
|
Hansen H, Roggenkamp R. Functional complementation of catalase-defective peroxisomes in a methylotrophic yeast by import of the catalase A from Saccharomyces cerevisiae. EUROPEAN JOURNAL OF BIOCHEMISTRY 1989; 184:173-9. [PMID: 2673784 DOI: 10.1111/j.1432-1033.1989.tb15004.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
A mutant of the methanol-utilizing yeast Hansenula polymorpha defective in catalase was isolated. It lacks the ability to grow on methanol as the sole source of carbon and energy due to a loss of peroxisomal function that is required for the dissimilation and assimilation of this substrate. Growth of the mutant on glucose or glycerol was not impaired. Transformation of mutant cells with the gene coding for catalase A from Saccharomyces cerevisiae [Cohen, G., Fessl, F., Traczyk, J., Rytka, J. & Ruis, H. (1985) Mol. Gen. Genet. 200, 74-79] conferred constitutive expression of catalase activity. When the gene was placed under control of the regulatory methanol oxidase promoter from H. polymorpha, high levels of activity subject to glucose repression were obtained. In both cases efficient targeting of catalase A to the heterologous peroxisomes and assembly into an active form could be demonstrated. Concomitantly, growth on methanol was restored in the transformed mutant. The results are in line with a high conservation of transport signals on peroxisomal proteins. Expression of a cytosolic catalase in H. polymorpha did not confer the ability to grow on methanol. Therefore, proper localization of the catalase activity is a prerequisite for peroxisomal function.
Collapse
Affiliation(s)
- H Hansen
- Institut für Mikrobiologie der Heinrich-Heine-Universität Düsseldorf, Federal Republic of Germany
| | | |
Collapse
|
21
|
Garrard LJ, Goodman JM. Two Genes Encode the Major Membrane-associated Protein Of Methanol-induced Peroxisomes from Candida boidinii. J Biol Chem 1989. [DOI: 10.1016/s0021-9258(18)80089-8] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
22
|
Abstract
Crystals of alcohol oxidase purified from Pichia pastoris were grown in microdialysis buttons in a solution of polyethylene glycol, sodium chloride and sodium azide. The crystals were stratified along the major axis and up to 3 mm in length. X-ray diffraction experiments indicated a space group of P2(1) and unit cell dimensions of a = 157.3 A, b = 171.5 A and c = 231.6 A. Crystals diffract to beyond 2.7 A and are suitable for X-ray structure analysis.
Collapse
Affiliation(s)
- C W Boys
- Astbury Department of Biophysics, University of Leeds, U.K
| | | | | | | |
Collapse
|
23
|
Formation of irregular giant peroxisomes by overproduction of the crystalloid core protein methanol oxidase in the methylotrophic yeast Hansenula polymorpha. Mol Cell Biol 1989. [PMID: 2657394 DOI: 10.1128/mcb.9.3.988] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The crystalloid core in peroxisomes of the methylotrophic yeast Hansenula polymorpha is composed of the octameric flavoprotein methanol oxidase (MOX). We transformed yeast cells with a high-copy-number vector harboring the cloned MOX gene in order to study the effects on regulation, protein import, and peroxisome biosynthesis. In transformed wild-type cells, no increase in expression of MOX was detectable. Mutants defective in MOX activity were isolated by a specific selection procedure. Two structural MOX mutants are described that allow overproduction of a fully active enzyme upon transformation at quantities of about two-thirds of the total cellular protein. The overproduced protein was imported into peroxisomes, altering their morphology (in thin sections) and stability in cell lysates; the organelles showed a tendency to form rectangular bodies, and their lumina were completely filled with the crystalloid structure. The overall size of the peroxisomes was increased severalfold in comparison with the size of nontransformed yeast cells. The results suggest high capacities of peroxisomal growth conferred by overproduction and import of a single protein.
Collapse
|
24
|
Roggenkamp R, Didion T, Kowallik KV. Formation of irregular giant peroxisomes by overproduction of the crystalloid core protein methanol oxidase in the methylotrophic yeast Hansenula polymorpha. Mol Cell Biol 1989; 9:988-94. [PMID: 2657394 PMCID: PMC362688 DOI: 10.1128/mcb.9.3.988-994.1989] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The crystalloid core in peroxisomes of the methylotrophic yeast Hansenula polymorpha is composed of the octameric flavoprotein methanol oxidase (MOX). We transformed yeast cells with a high-copy-number vector harboring the cloned MOX gene in order to study the effects on regulation, protein import, and peroxisome biosynthesis. In transformed wild-type cells, no increase in expression of MOX was detectable. Mutants defective in MOX activity were isolated by a specific selection procedure. Two structural MOX mutants are described that allow overproduction of a fully active enzyme upon transformation at quantities of about two-thirds of the total cellular protein. The overproduced protein was imported into peroxisomes, altering their morphology (in thin sections) and stability in cell lysates; the organelles showed a tendency to form rectangular bodies, and their lumina were completely filled with the crystalloid structure. The overall size of the peroxisomes was increased severalfold in comparison with the size of nontransformed yeast cells. The results suggest high capacities of peroxisomal growth conferred by overproduction and import of a single protein.
Collapse
Affiliation(s)
- R Roggenkamp
- Institut für Mikrobiologie, Universität Düsseldorf, Federal Republic of Germany
| | | | | |
Collapse
|
25
|
Roggenkamp R. Constitutive appearance of peroxisomes in a regulatory mutant of the methylotrophic yeast Hansenula polymorpha. MOLECULAR & GENERAL GENETICS : MGG 1988; 213:535-40. [PMID: 3185515 DOI: 10.1007/bf00339627] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
A selection by glucosamine for mutants of Hansenula polymorpha insensitive to glucose repression of methanol assimilation is described. Constitutive synthesis of enzymes is established in standard batch cultures of glucose-grown cells. Upon prolonged glucose metabolism the phenotype is masked by catabolite inactivation and degradation of enzymes. Addition of the substrate methanol remarkably improves constitutive synthesis by preventing catabolite inactivation and delaying degradation. Regular peroxisomes of reduced number are formed in mutant cells under repressed conditions. No constitutive synthesis is detectable using ethanol as a carbon source. In addition, this alcohol is detrimental to growth of the mutants, indicating that H. polymorpha is constrained to repress synthesis of enzymes involved in the C1-metabolism when ethanol is present as a substrate.
Collapse
Affiliation(s)
- R Roggenkamp
- Institut für Mikrobiologie, Universität Düsseldorf, Federal Republic of Germany
| |
Collapse
|
26
|
Rachubinski RA, Fujiki Y, Lazarow PB. Isolation of cDNA clones coding for peroxisomal proteins of Candida tropicalis: identification and sequence of a clone for catalase. BIOCHIMICA ET BIOPHYSICA ACTA 1987; 909:35-43. [PMID: 3580373 DOI: 10.1016/0167-4781(87)90044-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
A cDNA library, complementary to mRNAs of alkane-grown Candida tropicalis, was screened by differential DNA dot-blot hybridization with [32P]cDNA reverse-transcribed from mRNA of alkane-grown cells or from cells in which peroxisome formation was repressed by growth on glucose. 9% of the library encodes alkane-induced sequences. The cell-free translation products of eight hybrid-selected mRNAs were characterized by SDS-polyacrylamide gel electrophoresis and fluorography: most of them are probably peroxisomal proteins. Among these, a catalase clone was identified by immunoprecipitation of the translation product with anti-catalase. The clone was sequenced: the inferred amino acid sequence is homologous to the carboxytermini of mammalian and Saccharomyces cerevisiae catalases. C. tropicalis catalase mRNA is 1.7-1.8 kb long by Northern analysis, of which 1.5-1.6 kb is required to code for the 57 kDa polypeptide. Catalase mRNA (assayed by dot-blot hybridization) is strikingly induced in C. tropicalis by growth on alkanes, suggesting that peroxisome induction is transcriptionally regulated. This sublibrary of alkane-induced, mostly peroxisomal clones, together with a recently developed cell-free peroxisome protein import assay, will permit investigation of the targeting of proteins to peroxisomes.
Collapse
|
27
|
Abstract
Peroxisomal matrix proteins are imported into the organelle posttranslationally. Here we report that proton ionophores disrupt the import and assembly of alcohol oxidase, a homo-octameric flavoprotein of the induced peroxisome from the methylotrophic yeast Candida boidinii. When drug is added to cells containing newly synthesized monomeric alcohol oxidase, octamerization fails to occur and a membrane-associated complex is formed instead. The formation of the complex, which appears to face the cytoplasmic side of the membrane, is reversed when drug is removed, leading to the generation of octamer. Surprisingly, when drug is added to cells containing newly assembled octamers, they dissociate into monomers. We suggest that both the complex and the labile octamer are intermediates in the normal assembly pathway of alcohol oxidase and that energy is required for import and maturation of this peroxisomal protein.
Collapse
|
28
|
Mozaffar S, Ueda M, Kitatsuji K, Shimizu S, Osumi M, Tanaka A. Properties of catalase purified from a methanol-grown yeast, Kloeckera sp. 2201. EUROPEAN JOURNAL OF BIOCHEMISTRY 1986; 155:527-31. [PMID: 3956497 DOI: 10.1111/j.1432-1033.1986.tb09520.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Catalase, a marker enzyme of peroxisomes, was purified to homogeneity from whole cells of Kloeckera sp. 2201 (a strain of Candida boidinii) grown on methanol by means of ammonium sulfate fractionation followed by hydroxyapatite, Sephacryl S-300 and DEAE-Sepharose column chromatographies. Crystallized catalase was brown-coloured and needle-like. The molecular mass of the enzyme was about 240 000 daltons consisting of four identical subunits of 62 000 daltons. The minimum size of catalase molecule was estimated to be about 6 X 10 nm from an electron micrograph. Judging from the absorption spectrum, the enzyme seemed to belong to a group of T-type catalase. The Km value of the enzyme for hydrogen peroxide (catalatic activity) was 25 mM, while that for methanol (peroxidatic activity) was 83 mM. Catalase from Kloeckera sp. cells showed a certain degree of similarity to the enzyme purified from alkane-grown Candida tropicalis [T. Yamada et al. (1982) Eur. J. Biochem. 125, 517-521 and 129, 251-255] in its immunochemical properties.
Collapse
|
29
|
Goodman JM, Maher J, Silver PA, Pacifico A, Sanders D. The membrane proteins of the methanol-induced peroxisome of Candida boidinii. Initial characterization and generation of monoclonal antibodies. J Biol Chem 1986. [DOI: 10.1016/s0021-9258(17)35806-4] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
30
|
Roggenkamp R, Hansen H, Eckart M, Janowicz Z, Hollenberg CP. Transformation of the methylotrophic yeast Hansenula polymorpha by autonomous replication and integration vectors. ACTA ACUST UNITED AC 1986. [DOI: 10.1007/bf00331655] [Citation(s) in RCA: 109] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
31
|
Hill DJ, Hann AC, Lloyd D. Degradative inactivation of the peroxisomal enzyme, alcohol oxidase, during adaptation of methanol-grown Candida boidinii to ethanol. Biochem J 1985; 232:743-50. [PMID: 3911950 PMCID: PMC1152946 DOI: 10.1042/bj2320743] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Adaptation of methanol-grown C. boidinii to ethanol-utilization in non-growing cells resulted in decreased activity of the peroxisomal enzyme alcohol oxidase. Re-appearance of alcohol oxidase activity was dependent on protein synthesis de novo. Degradation of alcohol oxidase protein was shown to parallel the decrease in activity. Adaptation of methanol-grown cells to ethanol-utilization resulted in increased absorbance due to cytochromes and decreased absorbance due to flavoprotein. Decrease in alcohol oxidase activity was associated with loss of the flavin coenzyme, FAD, from the organisms and the appearance of flavins (FAD, FMN, riboflavin) in the surrounding medium. Electron microscopic observations showed that general degradation of whole peroxisomes rather than specific loss of crystalline cores (alcohol oxidase protein) occurred during the adaptation.
Collapse
|
32
|
Dihydroxyacetone synthase is localized in the peroxisomal matrix of methanol-grown Hansenula polymorpha. Arch Microbiol 1985. [DOI: 10.1007/bf00411242] [Citation(s) in RCA: 120] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
33
|
Goodman JM. Dihydroxyacetone synthase is an abundant constituent of the methanol-induced peroxisome of Candida boidinii. J Biol Chem 1985. [DOI: 10.1016/s0021-9258(18)88894-9] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
34
|
Goodman JM, Scott CW, Donahue PN, Atherton JP. Alcohol oxidase assembles post-translationally into the peroxisome of Candida boidinii. J Biol Chem 1984. [DOI: 10.1016/s0021-9258(17)39756-9] [Citation(s) in RCA: 56] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
35
|
Roggenkamp R, Janowicz Z, Stanikowski B, Hollenberg CP. Biosynthesis and regulation of the peroxisomal methanol oxidase from the methylotrophic yeast Hansenula polymorpha. MOLECULAR & GENERAL GENETICS : MGG 1984; 194:489-93. [PMID: 6377014 DOI: 10.1007/bf00425563] [Citation(s) in RCA: 83] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The biosynthesis of methanol oxidase, a peroxisomal enzyme in the methanol-utilizing yeast Hansenula polymorpha, was studied in vitro. Translation of Hansenula mRNA in a rabbit reticulocyte lysate yields methanol oxidase protein in high amounts. The apparent molecular mass of the protein was found to be identical to the subunit of the functional multimeric enzyme, which indicates the absence of an N-terminal extension typical of most transported proteins. The regulation of methanol oxidase by glucose repression and depression as well as by induction of methanol was shown to be controlled at the level of transcription. Two mutants of Hansenula polymorpha, unable to grow on methanol as a carbon and energy source were shown to be affected in methanol oxidase synthesis.
Collapse
|
36
|
Patel RN, Hou CT, Derelanko P. Microbial oxidation of methanol: purification and properties of formaldehyde dehydrogenase from a Pichia sp. NRRL-Y-11328. Arch Biochem Biophys 1983; 221:135-42. [PMID: 6830251 DOI: 10.1016/0003-9861(83)90129-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
37
|
Veenhuis M, Van Dijken JP, Harder W. The significance of peroxisomes in the metabolism of one-carbon compounds in yeasts. Adv Microb Physiol 1983; 24:1-82. [PMID: 6364725 DOI: 10.1016/s0065-2911(08)60384-7] [Citation(s) in RCA: 172] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
38
|
Substructure of crystalline peroxisomes in methanol-grown Hansenula polymorpha: evidence for an in vivo crystal of alcohol oxidase. Mol Cell Biol 1982. [PMID: 7050659 DOI: 10.1128/mcb.1.10.949] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The substructural organization of completely crystalline peroxisomes present in Hansenula polymorpha cells grown under methanol limitation in a chemostat was investigated by different cytochemical and ultrastructural techniques. Time-dependent cytochemical staining experiments indicated that activities of the two main constituents of these organelles, namely, alcohol oxidase and catalase, were present throughout the crystalline matrix. Catalase was completely removed from isolated peroxisomes by osmotic shock treatment. After such treatment, the ultrastructure of the crystalline matrix of the organelles remained virtually intact. Because alcohol oxidase activity was still present in this matrix, it was concluded that alcohol oxidase protein is the only structural element of the peroxisomal crystalloids. The molecular architecture of the crystalloids was investigated in ultrathin cryosections which permitted recognition of individual molecules in the crystalline matrix. Depending on the plane of sectioning, different crystalline patterns were observed. Tilting experiments indicated that these images were caused by superposition of octameric alcohol oxidase molecules arranged in a tetragonal lattice. A three-dimensional model of the crystalloid is presented. The repeating unit of this structure is composed of four alcohol oxidase molecules. The crystalloid represents an open structure, which may explain the observed free mobility of catalase molecules.
Collapse
|
39
|
Bruinenberg P, Veenhuis M, Dijken J, Duine J, Harder W. A quantitative analysis of selective inactivation of peroxisomal enzymes in the yeastHansenula polymorphaby high-performance liquid chromatography. FEMS Microbiol Lett 1982. [DOI: 10.1111/j.1574-6968.1982.tb00035.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
40
|
Veenhuis M, Zwart KB, Harder W. THE BIOGENESIS AND TURNOVER OF PEROXISOMES INVOLVED IN CARBON AND/OR NITROGEN METABOLISM OF THE YEAST HANSENULA POLYMORPHA. Ann N Y Acad Sci 1982. [DOI: 10.1111/j.1749-6632.1982.tb21458.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
41
|
|
42
|
|
43
|
Kindl H. The biosynthesis of microbodies (peroxisomes, glyoxysomes). INTERNATIONAL REVIEW OF CYTOLOGY 1982; 80:193-229. [PMID: 6130050 DOI: 10.1016/s0074-7696(08)60370-8] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
44
|
|
45
|
Veenhuis M, Harder W, van Dijken JP, Mayer F. Substructure of crystalline peroxisomes in methanol-grown Hansenula polymorpha: evidence for an in vivo crystal of alcohol oxidase. Mol Cell Biol 1981; 1:949-57. [PMID: 7050659 PMCID: PMC369383 DOI: 10.1128/mcb.1.10.949-957.1981] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
The substructural organization of completely crystalline peroxisomes present in Hansenula polymorpha cells grown under methanol limitation in a chemostat was investigated by different cytochemical and ultrastructural techniques. Time-dependent cytochemical staining experiments indicated that activities of the two main constituents of these organelles, namely, alcohol oxidase and catalase, were present throughout the crystalline matrix. Catalase was completely removed from isolated peroxisomes by osmotic shock treatment. After such treatment, the ultrastructure of the crystalline matrix of the organelles remained virtually intact. Because alcohol oxidase activity was still present in this matrix, it was concluded that alcohol oxidase protein is the only structural element of the peroxisomal crystalloids. The molecular architecture of the crystalloids was investigated in ultrathin cryosections which permitted recognition of individual molecules in the crystalline matrix. Depending on the plane of sectioning, different crystalline patterns were observed. Tilting experiments indicated that these images were caused by superposition of octameric alcohol oxidase molecules arranged in a tetragonal lattice. A three-dimensional model of the crystalloid is presented. The repeating unit of this structure is composed of four alcohol oxidase molecules. The crystalloid represents an open structure, which may explain the observed free mobility of catalase molecules.
Collapse
|
46
|
Patel RN, Hou CT, Laskin AI, Derelanko P. Microbial oxidation of methanol: properties of crystallized alcohol oxidase from a yeast, Pichia sp. Arch Biochem Biophys 1981; 210:481-8. [PMID: 7030206 DOI: 10.1016/0003-9861(81)90212-5] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
47
|
Biogenesis and turnover of peroxisomes involved in the concurrent oxidation of methanol and methylamine in Hansenula polymorpha. Arch Microbiol 1981. [DOI: 10.1007/bf00417176] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
48
|
Turner A, Higgins I, Gull K. Microbodies inCladosporium (Amorphotheca) resinaegrown on glucose andn-alkanes. FEMS Microbiol Lett 1980. [DOI: 10.1111/j.1574-6968.1980.tb05619.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
49
|
|
50
|
Abstract
The cellular structure of two yeast strains capable of growth on methane was investigated by electron microscopy. Microbodies were observed in cells of Sporobolomyces roseus strain Y and Rhodotorula glutinis strain CY when grown on methane but rarely when grown on glucose. The size of the microbodies and the number observed per cell in a thin section did not increase with culture age. No crystalline organization was observed within these organelles. Similar microbodies were also observed in cells of R. glutinis CY grown on hexadecane. The plasma membranes of both methane and hexadecane-grown cells exhibited increased invagination compared to that of glucose-grown cells. Catalase activity was detected in the microbodies of alkane-grown cells by using 3,3'-diaminobenzidine as a cytochemical stain. The data presented suggest that microbodies, and the catalase contained within them, play a role in eucaryotic methane metabolism.
Collapse
|